On the characteristic classes of a submanifold

By
Seizi Takizawa

(Received April 10, 1954)

In this paper, we first give some remarks on the differential forms introduced in our previous papers ${ }^{129)}$, and we show secondly that the forms can also represent the characteristic cohomology classes of tangent and normal bundles over a submanifold imbedded in a Riemannian manifold \boldsymbol{R}^{n}, by integrating over suitable chains in the tangent frame bundles over \boldsymbol{R}^{n}.

§ 1. The formulas of obstruction cocycles and deformation cochains

Consider a Riemannian manifold \boldsymbol{R}^{n} of dimension n which we shall suppose, as in previous papers, to be compact connected orientable and of class $\geqq 4$. The group of the tangent sphere bundle \mathbb{X}^{n-1} over \boldsymbol{R}^{n} may be the proper orthogonal group, and so any element of the associated principal bundle \mathfrak{B}^{n} of \mathfrak{B}^{n-1} can be expressed by an n-frame $P e_{1} e_{2} \cdots e_{n}$ which determines one of the orientations of \boldsymbol{R}^{n}.

Take an even permutation σ of n figures ($1,2, \cdots, n$) and set $\sigma(A)=A^{\prime} \quad(A=1,2, \cdots, n)$. Let us denote any element of the tangent ($n-q$) -frame bundle \mathfrak{B}^{n} associated with \mathfrak{B}^{n-1} by

$$
P e_{q+1)}, \boldsymbol{e}_{(q+2)}, \cdots e_{n}, \mathfrak{B}^{\prime \prime}
$$

And the natural projection $\mu: \mathfrak{B}^{\prime \prime} \rightarrow \mathfrak{B}^{\boldsymbol{\gamma + 1}}$ is defined by

$$
\mu P e_{(q+1)}, e_{(q+9)} \cdots e_{n^{\prime}}=P e_{(q+2)}, \cdots e_{u^{\prime}} \in \mathfrak{B}^{\eta+1}
$$

Then, for any cross-section F into the bundle \mathfrak{B}^{r-1} defined on the

[^0]($r-1$)-dimensional skeleton K^{r-1} of a cellular decomposition of \boldsymbol{R}^{n}, there exists an extension G of the cross-section $\mu F: K^{r-1} \rightarrow \mathfrak{V}^{r}$ over the r-dimensional skeleton K^{\prime}. From the linear differential formes $\omega_{A}, \omega_{A B}\left(=-\omega_{B A}\right)(A, B=1,2, \cdots, n)$ which define the Riemannian connexion and from its curvature forms $\Omega_{A B}$, we construct the form $/ /^{r-1}(1 \leqq r \leqq n)$ as follows:
\[

$$
\begin{equation*}
\Pi^{r-1}=\frac{(-1)^{r}}{2^{r} \pi^{\frac{1}{2}(r-1)}} \sum_{\lambda=1}^{\left[\frac{1}{2}(r-1)\right]}(-1)^{\lambda} \frac{1}{\lambda!\Gamma\left(\frac{1}{2}(r-2 \lambda+1)\right)} \Pi_{\lambda}^{r-1}, \tag{1}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\Pi_{\lambda}^{r-1}=\sum_{(A)} \epsilon_{A_{1} A_{2} \cdots A_{r-1} r^{\prime}(r+1)^{\prime} \cdots n^{\prime}} \Omega_{A_{1} A_{2}}^{(r)} \cdots \Omega_{A_{2 \lambda-1} A_{2 \lambda}}^{(r)} \Theta_{A_{2 \lambda+1} r^{\prime}} \cdots \omega_{A_{r-1} r^{\prime}}, \tag{2}
\end{equation*}
$$ and

$$
\begin{equation*}
\Omega_{A R}^{(n)}=Q_{A N}+\sum_{Q=(r+1)^{\prime}}^{n^{\prime}} \omega_{A Q}\left(\omega_{Q A} .\right. \tag{3}
\end{equation*}
$$

Here, we altered the notations in the previous papers: namely the present form Π^{r-1} and Π_{λ}^{r-1} were respectively denoted by $\|^{r}$ and $\boldsymbol{D}_{\lambda}^{r}$ in the previous ones.

It has been known that Π_{λ}^{r-1} is an $(r-1)$-form on $\mathfrak{B r}^{-\boldsymbol{}}$. If we set

$$
\begin{equation*}
-d I^{r-1}=U Q^{r}, \tag{4}
\end{equation*}
$$

Q^{r} becomes an r-form on \mathfrak{F} and satisfies the relations

$$
\begin{array}{ll}
\Omega^{r}=0 & \text { if } r \text { is odd, } \\
\Omega^{r}=-2 I^{r} & \text { if } r \text { is even and } r<n . \tag{5}
\end{array}
$$

