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In the same way as the concept of distributions by  L. Schwartz
[1111 ) was introduced as an extended one of functions, we may define
stationary random distributions as an extension of stationary random
functions viz, stationary processes. Such consideration will enable
u s  to establish a  unified theory of stationary processes, Brownian
motion processes, processes with stationary increments and  other
similar ones, a s  is shown in  this p a p e r . We shall first introduce
some fundamental notions in § 1. In § 2 we shall define the covariance
distribution of stationary random distributions, which corresponds
to  Khintchine's covariance function [7]. I n  § 3 a n d  § 4 we shall
prove the spectral decomposition theorems of covariance distribu-
tions and  stationary random distributions respectively. In  § 5 we
shall discuss the derivatives of stationary distributions. In  § 6 we
shall show that any stationary distribution is identified with a  k-th
derivative ( in  th e  sense of distributions) of a certain continuous
process with stationary k-th order increments for some k.

§  1 .  Fundamental Notions and Notations

I n  this paper we shall restrict ourselves to complex-valued
random variables with mean 0 and finite variance . T he  totality of
such variables constitute a  Hilbert space w ith  the  following de-
finition of inner product :

(1.1) (X, Y) = g (X. Y); g  :  expectation.

We shall here consider only the strong topology on  g:2. A  continu-
ous random process X (t), — co < t < co, is a n  -valued continuous

1 )  The numbers in  [  ]  refer to those of the Bibliography at the end of this
paper.
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function defined on R  ( —  co, o p ) .  The set of all continuous pro-
cesses will be denoted by

Let 9  denote the space o f all complex-valued Co-functions
defined on R  whose carrier is  compact. W e shall introduce in

the topology of Schwartz [11] (III, § 1). An 5-p-valued continuous
linear functional difined on S' is called a random distribution. We
shall here denote with 2 1 ' ( )  the totality of random distributions,
while w i l l  d e n o t e  the set of all complex-valued distributions
(continuous linear functionals) defined on L .  - Z ( , )  may be con-
sidered as a sub-system of .9)'(.) , since we may identify a continuous
random process X (t) with the following random distribution X(0)
determined by it •

(1.2) X(6) ----- fX(t) dt ;
the integral sign without bounds means the integral from — co to
co in this paper.

The following notations w ill be often used in the theory of
distributions. Let FE  3;11 or and 0 E

-r,, (shift transformation) : 0 (t) = (t+ h), F(0) F(7_ f6)
D  (Derivative) : D  (0= (t) , DF (0) = —  F(D
-  (Inversion) At) =95 ( - 0  Ê ($ )  = F ()
-  (Conjugate) (t), F (0) F ( 0 )

(= (ir (0 = (— , (0) = F (Si)
01  (Fourier transform) : cy (2) = 'd (t) dt

The following relations should be noted.

( 1 .3 ) ( F *  0) (0 ) =F(if) = F(0) , (0 * 0) c3.1 c Y  4 0 -

We shall call, following Khintchine, XE -GM  weakly  stationary
or merely stationary for the brevity if its covariance function is in-
variant under shift transformations viz, if w e have, for any (t, s),

(1.4) (rh X (1), h  X ( S ) )  (X (t) , X ( S ) )

and to  be  strictly stationary if its probability law is invariant under
shift transformations viz, if the joint probability law of

(1.5) (r,, X (t,), • •-, 7), X (t.))
is independent of h for any n and any (t„ •• • , t„). Generalizing these
definitions onto random distributions, we shall call X ( ...V() weakly
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stationary or merely stationary for the brevity if  w e have, for any
(0,0),

(1.4') (7, X(0), rh X(0)) = (X(0), X(0))
and strictly stationary if the joint probability law of

(1.5') (rh X(01), rh X(0„))

is independent of h  fo r any n and  (Ø„ • • • , On ).
W e shall adopt here the following notations :

: the totality of stationary distributions,
eO :  t h e  totality of stationary processes,

: the totality of strictly stationary distributions,
: the totality of strictly stationary processes.

Clearly we have
(1.6) eDeve°, O j O

A random distribution X  is called a  complex normal (random)
distribution if  X (0 ) , çS E constitute a complex normal system [5],
and to be a real normal (random) distribution if X is real viz. X =
and X(0), 0 running over real functions in  ..9), constitute a  (real)
norm al s y s te m . T h is  i s  a n  extention o f n o rm a l processes or
Gaussian processes [3] (II, § 3)» . A  (complex a s  w ell a s  real)
norm al distribution w ill be strictly  stationary, i f  it is  w eak ly
stationary. T h e  corresponding fact is w ell-know n regarding
stationary processes.

