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Introduction

In recent years, the general theory of connexions on differ-
entiable fibre bundles has been developed by many authors. The
purpose of this paper is to investigate on the structure of Cartan
connexion and some facts related with it. One of the useful notions
introduced in § 1 is the tensorial form on a principal fibre bundle.
In § 2, we define the basic tensorial form of the soldered structure
of bundle, and making its use we give expositions of Cartan con-
nexions. The last section is concerned with the torsion forms of
Cartan connexions. I think that the underlying principle of the
tensor calculus for general Cartan connexion has been made clear
through these debates.

I wish to express my sincere gratitude to Prof. J. Kanitani for
his kind guidance and encouragement during the preparation of
this work.

§  1 .  Preliminaries and notations

1 .  Throughout this paper we shall denote by T (X ) and by
T:  the tangent vector bundle over any differentiable manifold
X and the tangent vector space of X at a point .xE X  respectively.
Any differentiable mapping 99 o f X  into another differentiable
manifold X ' induces a linear mapping io* : t  (X)--*T r , (X') , where

(z).
Let '13 (M, Y, G, 7r) be a differentiable fibre bundle, where M,

Y, G, and r  denote respectively the base space, the fibre, the structure

1 ),  2 ) Cf. [10 ] p p . 3 7 -3 9 . T h e  number in  th e bracket refers tu the biblio-
graphy at the end o f the paper.
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group, and the projection. We assume that M  and Y are differen-
tiable manifolds and that G is a Lie group of transformations which
operate effectively and differentiably on Y .  The associated princi-
pal bundle V  o f '13 can be regared as the set of all admissible
m ap s". A  tangent vector vET(V) is said to be vertical, if it is
tangent to a fibre 11 1 over xEM . The principal map') : 3  x
is defined by

x(b, y) = b y  for bE93", yE Y.

In particular, for the associated principal bundle V, the principal
map f : x  G -3 "  is given by

ï (b , s )  - -- bs for bEV, sEG.

If we set

(s) b b s for sEG,

the homeomorphism (s) : V---573(' which transforms each fibre G,.
of V  onto itself is called a right translation of V , and its induced
mapping ,o* (s) : T ( )  ( V )  transforms each vertical vector of
T (V ) on such a vector.

DEFINITION 1•1. Let V (M, G, G) be a differentiable principal
fibre bundle over a  differentiable manifold M  with Lie group G,
and let p ( s )  denote the right translation o f ti" corresponding to
sE G . Let (r* , R ) be any differentiable representation o f G  on a
vector space R ; that is, to each sEG, corresponds a linear automor-
phism r* (s) of R such that r* = r *  ( s t ) r* (s) - 1 . A  k-from  Io n
ti"  is called a  tensorial k-form of type (r*, R ), if  it satisfies the follow-
ing conditions :

(i) 0  is a  k-form  on .çl3r) with values in R.' )

(ii)
O
 (t1, • • • , tk) =0, t  t , is vertical.

(iii) Op* (s) =r* (s - ')0 f o r any  sEG.
In the case k=0, a differentiable mapping O: V --4 ? is called a  tensor
of  ty pe (r*, R )  , if  it satisf ies the relation

0o(s)= r* (s - 1 ) 0  f o r a n y  s E G.

2 .  Let us consider a Lie group d of transformations which
operate differentiably, transitively, and effectively on a differentiable
manifold F ;  namely F  is a  homogeneous space d/ G , where G  is

3 ) Cf. [12].
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the closed subgroup of d leaving invariant a point o€F. We shall de-
note the transformation on F corresponding to each g E d by a t,( )  :i.e.

tro (S )y— Sy for all yeF.

Let a (S ) denote the inner automorphism o f G  corresponding to
each gEG : i.e.

a(§)y=SyS' for all/ E  G.
The Lie algebra L of Ô can be identified with the tangent vector
space T ( G )  at the neutral element REG'. The Lie algebra L of G
can be identified with T., (G ) being a linear subspace of L . More-
over the tangent space E = T , (F )  at the point o€F can be identified
with the vector space L / L . Since a ( ) fo r  g Ed  leaves invariant
the neutral element E ,  it induces an  automorphism a * (S ) of
L=T(G) which is an element of the so-called linear adjoint group
of G; and since a (s )  for sEG leaves invariant the point oEF, it in-
duces an automorphism a„* (s) of E = T ,,(F ) which is an elemant of
the so-called linear isotropy group of G .  Let p  denote the canonical
projection : 6-> F = d. / G . We have pa (s ) =a (s) p for sEG. Then,
p  induces the projection p* : L—*E=-L/L, and we have p*a*(s) =
ao*(s)p* for SEG. T h e  subspace L  in L is invariant under a* (s)
for SEG. Hence, fr'Y (s ) induces an automorphism of E=.i./L which
coincides with al' (s) . Throughout this paper, we shall denote by
(a *, L) or (a*, L) the linear adjoint representations of G or G and
by (a,';', E) the linear isotropy representation of G.

