MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 1, 1955.

On cyclic points of group-spaces

By

Nobuo Horie

(Received Nov. 6 1954)

In the group-space S of a continuous group G_r of transformations, we have considered two kinds of repères $\Re(a)$ and $\overline{\Re}(a)$ at every point a in one of the previous papers [1]. Though they can be chosen so that they coincide at the origin a_0 , they do not coincide at other points in general. Moreover, let C_a be a path through a point a in S. Through another point b there exist two paths $C_b^{(+)}$ and $C_b^{(-)}$ which are (+)-parallel and (-)-parallel to C_a respectively. These paths are also not coincident in general except the case when G_r is abelian. In this paper we define that a point b is a cyclic point with respect to a point a when $C_{b}^{(+)}$ and $C_{b}^{(-)}$ are coincident with one another not only as curves but also pointwisely. We shall show that a necessary and sufficient condition for the existence of such cyclic points is that the relative position between the two kinds of repères at a point is coincident with the one at another certain point. The notations in the previous papers ([1], [2]) will be used also here.

1. In the group-space S of a continuous group G_r of transformations with r parameters a^{α} 's, let a be a point whose coordinates are (a^1, \dots, a^r) and T_a a transformation of G_r with parameters $a^{\alpha}(a^1, \dots, a^r)$. We denote by a_0 the point which represents the identical transformation G_r . When a point a is transformed to b by the transformation of the first parameter group $\bigotimes_r^{(+)}$ of G_r with certain constant parameters $p^{\alpha}(p^1, \dots, p^r)$, we have

$$(1 \cdot 1) T_b = T_p T_a$$

Similarly, if b' is a point transformed from a' by the same transformation, we have

 $(1\cdot 2) T_{\nu} = T_p T_{a'}$

Then if we have the relation

(1.3)
$$T_{b'}T_{b}^{-1}(=T_p(T_{a'}T_a^{-1})T_p^{-1})=T_{a'}T_a^{-1}$$

for any a and a', let us call the point p a cyclic point of the groupspace with respect to the origin a_0 . When G_r is abelian, the relation (1.3) is always satisfied by any p. Hereafter we say, however, p is a cyclic point when and only when it is isolated, that is, in a suitable neighbourhood of p there exists no point other than p itself which satisfies the relation (1.3).

Now, we assume that the group-space under consideration has a cyclic point p with respect to a_0 . When a and a' are taken so sufficiently near that there is only one path aa' which passes both of them, the path bb' is also determined uniquely by b and b'. Since the vectors $\overrightarrow{aa'}$ and $\overrightarrow{bb'}$ are equipollent of the first kind ([3], cf. p. 4) from (1.3), the two paths aa' and bb' are (+)-parallel to each other. On the other hand from (1.1) and (1.2) we obtain

$$T_{b}^{-1}T_{b'} = T_{a}^{-1}T_{a'}$$

This shows that the vectors aa' and bb' are equipollent of the second kind. Let C_a be a path which passes a point a, and $C_b^{(+)}$ and $C_b^{(-)}$ be the paths through b, being (+)-parallel and (-)-parallel to C_a respectively. As a result of the above we have:

THEOREM 1. Let p be a certain point in the group-space, C_a be any path through an arbitrary point a and b be the point obtained from a by the transformation of the first parameter-group of G_r , with the parameters p^{a} 's. A necessary and sufficient condition that there exists a cyclic point p with respect to the origin is that $C_b^{(+)}$ and $C_b^{(-)}$ are coincident with one another not only as curves but also point-wisely.

2. Let $\vec{A}_b(a)$'s and $\vec{A}_b(a)$'s, where $b=1, \dots, r$, be contravariant vectors whose components are $(A_b^{\dagger}(a), \dots, A_b^{\dagger}(a))$ and $(\vec{A}_b^{\dagger}(a), \dots, \vec{A}_b^{\dagger}(a))$ respectively. Moreover, let $\Re(a)$ and $\bar{\Re}(a)$ be the reperses attached to a, the former being composed of the vertex a and rvectors $\vec{A}_1(a), \dots, \vec{A}_r(a)$ and the latter the same vertex and rvectors $\vec{A}_1(a), \dots, \vec{A}_r(a)$. Since in general $\vec{A}_b(a_0)$ and $\vec{A}_b(a_0)$ for each $b=1, \dots, r$ are chosen so that they coincide, the reperses $\Re(a_0)$ and $\bar{\Re}(a_0)$ coincide. We shall show that $\Re(p)$ and $\bar{\Re}(p)$ coincide when the group-space has a cyclic point p with respect to a_0 .