Then the Kronecker product of an r-cell J^{n} of K^{n} and the obstruction cocycle $c(F)$ of a cross-section $F: K^{r-1} \rightarrow \mathfrak{W}^{r-1}$ is given by

$$
\begin{array}{rlrl}
(-1)^{r} & c(F) \cdot J^{r}=\int_{F \partial د^{n}} I^{n-1}+\int_{\Delta^{n}} Q^{n} & \text { if } r=n, \tag{6}\\
& =\int_{F \partial د^{n}} I^{r-1} & \text { if } r \text { is odd and }<n, \\
& \equiv \int_{F \rightarrow د^{r}} I^{r-1}+\int_{G i د^{r}} \Omega^{r}(\bmod 2) & \text { if } r \text { is even and }<n .
\end{array}
$$

Further, the deformation cochain $d\left(f_{i}, h, f_{1}\right)$ for two cross-sections $f_{1}, f_{1}: K^{r} \rightarrow \mathfrak{B}^{r}$ and a homotopy $h: f_{0}\left|K^{r-1} \simeq f_{1}\right| K^{r-1}$ is expressed by

$$
\begin{align*}
& (-1)^{r} d\left(f_{0}, h, f_{1}\right) \cdot z^{r} \tag{7}\\
= & \int_{f_{1} z^{r}} I I^{r}-\int_{f_{0} z^{r}} I^{r} \quad \text { if } r \text { is even or } r=n-1,
\end{align*}
$$

$$
\equiv \int_{f_{1} z^{r}} \Pi^{r}-\int_{f_{0} z^{r}} \Pi^{r}-\int_{\varphi\left(z^{r} \times 1\right)} \Omega^{r+1} \text { if } r \text { is odd and }<n-1
$$

where z^{r} is an r-cycle of K^{n} whose coefficients are integers.
The general theory of fibre bundles assures that the cochain $c(F)$ defined by (6) determines a unique cohomology class which does not depend on the choice of F. This result can be however easily proved from the formal relations (5) on the formes I^{r-1} and $\Omega \Omega^{r}$. It is obvious that $c(F)$ is a cocycle when r is odd or r $=n$. If r is even and $r<n$, for any $(r+1)$-cell J^{r+1}, taking an extension G of μF over K^{r}, we have

$$
\begin{aligned}
\partial c(F) \cdot \Delta^{r+1}=c(F) \cdot \partial d^{r+1} & \equiv \int_{G \partial \Delta^{s^{++1}}} Q^{r} \quad(\bmod 2) \\
& =-2 \int_{\left(i \partial \Delta^{++1}\right.} I I^{r}=2 c(G) \cdot J^{r+1}
\end{aligned}
$$

Since $c(G) \cdot d^{n+1}$ is an integer, it follows that

$$
\grave{\partial} c(F) \cdot J^{r+1} \equiv 0 \quad(\bmod 2)
$$

This shows that $c(F)$ is a cocycle. Secondly, let F and F^{\prime} be two c:oss-section: $K^{r-1} \rightarrow \mathfrak{W e r}^{r-1}$, and let z^{r} be an r-cycle with integral coefficients. It is trivial that $c(F) \cdot z^{r}-c\left(F^{\prime}\right) \cdot z^{r}=0$, when r is odd or $r=n$. If r is even and $r<n$,

$$
\begin{aligned}
c(F) \cdot 2^{r}-c\left(F^{\prime}\right) \cdot 2^{r} \equiv & \equiv \int_{G ; z^{\prime}} Q^{r}-\int_{G^{\prime} z^{\prime \prime}} Q^{r} \quad(\bmod 2) \\
& =-2\left\{\int_{G z^{\prime \prime}} \Pi^{r}-\int_{\left(i^{\prime} z^{r}\right.} \Pi^{r}\right\}=2 d\left(G, G^{\prime}\right) \cdot z^{\prime \prime}
\end{aligned}
$$

where G^{\prime} is an extension of μF^{\prime} over K^{r}. Since $d\left(G, G^{\prime}\right) \cdot z^{r}$ is an integer, it follows that

$$
c(F) \cdot z^{r}-c\left(F^{\prime}\right) \cdot z^{\prime} \equiv 0 \quad(\bmod 2)
$$

The cohomology class of $c(F)$ is therefore independent on the choice of F. Thus, the Kronecker product of the r-th Stiefel class $C_{r}\left(\boldsymbol{R}^{n}\right)$ and a homology class $Z^{\prime \prime}$ is given by

$$
\begin{equation*}
(-1)^{r} C_{r}\left(\boldsymbol{R}^{n}\right) \cdot Z^{r} \stackrel{r}{=} \int_{\left(i z r^{r}\right.} \Omega^{r}, \tag{8}
\end{equation*}
$$

where $z^{\prime \prime}$ is a cycle chosen to represent Z^{\prime} and the equality " *" denotes " $=$ " or " $\equiv(\bmod 2)$ " according as the $(r-1)$-th homotopy group of the fibre is infinite cyclic or cyciic of order two.

Moreover, it is possible to prove in the same manner, which we shall omit here, that, if f_{0} and f_{1} be extendable over K^{r+1}, the cochain $d\left(f_{0}, h, f_{1}\right)$ is a cocycle whose cohomology class is independent on the choice of the homotopy h.