3 .  Take a base (e„ •••, e„, e .+ 1 , • • • , e,) of the Lie algebra I. such
that the set (e„,,, •••,e,.) forms a  base o f L . W e have then the
equations of structure :

(1-1) [e,,, e,]= Y,C,rReh- (A , B=1, • • • , r),
1,7=,

in which

(1.2) C = 0 (i=1 ,•••,n ;a ,(9=n+1,•••,r).

We shall use, throughout the paper, the following ranges of
indices :

A, B ,C , •  =1 , 2, • • r,

j, k, =1, 2, •••, n,
n + 2 ,  • • • ,  r.
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By a change of base of L, we shall mean only that of the
following type :

(1.3) eten, ac:=0 , aI 0 , 141 ().

Denoting by CIA  the structure constants with respect to the new
base, we get the relations :

(1.4) y ahic:i = E

Identifying E  with L/L, we can regard the set (e „ ••• ,e „)  as a
base of E .  Denote by L*, L*, E* the dual spaces of L, L, E  re-
spectively. For a base (e „ ••• ,e „,e „,„ ••• , e ,)  o f L, its dual base

, • • • , e", ,  •  •  •  ,  e ')  can be finded in L*, and the sets ( e " ',  • • • , e'),
(e ', •••, e") can be regarded as the bases of L * ,  E *  respectively.
According to the relation (1.4) , we see that the element y c :j eœ

ei b e l o n g i n g  t o  the space L *  E *  E  does not depend on
the choice of the base, where 0 denotes the tensor product. Taking
a base of L, we can express an elemat a* (g) of the linear adjoint
group o f '6 by a matrix 114(§)11:

(1.5) a* (g)x= a',1(g)x"e4 f o r  all x-= -1 xAe, E L.
A,13 A

From the well-known relation

(1.6) ke(g)x, a*(§).Y]=a*(§)[x, y]

for g Ed  and x , yEL, it follows that

(1.7) >2, al (§)Clic = y C.;4,ral,(§)ajc (S' ) 1) fo r  § E Ô.
J. J R

Above all, since a c (s) =0 for sEG , we have

(1.8) >: (s) C =c ik a:(s)ce j '(s) forS E C.
h

An element a ,*  (s) of the linear isotropy group of G is given by
the matrix lia;(s)11, as the base (e„ • • • , en )  of E  is taken : i.e. from
(1.5) it follows that

(1.9) a* (s)x,_-_-E a; (s)x ie, (m od L ).,

4 .  We put V= E *  L  and W= (E* /\E*)0 E .  Referred to

4 )  C f. [7 ] , p•3.
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a base (e„ • • • , e,, e„, • • • , e,.), each element e•E V  can be written as

E= >_", s',1"e.'

and each element )2( W  can be expressed by

)7= 1_", i'kej A  e' Ø  e,

with

+
DEFINITION 1-2. Let (e,, • • • , • • • , er) be a base of L  The

linear m ap (I V - 0 W  is defined by

(1-10) 0 (E  $,`ek e . ) )2,figi A  ek e , .
a,k

with

(1-11) riff =>:(CG:P — QA E;).

The representations (a*, L ) ,  ( a o * , E )  naturally induce the re-
presentations on the spaces V  and W which we denote by (cri * , V)
and (a,* , W ) respectively. According to the relation (1-4) and
(1-8), we obtain immediately the following proposition.

PROPOSITION 1.1 T h e  linear m ap (P: does not depend
on the choice of  the base, and it holds that

Oai * (s) = (s) (I) f o r a n y  sEG.

§ 2 .  The soldered fibre bundle and the Cartan connexion

5 .  In this and following sections we assume that a differenti-
able fibre bundle s-6 (M ,  F ,  )  over a differentiable manifold M  ful-
fills the following conditions :

(i) The fibre F  is  the homogeneous space 6 / G  which we have
introduced in the preceding section.

(ii) There exists a  differentiable cross-section f:
(iii) The dim ensions of  F  and  M  are equal.

From the condition (ii), it follows that the associated principal
bundle 3 (m., d, 6 ) o f ',13 is equivalent to a principal bundle V (M ,
G, G) whose group is the subgroup G  leaving invariant a point
oE F, and 'V is  the submanifold of 3 such that x013", o )=f (M ) ,
where x denotes the prinicipal map of 8 . Identifying any point
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xEM with the point f (x) E1.3, we can suppose the base space M  to
be embedded in 0.

