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It was communicated to the writer that Y. Mori [4, II]" proved
that the derived normal ring of a Noetherian integral domain of
rank 2 is also Noetherian» In the present paper we want to give
a new proof of the result. In the way, we shall show a detailed
and a little clearer proof of the result due to Y. Mori [4] that the
derived normal ring of a Noetherian integral domain is a Krull ring»

Terminology and results stated in Nagata [7] will be used freely.
Further, some basic results on local rings (see, for example [8, § 1])
will be used freely.

§ 1. K rull - Akizuki's theorem.

PROPOSITION 1 (Krull-Akizuki's theorem).  L et o  be a Noe-
therian integral domain of rank 1 and let K be the f ield of quotients
of  o .  Let L  be a finite algebraic ex tension of  K . I f  o ' is a subring
o f  L  containing o ,  then f o r every ideal a' ( 0 ) of  o', o'/a' is  a
finite o/ (a' ri o)  Consequently, o' is Noetherian.

1) The result was anounced by him at the Autumn meeting of the Mathema-
tical Society of Japan in 1953.

2) As was shown by Nagata [6] , i) there exists an example of Noetherian in-
tegral domain o  o f  rank 2 which has an integral extension o '  contained in the
derived normal ring of o  such that o/ is not Noetherian and i i )  there exists an
example of Noetherian integral domain of rank 3 such that the derived normal ring
is not Noetherian. On the other hand, as is well known as Krull-Akizuki's theorem,
when o  is  a  Noetherian integral domain o f  rank 1, then every alm ost fin ite
integral extension of o  is Noetherian (see § 1).

3) For the definition, see § 2.
4) The writer owes the present formulation of the theorem to Cohen [2].
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PROOF. (1 ) Consider a finite integral extension o " of o such
that i )  0 "  is contained in 0 ' and i i )  o "  and o ' have the same field
of quotients. Then obviously 0 " is Noetherian and of rank 1.
Further for every ideal a "  0 ) of 0", o"/a" is a finite o/ (a!' n 0) -
module. Therefore we may assume that 0 = 0 ", i.e., L=K .

(2) Set a= a' n o  and let p„ •• •p„ be prime divisors of a. Fur-
ther let S be the intersection of complementary sets of p i 's with
respect to 0 .  Then 07a' = 0' 5/a'o' s  and o/a = os/aos (because every
element of S is a unit modulo a ) .  Therefore we may assume that
11 1, are all of maximal ideals in o, that is, a  is contained in
the Radical of o.

( 3 ) "  Now we shall prove the assertion under the assumption
that o ' is integral over o. Let .x be an element of a different from
zero. Let y„ • ••, y, be arbitrary elements of 0'. Set 0 *-0 [y 1, ---  , y,].
Since x is an element of the Radical of 0  and since o  is of rank
1, there exists an integer a  such that xao* c  o. On the other hand,
set h =1 (o/xo) and h* =- 1(o* / xo* ; 0. 6 ) Under the isomorphism from
o  onto xo which mapps z to xz, ro is mapped onto x " '0  and there-
fore /(x'o/x'+ 10) = h fo r  every r. Similarly / (fo */ r+ 10*; o) =h*.
From xao* c 0, we have /(xao*/x"ao*; 0) < /(0/x'+'0) and rh* <
(r + a) h  for every r. Therefore we have h* <  h »  Since this holds
for every finite integral extension of 0  contained in o ', we have
/(0'/x0' ; 0) </ (0/x0) and the proof is completed in this case.

(4) Now we shall prove the general case. L e t  o "  be the
integral closure of o  in o'. Then since o "  is Noetherian (of rank
1 ) and since o"/ (a' n  o") is a finite o/a-module by (3) , we may
assume that o = o "  (and we repeat the same reduction in (2 ) above).
Then the assertion follows from

PROPOSITION 2. L et 0  be a Noetherian integral domain (of an
arbitrary  rank ) and let o ' be a  subring of  the f ield of  quotients of
o  w hich  contains a If  o  is integrally closed in o ' and if , f or every
prim e ideal p  of  o, there exists a prim e ideal of  o ' which lies over
p , then w e have 0=0 1.

