On cyclic points of group-spaces

By
Nobuo Horie

(Received Nov. 6 1954)

In the group-space S of a continuous group G_{r} of transformations, we have considered two kinds of repères $\mathfrak{\Re}(a)$ and $\mathscr{\Re}(a)$ at every point a in one of the previous papers [1]. Though they can be chosen so that they coincide at the origin a_{0}, they do not coincide at other points in general. Moreover, let C_{a} be a path through a point a in S. Through another point b there exist two paths $C_{b}^{(+)}$and $C_{b}^{(-)}$which are (+)-parallel and (-)-parallel to C_{a} respectively. These paths are also not coincident in general except the case when G_{r} is abelian. In this paper we define that a point b is a cyclic point with respect to a point a when $C_{b}^{(+)}$and $C_{b}^{(-)}$ are coincident with one another not only as curves but also pointwisely. We shall show that a necessary and sufficient condition for the existence of such cyclic points is that the relative position between the two kinds of reperes at a point is coincident with the one at another certain point. The notations in the previous papers ([1], [2]) will be used also here.

1. In the group-space S of a continuous group G_{r} of transformations with r parameters $a^{a} \mathrm{~s}$, let a be a point whose coordinates are (a^{1}, \cdots, a^{r}) and T_{a} a transformation of G_{r} with parameters $a^{\alpha}\left(a^{1}, \cdots, a^{*}\right)$. We denote by a_{0} the point which represents the identical transformation G_{r}. When a point a is transformed to b by the transformation of the first parameter-group $\mathscr{G}_{r}^{(+)}$of G_{r} with certain constant parameters $p^{a}\left(p^{1}, \cdots, p^{r}\right)$, we have

$$
T_{b}=T_{p} T_{a}
$$

Similarly, if b^{\prime} is a point transformed from a^{\prime} by the same transformation, we have

$$
T_{\iota^{\prime}}=T_{p} T_{a^{\prime}}
$$

Then if we have the relation

$$
T_{b}, T_{b}^{-1}\left(=T_{p}\left(T_{a} T_{a}^{-1}\right) T_{p}^{-1}\right)=T_{a^{\prime}} T_{a}^{-1}
$$

for any a and a^{\prime}, let us call the point p a cyclic point of the groupspace with respect to the origin a_{0}. When G_{r} is abelian, the relation (1.3) is always satisfied by any p. Hereafter we say, however, p is a cyclic point when and only when it is isolated, that is, in a suitable neighbourhood of p there exists no point other than p itself which satisfies the relation (1-3).

Now, we assume that the group-space under consideration has a cyclic point p with respect to a_{0}. When a and a^{\prime} are taken so sufficiently near that there is only one path $a a^{\prime}$ which passes both of them, the path $b b^{\prime}$ is also determined uniquely by b and b^{\prime}. Since the vectors $\overrightarrow{a a^{\prime}}$ and $\overrightarrow{b b^{\prime}}$ are equipollent of the first kind ([3], cf. p. 4) from (1•3), the two paths $a a^{\prime}$ and $b b^{\prime}$ are (+)-parallel to each other. On the other hand from (1-1) and (1-2) we obtain

$$
T_{b}^{-1} T_{b^{\prime}}=T_{a}^{-1} T_{a^{\prime}}
$$

This shows that the vectors $\overrightarrow{a a^{\prime}}$ and $\overrightarrow{b b^{\prime}}$ are equipollent of the second kind. Let C_{a} be a path which passes a point a, and $C_{b}^{(+)}$ and $C_{b}^{(-)}$be the paths through b, being (+)-parallel and (- -parallel to \dot{C}_{a} respectively. As a result of the above we have :

TheOrem 1. Let p be a certain point in the group-space, C_{a} be any path through an arbitrary point a and b be the point obtained from a by the transformation of the first parameter-group of G_{r} with the parameters p^{α} 's. A necessary and sufficient condition that there exists a cyclic point p with respect to the origin is that $C_{b}^{(+)}$ and $C_{b}^{(-)}$are coincident with one another not only as curves but also point-wisely.
2. Let $\vec{A}_{b}(a)$'s and $\overrightarrow{\bar{A}}_{b}(a)$'s, where $b=1, \cdots, r$, be contravariant vectors whose components are $\left(A_{b}^{1}(a), \cdots, A_{b}^{r}(a)\right)$ and ($\dot{\bar{A}}_{b}^{1}(a), \ldots$, $\bar{A}_{i}^{r}(a)$) respectively. Moreover, let $\Re(a)$ and $\overline{\mathfrak{R}}(a)$ be the repères attached to a, the former being composed of the vertex a and r vecters $\vec{A}_{1}(a), \cdots, \vec{A}_{r}(a)$ and the latter the same vertex and r vectors $\overrightarrow{\bar{A}}_{1}(a), \cdots, \overrightarrow{\bar{A}}_{r}(a)$. Since in general $\vec{A}_{b}\left(a_{0}\right)$ and $\overrightarrow{\vec{A}}_{b}\left(a_{0}\right)$ for each $b=1, \cdots, r$ are chosen so that they coincide, the repères $\mathfrak{R}\left(a_{0}\right)$ and $\overline{\mathfrak{R}}\left(a_{0}\right)$ coincide. We shall show that $\mathfrak{R}(p)$ and $\overline{\mathfrak{R}}(p)$ coincide when the group-space has a cyclic point p with respect to a_{0}.

