MEMOIRS OF THE CLLOEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1953.

On the characteristic classes of a submanifold

By

Seizi TAKIZAWA

(Received April 10, 1954)

In this paper, we first give some remarks on the differential forms introduced in our previous papers¹⁾²⁾, and we show secondly that the forms can also represent the characteristic cohomology classes of tangent and normal bundles over a submanifold imbedded in a Riemannian manifold \mathbf{R}^n , by integrating over suitable chains in the tangent frame bundles over \mathbf{R}^n .

§ 1. The formulas of obstruction cocycles and deformation cochains

Consider a Riemannian manifold \mathbb{R}^n of dimension n which we shall suppose, as in previous papers, to be compact connected orientable and of class ≥ 4 . The group of the tangent sphere bundle \mathfrak{B}^{n-1} over \mathbb{R}^n may be the proper orthogonal group, and so any element of the associated principal bundle \mathfrak{B}^0 of \mathfrak{B}^{n-1} can be expressed by an *n*-frame $Pe_1e_2\cdots e_n$ which determines one of the orientations of \mathbb{R}^n .

Take an even permutation σ of *n* figures $(1, 2, \dots, n)$ and set $\sigma(A) = A'$ $(A=1, 2, \dots, n)$. Let us denote any element of the tangent (n-q)-frame bundle \mathfrak{B}^{q} associated with \mathfrak{B}^{n-1} by

$$Pe_{q+1}, e_{(q+2)}, \cdots e_{n'} \in \mathfrak{B}^{q}.$$

And the natural projection $\mu: \mathfrak{B}^{q} \to \mathfrak{B}^{q+1}$ is defined by

$$\mu Pe_{(q+1)} e_{(q+2)} \cdots e_{n'} = Pe_{(q+2)} \cdots e_{n'} \in \mathfrak{B}^{q+1}.$$

Then, for any cross-section F into the bundle \mathfrak{B}^{r-1} defined on the

¹⁾ S. Takizawa: On the Stiefel characteristic classes of a Riemannian manifold, these Memoirs, Vol. 28, No. 1 (1953).

²⁾ S. Takizawa: On the primary difference of two frame functions in a Riemannian manifold, Ibid,

(r-1)-dimensional skeleton K^{r-i} of a cellular decomposition of \mathbb{R}^n , there exists an extension G of the cross-section $\mu F: K^{r-1} \to \mathfrak{V}^r$ over the *r*-dimensional skeleton K^r . From the linear differential formes ω_A , ω_{AB} $(=-\omega_{BA})$ $(A, B=1, 2, \dots, n)$ which define the Riemannian connexion and from its curvature forms \mathcal{Q}_{AB} , we construct the form H^{r-1} $(1 \le r \le n)$ as follows:

(1)
$$H^{r-1} = \frac{(-1)^r}{2^r \pi^{\frac{1}{2}(r-1)}} \sum_{\lambda=0}^{\lfloor \frac{1}{2}(r-1) \rfloor} (-1)^{\lambda} \frac{1}{\lambda! \Gamma(\frac{1}{2}(r-2\lambda+1))} H^{r-1}_{\lambda},$$

where

(2)
$$\prod_{\lambda}^{r-1} = \sum_{(A)} \epsilon_{A_1 A_2 \cdots A_{r-1} r'(r+1)' \cdots n'} \mathcal{Q}_{A_1 A_2}^{(r)} \cdots \mathcal{Q}_{A_{2\lambda-1} A_{2\lambda}}^{(r)} \omega_{A_{2\lambda+1} r'} \cdots \omega_{A_{r-1} r'},$$

and

(3)
$$\mathcal{Q}_{AB}^{(r)} = \mathcal{Q}_{AB} + \sum_{Q=(r+1)'}^{n'} \omega_{AQ} \, \omega_{QB} \, .$$

Here, we altered the notations in the previous papers: namely the present form Π^{r-1} and Π^{r-1}_{λ} were respectively denoted by Π^r and Ψ^r_{λ} in the previous ones.

It has been known that H_{λ}^{r-1} is an (r-1)-form on \mathfrak{B}^{r-1} . If we set

$$(4) \qquad -dH^{r-1} = \mathcal{Q}^r,$$

 \mathcal{Q}^r becomes an r-form on \mathfrak{B}^r and satisfies the relations

(5)
$$\begin{aligned} \Omega^r &= 0 & \text{if } r \text{ is odd,} \\ \Omega^r &= -2II^r & \text{if } r \text{ is even and } r < n \,. \end{aligned}$$

Then the Kronecker product of an *r*-cell Δ^r of K^n and the obstruction cocycle c(F) of a cross-section $F: K^{r-1} \to \mathfrak{R}^{r-1}$ is given by