§ 2. Frame bundles over a submanifold

Let $\boldsymbol{R}^{m}(m \leqq n-2)$ be an m-dimensional closed orientable submanifold of class $\geqq 3$ imbedded in $\boldsymbol{R}^{\prime \prime}$. The groups of the tangent sphere bundle \mathfrak{T}^{n-1} and the normal sphere bundle $\mathfrak{9}^{p-1}$ over R^{m} are proper orthogonal groups. Throughout this paper we shall set

$$
m+p=n .
$$

The elements of the associated principal bundle \mathfrak{I}^{0} and $\mathfrak{i l}^{0}$ shall be denoted by

$$
P \boldsymbol{e}_{1} \boldsymbol{e}_{2} \cdots \boldsymbol{e}_{m} \in \mathfrak{T}^{0} \quad \text { and } \quad P e_{m+i} e_{m+2} \cdots e_{n} \in \mathfrak{T}^{\prime \prime}
$$

Designating an orientation of \boldsymbol{R}^{m} we can assume that the m-frame $P e_{1} \boldsymbol{e}_{2} \cdots \boldsymbol{e}_{m}$ and the composite n-frame $P e_{1} \cdots \boldsymbol{e}_{m} \boldsymbol{e}_{m+1} \cdots \boldsymbol{e}_{n}$ determine the given orientations of \boldsymbol{R}^{m} and \boldsymbol{R}^{n} respectively. Let \mathfrak{T}^{s} and \mathfrak{R}^{s} be the $(m-s)$ - and $(p-s)$-frame bundles associated with \mathfrak{T}^{m-1} and \mathfrak{T}^{p-1} respectively, and we shall denote their elements by

$$
P e_{s+1} e_{s+2} \cdots e_{n} \in \mathfrak{T}^{s} \quad \text { and } \quad P e_{m+1} e_{m+2} \cdots e_{n-s} \in \mathfrak{K}^{i}
$$

For a family of tangent $(m-s)$-frames $\mathfrak{M c} \subset \mathfrak{T}^{s}$, we define families $N(\mathfrak{M}) \subset \mathfrak{P}^{s+p-1}$ and $N_{0}(\mathfrak{M}) \subset \mathfrak{B}^{s}$ as follows:

$$
\boldsymbol{P} \boldsymbol{e}_{s+1} \cdots \boldsymbol{e}_{m} \boldsymbol{e}_{m+1} \in N(\mathfrak{M})
$$

if and only if $P e_{s+1} \cdots \rho_{n} \in \mathscr{M}$ and $P \rho_{m+1} \in \mathfrak{N}^{p-1}$; and

$$
P \boldsymbol{e}_{s+1} \cdots \boldsymbol{e}_{m} \boldsymbol{e}_{m+1} \cdots \boldsymbol{e}_{n} \in N_{0}(\mathfrak{Y}),
$$

if and only if $P e_{s+1} \cdots e_{m} \in M_{i}$ and $P e_{m+1} \cdots e_{n} \in \mathfrak{N}^{i}$. When the family \mathscr{M}_{i} depends on k parameters, $N(\mathscr{M})$ depends on $k+p-1$ parameters. Similarly, for a family $\mathfrak{M C} \subset \mathfrak{M}^{\circ}$, we define families $T\left(\mathscr{M}^{\prime}\right) \subset \mathfrak{B}^{s+m-1}$ and $T_{v}(\mathfrak{M i}) \subset \mathscr{V}^{\wedge}$ as follows:

$$
\operatorname{Pe}_{m} \boldsymbol{e}_{m+1} \cdots e_{n-s} \in T\left(\mathscr{M}_{i}\right),
$$

if and only if $P \boldsymbol{e}_{m+1} \cdots \boldsymbol{P}_{n-s} \in \mathscr{M}$ and $P \boldsymbol{e}_{m} \in \mathfrak{T}^{m-1}$; and

$$
P r_{1} \cdots e_{m} e_{m+1} \cdots e_{n-s} \in T_{v}(\mathcal{M})
$$

if and only if $P e_{m+1} \cdots \boldsymbol{e}_{n-s} \in \mathfrak{M}$ and $P e_{1} \cdots \rho_{m} \in \mathfrak{I}^{n}$. When \mathfrak{M} depends
on k parameters, $T\left(M_{i}\right)$ depends on $k+m-1$ parameters. Setting

$$
\mathfrak{F}=N_{0}\left(\mathfrak{T}^{n}\right)=T_{0}\left(\mathfrak{P}^{0}\right),
$$

we shall consider only on \mathfrak{F} the forms $\omega_{A}, \omega_{A B}$ and $Q_{A B}$ given on the principal bundle \mathfrak{B}°.