L e t  (M ) be the submanifold of T (8 )  consisting of all vertical
vectors at any point of f ( M ) .  Then Z(M) becomes an associated
bundle o f  V  with fibre E =T o (F )  and with the linear isotropy
group as its structure group. Each fibre „ (M )  of (M )  over
xEM is the space of all vertical vectors o f  T ( 0 )  at f (x ).

DEFINITION 2.1. In  th e  above circumstances, the bundle 0” is
said to be soldered with 8, if  there is given an  identif ication e:T(M)

(M ); namely, e is a bundle homeomorphism : T (M ) (M) ,
and is an isomorphism between T r (M ) and Z., (M ) for each xEM.

It is clear that the condition (iii) is necessary for existence of
a soldered structurs.

Let (e, 0") be a soldered bundle with 0 and let x (b ) denote
the admissible map : o f  i  corresponding to bE0"

x(b)y=x(b, y ) = b y  for y E F .

We denote by 7r the projection of V. Since r (b )  maps the point
oEF to the point f(rtb) E V, it induces an onto isomorphism x* (b):

(M ) .  Recall the right translation p (s) of V" and the trans-
formation ao (s) on F  corresponding to sEG :

p(s)b=t (b, s) =bs for bEtr,

ao ( s ) y =s y  for y E  F.
Obviously it holds that

X(1)(s)b)=X(b)tro(s) ,
and hence we have the formula :

(2.1) x*(p(s)b)=x* (b)a o * (s) .

DEFINITION 2 .2 . In  the above circumstance, the basic form (00
o f  a soldered bundle (e, 13") with 8 is defined by

(2.2)( 0 0 ( t )  = (b)ern,

f o r any  tangent vector tET , (V ).
PROPOSITION 2.1. The basic form to o of  a soldered bundle (e,3°)

w ith 0  satisfies the following conditions:
(i) wo i s  a  tensorial 1-form on V  of ty pe (a0*, E )
(ii) If  w0 (t) -= 0, then t is vertical.
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Pro o f . By the definition, wo becomes a  1-from on 0 ° with
values in E .  For a vertical vector t  of T (93), w e  have (00 (t) =0
because r*t= O. S ince p (s ) transforms each fibre of V  onto itself,
we see 7r* p* (s) =7r* for any sEG. If te T ( 8'),(0`), then p*(s) tE Tpc o , (V ).
On the other hand, from (2 .1) it follows that

((' (s)b)--- ao*(s -
1)X* - 1  (b).

Therefore

(s) =X* - 1  (('(s) b) err* (s)

= ao * (s - 1) x* (b) er = ao * (s- 1 ) (00.

This proves that (0„ is a tensorial 1-form of type (cro *, E ) .  Moreover,
since x* (b) and e are one-to-one mappings, (0„(t) =0 implies 7r* (t) =0.
This means that t is vertical.

We shall show conversely that a soldered structure of bundle
is completely determined by its basic form.

PROPOSITION 2 .2 . Suppose that the bundle 0 f ulf ills the three
conditions introduced at the beginning of this section. If  there is given
on the bundle 0" a 1-form wo having the properties ( i )  and (ii) in the
Proposition 2.1, there exists one and only one soldered structure (e, 1")
w ith 0  having wo as  its basic form.

Pro o f . For any vector VET  (M ) there exists a vector tET„ (0")
such that 7r*t = v. Let us show that the element x* (b)wo (t)EZ ,(M )
does not depend on the choice of t. Let t  and t' be two vectors
of T ( 3 )  such that 7r*t=r*r = v. If tE T, (0") and eET, (V), there
exists a unique right translation p(s) o f V  such that p(s)b=b',
because 7rb 7rb' = x. Since 7r*,0* (s) =7r*, we find 7r*(t' —  (s) t) =
7r*t' —  t= 0 ; that is, t h e  vector e — p* (s) tE T, (V )  is  vertical.
Making use of the property (i), w e have (0„(e—p* (s)t) = 0  and
wo (p* (s)t) = a o * (s- ') w,, (t). It follows that w,, (t') = a„* (s- 1 )(00 (t). On
the other hand the formula (2.1) shows that x* (b')=x* (b)a* o (s).
Consequently we have

X*  ( b ' )  (00(1') = X* (b) wo (t) .

Accordingly, we can define a mapping e : T (M )- -0- 7 (M )  by

(2.3) tv= x* (b)wo (t) for vET(M ),

where tE7r*- 1 v and tE T ,(0 "). I f  v00 , then t is not vertical ;  and,
from the propery (ii), it follows that (00 (t) 00, and so tv0 O. This
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means that e is u n iv a lrn t. Since dim T„.(M) dimZ: ,(M) , e becomes
an  onto isomorphism between T ( M )  a n d  2.:.(M )  for each x€M.
The desired soldered structure (e, V )  is thus defined. Our process
having constructed the identification e assures that there exists one
and  only one bundle map e satisfying the  relation :  (0„=x* - -1 (b)ar*,
when a form w„ having the two properties is given. The Proposition
2 .2  has been proved.