(6)
$$(-1)^{r} c(F) \cdot \mathcal{I} = \int_{F \partial \mathcal{A}^{n}} \mathcal{I}^{n-1} + \int_{\mathcal{A}^{n}} \mathcal{Q}^{n} \quad \text{if } r = n ,$$
$$= \int_{F \partial \mathcal{A}^{n}} \mathcal{I}^{r-1} \qquad \text{if } r \text{ is odd and } < n ,$$
$$\equiv \int_{F \partial \mathcal{A}^{n}} \mathcal{I}^{r-1} + \int_{G \mathcal{A}^{n}} \mathcal{Q}^{r} \pmod{2} \quad \text{if } r \text{ is even and } < n .$$

Further, the deformation cochain $d(f_0, h, f_1)$ for two cross-sections $f_0, f_1: K^r \to \mathfrak{B}^r$ and a homotopy $h: f_0|K^{r-1} \simeq f_1|K^{r-1}$ is expressed by

(7)
$$(-1)^r d(f_0, h, f_1) \cdot z^r$$

= $\int_{f_1 z^r} \prod^r - \int_{f_0 z^r} \prod^r dr$ if r is even or $r = n - 1$,

242

On the characteristic classes of a submanifold

$$= \int_{f_1 z^r} \prod^r - \int_{f_0 z^r} \prod^r - \int_{\Psi(z^r \times I)} \frac{Q^{r+1}}{if} \pmod{2}$$

where z^r is an *r*-cycle of K^n whose coefficients are integers.

The general theory of fibre bundles assures that the cochain c(F) defined by (6) determines a unique cohomology class which does not depend on the choice of F. This result can be however easily proved from the formal relations (5) on the formes Π^{r-1} and Ω^r . It is obvious that c(F) is a cocycle when r is odd or r = n. If r is even and r < n, for any (r+1)-cell \varDelta^{r+1} , taking an extension G of μF over K^r , we have

$$\partial c(F) \cdot \mathcal{A}^{r+1} = c(F) \cdot \partial \mathcal{A}^{r+1} \equiv \int_{G \partial \mathcal{A}^{r+1}} \mathcal{Q}^r \pmod{2}$$
$$= -2 \int_{G \partial \mathcal{A}^{r+1}} \mathcal{U}^r = 2c(G) \cdot \mathcal{A}^{r+1}.$$

Since $c(G) \cdot A^{r+1}$ is an integer, it follows that

$$\partial c(\mathbf{F}) \cdot \mathbf{A}^{r+1} \equiv 0 \pmod{2}.$$

This shows that c(F) is a cocycle. Secondly, let F and F' be two c:oss-section: $K^{r-1} \rightarrow \mathfrak{P}^{r-1}$, and let z^r be an *r*-cycle with integral coefficients. It is trivial that $c(F) \cdot z^r - c(F') \cdot z^r = 0$, when r is odd or r=n. If r is even and r < n,

$$c(F) \cdot z^{r} - c(F') \cdot z^{r} \equiv \int_{Gz^{r}} \mathcal{Q}^{r} - \int_{G'z^{r}} \mathcal{Q}^{r} \pmod{2}$$
$$= -2\left\{\int_{Gz^{r}} \Pi^{r} - \int_{G'z^{r}} \Pi^{r}\right\} = 2d(G, G') \cdot z^{r}$$

where G' is an extension of $\mu F'$ over K^r . Since $d(G, G') \cdot z^r$ is an integer, it follows that

$$c(F) \cdot z^{r} - c(F') \cdot z^{r} \equiv 0 \pmod{2}.$$

The cohomology class of c(F) is therefore independent on the choice of F. Thus, the Kronecker product of the *r*-th Stiefel class $C_r(\mathbb{R}^n)$ and a homology class Z^r is given by

(8)
$$(-1)^r C_r(\mathbf{R}^n) \cdot Z^r \stackrel{*}{=} \int_{Gz^r} \mathcal{Q}^r,$$

where z^r is a cycle chosen to represent Z^r and the equality " $\underline{*}$ " denotes "=" or " \equiv (mod 2)" according as the (r-1)-th homotopy group of the fibre is infinite cyclic or cyclic of order two.

Moreover, it is possible to prove in the same manner, which we shall omit here, that, if f_0 and f_1 be extendable over K^{r+1} , the cochain $d(f_0, h, f_1)$ is a cocycle whose cohomology class is independent on the choice of the homotopy h.

§ 2. Frame bundles over a submanifold

Let \mathbb{R}^m $(m \leq n-2)$ be an *m*-dimensional closed orientable submanifold of class ≥ 3 imbedded in \mathbb{R}^n . The groups of the tangent sphere bundle \mathfrak{T}^{m-1} and the normal sphere bundle \mathfrak{N}^{n-1} over \mathbb{R}^m are proper orthogonal groups. Throughout this paper we shall set

$$m+p=n$$
.

