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In the course of study in algebraic geometry, we are frequently
encountered to treat the following problem. Let V  be an abstract
variety, and P , Q  b e  tw o  points on V, then does there exist an
irreducible curve connecting these two points ? It may seem to be
almost self-evident, but it seem s to  us that there is no any proof
in the lite ra tu re . In  th is  note w e shall answ er the above in the
following generalized form.

THEOREM. Let Vn be an abstract variety, and U(i=1, •••, m)
be finite number of subvarieties of dimensions s, respectively, such
that s= max (s ,)  <n -1 . Then there exists an irreducible subvariety
o f V  containing all U4, of any dimension r such that s +  1 < r n - 1 .
M oreover there  ex ists such  one  w hich  is  a lgebra ic  over any
common field of definition for V and U , (i=1,

First w e shall p rove the theorem  in the case w hen V is a
projective model, and then go into the general case.

LEMMA 1. Let V" be a projective model, and P1(i=1, •••, In)
b e  a rb itra ry  points on V. T h e n  th e re  e x is ts  an  irreducible
subvariety of V , containing all P4 ,  o f a n y  dimension r such that

—1. Moreover let k  be a field of definition for V, then
there exists such one which is algebraic over k (P,, ••-, P„,).

P R O O F . It  is sufficient to treat the case — 1 .  First we shall
assume th a t  V  i s  normal. Let t b e  an integer satisfying the
following condition. Let Q  be an arbitrary  point of V, different
from any of P4, there exists a hypersurface of order t - 1, containing
all P„ but not Q . Such integer surely exists, e .g., t=m  + 1 . Put
;l1= E P 4 th e n  the linear system  Li u which consists of the inter-
sections of V with all hypersurfaces of order t  containing all points
in '.)1, will be shown to be noncomposite w ith the pencils. In fact,
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let C b e  a hyperplane section of V, then there exists the linear
system n i —C on V .  Moreover from the choice of an integer t,
Ew cannot have any fixed component. Hence by the theorem of
Bertini o n  the linear system " the generic m em ber of  i s is
irreducible. W hen V  is  no t normal, we construct a normal pro-
jective model 172). Since the correspondence T  between V  and
has no fundamental point, the transform of t  in V is also a set
of finite number of points. Let them be i .  Then we can construct
a subvariety C  o f  V. containing all points in Î .  T h e n  7 ' (0)
also contains all P, and irreducible. To prove the last part of the
lemma, it will be sufficient to remark that the linear system Ew
is defined over k  ( ( )  and the correspondence can be defined over
the algebraic closure of k .  Then the remaining part follow from
Prop. 1 of Matsusaka (3). q. e. d.

LEMMA 2. Theorem holds for a projective model V  in L .
PROOF. W ithout any restriction w e  c a n  assume th a t  s=s;

(i=1, •-•, m ) .  Let k  be  a common field of definition for V and
and H '" ' b e  a  generic hinear varie ty  over k  defined  by  the
equations

-2/,‘,.1X 1=0 (i=1 , •••, s)
j =0

w here (74,i )  are s(N+1)-independent variables over k .  Put H.V
= 17-- and H .U ,=E P,,. Without loss of generalities we can suppose
tha t a ll (11 have representatives in the affine representative S  of L
where X 0 = 1 .  Put K----k(u, i ,i=1, •••, s; j=1, •••, N )  and K,-- --K(u,o,

•••, s ) .  T hen  P i  are generic points of U, over K  and V  is
defined over K . L e t  0 '7 8 b e  a subvariety of V algebraic over K,
containing all IP;i 1, and P  a generic point of U  o v e r  g 1. Then
since CI is  on TI W C  have

dim(/3 . --- di (K, ) + dim = s + ( r — s) = r

Let U' be the locus of P  over R . W e shall show that U  contains
a ll U., as its subvarieties. Let Q be any point in U .  T h e n  P,5 —Q
is  a specialization over R. M oreover P—.P,j  is  a specialization over
R, hence a fortiori, over R . Thus any point of U, is get be the
specialization of P  over K. and Q i s  on U .  Let 9.ti be the locus

1) Cf. Zariski (7) a n d  Matsusaka (2).
2) Cf. Zariski (8).
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of c (U ) o f  T, where c (U ) is the Chow-point of and w be the
point of 9,lt, rational over 17, such that th e  corresponding cycle W
in  L  is a n  irreducible v a r ie ty . T hen  W will be seen to satisfy
all the  requirements in the lemma, since the inclusion relation are
preserved by th e  specialization of cyc les". T h u s  th e  lemma is
proved, q. e. d.