Let us agree with the following ranges of indices:

$$
\begin{aligned}
A, B \cdots & =1,2, \cdots, n \\
i, j \cdots & =1,2, \cdots, m \\
\alpha, \beta \cdots & =m+1, m+2, \cdots, m+p=n .
\end{aligned}
$$

Over a coordinate neighborhood $U \subset \boldsymbol{R}^{m}$, we take local cross-sections $\tau: U \rightarrow \mathfrak{T}^{n}$ and $\nu: U \rightarrow \mathfrak{N}^{n}$; and set

$$
\boldsymbol{P}=P \boldsymbol{e}_{1}{ }^{n} \boldsymbol{e}_{2}^{0} \cdots \boldsymbol{e}_{m}{ }^{0} \quad \text { and } \quad \nu P=P \boldsymbol{e}_{m+1}^{n} \boldsymbol{e}_{m+2}^{0} \cdots e_{n}^{0} \quad \text { for } \quad P \in U .
$$

We have then a repère mobile $P \boldsymbol{e}_{1}{ }^{n} \cdots \boldsymbol{e}_{m}{ }^{n} \boldsymbol{e}_{m+1}{ }^{n} \cdots \boldsymbol{e}_{n}{ }^{n}$ on $U \subset \boldsymbol{R}^{m}$, and any frame $P \boldsymbol{e}_{1} e_{2} \cdots e_{n} \in \mathcal{F}$ over U is given by

$$
\boldsymbol{e}_{6}=\sum_{j} u_{i j} e_{j}^{\prime \prime}, \quad \boldsymbol{e}_{\alpha}=\sum_{B} v_{\alpha, 3} e_{3}^{0} \quad \text { and } \quad P=P \in U,
$$

where ($u_{i j}$) and ($v_{a s}$) are proper orthogonal matrices. There exist natural homeomorphisms of $T_{0}(\nu U)$ and of $N_{0}(\tau U)$ respectively onto the portions of bundles $\mathfrak{T}^{\prime \prime}$ and $\mathfrak{i n}^{\prime \prime}$ over U. Let ι^{*} and κ^{*} denote respectively the dual maps of the inclusion maps

$$
\iota: \quad T_{0}(\nu U) \rightarrow \mathfrak{F} \quad \text { and } \quad \kappa: \quad N_{0}(\tau U) \rightarrow \mathfrak{F},
$$

and we set

$$
\begin{array}{ll}
\theta_{A}=e^{*} \omega_{A}, & \theta_{A B}=\iota^{*} \omega_{A B}, \\
\varphi_{A}=\kappa^{*} \omega_{A}, & \varphi_{A B}=\kappa^{*} \omega_{A B} . \tag{9}
\end{array}
$$

Then the forms $\omega_{A}, \omega_{A B}$ on \mathfrak{F} over U are written

$$
\begin{align*}
& \omega_{i}=\theta_{i}=\sum_{j} u_{i j} \varphi_{j}, \quad \omega_{\alpha}=\sum_{\beta} v_{\alpha \beta} H_{3}=\varphi_{\alpha}=0 \\
& \omega_{i j}=\theta_{i j}=\sum_{k} d u_{i k} u_{j k}+\frac{\sum_{k, h}}{} u_{i k} u_{j h} \varphi_{k h} \tag{10}\\
& \omega_{i \alpha}=\sum_{\beta} v_{\alpha \beta} \theta_{i \beta}=\sum_{j} u_{i j} \varphi_{j \alpha}, \quad \omega_{\alpha i}=-\omega_{i \alpha}, \\
& \omega_{\alpha, 3}=\sum_{\gamma} d v_{\alpha \gamma} v_{\beta \gamma}+\sum_{\tau, \delta} v_{\alpha \gamma} v_{\beta, \delta} H_{r \delta}=\varphi_{\alpha \beta} .
\end{align*}
$$

Moreover we have

$$
\begin{align*}
& \Omega_{i j}=\ell^{*} \Omega_{i j}=\sum_{i, h} u_{i k} u_{j h} \kappa^{*} \Omega_{k i \prime}, \\
& \Omega_{i \alpha}=\sum_{3} v_{\alpha, 3} *^{*} \Omega_{i, 3}=\sum_{j} u_{i j} \kappa^{*} \Omega_{j \alpha}, \quad \Omega_{\alpha i}=-\Omega_{i \alpha}, \tag{11}
\end{align*}
$$

$$
\begin{gathered}
\Omega_{\alpha \beta}=\sum_{r, i} v_{\alpha \gamma} v_{\beta 8} \iota^{*} \Omega_{\gamma \delta}=\kappa^{*} \Omega_{\alpha \beta}, \\
\epsilon^{*}\left(\sum_{\alpha}^{\alpha} \omega_{i \alpha} \omega_{\alpha j}\right)=\sum_{\alpha} \theta_{i \alpha} \theta_{\alpha j} \\
\kappa^{*}\left(\sum_{i} \omega_{\alpha i} \omega_{i \beta}\right)=\sum_{i} \varphi_{\alpha i} \varphi_{i \beta} .
\end{gathered}
$$

Now we set

$$
\begin{align*}
& \theta_{i j}=\iota^{*}\left(\Omega_{i j}+\sum_{\alpha} \omega_{i \alpha} \omega_{\alpha j}\right), \\
& \Phi_{a 3}=\kappa^{*}\left(\Omega_{a 3}+\sum_{i} \omega_{a i} \omega_{i 3}\right) . \tag{12}
\end{align*}
$$

According to the above relations, it is clear that the forms $\theta_{i}, \theta_{i j}$, $\theta_{i j}$ are invariable under the change of local cross-section ν, and so they can be regarded as the forms on $\mathfrak{T}^{\prime \prime}$ which are so-called the differential forms of induced Riemannian connexion and its curvature forms. Similarly $\varphi_{\alpha 3}$ and $\varphi_{\alpha \beta}$ can be regarded as forms on \mathfrak{R}°.