PROOF'. Assuming the contrary, let a  be an element o f o'

5) The writer owes an important idea of the present proof to Chevalley [1].
6) The symbol / ( ) denotes the length of the primary ring in the parentheses

and the symbol /( ; o )  denotes the length o f th e  module in the parentheses as an
o-module.

7 )  We can prove that h*= -h by the same way as in the theory of multiplicity
(see 181).
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which is not in  o  and let a be the set of elements of o whose
product with a  is in o ;  a  is an ideal of o. Let p  be a prime
divisor of a and set b=a : p. Since 1.) a , a b a o  and therefore
there exists an element b of ab which is not in  o . Since po' no
= p  and since abp c 0, we have b p c  p . Therefore we have easily
b'p c p  for every integer n ( > 0) by induction on n, which shows
that b is integral over o  and we have a contradiction. Thus we
have o '= o.

COROLLARY. Le o  be a Noetherian integral domain of rank  1
and let o ' be an almost finite integral extension of 0 .  Then o ' is a
Noetherian integral dom ain o f  ran k  1. Furthermore, i f  p  i s  a
maximal ideal of  o, then there exist only a finite number of maximal
ideals in  o ' which lie over p; if  a m ax im al ideal ideal p ' of  o ' lies
over p, then o' /p' is a finite algebraic extension of o/p.

(The last half of this corollary will be generalized in § 3.)

§ 2. Krull rings.

We say that an integral domain o is a Krull ring if the follow-
ing conditions are satisfied :

(1) If  p  is a prim e ideal of  rank 1 in o, then op is a discrete
valuation ring.

(2) Every principal ideal in  o  is  the intersection of  a finite
number of primary ideals of  rank  1.

REMARK 1. The above condition (2 ) is equivalent to the fol-
lowing two conditions :

(2-1 ) Every principal ideal in  o  has only a f inite number of
minimal prime divisors.

(2 -2 ) o  is  the intersection of all om  w here p  runs over all
Prime ideals of  rank  1.

PROOF. Assume that (2 ) holds good. Then (2-1) holds ob-
viously. Let d  be an element of d= no p  ( p  runs over all prime
ideals of rank 1 ) .  d  can be expressed as alb  (a, b& o ) .  Then d
& ri shows that a o  b o  for every op  and ao C bo by (2) , which
shows that d  = 0 . Conversely, assume that (2-1) and (2-2) hold.
For an element a of 0, let a be the intersection of primary com-
ponents of ao belonging to prime divisors of rank 1. If b 8 a, then
bla is in all 0,„ p  being a prime ideal of rank 1. Therefore b/a
& o by (2 -2 ). Hence a =a o  and (2 ) holds good.

REMARK 2. By the conditions (1 ) and (2-2) , we see that a
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Krull ring is a normal ring. As is well known, a  Noetherian
normal ring is a Krull ring. In the non-Noetherian case, there are
normol rings which are not Krull rings (for instance, non-discrete
valuation rings are normal but are not Krull rings).

REMARK 3. Let o  be an integral domain and let P  be a .set
of prime ideals of o such that if p  is a prime divisor of a princi-
pal ideal in 0 then there exists a member of P  which contains p.
Then we have 0 = 0 „ ,  as is easily seen by the same way as
in the proof of Remark 1.

PROPOSITION 3. A n integral domain o is a  Krull ring if  and
only if  there exists a fam ily  F  of discrete valution rings of  the field
of quotients K  of  0 such that 1) 0 is the intersection of all rings in
F  and  2 ) every non-zero element o f  o is a unit in  all, but a finite
number, of rin g s  in  F . (Krull [3])

PROOF. If o  is a Krull ring, then the family F of all or , where
p  runs over all prime ideals o f rank 1 in o, satisfies the above
conditions 1 ) and 2) by virtue of Remark 1. In order to prove
the converse, we shall prove a lemma :

We shall say for a moment that a ring is a K-ring if it satis-
fies the conditions stated in our proposition. Then

LEMMA 1. I f  o  is a  K-ring, then every ring of  quotients of  o
is also a  K-ring.