The elements of the associated principal bundle \mathfrak{T}^0 and \mathfrak{N}^0 shall be denoted by

$$Pe_1e_2\cdots e_m \in \mathfrak{T}^\circ$$
 and $Pe_{m+1}e_{m+2}\cdots e_n \in \mathfrak{N}^\circ$.

Designating an orientation of \mathbb{R}^m we can assume that the *m*-frame $Pe_1e_2\cdots e_m$ and the composite *n*-frame $Pe_1\cdots e_me_{m+1}\cdots e_n$ determine the given orientations of \mathbb{R}^m and \mathbb{R}^n respectively. Let \mathfrak{T}^s and \mathfrak{R}^s be the (m-s)- and (p-s)-frame bundles associated with \mathfrak{T}^{m-1} and \mathfrak{R}^{p-1} respectively, and we shall denote their elements by

$$Pe_{s+1}e_{s+2}\cdots e_m \in \mathfrak{T}^s$$
 and $Pe_{m+1}e_{m+2}\cdots e_{n-s} \in \mathfrak{N}^s$.

For a family of tangent (m-s)-frames $\mathfrak{M} \subset \mathfrak{T}^s$, we define families $N(\mathfrak{M}) \subset \mathfrak{P}^{s+p-1}$ and $N_0(\mathfrak{M}) \subset \mathfrak{P}^s$ as follows:

$$Pe_{s+1}\cdots e_m e_{m+1} \in N(\mathfrak{M}),$$

if and only if $Pe_{s+1}\cdots e_m \in \mathfrak{M}$ and $Pe_{m+1} \in \mathfrak{N}^{p-1}$; and

$$Pe_{s+1}\cdots e_m e_{m+1}\cdots e_n \in N_0(\mathfrak{M}),$$

if and only if $Pe_{s+1}\cdots e_m \in \mathfrak{M}$ and $Pe_{m+1}\cdots e_n \in \mathfrak{N}^{\circ}$. When the family \mathfrak{M} depends on k parameters, $N(\mathfrak{M})$ depends on k+p-1 parameters. Similarly, for a family $\mathfrak{M} \subset \mathfrak{N}^{\circ}$, we define families $T(\mathfrak{M}) \subset \mathfrak{V}^{s+m-1}$ and $T_{\mathfrak{g}}(\mathfrak{M}) \subset \mathfrak{V}^{s}$ as follows:

$$\boldsymbol{P}\boldsymbol{e}_{m}\boldsymbol{e}_{m+1}\cdots\boldsymbol{e}_{n-s}\in T(\mathfrak{M}),$$

if and only if $Pe_{m+1}\cdots e_{n-s} \in \mathfrak{M}$ and $Pe_m \in \mathfrak{T}^{m-1}$; and

$$Pe_1\cdots e_m e_{m+1}\cdots e_{n-s} \in T_0(\mathfrak{M})$$

if and only if $Pe_{m+1}\cdots e_{n-s} \in \mathfrak{M}$ and $Pe_1\cdots e_m \in \mathfrak{T}^{\circ}$. When \mathfrak{M} depends

on k parameters, $T(\mathfrak{M})$ depends on k+m-1 parameters. Setting

$$\mathfrak{F}=N_{\mathfrak{o}}(\mathfrak{T}^{\mathfrak{o}})=T_{\mathfrak{o}}(\mathfrak{R}^{\mathfrak{o}}),$$

we shall consider only on \mathfrak{F} the forms ω_A , ω_{AB} and \mathcal{Q}_{AB} given on the principal bundle \mathfrak{B}^0 .

Let us agree with the following ranges of indices:

A,
$$B \dots = 1, 2, \dots, n$$
;
i, $j \dots = 1, 2, \dots, m$;
 $\alpha, \beta \dots = m+1, m+2, \dots, m+p=n$.

Over a coordinate neighborhood $U \subset \mathbb{R}^m$, we take local cross-sections $\tau: U \to \mathfrak{X}^n$ and $\nu: U \to \mathfrak{N}^n$; and set

$$\tau P = P e_1^{\circ} e_2^{\circ} \cdots e_m^{\circ} \quad \text{and} \quad \nu P = P e_{m+1}^{\circ} e_{m+2}^{\circ} \cdots e_n^{\circ} \quad \text{for} \quad P \in U.$$

We have then a *repère mobile* $Pe_1^{\circ}\cdots e_m^{\circ}e_{m+1}^{\circ}\cdots e_n^{\circ}$ on $U \subset \mathbb{R}^m$, and any frame $Pe_1e_2\cdots e_n \in \mathfrak{F}$ over U is given by

$$e_i = \sum_j u_{ij} e_j^0$$
, $e_{\alpha} = \sum_{\beta} v_{\alpha\beta} e_{\beta}^0$ and $P = P \in U$,

where (u_{ij}) and $(v_{\alpha 3})$ are proper orthogonal matrices. There exist natural homeomorphisms of $T_o(\nu U)$ and of $N_o(\tau U)$ respectively onto the portions of bundles \mathfrak{T}° and \mathfrak{N}° over U. Let ι^* and κ^* denote respectively the dual maps of the inclusion maps

