Addition and corrections to my paper “A treatise on the 14-th problem of Hilbert”

By

Masayoshi Nagata

(Received November 20, 1956)

Concerning the 14-th problem of Hilbert, Zariski [3] conjectured the following:

Conjecture of Zariski. Let D be a positive divisor on a normal projective variety V defined over a field k and let $R[D]$ be the set of functions f on V defined over k such that $(f)^{-1} + nD > 0$ for some natural number n. Then $R[D]$ will be an affine ring over k.

He proved there that if the answer of this conjecture is affirmative, then the answer of the following problem is affirmative:

The generalized 14-th problem of Hilbert: Let \mathfrak{o} be a normal affine ring over a field k and let L' be a function field contained in the function field of \mathfrak{o}. Is then $\mathfrak{o} \cap L'$ an affine ring?

In the present paper, we shall show at first that the generalized 14-th problem of Hilbert is equivalent to the conjecture of Zariski and then we shall give some corrections to my paper [2].

§ 1. The proof of the equivalence.

Since Zariski [3] proved that the affirmative answer of the conjecture of Zariski implies the affirmative answer of the generalized 14-th problem of Hilbert, we have only to prove the converse. The writer proved in [2] that the generalized 14-th problem is equivalent to

Problem A. Let \mathfrak{a} be an ideal of a normal affine ring \mathfrak{o} over a field k. Is then the \mathfrak{a}-transform of \mathfrak{o} an affine ring?

Therefore we have only to prove that:

The affirmative answer of Problem A implies the affirmative answer of the conjecture of Zariski.

Now we shall use the notations as in the conjecture of Zariski. Let L be the field of quotients of $R[D]$ and let \mathfrak{o} be a normal
affine ring of L contained in $R[D]$. We denote by v in general
groups which corresponds to k-prime divisors on V which are not
components of D. Then obviously $R[D]$ is the intersection of all
of v's, hence $R[D] = \cap_{v} (L \cap v)$, which shows that $R[D]$ is a Krull
ring (see [2, p. 60]) and if q is a prime ideal of rank 1 in $R[D]$,
then there exists one v such that $R[D]_{q} = L \cap v$. Furthermore,
since each $L \cap v$ is a spot (see [2, footnote 3]), $R[D]_{v}$ is a spot.
Let Ω be the set of prime ideals q of rank 1 in $R[D]$ such that
$q \cap v$ is not of rank 1. Since $\nu(q \cap v)$ is dominated by one v, $q \in \Omega$
means that the spot $\nu(q \cap v)$ is an isolated fundamental spot with
respect to V, hence Ω is a finite set. Since $R[D]_{q}$ is a spot, we
can reduce easily to the case where Ω is empty (see [2, Proposition A]). Thus we assume that Ω is empty. Next, let Ψ be the
set of prime ideals p of rank 1 in ν such that there exists no prime
ideal q of rank 1 in $R[D]$ which lies over p. Then ν_{p} ($p \in \Psi$)
is dominated by none of v, which shows that ν_{Ψ} corresponds to only
components of D, which shows that Ψ is a finite set. Let α
be the intersection of members of Ψ. Then $R[D]$ is the α-transform
of ν. Therefore the equivalence is proved.

§ 2. Corrections.

In [2, Theorem 4] we asserted that if D is a closed set of an
affine model A of dimension 2 ($A \neq D$), then $A - D$ has an associated
affine model. This is correct under the additional assumption that
A is normal and in the non-normal case the assertion is not true
as will be shown by an example in § 3. One error in the proof
exists in 1. 4, p. 67 of the paper.) Namely, we stated that from
$\nu_{q} = \tilde{s}_{q'}$ it follows that $q'' = q \theta_{m'}$: $q \theta_{m'}$ is a primary ideal belonging
to $m' \tilde{s}_{m'}$: But we needed really the normality in that conclusion.
In fact, the example which will be shown in § 3 shows the non-
validity of this conclusion in the non-normal case. Since, even in
the normal case, that conclusion may not be obvious, we shall give
a detailed proof of that conclusion in § 4.

By this reason, in that Theorem 4, we must assume that A
is normal. Under the assumption of normality, the proof of
Theorem 4 is valid and there remains no difficulty (except the
fact which we shall prove in § 4).

On the other hand, Proposition 5 (p. 69) should be asserted
also under the additional assumption that ν is a normal ring.
§ 3. An example.

Let x, y and z be indeterminates and let k be a field. Let f be an element of $k[x, y, z]$ such that

1. f is irreducible, and
2. $f = y(z + yt) + x(u, y^2 + uz + u, z^2)$ with $t \in k[x, y]$ and $u, u_2, u_3 \in k[x, y, z]$.