W e  sh a ll h e re  m ention a typical example o f real stationary
distributions which a r e  not stationary processes. Let B (t )  b e  a
(real) Brownian motion process [3] (p. 9 7 ) .  T he  derivative (in
th e  sense  of d istribution) of this process i s  a  random
distribution defined by

( 1 .7 )  B' (0) — B (0') =  ( t )  dB (t) (Wiener integral) [4].
This is evidently real normal and stationary, since

(z- h. B' (0) , B' (0)) (B' (7 -h 0) , (7 h 0))
=($ (t — h)dB (t) , SO (t — h)dB(t))

= f0(t— h) (t — h)dt= ffii(t) ifT )dt ,

2 )  This definition of complex normal ones is somewhat different from that of
Doob, while both definitions are the same in the real case.
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w hich shows th a t B' E S .  T he  fact that B ' S °  will be proved
in  § 2.

§  2 .  Covariance Distribution

As is known, Khintchine's covariance function [7] p(t) of X (t)
is defined by

(2.1) • p(t)= (X (t), X (0))= (X (t+s), X (s)).
Then w e have clearly

(X(Ø), X ( i ) ) - = ( I X ( 0 d t  ,  X ( s )  0 ( s )  d s )

f(X (t), X (s)) O(s) dt ds

= p(t—  s) (t) (s) d t ds

4o(r)fyi(7.- -o -) 0( —0-) do-  dr .
By considering p  as a distribution E we m ay write the above
identity as

(2.2) (X(0), X(0)) = (0 * 0) •
This may suggest to u s  how to define the covariance distribution
of our stationary distributions.

THEOREM 2 .1 .  Let X (0) be any stationary distribution. Then
there exists one and only one distribution p E satisfying (2.2).

DEFINITION. This distribution is called th e  covariance distri-
bution of X.

PROOF OF THEOREM. If w e put
(2.4) T0(0) = (X (0), X (')),

then w e get a distribution T o E  / 1 f o r  each 0 E  / .  Taking into
account the fact that T0 (0 )  is continuous in  (0, V)) E / 1 X  /  and St
is a Montel space [11] (III, § 2), we shall easily see that ' To'
i s  a  continuous linear mapping from .S) in to  .V. 3 ) Furtherm ore
this transformation commutes with the shift transformation ;

(7 h (0 ) =  To (r_ h 0 ) =  (X (0), X(7_, 0)) — (X (0), X (r-h 0))
=  (X(r4 0), X(5)) = T y 6 (0 .

Therefore To is expressible as a  convolution of a  distribution T
and Ø :

3 )  C f. [11] III, § 3 as to the topology in  .5)1.
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T o — T*0,
by a theorem of Schwartz [11] (Vol. 2, VI, § 7, p. 53, Amélioration
du théorêm X ) .  Hence it follows that

(X (0), X (0))=T6( -0)= ( T *  0) (0) = (T * * (0) = TO  *;f.5),
where p = t

The uniqueness of p follows at once from the fact that the set
of all elements of the form 0 * 0, 0,0 E 2,, is dense in 3).

THEOREM 2 .2 .  If  X (0) is real stationary distribution, then its
covariance distribution is real, i.e. p=p.

P R O O F . Let p be the covariance distribution of X .  Then that
of fe will become p, since we have

(X(0), X(56))= (X (0), X (0)) = (X (W ), X (56))= PO- * 52-6)

i0 (0 *
Thus X = X  implies p=9 .

E X A M P L E . The covariance distribution of B ' is Dirac's a-dis-
tribution [11] (I, § 1), as

(B' (0) , B' (0)) =- ( t )  ( t )  d t =  ( t ) d t (0  * (0)

= 8 (0* 0).
Thus we see that B ' E e°, because if B' E e° then the covariance
distribution would be induced by a continuous function which is
Khintchine's covariance function.