Decompose \boldsymbol{R}^{m} into a finite cell complex L^{m} of class $\geqq 3$ so fine that each cell σ^{s} may be included in a coordinate neighborhood of \boldsymbol{R}^{m}, and let L^{s} be its s-dimensional skeleton. For any crosssection $f: L^{s-1} \rightarrow \mathfrak{T}^{s-1}$, there exists an extension $g: L^{s} \rightarrow \mathfrak{T}^{s}$ of $\mu^{\prime} f$, where $\mu^{\prime}: \mathfrak{T}^{s-1} \rightarrow \mathfrak{T}^{s}$ denotes the natural projection defined by

$$
\mu^{\prime} P e_{s} e_{s+1} \cdots e_{m}=P e_{s+1} \cdots e_{m}
$$

In the same way as we have constructed the $(r-1)$-form I^{r-1} on \mathfrak{B}^{r-1}, from $\theta_{i j}$ and $\theta_{i j}$ we can construct the ($s-1$) -form A^{s-1} on \mathfrak{T}^{s-1}. If we set $-\boldsymbol{d} \boldsymbol{A}^{s-1}=\boldsymbol{H}^{s}$, then $\boldsymbol{\theta}^{s}$ becomes a form on \mathfrak{T}^{s}, and the formula (6) for tangent bundles over \boldsymbol{R}^{m} are written

$$
\begin{equation*}
(-1)^{s} c(f) \cdot \sigma^{s}=\int_{\partial \partial \sigma^{*}} A^{s-1}+\int_{!0^{s}} \theta^{s} . \tag{13}
\end{equation*}
$$

Similarly, from $\varphi_{a, 3}$ and $\Phi_{\alpha, 3}$, we can construct the form Ψ^{s-1} on \mathfrak{Y}^{s-1}. If we set $-d \mathscr{T}^{s-1}=\boldsymbol{J}^{s}$, then \boldsymbol{J}^{s} becomes a form on 9^{s}, and the obstruction cocycle $c(f)$ of a cross-section $f: L^{s-1} \rightarrow \mathfrak{V}^{s-1}$ is given by the formula

$$
\begin{equation*}
(-1)^{s} c(f) \cdot \sigma^{s} \stackrel{*}{=} \int_{f \partial \sigma^{*}} \psi^{s-1}+\int_{g \sigma^{*}} \phi^{s}, \tag{14}
\end{equation*}
$$

which was published by Yagyu ${ }^{3}$.
Hence by taking arbitrary cross-sections $!: L^{s} \rightarrow \mathfrak{T}^{*}$ and $!: L^{*}$
3) T. Yagyu: On the Whitney characteristic classes of the normal bundles, these Memoirs, Vol. 28, No. 1 (1953).
$\rightarrow \mathfrak{R}^{s}$, and by choosing an arbitrary cycle z° which represents a homology class \boldsymbol{Z}^{*} of \boldsymbol{R}^{m}, the s-th Stiefel class C_{s} of \boldsymbol{R}^{m} and the s-th Whitney class $W_{\text {s }}$ of the normal sphere bundle over \boldsymbol{R}^{m} are expressed by the formulas

$$
\begin{align*}
& (-1)^{s} C_{s} \cdot Z^{*} \stackrel{*}{=} \int_{g z^{s}} \Theta^{s}, \tag{15}\\
& (-1)^{s} W_{s} \cdot Z^{s} \stackrel{*}{=} \int_{\bar{y} z^{*}} \Phi^{s} . \tag{16}
\end{align*}
$$

Writing the form Θ^{s} and Φ^{s} in detail, we get
$\theta^{s}= \begin{cases}(-1)^{\frac{s}{2}} \frac{1}{2^{s} \pi^{\frac{s}{2}}\left(\frac{s}{2}\right)!} \sum_{(i)} \epsilon_{i_{1} s_{2} \cdots i_{s} s+1 \ldots, n} \Theta_{i_{1} i_{2}}^{(s)} \Theta_{i_{3} i_{4}}^{(s)} \cdots \Theta_{i_{s}-1}^{(s)} i_{s} & \text { if } s \text { is even }, \\ 0 & \text { if } s \text { is odd },\end{cases}$

where

$$
\begin{align*}
& \theta_{i j}^{(s)}=\theta_{i j}+\sum_{h=s+1}^{m} \theta_{i h} \theta_{h j}, \tag{19}\\
& \Phi_{a i}^{(s)}=\Phi_{a, 3}+\sum_{o=m+1}^{n-s} \varphi_{\alpha 0} \varphi_{a 3} . \tag{20}
\end{align*}
$$

It is however possible to show that the characteristic classes of the bundles over \boldsymbol{R}^{m} may be expressed, without using the forms on tangent or normal bundles, but in terms of the forms $\|^{r-1}$ on \mathfrak{B}^{r-1} by integrating over the suitable cycles in \mathfrak{S}^{r-1}. In the following sections we shall make clear the relations between the classes of the bundles over \boldsymbol{R}^{m} and the forms $\|^{r-1}$ on \mathfrak{B}^{r-1}.