PROOF. Let F  be the family of discrete valuation rings in the
condition and let S be a multiplicatively closed subset of 0 which
does not contain zero. L e t  F ' be the set of rings in F  in  which
every element of S is a unit. Set d =  Y. We have only to show
that os . d .  Obviously d  contains os  and we shall show the con-
verse inclusion. L e t  a/b (a, b 8 o) be an element o f d  and let

y,, be all rings in F  in which b is a non-unit ; we renumber
them so that y, 6 F ' if and only if i < r .  For each I> r, there
exists an element s, 6 S which is a non-unit in v 1. Then choosing
a power s of the product of s,'s, we have sa/b 6 y, for every I> r.
Since a/b is already in v, for i <  r, we have sa/b 6  y, for every i.
Since b is a unit in every ring in F other than vi 's, we have sa/b

n„,,, v = 0 .  Since S is multiplicatively closed, s is in S  and a/b
is in os . Thus the lemma is settled.

REMARK. By our proof and by our treatment in 1) below,
we see the following fact :

I f  o is Krull ring, if  F  is a set of discrete valuation riiigs as in
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Proposition 3  and if  p is a Prime ideal of  rank l in  o , then o„ must
be in F.

Now we shall return to the proof of the proposition.
1) If p  is a prim e ideal of rank 1  in  o ,  then o „  is a  K-ring

by Lemma 1. Then a  discrete valuation r in g  (o f  th e  f ie ld  o f
of quotients K of o„ which is different from K  itself) can contain o,,
if and only if  it dominates o„• Therefore by the second condition
in Proposition 3 , o „  is the intersection of a finite number of discrete
valuation r in g s . Since the intersection of n  valuation rings has n
maximal ideals, provided that there is no inclusion relation among
the valuation rings, we see that o „  m ust be a  discrete valuation
ring, which proves the condition (1).

(2) L e t a  be a n  element of o  different from zero and let
v„ • • •, v„ be all rings in  F  (Which is in the proposition) in which
a  is a n o n -u n it . Then for an element b of o ,  b/a is in o  if and only
if  b/a 6  v., for every i. Therefore ao =q ,n - •  n g „  with qi-= o

 n avi.
Let p ',  be the maximal ideal of 1/, and set p i =p1 n o .  Then, since
v i  is a  discrete valuation ring, we see that q , is a strongly primary
ideal belonging to p 1 . Thus we have

(*) Any principal ideal o f  0  is the intersection of a finite
number of strongly primary ideals.

This property show s (2-1) as a special case. L et p  be a prime
ideal of o  of rank greater than 1. Then we have only to show
that p  is not a prim e divisor of any principal ideal of o. Assume
the contrary, i.e., assume that p  is a prim e divisor of a principal
ideal a o .  Then by the  property (* )  we see that p o„ is  a prime
divisor of ao„. O n the other hand, o„ is a  K -rin g  by Lemma 1.
Therefore we may assume that p  is the unique maximal ideal of
o .  Since o  is not a  discrete valuation ring  (because rank p >  2),
o  is not the intersection of a finite number o f  discrete valuation
r in g s . Therefore' there exists a  discrete valuation ring y 8 F such
that ay = v. Let q ' be the maximal ideal of V  a n d  s e t  q--=q' no.
'Let h  be an element of q .  By (*) , we have a o : p a o .  Let b be
an element o f ao : p  which is not in  ao. Then since h 8qc p,
we have bh 8  ao and z =(b /a)h  is in  o .  Since a is a unit in y and
since h  is a  non-un it in  y ,  z  is a  n o n -u n it in  r  and z  is in  q.
Therefore (b/a)nh is in  q  fo r  every integer n( > 0) , a s  is easily
seen by induction on n .  Let w be a  valuation whose ring is in F.
Then (b / a)" h 8o shows that n • w (b /a)a) + w (h) >O. Since w (h) is fixed,
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since n  is arbitrary and since w is discrete, we have w (b /a)> O.
Thus we have b/a E o, which is a contradiction. Thus (2) is prov-
ed. Therefore every K-ring is a Krull ring, and the proposition is
proved completely.

3 . The derived normal rings of Noetherian
integral domains (I) .

We want to prove here the following
THEREM 1. T he derived norm al ring o ' of  a N oetherian local

integral domain 0  is a  K ru ll ring. Further, o ' has only  a  finite
num cer of  m ax im al ideals an d  each residue class f ield o f  o ' is  a
finite algebraic extension of that of  0."