REMARK. Observing dim  T ,(M )— dim  E, we can show easily
that the condition ( ii)  in  the Proposetion 2.1 is equivalent to the
condition :

(ii)' ( 0 0 m aps T 5(") onto E  f o r each b€V .

6 . Let (M , d, d )  be a  differentiable principal bundle. We
denote by {(i;) the admissible map of corresponding to bEii, and
by (a*, L ) the linear adjoint representation of G. A  connexion on
the principal bundle can be defined by a  1-form (7, satisfying the
following conditions :

(i) 43 is a 1-form  on with values in the Lie algebra L.
(ii) I f  a vector tETi',(41) is vertical, then (;')(6=fe* - 1 (b)i.
(iii) For any right translation 0(g) of it holds that

i;)0*(g)=-- a* (§ - 1 ) (7).
We shall call the form () the Pfaff ian form  of connexion on

or, merely the connexion on 3  for the sake o f  simplicity.
In  general, th e  bracket product )  o f  forms o n  a  differentiable

manifold X  with valus in a L ie algebra A  is defined by
[ O ,  90 ] ( t ,  • • •

8 ( 6 ) Ff.) "
LU (lao), • • to (t ) ) (to (k + 1 )) • to(k+h ))1 )(k +h)!

where k , h  are degrees of forms O, io respectively, t,, •••,t,,,,,E T (X )
xcX , the summation is extended over all permutations 0- of the set
{1,2, •••, k+12}, a n d  ( c )  is th e  sign o f  cr. T hen, we have the
relations :

[so, 0 ]=  ( - 1 ) 111--1 [0 , 99] ,

( -1)h (" , , [0,[99, sq +  ( - 1)  
1 (4 + [i° [V1+ [O S° ]] = °

d[t V d=[d 0  50 ]+ ( - 1) [t)  d

5) C f. [6 ], [1 ].
6) Cf. [12].
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where k, h, 1 are degrees of 0, 99, 0  respectively.
The curvature form Q of a connexion ("0 on is given by the

equation of  structure"'

(2.4) d[0= — -1[0), rd+ 1),

and Bianchi's identity' )  is written as

(2.5)

The following proposition is well-kown.
PROPOSITION 2.3. The curvature from rd is a  tensorial 2-form

on 8  o f  ty p e  (a*, f .).
DEFINITION 2-3. Let 0° (M,G, G ) be a  soldered bundle with

3(M, F, G), and let 3  (M, 6, 6) denote the associated principal
bundle of 0 .  A  connexion ('I') on 3 is said to be a Cartan connexion
of  type F  on with respect to the soldered structure, if the restriction
of p* ,; .) on 0° coincides with the basic form  N o of the soldered structure,
where p :  6 / G  denotes the canonical projecton.

PROPOSITION 2-4.1 0 ) S uppose that the bundle bt fulf ills the three
conditions introduced at the beginning of § 2. A  Cartan connexion
of  type F  on can be defined, if  there is giv en on V  a  1-form
satisfying the following conditions:

(i) to is a  1-form on 0° with v alues in L.
(ii) I f  a  vector tET,, (V ) is  vertical, then w(t)=;('''' (b)t.
(iii) For any  right translation p (s) of 13", it holds that

(s) = a* (s- 1 )
(iv) I f  (0(0=0, then t=0.

In  this case, (0 is  the restriction of tî)  on V .
We shall call (0 the restricted Pfaffian f orm  of  the Cartan con-

nexion on V , or, merely the Cartan connexion on for the sake
of simplicity.

Proo f . Since any element 'b 8 can be written a s  b=1)(S)b
where §E G  and kV', any vector iETf,' ( 3) can be given by t=
1)* (§)1+ to ,  where t€T,(V), and  to is a vertical vector of T3 (S».
Extend (0 to a  form i0 over the whole 8 by

7) C f .  [1].
8) C f .  [12].
9) C f .  [1].

10) C f .  [6], p. 43.
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(2-6) (-0 = a* ( ' )  co (t) (b) to.
Since the conditions (ii) and (iii) assure that (;(i) does not depend
on the choice of elements g, t, and to such that i=  ( § ) t+to ,  the
definition (2.6) of (; has a sense, and (7, becomes a connexion on
3. Moreover, it is easy to see that the form wo =p*w satisfies the

conditions in the Proposition 2 • 1 ; and so, by the Proposition 2 • 2, the
seldered structure (e , with 0 can be determined. Our proposi-
tion has been thus proved.