§3. The characteristic classes of the normal bundles

Denoting by $\boldsymbol{P} \boldsymbol{e}_{m} \boldsymbol{e}_{m+1} \cdots \boldsymbol{e}_{n-s}$ any element of the $(p-s+1)$-frame bundle \mathfrak{P}^{s+m-1} over \boldsymbol{R}^{n} and defining the natural projection $\mu: \mathfrak{B}^{s+m-1}$ $\rightarrow \mathfrak{W}^{s+\cdots}$ by

$$
\mu P \boldsymbol{e}_{m} e_{m+1} \cdots e_{n-s}=P e_{n+1} \cdots e_{n-s} \in \mathfrak{*}^{s+m}
$$

the form $/ /^{s+m-1}$ on $\mathfrak{3}^{s+m-1}$ is now given by

$$
\begin{equation*}
I^{s+m-1}=\frac{(-1)^{s+m}}{2^{s+m} \pi^{\frac{1}{(s+m-1)}}} \sum_{\lambda=0}^{\left[\frac{1}{(s+m-1)]}\right.}(-1)^{\lambda} \frac{1}{\lambda!\Gamma\left(\frac{1}{2}(s+m-2 \lambda+1)\right)} I_{\lambda}^{s+m-1} \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
& I I_{\hat{\lambda}}^{++m-1}=\underset{(A)}{A_{A}} \epsilon_{A_{1} A_{2} \cdots A_{s}+m-1} m_{m} n_{n}+n-s \tag{22}\\
& \times \Omega_{A_{1} A_{2}}^{(s+m)} \cdots \Omega_{A_{2 \lambda}-1 A_{2 \lambda}}^{(s+m)} \omega_{A_{2 \lambda+1} m} \cdots \omega_{A_{s+m-1} m}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{A B}^{(s+m)}=Q_{A B}+\sum_{\sigma=m+1}^{n-s} \omega_{A O}\left(\omega_{\sigma B} .\right. \tag{23}
\end{equation*}
$$

Then, in view of (12) and (20) it holds in \mathfrak{N}^{0} that

$$
\begin{equation*}
\Phi_{\alpha \beta}^{(s)}=\Omega_{\alpha \beta}^{(\alpha+m)}-\sum_{i=1}^{m} \varphi_{\alpha i} \varphi_{\beta i} . \tag{24}
\end{equation*}
$$

For a cross-section $\overline{!}: L^{s} \rightarrow \mathfrak{R}^{8}$ and an oriented s-cell σ^{s} of L^{m}, we have an oriented cell $\overline{\mathscr{y}} \sigma^{s}$ in $9 \vartheta^{s}$. Then $T\left(\bar{y} \sigma^{s}\right)$, which is homeomorphic to the topological product of σ^{s} and the ($m-1$)sphere S^{m-1}, may be regarded as an $(s+m-1)$-chain in \mathfrak{B}^{s+m-1}. Therefore, to an s-chain r^{s} of L^{m} with integral coefficients, an ($s+m-1$) -chain $T\left(\overline{9} r^{s}\right)$ in \mathfrak{S}^{s+m-1} corresponds, by considering that the correspondence T is linear with respect to the cells of L^{m}.

Since $T\left(\bar{g} \sigma^{s}\right)$ depends on s local parameters of \mathfrak{R}^{s} and $m-1$ parameters $u_{m i}$, the terms in the expressions of the forms Π_{λ}^{s+m-1} vanish in $T\left(\bar{g} \sigma^{*}\right)$ except ones being $2 \lambda \leqq s$ and involving the factor

$$
A^{m-1}=\omega_{m 1}\left(\omega_{m 2} \cdots \omega_{m, m-1} .\right.
$$

Hence, according to (10) we have in $T\left(\bar{y} \sigma^{s}\right)$

$$
\begin{align*}
& I I_{\lambda}^{s+m-1}=(-1)^{m-1} \frac{(s+m-2 \lambda-1)!}{(s-2 \hat{\lambda})!} \sum_{(\alpha)} \epsilon_{\alpha_{1} \alpha_{2} \cdots \alpha_{s} 12 \cdots n-s} \tag{25}\\
& \quad \times Q_{\alpha_{1} \alpha_{2}}^{(s+m)} \cdots Q_{\alpha_{2 \lambda-1} \alpha_{2 \lambda}}^{(s+m)}\left(\sum_{i} u_{i} \varphi_{\alpha_{2 \lambda+1} i}\right) \cdots\left(\sum_{i} u_{i} \varphi_{\alpha_{s} i}\right) A^{m-1},
\end{align*}
$$