36

In general p is not so close to a_0 that there may be many paths which connect the points a_0 and p. We choose any one of them and denote it by D. The vector $\vec{A}_b(p)$ is obtained from $\vec{A}_b(a_0)$ by (+)-parallel displacement, that is, after developping D along itself by the (+)-connection on the tangent space at a_0 , the image of $\vec{A}_b(p)$ is obtained from $\vec{A}_b(a_0)$ by parallel displacement from a_0 to the image of p. Accordingly if C_{a_0} is the path to which $\vec{A}_b(a_0)$ is tangent then $\vec{A}_b(p)$ is tangent to $C_p^{(+)}$. Similarly $\vec{A}_b(p)$ is tangent to $C_p^{(-)}$. Being p is a cyclic point, $\vec{A}_b(p)$ and $\vec{A}_b(p)$ are determined by two adjacent points on $C_p^{(+)}$ and $C_p^{(-)}$ respectively corresponding to a_0 and a_0+da on C_{a_0} which determine the sense of $\vec{A}_b(a_0)$ (= $\vec{A}_b(a_0)$). As $C_p^{(+)}$ and $C_p^{(-)}$ are coincident not only as curves but also point-wisely, the senses of $\vec{A}_b(p)$ and $\vec{A}_b(p)$ also coincide. It follows that:

THEOREM 2. If there exists a cyclic point p with respect to a_0 in the group-space where $\Re(a_0)$ and $\bar{\Re}(a_0)$ are chosen so that they coincide, then $\Re(p)$ and $\bar{\Re}(p)$ also coincide.

3. Conversely, we assume that $\Re(p)$ coincides with $\widehat{\Re}(p)$ at a certain point p other than a_0 . We shall show that from this assumption p becomes a cyclic point with respect to the origin. The path C_{a_0} is represented by

(3.1)
$$\frac{da^{\alpha}}{dt} = e^{a} A^{\alpha}_{a}(a),$$

where e^{n} 's are constants and t is a parameter chosen suitably. They are also the differential equations of the path $C_p^{(+)}$, and by the transformation of the second parameter-group $\bigotimes_r^{(-)}$ with parameters p^{a} 's any point a(t) on C_{a_0} is transformed to a point a(t) on $C_p^{(+)}$ which corresponds to the same value of t. Since $\vec{A}_b(a)$'s are independent, we can put

(3.2)
$$\overline{A}_a^{\alpha}(a) = \rho_a^b(a) A_b^{\alpha}(a),$$

where $\rho_a^b(a)$'s are functions of a. As $\Re(a)$ and $\Re(a)$ coincide at the points a_0 and p,

$$\rho_a^b(a_0) = \rho_a^b(p) = \delta_a^b.$$

It is known that these functions satisfy

Nobuo Horie

$$\frac{\partial \rho_a^b}{\partial a^a} = c_{ef}^b \cdot \rho_a^e(a) A_a^f(a),$$

where c_{cf}^{b} 's are the constants of structure of $G_r([4], \text{ cf. p. 30})$. At any point a(t) on C_{a_0} these $\rho_a^{b}(a)$ are expanded formally to the series

(3.3)
$$\rho_a^b(a(t)) = \delta_a^b + c_{af_1}^b u^{f_1} + \frac{1}{2!} c_{e_1f_1}^b c_{af_2}^{e_1} u^{f_1} u^{f_2} + c_{e_1f_1}^b c_{e_1f_2}^{e_1} c_{af_2}^{e_2} u^{f_1} u^{f_2} u^{f_3} + \cdots,$$

where $u^a = e^a t$ (which are canonical parameters). As $\rho_a^b(p) = \delta_a^b$ and $C_p^{(+)}$ is also represented by (3.1), the equations (3.3) are that of $\rho_a^b(a)$ at a point on $C_p^{(+)}$, too.