Taking account of the condition (iv) and observing that
dim  T b (V ) =dim L , w e have the following :

PROPOSITION 2 .5 . '"  Let 0) be a Callan connexion on $110. Then
w is an  onto isomorphism between Tb ( °) and I, f o r each b e ti". It
follows that the tangent vector bundle T OM over is  equ iv alen t to
a product bundle 0° x i-  -

Accordingly, we can define the absolute parallelism on T (V ) .
DEFINITION 2 .4 .  Let w be a Cartan connexion on V '. Two

vectors t„ t2ET (13') are said to be parallel with respect to the Cartan
connexion, if w (t,) = w (t0). A tangent vector field on 0" is called
a parallel field if (0 (k) =- constant.

PROPOSITION 2 • 6. If  is  a  parallel f ield, then so is p* (s) x,
where p(s) denotes a  right translation of

The homogeneous space F  is said to be reductive,") if there
exists in L  a linear subspace complementary with L  and invariant
under a* (s) for all sE G . Then this linear subspace can be idetified
with E, and the vector space L is decomposed by the direct sum :
L=E+ L .  And, for any sE G, the restriction of a*(s) on E  is
nothing but a,* (s).

PROPOSITION 2 •7. A ssum e that F  is reductive an d  a  decom-
position L=E+ L  is giv en. Let p,* be the projection with
respect to the given decomposition. Then p,* gives the one-to-one cor-
respondence between the set of  all Cartan connexion of type F on
and the set of  all connexion on Y  having a soldered structure with

Proof . Let (0 be a Cartan connexion on 0°. It is obvious that
p*w and p,*(,) define respectively a soldered structure of 0° with 0
and a connexion o n  0 '.  Conversely, if the basic form (00 o f a
soldered structure of 0° w ith  0 and a connexion (0 1 on 0° are

11) C f. [6] , p. 43.
12) C f. [8] .
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given, then 0,---(00 4-w, being a  form on V  with values in it defines
a Cartan connexion of 0".

DEFINITION 2 - 5 .  A  Cartan connex ion w on 0 '  is said to  be
reductive, i f  th e  homogeneous space F  is reductiv e an d  a  decom-
podition L =E+L  is given.

The proposition 2-7 asserts that a  reductive Cartan connexion
w can be decomposed a s  (0 mu+ w „ where w „=p*w  is the basic
form of the soldered structure and w,=p,*0 is a connexion on V.

7. As to the existence of Cartan connexions, we have known
the following proposition.

PROPOSITION 2 .8." Let 0" be a soldered bundle with 0 .  Then,
there exists a  Cartan connexion of type F  on 0  w ith respect to the
soldered structure.

Let 0) and a be tw o Cartan connexions on a same soldered
bundle V. Setting H---(0' —0), we have p*H =0 ; a n d  i f  a  vector
tE T (V ) is vertical, then 1(t) =0. H ence 11 is  a  tensorial 1-form
on V  of type  ( a * ,  L ) .  We have thus the  following proposition :

PROPOTITION 2-9. L et w be a  Cartan connexion on a soldered
bundle 0 " .  Define th e  transformation 7

* o n  th e  se t o f  all 1-forms
on 0° w ith values in L  by

r*o= V,— a ,.

T hen r *  gives the one-to-one correspondence between the  se t o f  all
Cartan connex ions on the soldered bundle 0  an d  th e  se t of  all
tensorial 1-forms on of  type (a*, L).

§ 3. The torsion of the Cartan connexion

8. Let .6 be curvature form of a  Cartan connexion W of type
F  on 3 . W e ca ll the restriction of 2 on B  the restricted curvature
form  of the Cartan connexion and denote it b y  P . T h en  .(1 is given
b y  the equation

(3-1) d w =

where w denotes the Cartan connexion on
DEFINITION 3-1. L et Q be  the restricted curvature form  of  a

Cartan connex ion. The torsion f orm  Q, of  the Cartan connexion is

1 3 )  C f. [6 ], p . 43 .
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defined by
(3.2) 120

Since Si is a tensorial 2-form on 43 of type (a*, 4, we have :
PROPOSITION 3.1. The torsion f orm  flo i s  a tensorial 2-form of

type (a „ * , E ).
A Cartan connexion on %I° is said to be without torsion, if its

torsion form vanishes.
PROPOSITION 3.2. If  and only  if  a Cartan connexion on 0 °  is

w ithout torsion, its restricted curvature form  becom es a  tensorial
2-form on Q3° of type (a*, L ).

Take a base (e„•• , e„, e„,„ •• , e ,) of L such that (e„,,, • • • , e,)
and (e„ •••,e„) become bases of L  and E  respectively. A Cartan
connexion 0) and its restricted curvature form Sd can be expressed
by

to=  ofét and .Q =E  2 4  Ø eA ,

where a' and i2A are forms on 43° with real values. Then, the
basic form No of the soldered structure and the torsion form P,
are written as

w„-E a  e„ and 9 „ =  Y  Ø e,.