where $u_{i}=u_{m i}$. On the exterior product of linear differential forms $\xi_{A B}{ }_{A B}$ possessing two indices, we shall introduce the following symbols:

$$
\psi_{A_{1} Q} \psi_{A_{2} Q}^{\prime} \cdots \psi_{A_{j} Q}=\psi_{A_{1} A_{2} \cdots A_{j}: Q(j)}
$$

and

$$
\begin{aligned}
& \zeta_{1}^{\prime} A_{1} A_{2} \cdots A_{j}: Q(j) \zeta^{\prime} B_{1} B_{2} \cdots B_{k}: R(k) \cdots \zeta^{\prime} C_{1} G_{2} \cdots C_{l} ; s(l) \\
& =\psi_{l_{1}} A_{1} \cdots A_{j} H_{1} B_{2} \cdots B_{k} \cdots G_{1} C_{2} \cdots C_{l} ;<(j) A_{(i)} \cdots(l) .
\end{aligned}
$$

The form $A^{m-1}=(-1)^{m-1} \omega_{12 \cdots m-1 ; m(m-1)}$ gives the surface element
of the tangent $(m-1)$-sphere S^{m-1} of R^{n} over a point $P \in \boldsymbol{R}^{n}$ described by the unit vectors $P e_{m}$. Expanding (25), we have

$$
\begin{aligned}
& I_{\lambda}^{s+m-1}=(-1)^{m-1}(s+m-2 \lambda-1)!\sum_{(\alpha)} \sum_{l_{1}+l_{2}+\cdots+l_{m}=s-2 \lambda} \frac{1}{l_{1}!l_{2}!\cdots l_{m}!} \epsilon_{\alpha_{1} \alpha_{2} \cdots \alpha_{s}!2 \cdots n_{-s}}
\end{aligned}
$$

It has been known that if $u_{1}, u_{9}, \cdots, u_{m}$ denote the components of unit vectors whose origins are a fixed point in an m-dimensional Euclidean space, the integral

$$
I=\int_{s^{\dot{m}-1}} u_{1}{ }^{l_{1}} u_{2}^{{ }_{2}{ }^{2} \ldots u_{m}{ }^{l}{ }^{\prime} m} A^{m-1}
$$

over the unit sphere S^{m-1} is zero unless all exponents $l_{1}, l_{2}, \cdots, l_{m}$ are even, and in the later case

$$
I=\frac{\pi \frac{\pi}{1} m}{2^{2 k-1} I \cdot\left(\frac{m}{2}+k\right)} \cdot \frac{l_{1}!l_{2}!\cdots l_{m}!}{k_{1}!k_{2}!\cdots k_{m}!},
$$

where $l_{i}=2 k_{i}$ and $k=k_{1}+k_{2}+\cdots+k_{m}$. Integrating the form over the tangent sphere S^{m-1} and employing a relation on the Gamma function

$$
\Gamma\left(\frac{x}{2}\right) \cdot \Gamma\left(\frac{x+1}{2}\right)=2^{-(x-1)}(x-1)!\pi^{\frac{1}{2}}
$$

for a positive integer x, we obtain if s is even

$$
\begin{aligned}
& =\frac{-1}{2^{8} \pi^{\mathrm{s}}} \sum_{\lambda=0}^{\sum_{n}^{n}} \frac{(-1)^{\lambda}}{i!} \sum_{k_{1}+k_{\mathrm{n}}+\cdots+k_{m}=\mathrm{S}_{2}^{-\lambda}} \frac{1}{k_{1}!k_{2}!\cdots k_{m}!}
\end{aligned}
$$

and if s is odd

$$
\begin{equation*}
\int_{s^{m-1}} \Pi^{s+m-1}=0 \tag{27}
\end{equation*}
$$

On the other hand, expanding the expression of the form Ψ^{s} into
which the relations (24) are substituted, we can easily see that the right hand side of (26) coincides with - Φ^{s}. Consequently it follows that

$$
\begin{equation*}
-\int_{S^{m-1}} I I^{s+m-1}=\phi^{s} \tag{28}
\end{equation*}
$$

Taking into account that $T\left(\bar{g} \sigma^{r}\right)$ is homeomorphic to $\bar{g} \sigma^{s} \times S^{m-1}$, we get from (16)

$$
\begin{equation*}
(-1)^{s} W_{s} \cdot Z^{s} \stackrel{*}{=} \int_{\bar{j} z^{s}} d^{s}=-\int_{T\left(z_{2}^{*}\right)} \Pi^{s+m-1} . \tag{29}
\end{equation*}
$$

Thus we have obtained the formula which expresses the Whitney classes of the normal sphere bundle over \boldsymbol{N}^{m} in terms of the forms I^{r-1} on \mathfrak{B}^{r-1}.