In general p is not so close to a_{0} that there may be many paths which connect the points a_{0} and p. We choose any one of them, and denote it by D. The vector $\vec{A}_{b}(p)$ is obtained from $\vec{A}_{b}\left(a_{0}\right)$ by (+)-parallel displacement, that is, after developping D along itself by the $(+)$-connection on the tangent space at a_{0}, the image of $\vec{A}_{b}(p)$ is obtained from $\vec{A}_{b}\left(a_{n}\right)$ by parallel displacement from a_{0} to the image of p. Accordingly if $C_{a_{0}}$ is the path to which $\vec{A}_{b},\left(a_{0}\right)$ is tangent then $\vec{A}_{b}(p)$ is tangent to $C_{p}^{(+)}$. Similarly $\overrightarrow{\vec{A}}_{b}(p)$ is tangent to $C_{p}^{(-)}$. Being p is a cyclic point, $\vec{A}_{b}(p)$ and $\overrightarrow{\vec{A}}_{b}(p)$ are determined by two adjacent points on $C_{p}^{(+)}$ and $C_{p}^{(-)}$respectively corresponding to a_{0} and $a_{0}+d a$ on $C_{a_{0}}$ which determine the sense of $\vec{A}_{b}\left(a_{0}\right)\left(=\overrightarrow{\vec{A}}_{b}\left(a_{0}\right)\right)$. As $C_{p}^{(+)}$and $\dot{C}_{\nu}^{(-)}$ are coincident not only as curves but also point-wisely, the senses of $\vec{A}_{b}(p)$ and $\overrightarrow{\bar{A}}_{b}(p)$ also coincide. It follows that:

THEOREM 2. If there exists a cyclic point p with respect to a_{0} in the group-space where $\mathfrak{R}\left(a_{0}\right)$ and $\mathfrak{R}\left(a_{0}\right)$ are chosen so that they coincide, then $\mathfrak{R}(p)$ and $\mathfrak{R}(p)$ also coincide.
3. Conversely, we assume that $\mathfrak{R}(p)$ coincides with $\bar{\Re}(p)$ at a certain point p other than a_{0}. We shall show that from this assumption p becomes a cyclic point with respect to the origin. The path $C_{a_{0}}$ is represented by

$$
\frac{d a^{\alpha}}{d t}=e^{a} A_{n}^{\alpha}(a)
$$

where e^{n} 's are constants and t is a parameter chosen suitablly. They are also the differential equations of the path $C_{r}^{(+)}$, and by the transformation of the second parameter-group $\mathscr{G}_{r}^{(-)}$with parameters $p^{\alpha \prime}$ s any point $a(t)$ on $C_{n_{0}}$ is transformed to a point $a(t)$ on $C_{p}^{(+)}$which corresponds to the same value of t. Since $\vec{A}_{b}(a)$'s are independent, we can put

$$
\bar{A}_{a}^{\alpha}(a)=\mu_{a}^{b}(a) A_{b}^{\alpha}(a)
$$

where $\rho_{a}^{h}(a)$'s are functions of a. As $\mathfrak{R}(a)$ and $\dddot{R}(a)$ coincide at the points a_{0} and p,

$$
\rho_{a}^{\prime \prime}\left(a_{0}\right)=\rho_{a}^{\prime \prime}(p)=\delta_{a}^{\prime \prime} .
$$

It is known that these functions satisfy

$$
\frac{\partial \rho_{a}^{b}}{\partial a^{a}}=c_{e f}^{b} \cdot \rho_{a}^{e}(a) A_{a}^{f}(a),
$$

where $c_{e f}^{b \prime}$ s are the constants of structure of $G_{r}([4], \mathrm{cf} . \mathrm{p} .30)$. At any point $a(t)$ on $C_{a_{0}}$ these $f_{a}^{\prime \prime}(a)$ are expanded formally to the series