Using the condition (ii) in the Proposition 2.1, we can show that
the forms (b1 , •••, o i" are linearly independent ; and taking account
of the Propofition 3.1 we can set

(3.3) fl' =1",

where SI, are functions on 41" with real values satisfying the relation
(3.4) SAH- S/J=.0.

If we put
(3.5) S => -",S,',ei A  e' e„

then S  becomes a tensor on 43" of type (a,*, W). We shall call S
the torsion tensor of the Cartan connexion. The equation (3.1)
is now written as

cla'

4 = 1 ;  Clle(oB  A olj + 124,

and hence we have



On Cartan connexions and their torsions 211

(3.6) SP- c/a - 1 Cik d A wk - , A w
j ,k

Let (0' be another Cartan connexion on V" having the common
soldered structure with (0. For the curvature form, the torsion
form, their components referred to the base, etc. of 0/, we shall
use the same notation with prim es as those of w . It follows that

toi . Sett ing HOE =0;"—(0 0E, we have ( = w ' — (0= WOE(Dea . Since

d is a tensorial 1-form on V" of type (a*, L), we can set

(3.7) r ; c u i ,

where r; are functions on V  with real values. Setting

(3.8) rjclej eo„
a , j

we see T. is a tensor on V" of type (a,*, V )  and that the Cartan
connexion a is determined when the tensor l '  is assigned. From
(3 .6) we obtain the relation :

(3.9) —  ..(2/ =  — A (uk.

Since 0,1 , • • • ,(0  are linearly independent, this relation is translated
to the equation :

2 (S'IR: — >2 (C.Z3 [7' — ,

that is,

(3.10) 2(S' — S)

where 0  is the linear map : V—*W introduced in the Definition
1 .2 . Finally we get the following :

PROPOSITION 3 .3 . Take a fixed Cartan connexion on V ,  and
let S  denote its torsion tensor. Then, any  Cartan connexion on the
soldered bundle V  is def ined, w hen a  tensor l '  of  type (a,*, V ) is
given ;  and its torsion tensor S  is obtained from  the form ula:

(3.11) S =  0P+ S.

9 .  The exterior derivative of 1-form 5,9 is given by the well-
knwon formula :1 4 )

(3.12) di° (X., 1)) (X.50 (i)) — 1/99 (N) — (k, in) ) ,

14) C f. [1], [9 .1.
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where x, » denote vector fields.
Take parallel fields x, » with respect to  a Cartan connexion

0). Since w(x) and w (») are constant, xw(») =»w(x) O . F ro m
(3.1) and (3-12), it follows that

(3.13) -Q (X, ») ([(0 (X) , w (») ] — 0) ([X, »]) ) •
Accordingly, as regards the torsion form P. and the basic form wu

of the soldered structure, we have

(3.14) A, (x, ») (p*[0,  (0 , w  (0)]—(0„(k, ol))•
Since [w ( r ) ,  w (0] is constant we obtain the following propositions.

PROPOSITION 3•4  Let x, t be parallel f ields w ith respect to  a
Cartan connexion. T hen [x, 0] becomes a parallel f ield if  and only
if  14x, 0) is  constant.

PROPOSITION 3 .5 . Assume that the curvature form  of  a Cartan
connexion vanishes. If  x, o are parallel f ield, then so is k, »i.

' PROPOSITION 3.6. Assume that a Cartan connexion is without
torsion. I f  x, are parallel fields, then wo (k , o l) is  constant, where
w, denotes the basic f orm  of the soldered structure.

1 0 . We are going to consider the case that the Cartan con-
nexion is reductive.

DEFINITION 3.2. Let w= w0 + w„ be a reductive Cartan connexion
o n  -1". The torsion form  (-) of the connexion 0), is defined by

(3.15) dwo-F- [w„ w ] " )

PROPOSITION 3•7. L et w=0)0 + w„ be a  reductive Cartan con-
nexion on V .  The torsion f o rm  9  of  the connexion 0), is  a  tensorial
2-form on V  of type ( a ,,*, E ), and is giv en by  the relation

lp*[,,,„, 3(3.16) (0

where fd„ denotes the torsion form  of  the Cartan connexion w.
Pro o f . Since the linear subspace E  in L  is  invariant under

tx* (s) for sE G , [w„ wd is a 2-form on 1A( ' with values in E ; there-
fore, so is 61. W e have

= d (w„ -F- w,) [wo( - 1 4 -  [ w , „  mu] -1-12„
where P, is the curvature form of the connexion (,),. Since p*o=(-)

1 5 ) 0  is the so-called cova rian t d eriva tive of o)0 with respect to the connexion
(.01. C f. [4 ], UT
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' and p*121 =0 , we obtain the  relation :