 $\iota: T_0(\nu U) \to \mathfrak{F} \quad \text{and} \quad \kappa: \ N_0(\tau U) \to \mathfrak{F},$

and we set

(9)
$$\begin{aligned} \theta_A &= \iota^* \omega_A, \quad \theta_{AB} &= \iota^* \omega_{AB}, \\ \varphi_A &= \kappa^* \omega_A, \quad \varphi_{AB} &= \kappa^* \omega_{AB}. \end{aligned}$$

Then the forms ω_A , ω_{AB} on \mathfrak{F} over U are written

(10)
$$\omega_{i} = \theta_{i} = \sum_{j} u_{ij}\varphi_{j}, \qquad \omega_{a} = \sum_{\alpha} v_{\alpha\beta}\theta_{\beta} = \varphi_{a} = 0$$
$$\omega_{ij} = \theta_{ij} = \sum_{k} du_{ik}u_{jk} + \sum_{k,h} u_{ik}u_{jh}\varphi_{kh}$$
$$\omega_{ia} = \sum_{\beta} v_{\alpha\beta}\theta_{\beta\beta} = \sum_{j} u_{ij}\varphi_{ja}, \qquad \omega_{ai} = -\omega_{ia},$$
$$\omega_{\alpha\beta} = \sum_{\gamma} dv_{\alpha\gamma}v_{\beta\gamma} + \sum_{\tau,\delta} v_{\alpha\tau}v_{\beta\delta}\theta_{\gamma\delta} = \varphi_{\alpha\beta}.$$

Moreover we have

(11)
$$\begin{aligned} & \mathcal{Q}_{ij} = \iota^* \, \mathcal{Q}_{ij} = \sum_{k,h} \, u_{ik} \, u_{jh} \, \kappa^* \, \mathcal{Q}_{kh} , \\ & \mathcal{Q}_{ia} = \sum_{3} \, v_{a3} \, \iota^* \, \mathcal{Q}_{i3} = \sum_{j} \, u_{ij} \, \kappa^* \, \mathcal{Q}_{ja} , \qquad \mathcal{Q}_{ai} = - \, \mathcal{Q}_{ia} , \end{aligned}$$

Seizi Takizawa

$$\begin{aligned} \mathcal{Q}_{\alpha_{3}} &= \sum_{\Upsilon,\delta} v_{\alpha_{\Upsilon}} v_{\beta\delta} \iota^{*} \mathcal{Q}_{\gamma\delta} = \kappa^{*} \mathcal{Q}_{\alpha_{3}} ,\\ \iota^{*} &(\sum_{\alpha} \omega_{i\alpha} \omega_{\alpha j}) = \sum_{\alpha} \theta_{i\alpha} \theta_{\alpha j} \\ \kappa^{*} &(\sum_{i} \omega_{\alpha i} \omega_{i\beta}) = \sum_{i} \varphi_{\alpha i} \varphi_{i\beta} . \end{aligned}$$

Now we set

(12)
$$\theta_{ij} = \iota^* (\mathcal{Q}_{ij} + \sum_{\alpha} \omega_{i\alpha} \omega_{\alpha j}), \\ \varphi_{\alpha 3} = \kappa^* (\mathcal{Q}_{\alpha 3} + \sum_{i} \omega_{\alpha i} \omega_{i3}).$$

According to the above relations, it is clear that the forms θ_i , θ_{ij} , θ_{ij} are invariable under the change of local cross-section ν , and so they can be regarded as the forms on \mathfrak{T}^0 which are so-called the differential forms of induced Riemannian connexion and its curvature forms. Similarly φ_{a3} and φ_{a3} can be regarded as forms on \mathfrak{N}^0 .

Decompose \mathbb{R}^m into a finite cell complex L^m of class ≥ 3 so fine that each cell σ^s may be included in a coordinate neighborhood of \mathbb{R}^m , and let L^s be its *s*-dimensional skeleton. For any crosssection $f: L^{s-1} \to \mathfrak{T}^{s-1}$, there exists an extension $g: L^s \to \mathfrak{T}^s$ of $\mu' f$, where $\mu': \mathfrak{T}^{s-1} \to \mathfrak{T}^s$ denotes the natural projection defined by

$$\mu' P e_s e_{s+1} \cdots e_m = P e_{s+1} \cdots e_m .$$

In the same way as we have constructed the (r-1)-form H^{r-1} on \mathfrak{B}^{r-1} , from θ_{ij} and θ_{ij} we can construct the (s-1)-form A^{s-1} on \mathfrak{T}^{s-1} . If we set $-dA^{s-1}=\theta^s$, then θ^s becomes a form on \mathfrak{T}^s , and the formula (6) for tangent bundles over \mathbb{R}^m are written