PROOF. Let o* be the completion of o, let n* be the radical
of 0* and let K  be the field of quotients of 0. Set r= OM*. Since
n* n o=0, we may regard that o is a subring of r .  Every element
a ( 0) of o is not a zero-divisor in o*, hence a is not in any prime
divisor of n * , which shows that a  is not a zero-divisor in v. Hence
K  is a subfield of the total quotient ring R  of r. Let r '  be the
integral closure of r  in R .  Then we have

(* ) r' n  o'.
Indeed, it is obvious that o' is contained in r' n K .  Let a/b

(a, b E o ) b e  an element o f r' n K .  Since a/ b  6 r',  there exist
c,,•••,c,, 8 r  such that (a/b)"+c,(a/b)n - 1 +  + c . = 0 .  Let d„ •••,d,
be representatives of c„•••,c„ in  o*. Then we have a"+d i a" - lb+
••• +d .b n  E n * .  Since every element of n* is nilpotent, we see that
there exist elements e„ •••,e„, o f o * such that a"'+e,a — lb+•••+
e„,b- = 0 ,  which shows that a'"6 n o= " '  am - ib ' o.
Therefore the above ei 's can be choosen from o .  Hence a/b  is
integral over o and a/b  8  o'. Thus (*) is proved.

Since the derived normal ring of a complete Noetherian local
integral domain s  is a finite s-module (for the proof, see [5]) and
since r  is a subdirect sum of complete local integral domains, we
see that r '  is a finite r-module and r '  is the direct sum of normal
Noetherian rings, say r 1 ,... ,r. F o r  every prime ideal p * , of rank
1 in r i , we set v(p*,) ( r , ) , , * „ +  K , + , +• • • +K , where
K J  is the field of quotients of r i . Since each r ,  is a Noetherian

8 )  The first half of this theorem was proved by Mori [4] , while the finiteness
of maximal ideals was proved by Chevalley [1].
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normal ring, Y' is the , intersection of all the y  (p * 1) 's. On the other
hand, y

 (p * , )
 n K  is a discrete valuation ring of K  (may be K itself).

We have o '  K n  =  n (Kn v (p* ,)) . Since that an element a( 0)
is a non-unit in K n y (p* i )  means that a is in the rank 1 prime ideal
1 '1+ • • • +r _ + p " ,+ r,+1+ • • • +r €, we see that the set of valuation
rings K n  y (p*,) satisfies the conditions in Proposition 3 and o' is
a Krull ring. In order to prove the last half of the theorem, we
consider an arbitrary finite integral extension 0" of o contained in
o' . T h en  the completion of 0 " is the ring o l o " ] .  Therefore the
number of maximal ideals of o " is not greater than the number of
prime divisors of zero of 0* and each residue class field of o "  is
a subfield of one of residue class fields of r ' .  Therefore the same
is true of o ' and the theorem is proved completely.

COROLLARY. Let 0 ' be the derived normal ring of a Noetherian
integral domain o .  If  p ' is  a prime ideal of o ', then  o' / p' is an
almost finite integral extension of o /(p' n  o )  .  On the other hand, if
p  is a prime ideal of o , there exist only a finite number of prime
ideals of o ' which lies over p.

PROOF. We may assume that p = p ' n o. Let S  be the com-
plementary set of p  with resect to o: Then 0', is the derived
normal ring of op . Applying the theorem to op  and observing that
p' 0' s  is maximal, we see the assertion easily.

§ 4 . The derived normal rings of Noetherian
integral domains (II).

In the present section, we want to prove the following
THEOREM 2. I f  o ' is the derived normal ring of a Noetherian

integral domain 0, then o ' is a Krull ring.
In order to prove this theorem, we first state a  remark on

imbedded prime divisors, namely
LEMMA 2. Let o be a Noetherian local integral domain of rank

> 1 .  Then a maximal ideal m  of is an imbedded prime divisor
of a principrl ideal ao (a & 0) if and only if there exists an element
b 8 o such that b 0 0  and m  is  the conductor of o[b/ a] over 0:»

9 )  This can be generalized by the same way to general Noetherian rings, as-
suming that a  is not a  zero-divisor. Therefore, the corollary can be generalized, if
we talk about principal ideals generated by nonzero-divisors, to general Noetherian
rings.
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This follows immeditely from a proposition in [7, § 9].
COROLLARY If a Prime ideal p of a Noetherian integral domain

0  is  a prim e divisor of a principal ideal of  o , then f or every element
a(l-,0 ) o f  p , p  is a prim e divisor of ao.