Po = (-) p*[(00 ,

Accordingly, in  order to prove that ( )  is a  tensorial 2-form of type
(a*„, E ),  it is sufficient to show that so is p*[,,,„, we ]. I n  this case,
we have

ko,„ ('-to] (ti, t2 )  = [w , (t1 )  (00 (t2)

W e * (s) ao* (s - 1 ) wo= a* (s-1) (
I) ) for S E G

and from (1-6), it follows that [a* (s - 1 ) w„, a* (,5- ') wo ] a - 1 )[w„,
Hence, [wo, (00],"* (s) = a* (s - ' ) [ w„, w 0 ] ;  and so

13 *[(00, (001°*  (s) ao* (s — ')p*Lwo,

Moreover, if  11 is vertical, [0)0, wo] (ti, t2 ) —0 because 0)0 ( 0  = 0 .  This
proves that p*[(0 0 , wo] is a  tensorial 2-form of type  (a,,*, E ).

PROPOSITION 3•8. I f  th e  homogeneous space F  is symmetric,
then the torsion form  S i  of  the Cartan connex ion 00 + w, coincides
w ith the torsion f o rm  0 of the connexion w„

P ro o f  Since F  is a symmetric space, [a, b]E L provided a, bEE.
Hence we h a v e  P1( 0 0, w0]=0, a n d  from  (3 -16 ) it follows that

Let w = w0+w1, be a  reductive Cartan connexion. The subset
or  ( E )  in  T(130)  constitutes th e  s e t  o f  all horizontal vectors' )  o f
the connexion (111 , because to, (t) =0 if and only if w (t) EE .  A parallel
field y  with respect to the Cartan connexion w will be called a
horizontal parallel f ield, if  w()) (=const.)EE.

PRO PO SITIO N  3 -9 . L et (0=-04+ w, be  a  reductive Carton con-
nex ion. The connexion w, is without torsion :  i.e. 0, if  and only
if  every vector field [x,t)] f o r horizontal parallel f ield x. ,1.) is vertical.

Pro o f . F o r  any tE T (V ), we can take a unique horizontal
parallel field y such that w (t) = w ( t ) .  It follows that there exist
horizontal parallel fields KI, K1 such that ( - ) (Ki (b) , K2 (b)) ( t 1 ,  t )  for
arbitrary t„ t2 E (V ).

Suppose y„ 1.) to  b e  horizontal parallel fields. Then (0 (y) =
wo (y), w ()) = w„ (t). H ence, from  (3 -13 ) w e have

( ! J  H.,, [(0 o, ») le) ([X,

Applying the projection p* to the both sides and employing (3-16),

1 6 )  C f. [1].
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we get the relation

(X, = - - i( 0 0([X, .
T his  implies that N(x, 1)) =0 if and only if  [x, 1.)] is vertical. The
Proposition 3.9 has been proved.

Taking the base (e„ • • • , e„, e„+ „ • • • , e,.), we can set
(ok e ,

with

If  we put
TA -FT4= 0.

T = y T i k." e i  A  ek e „

then T  becomes a  tensor of type (*I, W ), and is called the
torsion tensor of the connexion oh. B y  the Proposition 3.3 and the
relation (3-16), the following proposition is obvions.

P R O P O S IT IO N  3.10. A ssume that there is given a fixed reductive
C artan connexion (0„+ Th on .I3" and let T denote the torsion tensor
of  Th1 . T h e n , f o r any  reductive Cartan connexion (0= we - - (0, on Z",
the torsion tensor T  of  (01 is obtained from  the formula

(3.17) T=10/.-1-T.

We can deduce directly a formula for the torsion form analogous
to Bianchi's identity.

P R O P O S IT IO N  3.11. L et w= (00 + N I b e  a  reductive Cartan con-
nex ion. Denote by  9 1 a n d  0  respectively the curvature form and the
torsion form  of  the connexion w „ Then it holds that

(3.18) d  +[(0 ,, (1 =[-(11,
In  general, if  so is a  k-form on Z" with values in i . ,  we have

(3-19) d (dso +[(0,, So]) -F[w„ dv) So]]= [Q1 , ç].

The form ula (3-18) means that the covariant derivative of with
respect to the connexion (0, is equal to the tensorial 3-form [Pi , (0„]
of type  (a„*, E), while Bianchi's identity

(3.20) d-(21+ [oh, Q ]= 0

for the connexion w, show s that the covariant derivative o f  9,
vanishes.
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1 1 . A t th e  e n d  we give some remarks on the covariant
derivative which was used in  preceding articles of this paper.

When a connexion (0 is given on a principal bundle 0° (M , G) ,
each tangent space T,,(0°) is decomposed in  the direct sum of the
horizontal space H,, (t) a n d  t h e  vertrical space V t, (V ) ;  and for
any b€0° the natural projections

h: T , ,  (V ) (V )  and y :  T  b (-1.-1") ---> V,, ( 6°)
are  defined.