§  3 .  Spectral Decomposition of Covariance Function

Let X (t) be any stationary continuous random process with
covariance function p ( t ) .  A known theorem of Khintchine [7] shows
that p(t) is expressible in the form :

(3.1) p ( t) = d1i(2)
in one and only one way, where p  is a  non-negative measure on
R  such that p(R ) < oo. Therefore the distribution p(o) induced by
p(t) may be expressed as

(3.2) p (0) j p ( t )  (t) dt= IcY  0(2) dp (2).

Let us now consider any stationary distribution with the covar-
iance distribution p. Then we have
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(3. 3) *S6.-)= (X (0), X  (0))> 0 ,
which implies that p is a positive-definite distribution. By Schwartz'
generalization o f  Bochner's theorem [11] (VII, § 9) we obtain the
following theorem.

THEOREM 3.1. p is expressible in the f rom  (3 .2 ) in  one and
only way, w here p is a  non-negative measure satisfying

(3 . 4) f  0 (2 )  <
(1 4 42) A,

f or some integer k.
DEFINITION. We shall call (3-2) the spectral decomposition of

p and p spectral measure of p. When p satisfies (3-4)., we say that
X e Sk . W e  have clearly

(3-5) .••

Conversely we have
THEOREM 3.2. A ny  distribution of  the abov e form  is the

covariance distribution of a stationary distribution which is complex
normal.

PROOF. Let p be a distribution of the above form . P ut

r(0, p(0 * 0, sb E 2 /
 •

Then Po, so is positive-definite in (0, 0), as we have

($,, 0j ) f, p(0 * 0 =E  ei  .
C i= 1

Therefore we can define a  complex normal system X(0), 4 e .SD,
such that g X(0)=0 and g (X(95) • X(0)) =P(, 0) p(95 * ç-6.) [5]. I t
remains only to show that X(95) is a  random distribution. From
the identity :

X (0) — cX(0) = (X(c0), X(c0)) — c (X(0) , X(c95))
-- -c(X (0), X (0))+ce(X (0), X (96))

= (cf4 * 2*-0) — (7,0 (0 — *T6) + ($ * 93-)
cc p(9i —cc p(S6 * Si) — cc p(16 *T) +ce p(yi *i6- )

,

it follows that X (c0)=cX (0). By the same way we can see that
X (0+0)=X (0)+ X (0). Therefore X (95) is linear in  0. By the
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identity 11X(0) 11 2 - p(gi * -ç") we obtain the continuity of X .  Thus our
theorem is completely proved.

Next we shall discuss the case of real stationary distributions.
By Theorem 2-2 we see that p=ï) in this case. But we have

-1" (93) = PC-0- ) =. f (2) dlt (2) =f (--),) d12 (2 )

=f4f6 (2) ciP(),),
( f i ( E ) =p ( — E ) ,  E = i t ;  —t E ED .

By the uniqueness of the spectral measure we shall obtain the
following

THEOREM 3.3. In the case of  real stationary distribution the
spectral measure p is symmetric with respect to 0, 7112. p (E)=p(— E).

Conversely we have
THEOREM 3.4. A ny distribution of the f o rm  (3-2) with sym-

metric measure p  is  the covariance function of  a certain stationary
distribution which is real normal.

The proof is similar to that o f Theorem 3-2; we use the
existence theorem of real normal systems instead of that o f com-
plex normal ones.

EXAMPLE. B ' is a real stationary distribution whose spectral
measure is the ordinary Lebesgue measure, because we have

(0) = (0) = a l  (2) c/2

§ 4. Spectral Decomposition of Stationary Distribution

We shall first introduce a random measure. Let p  be a non-
negative measure defined for all Borel sets in R= (—  co, co) and
B * denote the system of all Borel sets with finite s-measure. An
,S- -valued function M (E )  defined for E  B *  is called a  random
measure with respect to p  if and only if

(4.1) (M(E,) , M(E2)) n E 2), E„ E2 E B*.

We get, by the definition,

(4.2) IIM(E)112-=p(E),

(4.2') M ( E 1 ) IM ( E 2 )  if E, n E 2  =  .

Making use of the additivity of p  we have

(4.2")M ( E ) = M ( E )  ,
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where E ,, E , ••  are disjoint to each other and belong to B * with
their sum E=>; E„; (4-2") will justify the term of random measure.
We can easily define the integral with respect to the measure [3]
(IX, § 2)"

(4.3) A l(f ) f ( 2 ) dM( 2 )
for f  E L '( R ,  p ) .  M ( f )  satisfies the following conditions :

(4 - 4  a) (M (.0 , M (.f 2)) (f i,.1 .2) (2) f2(2)  dP(2 )),
(4.4.b) M (c if ,  c2f2)=c1 M (f )+c2M (f 2).