If $|c_{ef}^{h}| < c$ for all e, f, b from 1 to r, and if we put $u = \sum_{\alpha} |u^{\alpha}|$, we have that the series on the right in (3.3) is less than the series

$$1+cu+\frac{1}{2!}rc^{2}u^{2}+\frac{1}{3!}rc^{3}u^{3}+\cdots,$$

whose sum is $(\exp(rcu)-1)/r+1$, and consequently the series (3.3) have the meaning as the values of $\rho_a^b(a)$ so far as canonical parameters u^{a*} s exist on C_{a_0} (or $C_p^{(+)}$). Since

$$(3\cdot4) e^a A^a_a = \bar{e}^a \bar{A}^a_a$$

for suitable constants \bar{e}^{α} 's ([4], cf. p. 200), (3.1) are also represented by

$$(3\cdot 5) \qquad \qquad \frac{da^{a}}{dt} = \bar{e}^{a} \bar{A}^{a}_{a}.$$

They are the differential equations of C_{a_0} in the case where it is regarded as a trajectory of one-parameter sub-group of the second parameter-group $\mathfrak{G}_r^{(-)}$. From (3.4) we have on C_{a_0} ,

$$(3\cdot 6) e^b = \bar{e}^a \mu^b_a(a),$$

and $\rho_a^{h's}$ have same values at corresponding points on C_{a_0} and $C_p^{(+)}$, hence substituting e^a in (3.1) as the equations of $C_p^{(+)}$ by (3.6) we can obtain (3.5) again. This means that, when $C_p^{(+)}$ is regarded as a trajectory of one-parameter sub-group of $\mathfrak{B}_r^{(+)}$, $C_p^{(+)}$ is also (-)-parallel to C_{a_0} , that is, $C_p^{(+)}$ and $C_p^{(-)}$ coincide as curves. In this case a point a(t) on $C_p^{(-)}$ corresponds to a point on C_a

38

having the same value of t.

Moreover, making use of (3.1) and (3.5) C_{a_0} is expressed by the series

$$a^{\alpha} = a_0^{\alpha} + te^{\alpha}A_a a_0^{\alpha} + \dots + \frac{t^n}{m!} e^{\alpha_1} \cdots e^{\alpha_m}A_{\alpha_1} \cdots A_{\alpha_m} a_0^{\alpha} + \dots,$$

where

$$A_a(a) = A_a^{\alpha}(a) \frac{\partial f}{\partial a^{\alpha}},$$

and

$$a^{\alpha} = a_0^{\alpha} + t\bar{e}^{\alpha}\bar{A}_a a_0^{\alpha} + \dots + \frac{t^m}{m!}\bar{e}^{\alpha_1}\cdots\bar{e}^{\alpha_m}\bar{A}_{\alpha_1}\cdots\bar{A}_{\alpha_m}a_0^{\alpha} + \dots;$$

where

$$\bar{A}_a(a) = \bar{A}_a^a(a) \frac{\partial f}{\partial a^a}$$

respectively. From (3.4) and these two series we know that a point a(t) on C_{a_0} as a trajectory of a sub-group of $\mathfrak{G}_r^{(+)}$ and a pointed a(t) on C_{a_0} as a trajectory of a sub-group of $\mathfrak{G}_r^{(-)}$ are coincident for every value of t. Accordingly $C_p^{(+)}$ and $C_p^{(-)}$ coincide not only as curves but also point-wisely.

Now, let a_1 be a point on C_{a_0} and b_1 corresponding one on $C_p^{(+)}$ ($\equiv C_p^{(-)}$). When b_1 is regarded as a point on $C_p^{(+)}$, we have

$$(3\cdot7) T_{b_1} = T_{a_1}T_p$$

on the other hand when it is regarded as a point on $C_p^{(-)}$, we have

$$(3.8) T_{b_1} = T_p T_{a_1}.$$

Since similar relations are consistent for every such pair of a_2 and b_2 as the pair of a_1 and b_1 , where a_2 may not be on C_{a_0} , we have

$$(3\cdot9) T_{b_2} = T_{a_2}T_{p_2}$$

$$(3\cdot10) T_{b_2} = T_p T_{a_2}$$

From (3.7) and (3.9), it follows that

$$T_{b_2}T_{b_1}^{-1} = T_{a_2}T_{a_1}^{-1}$$

Moreover the relations of $(3 \cdot 8)$ and $(3 \cdot 10)$ are similar to those of $(1 \cdot 1)$ and $(1 \cdot 2)$, hence we have:

THEOREM 3. If $\Re(a)$ and $\Re(a)$ coincide at a point p other than the origin, the group-space has a cyclic point p with respect to the origin.