The covariant derivative of a p-from 0 on 0" is defined by
(3-21) D O  d0h'" .

However, when th e  form 0  is of special type, another covariant
derivative may be defined.

Let (r*, R ) be a representation of G and (r*, R )  be its induced
representation of the L ie algebra L  o f  G . F o r any aEL, r* (a)  is
an  endomorphism of the vector space R .  Let H be a p-form on 0"
with values in R  satisfying the following condition :

(C) Hp* (s) -=r* (s - ')0 for any  right translation I, (s) .
Then the covariant derivative of another kind is defined by

(3-22) D' = dtt (w )e)

where - -r* (w)0 is a  (p+1)-form given by

(3-23) r* ((o) • ,
1 _ 1 \

" r* (w(t,)) 0 (ti, •• •,p+i
for t„ •• tp+i ET, (3").

It can be proved that D'll also satisfies the condition (C). In
the case that (r* , R ) is th e  linear adjoint representation (a*, L)
of G  we have r* ((Ott [(,),

PROPOSITION 3-12. If  a p-form  N on V  w ith values in R  satis-
f ies the condition (C ), then cl0h is a tensorial p-from  of  type (r*, R).

P ro o f  Since the right translation to* (s )  preserves the  decom-
position T  (V ) = H  (V ) + V,, (0 " ) ,  w e h a v e  to* (s) h =  ( s )  .  It
follows that, if a form F on 'V  with values in R  satisfies the condi-
tion (C ), 92h becomes a  tensorial fo rm . According to the relation

17) .C f. [1]
18) C f. [4]
1 9 )  C f. [4]
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wh=0, we have

(3 -2 4 ) dtih =  ((id+ I:* (10)0) h ;

and since dO  r* H O  satisfies the condition (C), dtth is a  tensorial
form.

PROPOSITION 3 - 1 3 .  If  t) is a tensorial p-form of type (r*, R), then

(3 -2 5 ) (UM= dtt y* ( ( o)

P r o o f  To any element aEL, corresponds a unique vertical
vector field 5  o n  V  such that 0 (5 )  = a  fo r all b E V .  We denote
this correspondence by q and set q (L) = C .  Then 5:21 becomes an
algebra consisting of vertical vector f ie ld s  o f V  a n d  q  is an
isomorphism of L  onto

Since d0h= (dt)--Fr-* (w)O) h , in order to prove our proposition it
is sufficient to show that

(d0+r*(0))8) (t„ •••, 4 +1 ) = 0  provided t ,  is vertical.

We take vector fields y, (i=1, p+1) such that y, (b )= t; a n d  ,EC .

By the well-known formula:"

•••, N„+i) 1 ) ' b(O (K i, •-•, •••,i - 1  p+

+y,( 1' 1" • • • , . . • ,  YP-E1) •1<.0 p+1
Taking into account that t t ( 0 „ - - ,» „ )  = 0  provided o n e  o f  » , ' s  is
vertical, we have

1
(3 . 2 6 )  d i ) (b , ••• , = - - b ( 0 02, •• • ,

P+ 1

;nit -hi+,
+ . >;\ p +1  

0 0  Xi X2,••• X• ••• )

Moreover we have

i * (w) 0 (X,i, ••., Yp+ i)
1 - -

 1*1 (w  (0 ) 0  (k2, • b , +i) •p+
The fie ld  L E Z I generates th e  1-parameter group ti* (g ) o f  right
translations, where g  is the 1-parameter subgroup of G generated by
the element (0 („ )  EL.

20 ) C f. [11, 191
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According to the relation r*  (g -1 ) 0 =Op* (g) , we have
7*( — ( 0 ( ) ) 0 =--L (b)

where L ( )  deno te  the Lie derivation with respect to  the field Ki .
Hence, it holds that

1 
( 3 .2 7 ) — 7 * (()) 0 (t, • ••, Nr+1) (L Q 1)0) (N2, •••, Nr+1).

P + 1

On the other hand, by a formula' ) for the Lie derivative, we have
( 3 .2 8 ) (L (Xi) 0 )  ( 2, • • • , 64-1) XI ( 0  Q2, • • • , 6+,) )

1"S 1+ i ( - 1 ) 'O ( [ .

F rom  ( 3 . 2 6 ) ,  ( 3 . 2 7 )  and ( 3 . 2 8 )  it follows that

(d0 +r * (0)) 0 ) (K o ••• ,X v+ i) = 0  •

Accordingly, if  0  i s  a  tensorial form, so  is  dO +r*(w )0 , and we
have

dO -F-r* (w) 0 = (dO+ r* (w ) 0) h doh.
Our proposition has been thus proved.
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