§4. The Stiefel classes of a submanifold and some remarks

Similar consideration as in the preceding section may be applyed to the tangent bundle over \boldsymbol{R}^{m}. We shall only sketch its outline. Any element of the $(m-s+1)$-frame bundle $\mathfrak{B}^{s+p^{-1}}$ is now denoted by $P e_{s+1} e_{s+2} \cdots e_{m} e_{m+1}$, and the natural projection $\mu: \mathfrak{B}^{s+p-1} \rightarrow \mathfrak{B}^{s+p}$ is defined by

$$
\mu P e_{s+1} e_{s+2} \cdots e_{m} e_{m+1}=P e_{s+1} e_{s+2} \cdots e_{m}
$$

The form Π_{λ}^{s+p-1} on $\mathfrak{3}^{s+p-1}$ is now given by

$$
\begin{aligned}
& I s_{\lambda}^{s+p-1}=\sum_{(A)} \epsilon_{A_{1} \cdot I_{2} \cdots A_{s} s+1 \cdots m+1 i_{s+1} \cdots A_{s}+p-1} \\
& \times Q_{A_{1} \cdot A_{2}}^{(s+p)} \ldots Q_{A_{2 \lambda-1} A_{2 \lambda}}^{(s+p)} \omega_{A_{2 \lambda+1} m+1} \cdots()_{A_{s+p-1} m+1},
\end{aligned}
$$

with

$$
Q_{A B}^{(\dot{s}+\mu)}=Q_{A B}+\sum_{h=\delta+1}^{m} \omega_{A h} \omega_{h h} .
$$

Then it holds that

$$
\theta_{i j}^{(s)}=Q_{i j}^{(s+p)}-\sum_{\alpha=m+1}^{n} \theta_{i a} \theta_{j \alpha}
$$

in \mathfrak{T}^{n}. Taking a cross-section $g: L^{s} \rightarrow \mathfrak{T}^{s}$, we have now in $N\left(y \sigma^{*}\right)$

$$
\begin{aligned}
& \Pi_{\lambda}^{s+p-1}=(-1)^{p-1}(s+p-2 \lambda-1)!\sum_{(i)} \sum_{l_{1}+l_{2}+\cdots+l_{p=s-2}} \frac{1}{l_{1}!l_{2}!\cdots l_{p}!} \epsilon_{i_{1} i_{2} \cdots i_{s} s+1 \cdots n}
\end{aligned}
$$

where $v_{\alpha}=v_{m+1, \alpha}$, and the form $A^{p-1}=(-1)^{p-1} \omega_{m+2, \ldots+3+\ldots, n ; m+1(p-1)}$ gives the surface element of the $(p-1)$-sphere \bar{S}^{p-1} described by the
normal vectors $P \boldsymbol{e}_{m+1}$ at a point $P \in \boldsymbol{R}^{m}$. By a same calculation as in the preceding section we get finally

$$
\begin{equation*}
-\int_{\dot{S}^{n-1}} I^{s+p-1}=\theta^{s}, \tag{30}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
(-1)^{s} C_{8} \cdot Z^{s} \stackrel{*}{=} \int_{d z} H^{s}=-\int_{N\left(g z^{s}\right)} I^{s+p-1} . \tag{31}
\end{equation*}
$$

We have thus obtained the formula which expresses the Stiefel classes of a submanifold in terms of the forms I^{r-1} on \mathfrak{B}^{r-1}. When $s=m$, (31) coincides with Chern's formula.) The case $s=1$ is trivial, since the class is zero.

It can be proved that the formula (30) and (31) also hold in the case $m=n-1$ which was excepted in our considerations: that is, we can regard the formula (5) as special case of (30) when $m=n-1$. In fact, (5) may be rewritten as

$$
\begin{equation*}
-\left\{\Pi^{r}+(-1)^{r} \Pi^{r}\right\}=\Omega^{r} \quad(r<n) . \tag{32}
\end{equation*}
$$

On the other hand, by changing the orientation of the vector $P e_{(r+1)}$, the forms $\omega_{A,(r+1)}$, are transformed to $-\omega_{A,(r+1),}$ and so I^{r} to $(-1)^{r} I^{r}$. Hence, the form in the braces of the left hand side of (32) is nothing but the integrated form of I^{s+p-1} over the 0 sphere $S^{\prime \prime}$ consisting of two normal vectors of \boldsymbol{R}^{m} at a point. Furthermore the relation (4) can be regarded as the formula (30) for $m=n$.

Consequently it has been made clear that the forms Ω^{r}, θ^{s} and Ψ^{s}, which represent the characteristic classes of various bundles induced from the tangent sphere bundle over \boldsymbol{R}^{n}, are systimatically derived from the forms $\|^{\prime \prime}$ which are essential to represent the deformation cochains of frame fields in \boldsymbol{R}^{n}.

At the end of the paper, the author wishes to express his sincere gratitude to Prof. J. Kanitani for his kind guidance and encouragement throughout this work.

[^1]
[^0]: 1) S. Takizawa: On the Stiefel charactcristic classes of a Riemannian manifold, these Memoirs, Vol. 28, No. 1 (1953).
 2) S. Takizawa: On the primary difference of two frame functions in a Riemannian manifold, Ibid,
[^1]: 4) S. S. Chern: On the curvatura integra in a Ricmannian manifold, Ann. of Math., 46 (1945), p. 679.