$$
\begin{align*}
\rho_{a}^{b}(a(t)) & =\delta_{a}^{b}+c_{a f_{1}}^{b} u^{f_{1}}+\frac{1}{2!} c_{e_{1} f_{1}}^{b} c_{a f_{2}}^{c_{1}} u^{f_{1}} u^{f_{2}} \\
& +c_{e 1_{1}}^{b} c_{c_{2}^{2}}^{f_{2}^{\prime}} c_{a f_{3}}^{e_{2}} u^{f_{1}} u^{f_{2}} u^{f_{3}}+\cdots,
\end{align*}
$$

where $u^{a}=e^{a} t$ (which are canonical parameters). As $\rho_{a}^{h}(p)=\delta_{a}^{\prime \prime}$ and $C_{p}^{(+)}$is also represented by (3•1), the equations (3.3) are that of $\rho_{n}^{h}(a)$ at a point on $C_{p}^{(+)}$, too.

If $\left|{c_{e f}^{d}}^{\prime}\right|<c$ for all e, f, b from 1 to r, and if we put $u=\sum_{\alpha}\left|u^{\alpha}\right|$, we have that the series on the right in (3.3) is less than the series

$$
1+c u+\frac{1}{2!} r c^{2} u^{2}+\frac{1}{3!} r c^{3} u^{3}+\cdots
$$

whose sum is $(\exp (r c u)-1) / r+1$, and consequently the series (3•3) have the meaning as the values of $\rho_{a}^{\prime}(a)$ so far as canonical parameters u^{α} 's exist on $C_{a_{0}}$ (or $C_{p}^{(+)}$). Since

$$
e^{a} A_{a}^{\alpha}=\bar{e}^{a} \bar{A}_{a}^{\alpha}
$$

for suitable constants \bar{e}^{π} s ([4], cf. p. 200), (3.1) are also represented by

$$
\frac{d a^{\alpha}}{d t}=\bar{e}^{a} \bar{A}_{a}^{\alpha} .
$$

They are the differential equations of $C_{n_{0}}$ in the case where it is regarded as a trajectory of one-parameter sub-group of the second parameter-group $\mathfrak{G G}_{r}^{(-)}$. From (3•4) we have on $C_{a_{0}}$,

$$
e^{b}=\bar{e}^{a} \rho_{a}^{b}(a),
$$

and ρ_{a}^{b} 's have same values at corresponding points on $C_{n_{0}}$ and $C_{p}^{(+)}$, hence substituting e^{a} in (3•1) as the equations of $C_{\nu}^{(+)}$by (3•6) we can obtain (3.5) again. This means that, when $C_{p}^{(+)}$is regarded as a trajectory of one-parameter sub-group of $\mathscr{S H}_{r}^{(+)}, \boldsymbol{C}_{\nu}^{(+)}$is also (-)-parallel to $C_{n_{0}}$, that is, $C_{p}^{(+)}$and $C_{p}^{(-)}$coincide as curves. In this case a point $a(t)$ on $C_{p}^{(-)}$corresponds to a point on C_{a}
having the same value of t.
Moreover, making use of (3.1) and (3.5) $C_{n_{0}}$ is expressed by the series

$$
a^{\alpha}=a_{0}^{\alpha}+t e^{a} A_{a} a_{0}^{\alpha}+\cdots+\frac{t^{m}}{m!} e^{a_{1} \cdots} e^{a_{m}} A_{a_{1}} \cdots A_{a_{m}} a_{0}^{\alpha}+\cdots,
$$

where

$$
A_{a}(a)=A_{a}^{\alpha}(a) \frac{\partial f}{\partial a^{\alpha}},
$$

and

$$
a^{\alpha}=a_{0}^{\alpha}+t \bar{e}^{\bar{a}} \bar{A}_{a} a_{0}^{\alpha}+\cdots+\frac{l^{m}}{m!} \bar{e}^{\alpha_{1}} \cdots \bar{e}^{a_{m}} \bar{A}_{a_{1}} \cdots \bar{A}_{a_{m}} a_{0}^{\alpha}+\cdots
$$

where

$$
\bar{A}_{a}(a)=\bar{A}_{a}^{a}(a) \frac{\partial f}{\partial a^{\alpha}}
$$

respectively. From (3.4) and these two series we know that a point $a(t)$ on $C_{a_{0}}$ as a trajectory of a sub-group of $\mathscr{G}_{r}^{(+)}$and a pointed $a(t)$ on $C_{a_{0}}$ as a trajectory of a sub-group of $\mathscr{G}_{r}^{(-)}$are coincident for every value of t. Accordingly $C_{p}^{(+)}$and $C_{p}^{(-)}$coincide not only as curves but also point-wisely.