Let X (t) be any stationary continuous process with the spectral
measure p .  Then it is known [3] (XI, § 4) that X (t) may be ex-
pressed in one and only one way as

(4.5) X (t)= Ie " dM(2),

where M  is a random measure with respect to p .  This fact was
proved by many scholars, especially by A. Kolmogorov, II. Cramer
[2] and M. Loève (See [9] Th. 27.2, p. 123). Therefore the stationary
distribution induced by X (t) may be expressed as

(4-6) X(0) + 0 ( À ) M(010).

We shall now show that this identity holds for any general stationary
distribution, i.e.

THEOREM 4 . 1 .  L et X  be any  stationary  distribution w ith the
spectral measure p. Then X (0) will be expressible in the form (4.6)
in one and one w ay , M  being a  random  m easure w ith respect to p.
Conversely , any  random  distribution of  such f orm  is a  stationary
distribution.

D EFIN ITIO N . We shall call the identity (4 .6 ) the spectral de-
composition of X  and M  the spectral random  m easure of X.

PROOF O F  'rH E O R E M . We shall first remark that c4.. =  {JO ;
E  . . ) }  is dense in L===- L2 (R , p ) . Let h  denote the class of all

rapidly decreasing functions [11] (VII, § 3). Then  c w ill be a
homeomorphic mapping from 76 onto itself, where the topology on
g6 is what is usually used in the theory of distributions. As 31)
is dense in ,  so is J . .5 ) .  In making use of the condition (3.5)
we shall easily see that is included by L ' and that ' so in

4 )  J . L . D oob  uses a  process with orthogonal increments instead o f  our
random measure, but both concepts are equivalent.
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implies sc„ in L ". Therefore0 ,15) is dense in wi.th
respect to the norm of D .  As 'A and .SD is dense in L2 ,
is dense in L 2 and so 01.9) is dense in D.

The uniqueness of the expression is clear as ol.S1 is dense in
L 2 . In  order to prove the possiblity of the expression, we shall
put

T(0) = X(0) for 0=40 .
Then T  will be a  mapping from c * )  ç  L2 )  into which is
clearly linear and isometric on account of the identity :

17(0) IF= (X(0), 2C(0) = * ST) =110 0) 12 0 ( 2 ) = HOP,
since 4(0 *if) =IF012. 4.S, being dense in L2 , we can extend T(0)
to a linear isometric mapping from 1.2 into S. As the characteristic
function x.E (2) of a set E  B *  belongs to V, we may define M(E)
as follows :

(4.7) M (E )=T (x ,).
Then we have

(4.8) (M (E,), M (E2))=SxEi( 2 ) xay2(2 ) dit( 2 ) =12 (E, n E2),
since T  is isometric. In addition to this, we shall have

(4.9) M ( f ) = T ( f )  for f e  L 2 ,

for this is evidently true for any simple function f  in L2 by the
definition and we shall easily see that it is also true for any J e L 2,
by taking into account the fact that both sides of (4.10) are iso-
metric in f  and any Je L 2 is expressed as the E-limit of a sequence
of simple functions. I f  we put f=010 in (4.9), we obtain (5.6)
at once. The last part of the theorem is clear by the definitions.

Making use of this theorem we can prove that the class of
stationary processes e° coincides with eo in (3.5), i.e.

THEOREM 4.2. e0=e0.
PROOF. A s eocen is clear by Khintchine's decomposition

(3.1), we need only prove its inverse inclusion relation. Let X
be any element of eo. Then we have

(4.10) X (0) SA6(2 ) dM (À ), (M (E,), M (E2)) =  (Ein E2),
where

(4.11) 10 (2) < 00 .
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Put

(4.12) Y(t) dM(2),
which may be defined, since the 2-function e- " ' "  belongs to V
by  v irtue  o f  (4-11). Y (t) proves to  be a  stationary continuous
random process. Therefore we have, for 0 E ,

Y (t) dt= P(t) dM(2) dt= (A) dM(2)= X(0),
which implies that X (0) is induced by a  process Y E eo.

By the same way as in  Theorem 3•3 we shall obtain
THEOREM  4•3. In  c ase  o f  real stationary  distributions the

spectral random measure M is hermitian-symmetric i.e.
(4.3) M(E)= M(—  E).