(13)
$$(-1)^{s} c(f) \cdot \sigma^{s} \stackrel{*}{=} \int_{f \partial \sigma^{s}} A^{s-1} + \int_{g \sigma^{s}} \theta^{s}$$

Similarly, from φ_{α_3} and φ_{α_3} , we can construct the form Ψ^{s-1} on \mathfrak{N}^{s-1} . If we set $-d\Psi^{s-1} = \Phi^s$, then Φ^s becomes a form on \mathfrak{N}^s , and the obstruction cocycle c(f) of a cross-section $f: L^{s-1} \to \mathfrak{N}^{s-1}$ is given by the formula

(14)
$$(-1)^{s} c(f) \cdot \sigma^{s} \stackrel{*}{=} \int_{f \partial \sigma^{s}} \Psi^{s-1} + \int_{g \sigma^{s}} \Phi^{s},$$

which was published by Yagyu³⁾.

Hence by taking arbitrary cross-sections $y: L^s \to \mathfrak{T}^s$ and $\overline{y}: L^s$

246

³⁾ T. Yagyu: On the Whitney characteristic classes of the normal bundles, these Memoirs, Vol. 28, No. 1 (1953).

 $\rightarrow \mathfrak{N}^s$, and by choosing an arbitrary cycle z^s which represents a homology class Z^s of \mathbb{R}^m , the s-th Stiefel class C_s of \mathbb{R}^m and the s-th Whitney class W_s of the normal sphere bundle over \mathbb{R}^m are expressed by the formulas

(15)
$$(-1)^{s} C_{s} \cdot Z^{s} \stackrel{*}{=} \int_{g^{2}} \theta^{s} ,$$

(16)
$$(-1)^{s} W_{s} \cdot Z^{s} \stackrel{*}{=} \int_{\overline{y}z^{s}} \varphi^{s}.$$

Writing the form θ^s and φ^s in detail, we get

$$\Psi^{s} = \begin{cases} (-1)^{\frac{s}{2}} \frac{1}{2^{s} \pi^{\frac{s}{2}} \left(\frac{s}{2}\right)!} \sum_{(\alpha)} \epsilon_{\alpha_{1}\alpha_{2}\cdots\alpha_{s}12\cdots\gamma_{1-s}} \Psi^{(s)}_{\alpha_{1}\alpha_{2}} \Psi^{(s)}_{\alpha_{3}\alpha_{4}}\cdots\Psi^{(s)}_{\alpha_{s-1}\alpha_{s}} & \text{if s is even,} \\ 0 & \text{if s is odd.} \end{cases}$$

where

(19)
$$\theta_{ij}^{(s)} = \theta_{ij} + \sum_{h=s+1}^{m} \theta_{ih} \theta_{hj},$$

(20)
$$\Psi_{\alpha3}^{(s)} = \Psi_{\alpha3} + \sum_{\sigma=m+1}^{n-s} \varphi_{\alpha\sigma} \varphi_{\sigma3} .$$

It is however possible to show that the characteristic classes of the bundles over \mathbb{R}^m may be expressed, without using the forms on tangent or normal bundles, but in terms of the forms \mathcal{H}^{r-1} on \mathfrak{B}^{r-1} by integrating over the suitable cycles in \mathfrak{S}^{r-1} . In the following sections we shall make clear the relations between the classes of the bundles over \mathbb{R}^m and the forms \mathcal{H}^{r-1} on \mathfrak{B}^{r-1} .

\S 3. The characteristic classes of the normal bundles

Denoting by $Pe_m e_{m+1} \cdots e_{n-s}$ any element of the (p-s+1)-frame bundle \mathfrak{B}^{s+m-1} over \mathbb{R}^n and defining the natural projection $\mu: \mathfrak{B}^{s+m-1} \to \mathfrak{B}^{s+m}$ by

$$\mu Pe_{m}e_{m+1}\cdots e_{n-s}=Pe_{m+1}\cdots e_{n-s}\in \mathfrak{B}^{s+m},$$

the form H^{s+m-1} on \mathfrak{B}^{s+m-1} is now given by

Seizi Takizawa

248 (21)

$$II^{s+m-1} = \frac{(-1)^{s+m}}{2^{s+m} \pi^{\frac{1}{2}(s+m-1)}} \sum_{\lambda=0}^{\left[\frac{1}{2}(s+m-1)\right]} (-1)^{\lambda} \frac{1}{\lambda! \Gamma(\frac{1}{2}(s+m-2\lambda+1))} II_{\lambda}^{s+m-1},$$

where

(22)
$$II_{\lambda}^{s+m-1} = \sum_{(A)} \epsilon_{A_1 A_2 \cdots A_{s+m-1} m m+1 \cdots n-s} \\ \times \mathcal{Q}_{A_1 A_2}^{(s+m)} \cdots \mathcal{Q}_{A_{2\lambda-1} A_{2\lambda}}^{(s+m)} \omega_{A_{2\lambda+1} m} \cdots \omega_{A_{s+m-1} m}$$

and

(23)
$$\mathcal{Q}_{AB}^{(s+m)} = \mathcal{Q}_{AB} + \sum_{\sigma=m+1}^{n-s} \omega_{A\sigma} \omega_{\sigma B} .$$