A s is  w e ll know n  th e  variety in  a  multiply projective space
can be transformed by a  biregular birational correspondence into
a projective model, hence we have

L E M M A  3. Theorem holds for a  variety embedded in a multi-
ply projective space.

THE PROOF OF TIIE THEOREM. L e t V be an  abstract variety
given by V., ; V. (a =1, • • •, s ) b e  th e  representatives
of V, S. the ambiant affine spaces of V„, and Ma the representatives
of a generic point i t  of F over a field of definition k for 17  and
T hen  s ince  k(M 1 x•••x1\11)—k(:11) i s  a  regular extension of k,
M, x ••• x M, h as a  lo c u s  T  over k. N ow  taking S„ a s  a  repre-
sentative of a projective space LŒ, w e  have a projective model Pc,
in  1.„„ having V. a s  a  representative in  S .. S im ila rly  w e  have t
in  IIL OE , which has the representative T  in the representative /JS,„ of
/1/... Suppose that U, has the representative U,. in V., and -0,„ be the
subvariety of 17. such that rL3  has the representative IL. in K. Since
• is complete there exists a subvariety (I', of T  w ith the projection
• in Ç . M o reo v e r w e  can  f in d  su ch  one  among those which
is algebraic a n d  d im  (0,.) ( U , ) .  Then by Lem m a 3, there
exists a  subvariety U  of T containing all 0, and algebraic over k.
Let U b e  a  representative of U  in  IISŒ. T h en  w e  see  th a t the
projection U. of U on  V, is not contained in  7Ç„, since U. contains
IL .. T h u s  U  determines a  subvariety U  o f  V algebraic over k,
w hich  w ill be  seen  to  sa tisfy  a ll the conditions in the theorem.

q. e. d.
In the case of a projective model we can say further as follows.
L e t  V  b e  a  pro jec tive  model and 'U , i s  a n  unmixed

3) By the main theorem on associated forms, any positive cycle in a projective
space can be represented as point in a suitable projective space. We call it briefly
the Chow-point o f the cycle. Cf. V. d. Waerden (6).

1 )  Cf. Matsusaka (3), Prop. 1.
5 )  For the theory of specialization of cycles in a projective space, see Matsusaka

( I ) ,  o r P. Samuel (4).
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V-cycle, then there exists a subvariety W of V  such that is also
a W-cycle.

First we shall show the existence of such W  w hen 'A  is of
dimension z e ro . The general case will follow immediately from it.
For this purpose we must add the following condition on the choice
of an integer t  in Lemma 1. Let P be any point in 1 , then there
exists a hypersurface of order t-1, not containing P, but contains all
points in 1 other than P .  Under this condition, the generic member
of the linear system ni conta ins any  point P, in ',)t as a simple
point. The proof is as follow s. Let H, be a hypersurface of order
t--1, containing all points P:  for 2 m — i ,  a n d  does not pass
through P„ and H, be hyperplane containing P, which is transversal
t o  V a t P , .  Put H=H, -  F H , .  Then H .V  contains only one com-
ponent, say C, containing P„ and P, is a simple point of C." Hence
the generic member of ni contains P, as a simple point. Using
again the similar argument in Prop. 1 of Matsusaka (3), we see
that such member can be found among those which are algebraic
over k(%).

Th e corresponding results fo r  abstrac t varie ties are still
unsolved.

6) This means that all U 1 are simple subvarieties o f  V  and a ll U i have the
same dimensions. Cf. Chap. VII o f Weil (5).

7) Cf. Chap. IV of Weil, 1. c.
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