PROOF. When p is of rank 1, the assertion is obvious. When
p  is not of rank 1, then Lemma 2 can be applied to o p  and the
corollary is proved.

Next we prove
LEMMA 3. L et o ' be the derived norm al ring of  a N oetherian

integral dom ain o. If  p ' is  a m inim al prim e div isor of  a principal
id e a l  a o ' ( a  0,a 0, aw A o), then p '  n o is a prim e divisor of
ao.

PROOF. Let S  be the complementary set of p  with respect to
0. Then o's is the derived normal ring of 0,, and p 'o ', is a mini-
mal prime divisor of ao's . Therefore we may assume that 0 is a
local ring with maximal ideal p .  Let x be an element of p ' which
is not in any other maximal ideal of o ' and set 0"— o[x], p" n
0 " .  Then p ' is the unique prime ideal which lies over p " .  Since
p ' is of rank 1 (because of the validity o f Theorem 1 ), we have
rank p"-=1 . Since 0 "/x 4" is a homomorphic image of the local
ring 0, we have x o" is a primary ideal belonging to p " .  Since p "
is o f rank 1 and since p "  lies over p ,  p "  is  a minimal prime
divisor of co" for every element c (  0) of p .  Since the property
that p  is a prime divisor of a principal ideal of o does not depend
on the choice of principal ideals by the corollary to Lemma 2,
we may assume that ao" is contained in  o . Since p "  is maximal,
we can choose an element y of p "  which is not in any other maxi-
mal ideal of o" such that y (1—y) 8 ao" (consider the ring 0"/a0").
Set b=y (1— y ). Since ao " o  , b  is in  o . Now we may replace x
by y and o" will denote o [y ]. Since yo" is a primary ideal belong-
ing to p", yo" n o  contains a power of p ,  say p " •  Then for every
element d  of p , there exists a relation such that da=y (u+v y ) (u,
v 8 o ), because y satisifes a monic equation of degree 2. Since vy2 =
vy— vb, we have d'= (u + v)y— vb and (u+ v )y=d"+ vb. We consider
the set of all paires (f ,  y )  of elements of o  such that f y =y  ; let n
be the set of all such f  and it ' that of g  (n '— i ly ) .  Since y is not
in any pgime ideal which lies over some prime ideal of 0 other than
p, we see that the set of prime ideals of o  which contains f  coin-
cides with that of g  for each pair ( f , y ) ; the same can be applied
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to a and the element y (1 —y) b and we see that b is in every prime
divisor of a o .  Now since d  is an  arbitrary element of p, we have

+ a 0  is a  primary ideal belonging to p  and therefore n ± a o  is
a  primary ideal belonging to p .  Since n  contains ao, w e have n
is a  primary ideal belonging to p, which shows that there exists
an  integral extension o* (0 0) such that p()* c 0 and p  is a prime
divisor of ao by Lemma 2.

Now we shall return to the proof of Theorem 2. The validity
of our assertion in local case (Theorem 1) shows in particular the
validity of the conditions (1 ) a n d  (2 -2 ) in  § 2 (definition of Krull
r in g ) . T h e  validity o f  (2-1) follows from Lemma 3 and the corol-
lary to Theorem 1. Thus the theorem is proved completely.

§  5 .  The derived normal ring of a Noetherian
integrial domain of rank 2.

L E M M A  4. A  ring 0 is Noetherian if  (and only  i f )  every prime
ideal of  0 has a f inite base. (Cohen [2])

PROOF.'°)  Assuming the  contrary, let P be the set of ideals of
0  which h av e  n o  finite bases. T h e n  P  is an inductive set and
contains a m axim al member a  by Zorn's lemma. Since a  .13, a
is not a prim e ideal and therefore there exist ideals b and e which
contain a  properly such that b e  C  a. By th e  maximality o f  a,
b  and e  have finite bases and  so does b e ,  too. Further o/e is
Noetherian. ()fin, can be regarded as a finite module over 0/e and
a lb e  is its submodule. Since 0/b is Noetherian, a / b e  is a  finite
m odule. Since b e  has a finite base, we see that a  has a  finite base,
which is a contradiction to our assumption that a 6 P .  Thus P is
empty and o  is Noetherian.