Now, let a_{1} be a point on $C_{a_{0}}$ and b_{1} corresponding one on $C_{p}^{(+)}\left(\equiv C_{p}^{(-)}\right)$. When b_{1} is regarded as a point on $C_{p}^{(+)}$, we have

$$
T_{b_{1}}=T_{a_{1}} T_{p},
$$

on the other hand when it is regarded as a point on $C_{p}^{(-)}$, we have

$$
T_{b_{1}}=T_{y} T_{a_{1}} .
$$

Since similar relations are consistent for every such pair of a_{2} and b_{2} as the pair of a_{1} and b_{1}, where a_{2} may not be on $C_{a_{0}}$, we have

$$
\begin{align*}
& T_{b_{2}}=T_{a_{2}} T_{p}, \\
& T_{b_{2}}=T_{p} T_{a_{2}} .
\end{align*}
$$

From (3•7) and (3.9), it follows that

$$
T_{b_{2}} T_{b_{1}}^{-1}=T_{a_{2}} T_{a_{1}}^{-1} .
$$

Moreover the relations of $(3 \cdot 8)$ and $(3 \cdot 10)$ are similar to those of ($1 \cdot 1$) and ($1 \cdot 2$), hence we have:

THEOREM 3. If $\mathfrak{R}(a)$ and $\bar{\Re}(a)$ coincide at a point p other than the origin, the group-space has a cyclic point p with respect to the origin.

From Theorems 2, 3 we have:
THEOREM 4. A necessary and sufficient condition that there exists a cyclic point p with respect to the origin is that the two kinds of repères coincide at the origin and at p.

When there exists a cyclic point p with respect to the origin, the relative position of the two kinds of repères at a is coincident with the one at b which is transformed from a by the transformation of $\mathscr{S}_{r}^{(-)}$with parameters $p^{\alpha \prime} s$. This is evident since the functions $\rho_{a}^{n \prime}$ s at a are equal to those at b. Let us call b a cyclic point with respect to a. When there exists a cyclic point with respect to the origin, there exists necessarily a cyclic point for every point in S. Hence we say merely in this case that the group-space has a cycle.

We can choose any point in S as an origin and determine arbitrarily relative position of two kinds of repères at only one point, hence we have :

Theorem 5. A necessary and sufficient condition that the group-space has a cycle is that the relative position of the two reperes at a point coincides with the one at another certain point.
4. For an example let us consider the group of motions in the euclidean plane defined by the equations

$$
\begin{aligned}
& x^{\prime 1}=a^{1}+x^{1} \cos a^{3}-x^{2} \sin a^{3} \\
& x^{\prime 2}=a^{2}+x^{1} \sin a^{3}+x^{2} \cos a^{3} .
\end{aligned}
$$

The coordinates of the origin a_{0}^{α} in the group-space are given by $(0,0,0)$. The vectors \vec{A}_{b} and $\overrightarrow{\bar{A}}_{b}$ are defined as follows :

$$
\left\|\begin{array}{l}
\vec{A}_{1} \\
\vec{A}_{2} \\
\vec{A}_{3}
\end{array}\right\|=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a^{2} & -a^{1} & -1
\end{array}\right\|
$$

and

$$
\left\|\begin{array}{c}
\overrightarrow{\vec{A}}_{1} \\
\overrightarrow{\overrightarrow{\vec{A}}}_{2} \\
\overrightarrow{\vec{A}}_{3}^{\prime}
\end{array}\right\|=\left\|\begin{array}{ccc}
\cos a^{3} & -\sin a^{3} & 0 \\
\sin a^{3} & \cos a^{3} & 0 \\
0 & 0 & -1
\end{array}\right\|
$$

In the above matrices we have determined the vectors so that the relation $\mathfrak{R}\left(a_{0}\right) \equiv \overline{\mathfrak{R}}\left(a_{0}\right)$ follows. $\mathfrak{R}(a)$ and $\overline{\mathfrak{R}}(a)$ coincide at (a^{1}, a^{2},
$\left.a^{3}\right)=(0,0,2 n \pi)$ where $n=0, \pm 1, \pm 2, \cdots$. Thus all points of the type $(0,0,2 n \pi)$ where $n= \pm 1, \pm 2, \cdots$ are cyclic points with respect to the origin. Hence this group has a cycle.

REFERENCES

1. N. Horie: The holonomy groups of the group-spaces. These memoirs, Vol. 28. pp. 163-168.
2. N. Horie: On some properties of trajectories of the group-spaces. These memoirs, Vol. 28. pp. 169-178.
3. E. Cartan ; La geometrie des groups de transformations. Journal de Mathematiques, Ser. 9, Vol. 6.
4. L. P. Eisenhart: Continuous groups of transformations. Princeton Univ. Press. 1933.

 slov） s esd quoty eid 90 mb nigito ont bl

2งวиมяатงя

 8at－8ir q9 8
 85tedr प4 85 10% ，monign
 a JoV ，e ． 19 ？equpiters
以品哃：