Set $\mathfrak{o} = k[x, y, z]/\langle f \rangle$. Then x, y generate a prime ideal \mathfrak{p} of rank 1 in \mathfrak{o}; y, z generate a prime ideal \mathfrak{q} of rank 1 in \mathfrak{o}. \mathfrak{o} is not normal. Let $\hat{\mathfrak{o}}$ be the \mathfrak{p}-transform of \mathfrak{o}. We first consider \mathfrak{p}^{-1}. It is obviously generated by 1 and $z_i = (z + yt)/x$. Therefore $\mathfrak{o} [\mathfrak{p}^{-1}]$ is generated by x, y, z_i satisfying a relation similar to f stated in (2) as is easily seen. Thus $\hat{\mathfrak{o}}$ is obtained by successive adjunction of elements $z_1, z_2, ..., z_n$, such that $z_i = (z_{i-1} + yt_{i-1})/x$ with $t_{i-1} \in k[x, y]$. Though we have already seen in essential that $\hat{\mathfrak{o}}$ is not an affine ring, we shall see a little more. Since $xz_i = z_{i-1} + yt_{i-1} (z_i = z)$, we see that $z_i \in \mathfrak{q}$. Thus x and y generate a maximal ideal \mathfrak{m} of $\hat{\mathfrak{o}}$. Therefore if $\hat{\mathfrak{o}}_m$ is Noetherian, $\hat{\mathfrak{o}}_m$ must be a regular local ring. Let \mathfrak{q}' be the uniquely determined prime ideal of rank 1 in $\hat{\mathfrak{o}}$ such that $\hat{\mathfrak{o}}_{\mathfrak{q}'} = \mathfrak{o}_q$. Since $y, z \in \mathfrak{q}$ and $x \notin \mathfrak{q}$, $z_i = (z + yt)/x$ must be in \mathfrak{q}'. By the same reason, we have $z_i \in \mathfrak{q}'$ for every i. Therefore \mathfrak{q}' is generated by $z, z_1, z_2, ..., z_n$. Therefore \mathfrak{q}' is contained in \mathfrak{m}. Since $\mathfrak{o}_q = \hat{\mathfrak{o}}_{\mathfrak{q}'}$, we see that $\hat{\mathfrak{o}}_m$ is not a normal ring and $\hat{\mathfrak{o}}_m$ cannot be a regular local ring and $\hat{\mathfrak{o}}_m$ cannot be a Noetherian ring. Now, if $q \hat{\mathfrak{o}}_m : q' \hat{\mathfrak{o}}_m$ is a primary ideal belonging to $m \hat{\mathfrak{o}}_m$, then the treatment in [2, p. 69] shows that q' is generated by a finite number of elements. But we see now easily that q' cannot be generated by any finite number of the z_i's. Thus $q \hat{\mathfrak{o}}_m : q' \hat{\mathfrak{o}}_m$ is not a primary ideal belonging to $m \hat{\mathfrak{o}}_m$ but is contained in $q' \hat{\mathfrak{o}}_m$.

§ 4. A lemma on Krull ring.

In order to verify the statement in [2, p. 67, l. 4] in the normal case, it will be sufficient to prove the following lemma. 3)

Lemma. Let q be a prime ideal of rank 1 in a Krull ring \mathfrak{a}.
If a is an ideal contained in q such that $a \mathfrak{a}_q = q \mathfrak{a}_q$, then $a : q$ is not contained in q.

Proof. Since \mathfrak{a} is a Krull ring, \mathfrak{a}_q is a discrete valuation ring. Therefore there exists an element $a \in a$ such that $a \mathfrak{a}_q = q \mathfrak{a}_q$ (because...
\[a \mathfrak{a}_\mathfrak{a} = q \mathfrak{a}_\mathfrak{q} \]. Since \(\mathfrak{a} \) is a Krull ring, \(a \mathfrak{a} \) is the intersection of a finite number of primary ideals and we see easily that \(a \mathfrak{a} : q \) is not contained in \(q \).

Mathematical Institute, Kyoto University

BIBLIOGRAPHY

Notes

1) There is one more error concerning non-normal case in p. 67. Namely, we constructed the ring \(\mathfrak{a}^* \); then \(\mathfrak{a}^* \) may have a maximal ideal \(\mathfrak{m}^* \) of rank 1. This is the reason why proposition 5 should be asserted under an additional condition (see the end of this section).
2) There is a case where \(q^\prime \mathfrak{a} = \mathfrak{m}^\prime \mathfrak{a} \). In such a case, we have obviously \(q \mathfrak{a}^\prime = q \mathfrak{a} \mathfrak{m}^\prime \) and \(q \mathfrak{a}^\prime \mathfrak{m}^\prime \) has a finite base. Therefore we disregarded such a simple case.
3) This lemma was used in the first step of the proof of [1, Theorem 3].