Now we want to prove
TH E O R E M  3. T he derived normal ring o ' o f  a Noetherian inte-

gral dom ain o  rank  2 is also Noetherian.
PROOF. (1 )  We first prove that o ' is Noetherian under the

assumption that every maximal ideal of o ' has a  finite base."  By
virtue of Lemma 4, we have only to show that every prime ideal p'
of rank 1 in  o ' has a  finite base. Set  p = p '  n o. If p  is maximal,

10) The present proof was given by C ohen  [21 . Another proof was given by
Nagata [91.

11) The main idea of the present step of the proof was giuen by Mr. Y. Mori.
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then p ' is maximal and we have nothing to prove. Thus we assu-
me that p  is not maximal, consequently p  is o f rank 1. Since
there are only a finite number of prime ideals in o ' which lie over
p ,  we may assume that p ' is the unique prime ideal which lies
over p .  Let a be an element of p ' such that ao'„, = p'o' (existence
follows from Theorem 1 or Theorem 2 ) .  We may assume that a
is in o. Set q  p o ' :  p ' .  Since b y  o u r  a s s u m p t i o n  and
since p ' is the unique prime ideal which lies over p, q n  o  is not
of rank 1. Since every prime divisor of q lies over that of q n o ,  q
has only a finite number of prime divisors and they are maximal.
Since every maximal ideal of o' has a finite base, q contains a power
of the intersection n  of all prime divisors of q ,  say, n e  q .  Since
né has a finite base and since o'/ne is Noetherian by Lemma 4, we
see that q  has a finite base. On the other hand, since o' / p' is an
almost finite integral extension of o/p by the corollary to Theorem
1 , we see that o' / p' is Noetherian by Krull-Akizuki's theorem
(Proposition 1 ) .  We may regard q/p 'q  as an o '/p'-module; this
is a finite module because q  has a finite base. Therefore (p' n q)
/ p'q is a finite module. Since p ' n q  contains po', since p o ' con-
tains p 'q  and since p o ' has a finite base, we see that 1/ nq has a
finite base. Since o'/ (p ' nq ) is a subdirect sum of Noetherian rings

/ p '  and o '/ q , we see that p'/ (p' n q )  has a  finite base. Now
since p ' n q  has a finite base, we see that p ' has also a finite base.
Thus o ' is Noetherian.

(2) Now we have to prove that every maximal ideal in '  of o'
has a finite base. Since there exist only a finite number of ma-
ximal ideals of o ' which lie over t r t= l t e  n o, we may assume that
m '  is  the unique prime ideal of o ' which lies over nt. Then
o '/n to '=0 '„,,/m o'„„. Therefore, in account of the fact that ni. has
a finite base, we may assume that nt is the unique maximal ideal
of o and therefore that m ' is the unique maximal ideal of 0'. By
virtue of Krull-Akizuki's theorem (Proposition 1) , we. may assume
that no, is of rank 2. Let a be an element of m  different from
zero and let b (0 0) be an element of m  such that ao and bo have
no common minimal prime divisor. Let x  be a  transcendental
element over 0• W e denote by (x )  and o ' (x ) the rings o[x]„,„c,.3
and olx] n t ,E.,]  respectively (cf. [8]). In order to prove that I n ' has
a finite base, it is sufficient to show that ln 'o '(x ) has a finite base,
as is easily seen. Since ao' and bo' has no common prime divisor
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by our assumption and by Theorem 1, we see easily that (ax+b)o' (x)
is  a prime ideal. Set p* = (ax+b) o' (x) n o(x). Then o (x) / p*
is a Noetherian integral domain of rank 1 and 0' (x)/ (ax+b)o' (x)
is a subring of the field of quotients of o (x)/p* (because o'(x)/
(a x + b) o' (x) is a ring of quotients of 09 I a]) . Therefore by Krull-
Akizuki's theorem (Proposition 1), o' (x) / (ax + b) 0' (x) is Noetherian
and m'o' (x) has a finite base. Thus every maximal ideal of o' has
a finite base. Thereby the proof of the theorem is completed.
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