Then, in view of (12) and (20) it holds in \mathfrak{N}° that

(24)
$$\mathcal{Q}_{\alpha\beta}^{(s)} = \mathcal{Q}_{\alpha\beta}^{(s+m)} - \sum_{i=1}^{m} \varphi_{\alpha i} \varphi_{\beta i} .$$

For a cross-section $\overline{y}: L^s \to \mathfrak{N}^s$ and an oriented s-cell σ^s of L^m , we have an oriented cell $\overline{y}\sigma^s$ in \mathfrak{N}^s . Then $T(\overline{y}\sigma^s)$, which is homeomorphic to the topological product of σ^s and the (m-1)sphere S^{m-1} , may be regarded as an (s+m-1)-chain in \mathfrak{V}^{s+m-1} . Therefore, to an s-chain γ^s of L^m with integral coefficients, an (s+m-1)-chain $T(\overline{y}\gamma^s)$ in \mathfrak{V}^{s+m-1} corresponds, by considering that the correspondence T is linear with respect to the cells of L^m .

Since $T(\bar{g}\sigma^s)$ depends on *s* local parameters of \mathfrak{N}^s and m-1 parameters u_{mi} , the terms in the expressions of the forms Π_{λ}^{s+m-1} vanish in $T(\bar{g}\sigma^s)$ except ones being $2\lambda \leq s$ and involving the factor

$$A^{m-1} = \omega_{m1} \omega_{m2} \cdots \omega_{m,m-1}$$

Hence, according to (10) we have in $T(\bar{g}\sigma^s)$

(25)
$$\begin{aligned} \mathcal{H}_{\lambda}^{s+m-1} &= (-1)^{m-1} \frac{(s+m-2\lambda-1)!}{(s-2\lambda)!} \sum_{(\alpha)} \epsilon_{\alpha_{1}\alpha_{2}\cdots\alpha_{s}} \sum_{\alpha_{1}\alpha_{2}\cdots\alpha_{s}} \sum_{\alpha_{1}\alpha_{1}\cdots\alpha_{s}} \sum_{\alpha_{1}\alpha_{1}\cdots\alpha_{s}}$$

where $u_i = u_{mi}$. On the exterior product of linear differential forms ψ_{AB} possessing two indices, we shall introduce the following symbols:

$$\psi_{A_1Q}\psi_{A_2Q}\cdots\psi_{A_jQ}=\psi_{A_1A_2\cdots A_j;Q(j)}$$

and

$$\begin{split} \psi_{A_1A_2\cdots A_j;Q(j)}\psi_{B_1B_2\cdots B_k;R(k)}\cdots\psi_{C_1C_2\cdots C_l;S(l)} \\ \\ = \psi_{A_1A_2\cdots A_j|B_1B_2\cdots B_k\cdots C_1C_2\cdots C_l;Q(j)R(k)\cdots S(l)}, \end{split}$$

The form $A^{m-1} = (-1)^{m-1} \omega_{12\cdots m-1; m(m-1)}$ gives the surface element

of the tangent (m-1)-sphere S^{m-1} of R^n over a point $P \in \mathbb{R}^m$ described by the unit vectors Pe_m . Expanding (25), we have

$$\Pi_{\lambda}^{s+m-1} = (-1)^{m-1} (s+m-2\lambda-1)! \sum_{(\alpha)} \sum_{l_1+l_2+\cdots+l_m=s-2\lambda} \frac{1}{l_1! l_2!\cdots l_m!} \epsilon_{\alpha_1 \alpha_2 \cdots \alpha_s 12 \cdots n-s} \\ \times \mathcal{Q}_{\alpha_1 \alpha_2}^{(s+m)} \cdots \mathcal{Q}_{\alpha_2 \lambda-1}^{(s+m)} \varphi_{\alpha_2 \lambda+1} \cdots \alpha_s; {}^{1}(l_1){}^{2}(l_2) \cdots {}^{m}(l_m) \mathcal{U}_1^{l_1} \mathcal{U}_2^{l_2} \cdots \mathcal{U}_m^{l_m} A^{m-1}.$$