§  5 .  Derivative of Stationary Random Distribution

Any random distribution has derivatives o f any order, which
are  also random distributions.

THEOREM 5.1. Let X  be a stationary distribution with spectral
m easure p and spectral random measure M .  Then X ( *)  (=IY  X )
is also a  stationary distribution M whose spectral measure p k  and
spectral random measure Mk are given by

(5.1) dp„(2) = (271.2) 2k  d  (A) , dM ,(2) = (i2n . 2)* dM(2).
P R O O F . W e have, by  the definition,

X ( '') (0)= ( - 1 ) k  X(0 (19 = ( - 1)14 0 (k ) (2) dM(2)

f (i 272)* (2) d M (2) ,

since we have, for 0 E

0 (k ) (2 ) = ( - 1 ) k  (i 27 ril) k a  (Â)
Thus X ( L)  proves to  be a stationary distribution satisfying the above
conditions.

By this theorem we shall see that  ' X e   Sn
' implies ' X  E S„, k ' .

Therefore we shall have, by Theorem 4.2,
THEOREM 5•2 »  In  order that X* )  i s  a  stationary continuous

process, it is necessary and sufficient that the  spectral measure p
of X  satisfies

5 )  C f. [3 ] XI, § 9 Example 1, p. 535.
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(5 •2) S
trk d . 0 <  c o  .

§  6 .  Continuous Process with Stationary k-th Order Increments

Let Y (t) be a continuous random process, i.e. Y E -0 ( S ) .  The
k-th order increment o f Y  is defined by

(6-1) j(k ) = f 1 )  y ( t  4. 1,4) ,

where t l is an arbitrary real number. This is also a continuous
random process for any fixed 4 .  If 4 (k) Y  is a continuous random
process for any fixed d, viz.

(6-2) ( 4 (k)Y (t+h), z l (k) Y (s+ h)) = (4 (k) Y (t), z imY (s)),

then Y (t) is called a process with stationary k-th order increments.
The totality of such processes will be here denoted with Z'F, . The
special case k = 1 has already been discussed as a screw line in
Hilbert space by J. v. Neumann and I. J. Schonberg [10] and A.
Kolmogorov [8].' ) Now we shall establish a close relation between

k  and e k ,  which will give us a generalisation of the results ob-
tained by these scholars.

THEOREM 6-1. I f  Y  E  k ,  then 17 ( k )  E ek , an d  conversely, if
XE then there exists YE ak such that X = Y ; Precisely  speak-
ing, if

(6-3)
then

X(0) = 140(2) dM(2)

k-1
(6.4) Lk (2 'Y (t)= E tv A „+f ed M ( 2 ) ,,=0 (— 2)k

t) = E : -
 0
1( _i27: 2t)711) (I21 1), = 0 (1) .1> 1

) )

(6-5) 4(k) Y( (  1 — e d M ( 2 ) .
—i2272

PROOF. Suppose that YE ak • Then we have

( 4 1 (k ) Y(ch 0), 4 ( k ) 17 (rh 0))=JJ4 4mY(s)) 6(t+ h) 46(s+ h) dt ds

=fif (4(k) Y (t+ h), zl (k) Y (s + h)) (t+ h) 0(s+ h) dt ds

6 )  C f. [3 ]  X I, § 11 a n d  [6].
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=JJ(d Y(t), 4 (k) Y(s)) 0(s) dt ds
(4(k) y(0) 4(k) y&,))

Hence it follows that

(Y (k ) (rh 0), r k ) h  SO) 1 7 (k ) (0 ) •  r k) (0) )
which implies Pk ) e .  By virture of Theorem 4 •1 , Pk ) is ex-
pressible in the following form :

(6 .6) Y (ç) = 10.19i (2) dM(2), (ilf(E ), M (E ')) p (E  n  E ').