From Theorems 2, 3 we have:

THEOREM 4. A necessary and sufficient condition that there exists a cyclic point p with respect to the origin is that the two kinds of repères coincide at the origin and at p.

When there exists a cyclic point p with respect to the origin, the relative position of the two kinds of repères at a is coincident with the one at b which is transformed from a by the transformation of $(\mathfrak{G}_{r}^{(-)})$ with parameters p^{a} 's. This is evident since the functions $\rho_{a}^{(n)}$'s at a are equal to those at b. Let us call b a cyclic point with respect to a. When there exists a cyclic point with respect to the origin, there exists necessarily a cyclic point for every point in S. Hence we say merely in this case that the group-space has a cycle.

We can choose any point in S as an origin and determine arbitrarily relative position of two kinds of repères at only one point, hence we have:

THEOREM 5. A necessary and sufficient condition that the group-space has a cycle is that the relative position of the two repères at a point coincides with the one at another certain point.

4. For an example let us consider the group of motions in the euclidean plane defined by the equations

$$x'^{1} = a^{1} + x^{1} \cos a^{3} - x^{2} \sin a^{3},$$
$$x'^{2} = a^{2} + x^{1} \sin a^{3} + x^{2} \cos a^{3}.$$

The coordinates of the origin a_{b}^{a} in the group-space are given by (0, 0, 0). The vectors $\vec{A_{b}}$ and $\vec{A_{b}}$ are defined as follows:

\vec{A}_{1}		1	0	0
$ec{A}_2$	=	0	1	0
$ec{A}_3 ec{A}_3$		a^2	$-a^{1}$	-1

and

$$\begin{vmatrix} \vec{A}_{1} \\ \vec{A}_{2} \\ \vec{A}_{3} \\ \vec{A}_{3} \end{vmatrix} = \begin{vmatrix} \cos a^{3} & -\sin a^{3} & 0 \\ \sin a^{3} & \cos a^{3} & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

In the above matrices we have determined the vectors so that the relation $\Re(a_0) = \overline{\Re}(a_0)$ follows. $\Re(a)$ and $\overline{\Re}(a)$ coincide at (a^1, a^2, a^2)

40

On cyclic points of group-spaces

 a^3) = (0, 0, $2n\pi$) where $n=0, \pm 1, \pm 2, \cdots$. Thus all points of the type (0, 0, $2n\pi$) where $n=\pm 1, \pm 2, \cdots$ are cyclic points with respect to the origin. Hence this group has a cycle.

REFERENCES

1. N. Horie: The holonomy groups of the group-spaces. These memoirs, Vol. 28. pp. 163-168.

2. N. Horie: On some properties of trajectories of the group-spaces. These memoirs, Vol. 28. pp. 169-178.

3. E. Cartan; La geometrie des groups de transformations. Journal de Mathematiques, Ser. 9, Vol. 6.

4. L. P. Eisenhart: Continuous groups of transformations. Princeton Univ. Press. 1933.

On cyclic points of group-spaces

41

 $u^{(r)} = (0, 0, 2n\pi)$ where $n = 0, \pm 1, \pm 2, \cdots$. Thus all points of the type, $(0, 0, 2n\pi)$ where $n = \pm 1, \pm 2, \cdots$ are cyclic points with respect to the origin. Hence this group has a cycle.

REFERENCES

1. N. Horie: The holonomy groups of the group-spaces. These menuits, Vol. 28. pp. 163-168.

2. N. Horie: On some properties of trajectories of the group-spaces. These memoirs, Vol. 28 pp. 169-178.

3. F. Cartan; La geometrie des groups de transformations. Journal de Mathematiques, Ser. 9, Vol. 6.

4. J. P. Eisenhart, Continuous groups of transformations. Princeton Univ.