It has been known that if u_1, u_2, \dots, u_m denote the components of unit vectors whose origins are a fixed point in an *m*-dimensional Euclidean space, the integral

$$I = \int_{S^{m-1}} u_1^{l_1} u_2^{l_2} \cdots u_m^{l_m} A^{m-1}$$

over the unit sphere S^{m-1} is zero unless all exponents l_1, l_2, \dots, l_m are even, and in the later case

$$I = \frac{\pi^{\frac{1}{2}m}}{2^{2k-1} l' \left(\frac{m}{2} + k\right)} \cdot \frac{l_1! l_2! \cdots l_m!}{k_1! k_2! \cdots k_m!},$$

where $l_i=2k_i$ and $k=k_1+k_2+\cdots+k_m$. Integrating the form over the tangent sphere S^{m-1} and employing a relation on the Gamma function

$$\Gamma\left(\frac{x}{2}\right) \cdot \Gamma\left(\frac{x+1}{2}\right) = 2^{-(x-1)} (x-1)! \pi^{\frac{1}{2}}$$

for a positive integer x, we obtain if s is even

$$(26) \qquad \int_{s^{m-1}} \mathcal{U}^{s+m-1} = \frac{(-1)^{s-1}}{2^{s+m} \pi^{\frac{1}{2}(s+m-1)}} \sum_{\lambda=0}^{\frac{n}{2}} \frac{(-1)!}{\lambda!} \cdot \frac{(s+m-2\lambda-1)!}{\Gamma(\frac{1}{2}(s+m-2\lambda+1))} \\ \times \sum_{k_{1}+k_{2}+\dots+k_{m}=\frac{s}{2}-\lambda} \frac{1}{(2k_{1})!(2k_{2})!\dots(2k_{m})!} \int_{s^{m-1}} \mathcal{U}_{s}^{2k_{1}} \mathcal{U}_{2}^{2k_{2}}\dots\mathcal{U}_{m}^{2k_{m}} A^{m-1} \\ \times \sum_{(\alpha)} \epsilon_{\alpha_{1}\alpha_{2}\dots\alpha_{s}^{1}2\dots+s} \mathcal{Q}_{\alpha_{1}\alpha_{2}}^{(s+m)}\dots\mathcal{Q}_{\alpha_{2}\lambda-1}^{(s+m)} \varphi_{\alpha_{2}\lambda+1}\dots\alpha_{s}^{(1)} \mathcal{U}_{2}^{1} \mathcal{U}_{2}^{2k_{2}}\dots\mathcal{U}_{m}^{2k_{m}} A^{m-1} \\ = \frac{-1}{2^{s}\pi^{\frac{s}{2}}} \sum_{\lambda=0}^{\frac{s}{2}} \frac{(-1)^{\lambda}}{\lambda!} \sum_{k_{1}+k_{2}+\dots+k_{m}=\frac{s}{2}-\lambda} \frac{1}{k_{1}!k_{2}!\dotsk_{m}!} \\ \times \sum_{(\alpha)} \epsilon_{\alpha_{1}\alpha_{2}\dots\alpha_{s}^{1}2\dots+s} \mathcal{Q}_{\alpha_{1}\alpha_{2}}^{(s+m)}\dots\mathcal{Q}_{\alpha_{2}\lambda-1}^{(s+m)} \varphi_{\alpha_{2}\lambda+1}\dots\alpha_{s}^{(1)} \mathcal{U}_{2}^{1} \mathcal{U}_{2}^{1} \mathcal{U}_{2}^{2} \dots\mathcal{U}_{m}^{(2k_{m})},$$
and if s is odd

and if s is odd

(27)
$$\int_{\mathcal{S}^{m-1}} \mathcal{I}^{s+m-1} = 0.$$

On the other hand, expanding the expression of the form Ψ^s into

which the relations (24) are substituted, we can easily see that the right hand side of (26) coincides with $-\Phi^s$. Consequently it follows that

(28)
$$-\int_{S^{m-1}} I s^{s+m-1} = \Phi^s.$$

Taking into account that $T(\bar{g}\sigma^s)$ is homeomorphic to $\bar{g}\sigma^s \times S^{m-1}$, we get from (16)

(29)
$$(-1)^{s} W_{s} \cdot Z^{s} \stackrel{*}{=} \int_{\tilde{g}z^{s}} \mathcal{P}^{s} = -\int_{T(\tilde{g}z^{s})} \Pi^{s+m-1}.$$

Thus we have obtained the formula which expresses the Whitney classes of the normal sphere bundle over \mathbb{R}^{m} in terms of the forms \mathbb{H}^{r-1} on \mathfrak{B}^{r-1} .