In order to show that Y (k) E ek , we need only prove that

J(6.7) d p  (2) 
 <(6.7) C° •

[AI 1
Put

(6-8)

where

Yi(6)=J 0(A) dA4(2 ),

k  (2 ) f L ,  ( 2 ,  t )  dt .
(— 2)k

Since we have

`9h 
3 (A )—  f 6 ( 1 ) for 121>1,

(—i2nA)k
and c:A6 is rapidly decreasing, 9 k 56 belongs to D (R , p), so that the
above integral will be determined. Then we have

171( * ) (0) = ( - 1) k 17 1(e )  =  ( - 1 ) k l e  5/3(k ) ( ;)

=1010(;.) dm(2) (by partial integration)
y (k) (0) (by  (6 .6 )),

which implies
( Y—  1 71) (k) (0)=0 ,

and so Y— Y, may be induced by a polynomial of t with coefficients
in and the degree less than k:

( Y— Y;) (t) A, E=0

the proof of this fact is the same as that of the corresponding fact
in [11] (II, §  4 ) .  Therefore we get

4
( * ) Y(0) = I ' (0) = Yi(( -  4)(k)0)
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= k (- J) )  0(2) dM (;)

( 1) k  4 9 5 ( 2 )  d 1 1 1 (;)

and so

(6.9) 114m-17(0112=f

  

1— e- '2-A°
— i27( 2 k 140(2 )•12 dP(i)

 

.11— e 12k 14 0 (2 )1 2. O . ())( c i _
1AI

Let fin (t) be a  non-negative function E .21 such that

56„(t) =0 j93a(t) dt=1

Then w e have

IGIO„(2 )I -
2

1f o r n
16

1  rk

2 r )

and in addition

zrk) 17 (95.)

II.1 ) 17( 0 11 On(t) dt max 114 Y (t) II (= C2(4 ) )
- ' i n

Thus we obtain, putting 0=0. in  (6.9),

- c2(4)2 c11 11--e-').Al2k1„7•0,, m12  0 (2 )
I2 2 k

>  c l 11_ e --32.),A 12k  di/ (2) 
4  Snliei).!1 '2k

Integrating both sides in 0 < 4 < 1 ,  w e have

4(1(2)c2
2c  (A) , c(2)= 12k dzi ,  c 2

2 f  C 2 ( 4 ) 2d 4

4  n h e ! ) . itk 0 0

But it holds that

c(i1) —  1   f l°11—e- i°1"dzi_ e-"i=k dz i (=c3> 0)
1274,

fo r  12I> 1, because if  we determine a  natural num ber n  so that
n  < k I < n + 1, then w e have

1 121'n11 — e- "j 2k (Lic ( 2 ) .  
2r(n+1)

4(k) 17 (t) 0.(t) dtil zl(k)Y (t) H O. dt
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= n d 4  >   1 f l 1 — e j dJ .27r (n +1) 04 7 1 -  0

Consequently we obtain

I
dP( 2 )  <  4c22  <  0 0  ,

nhei.),,>1 A C1C.

which implies (6 .7 ) , as we see by letting n  tend to co.
Now we put

LY 2(t) f  e( 2f 2 " t —  k
 dM(2)(— i272)"

this integral exists and is continuous in t by virtue of ( 6 .7 ) .  Then
w e have

Y 2(0)= j0(t) Y (t) dt= 19 k 0(2) dM(2 )=Y 1(0).
Thus Y ,(0) is defined by Y (t) and so w e have

Y (t)=Y 2 (t) +

which implies (6 .4 )  and accordingly (6.5).
Now we shall prove the second part of the theorem . Suppose

that X(0) E S k  be expressed as ( 6 .3 ) .  Put

Yo(t) dm(À)
(—i27 2)k

as X(0) E ek  ,  we see that this integral exists and is continuous in t.
Then we have

/70(k ) (0) =(— 1 ) k Yo(93(k)) = (-1)1 .9 k 0(*) (2) d1ti( 2)

f  (,1) dM (2)= X (0).

I f  P k )  (0)= X (0), then  (Y— Yo) (k) (0) =0 and so
k - i

Y (t)  Y o ( t ) +  r A , ,  A ES .

W e have further
j(k) y( 0 = 4:k) y o (0 _ f e -i2/z i t  e i 2 " A  1   ydm(2)

—i27T2

which implies that d(*' Y (t) is a continuous stationary process, viz.
YE k ,  since
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e - i2/t X4 1
—

2k

dp (2) <co

 

by v ir tu re  of the assumption :  X E  e k  •

By the same way as in  Theorem 3 .3  w e have
TH E O R E M  6 . 2 .  In case of real processes E the above spectral

random measure satisfies M (E ) M (—  E ) and the above coefficients
A „ P=1, 2, •••, k - 1 a re  real.

Mathematics Department, Kyoto University.
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