\S 4. The Stiefel classes of a submanifold and some remarks

Similar consideration as in the preceding section may be applyed to the tangent bundle over \mathbb{R}^m . We shall only sketch its outline. Any element of the (m-s+1)-frame bundle \mathfrak{V}^{s+p-1} is now denoted by $Pe_{s+1}e_{s+2}\cdots e_me_{m+1}$, and the natural projection $\mu:\mathfrak{V}^{s+p-1}\to\mathfrak{V}^{s+p}$ is defined by

$$\mu Pe_{s+1}e_{s+2}\cdots e_m e_{m+1} = Pe_{s+1}e_{s+2}\cdots e_m.$$

The form Π_{λ}^{s+p-1} on \mathfrak{V}^{s+p-1} is now given by

$$\begin{split} II_{\lambda}^{s+p-1} &= \sum_{(A)} \epsilon_{A_{1}, i_{2}, \dots, A_{\delta}, s+1, \dots, m+1} A_{\delta+1}, \dots A_{\delta+p-1} \\ &\times \mathcal{Q}_{A_{1}, i_{2}}^{(s+p)}, \dots \mathcal{Q}_{A_{2}\lambda-1}^{(s+p)}, \omega_{A_{2}\lambda+1}, m+1}, \dots \omega_{A_{\delta}, p-1}, m+1} , \end{split}$$

with

$$\mathcal{Q}_{AB}^{(i+p)} = \mathcal{Q}_{AB} + \sum_{h=s+1}^{m} \omega_{Ah} \omega_{hB} .$$

Then it holds that

$$\theta_{ij}^{(s)} = \mathcal{Q}_{ij}^{(s+p)} - \sum_{\alpha=m+1}^{n} \theta_{i\alpha} \theta_{j\alpha}$$

in \mathfrak{T}^{\bullet} . Taking a cross-section $g: L^{\bullet} \to \mathfrak{T}^{\bullet}$, we have now in $N(g\sigma^{\bullet})$

$$\begin{split} II_{\lambda}^{s+p-1} &= (-1)^{p-1} (s+p-2\lambda-1)! \sum_{(i)} \sum_{l_1+l_2+\cdots+l_p=s-2\lambda} \frac{1}{l_1! l_2! \cdots l_p!} \epsilon_{i_1 i_2 \cdots i_s s+1 \cdots n} \\ &\times \mathcal{Q}_{i_1 i_2}^{(s+p)} \cdots \mathcal{Q}_{i_{2\lambda-1} i_{2\lambda}}^{(s+p)} \theta_{i_{2\lambda+1} \cdots i_s; m+1(l_1)m+2(l_2) \cdots n(l_p)} v_{m+1}^{l_1} v_{m+2}^{l_2} \cdots v_n^{l_p} A^{p-1} \end{split}$$

where $v_{\alpha} = v_{m+1,\alpha}$, and the form $A^{p-1} = (-1)^{p-1} \omega_{m+2,m+3,\dots,n;m+1(p-1)}$ gives the surface element of the (p-1)-sphere \overline{S}^{p-1} described by the

250

normal vectors Pe_{m+1} at a point $P \in \mathbb{R}^m$. By a same calculation as in the preceding section we get finally

$$(30) \qquad \qquad -\int_{\bar{s}^{p-1}} \mathcal{I}^{s+p-1} = \Theta^s,$$

and it follows that

(31)
$$(-1)^{s} C_{s} \cdot Z^{s} \stackrel{*}{=} \int_{gz^{s}} \theta^{s} = -\int_{N(gz^{s})} \eta^{s+p-1}.$$

We have thus obtained the formula which expresses the Stiefel classes of a submanifold in terms of the forms H^{r-1} on \mathfrak{B}^{r-1} . When s=m, (31) coincides with Chern's formula.⁴⁰ The case s=1 is trivial, since the class is zero.

It can be proved that the formula (30) and (31) also hold in the case m=n-1 which was excepted in our considerations: that is, we can regard the formula (5) as special case of (30) when m=n-1. In fact, (5) may be rewritten as

(32)
$$-\{II^r + (-1)^r II^r\} = \mathcal{Q}^r \quad (r < n).$$

On the other hand, by changing the orientation of the vector $Pe_{(r+1)'}$, the forms $\omega_{A,(r+1)'}$ are transformed to $-\omega_{A,(r+1)'}$ and so H^r to $(-1)^r H^r$. Hence, the form in the braces of the left hand side of (32) is nothing but the integrated form of H^{s+p-1} over the 0-sphere S° consisting of two normal vectors of \mathbb{R}^m at a point. Furthermore the relation (4) can be regarded as the formula (30) for m=n.

Consequently it has been made clear that the forms \mathcal{Q}^r , θ^s and Ψ^s , which represent the characteristic classes of various bundles induced from the tangent sphere bundle over \mathbb{R}^n , are systimatically derived from the forms \mathcal{H}^r which are essential to represent the deformation cochains of frame fields in \mathbb{R}^n .

At the end of the paper, the author wishes to express his sincere gratitude to Prof. J. Kanitani for his kind guidance and encouragement throughout this work.

⁴⁾ S. S. Chern: On the curvatura integra in a Riemannian manifold, Ann. of Math., 46 (1945), p. 679.