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Previously Samuel [4] defined an equivalence relation between
ideals of a Noetherian ring as follows :

Let a and b  be ideals in  a Noetherian ring o  having the same
radical. Assume that a and b are not nilpotent. For every natural
number n, define the integers vb (a n )  and tub (Q, n )  such that"

(1) a" C. bv6(a,  n) , e$ b v6 (a, n) +1

(2) bw b ( a , n )  C  an, 1,14/6 (a, n) —1 ,T a n.

Then a and b  are said to be equivalent if lim (v b (a , n)/ n)
(a, n) /n)

 =1 2 ) . H e  showed that this defines actually an equivalence
relation and that the operations of multiplication and addition are
compatible with the equivalence relation.

Concerning this equivalence relation, M uhly  [1 ] proved that
if o is  a  Noetherian integral domain, then this equivalence relation
is characterized by integral dependence. Namely, we define the
integral dependence as follows :  An element a is  integral over an
ideal a  if there are elements c,, c2 , •••,c„ such that ( i )  c,Ea' and
( ii)  an+ c,a" - 1  + c2 a"' + • • • + c„=-0 ; an ideal b is integally dependent
on a if every element of b is integral over a. Then Muhly obtain-
ed the result :  Two non-zero ideals a and b in a Noetherian integral
domain are equivalent to each other if and only if  a  an d  b  are
integrally dependent on each other.

We shall prove at first that the equivalence relation is charac-
terized by  integral dependence without assuming that the ring is
an integral domain (a generalization of the M uhly's result).

The second problem . Samuel [4] proved the following "Cance-
llation law " :
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I f a ,  b and b' are equivalence classes of ideals having the
same radical (in a Noetherian ring), then ab=ab' implies b=b'.

Secondly we shall generalize this law, namely,
Cancellation law : L e t a, b an d  b' are  equivalence classes of

ideals i n  a  Noetherian ring. T hen ab=ab' implies b=b' i f  the
following condition is satisfied: I f  a minimal prime divisor p of zero
contains the radical of  a, then p  contains the radicals of  b and b'.

Here, the radical of an equivalence class is the radical of a
member of the class (which is obviously determined uniquely).

The th ird  problem . Samuel [4] asked following 4  questions :
(1) Are the lim its l b (a) =lim v b (a, n)/n and Lb (a) wb

(a, n)/n always rational numbers ?
(2) Are the deviations vb (a, n )-1 b (o )n  and Lb(a)n—wf, (a, n)

bounded ?
(3) Let r  be a semi-prime ideal in a Noetherian ring A  and

let ,a ,(A ) b e  the equivalence classes of ideals which have r  as
the radical. Then („)-', (A )  can be im bedded in  a  lattice ordered
group H .  Does ,a' r (A ) contain all elements of H which are smaller
than an element ?

(4) Is the operation of intersection of ideals compatible with
the equivalence relation ?

W e shall g ive here  affirmative answers o f  (1 ) an d  ( 2 )  and
counter examples against (3 )  and  (4).

Furthermore we shall give some remarks concerning the non-
Noetherian case and form ideals in local case.

§  1 .  Integral dependence

• From  now  on, w e shall denote by o  a  Noetherian ring, by
p„ •••, p, all of the minimal prime divisors of zero in o .  If x, y„
••., y, are elements of o and if x is not nilpotent, o[y,/x, •••,y„/x1
will denote the following ring :  Let S be the set of pow ere of x.
Then 0 E S  therefore we can consider the ring of quotients of o
w ith respect to  S .  Let 0 , be the natural homomorphism from o
into os. T h e n  o[y,/x, •••, y„/x]=0.(0)[0,00/0,(x), •••,9 ) .(30/0.,(x)1•
Observe that the kernel of 95, coincides with 0 : x " o for sufficiently
large m and is contained in every p, such that x E p,.

W e shall denote by 0, the natural homomorphism from o onto
o/p, for each i =1, •••,r and by L , the field of quotients of o/p,.



Note on a paper of  Samuel 167

If is  a  subring of L, which contains o/t), and if h  is  an  ideal of
we shall denote by b n o the ideal 07' (0,(o) nt)). We shall say

that an  ideal q is  a  valuation ideal o f  o i f  there exist one i ,  a
valuation r in g  11 o f  L., which contains o/p, and an  ideal q' o f  1)
such that q q ' n 0. When o is an ideal of o , the intersection of
all valuation ideals o f  o  containing a  w ill be called the  derived
complete ideal of a. If  th e  derived complete ideal o f a  coincides
with a, then we shall say that a is a  complete ideal.

THEOREM 1. A n  ideal b o f  o  is integrally  dependent on an
ideal a  if  and on ly  if  b  is contained in the derived complete ideal
a ' of a.

PROOF. Assume that b is integrally dependent on a .  L e t  b
be an  element of b. Then there are  elements C; E a' such that b"
+c,b" - ' + • • • + c „ = 0 .  F or each i=1 , • • • , r, set h i = 0 i ( h ) .  Then b,
is integrally dependent on &(a) because Ø,(c) (0 ,(a )'. Therefore,
for every valuation y of L , whose valuation ring contains o/p, , y(b,) >
v (01 (0 )) , which proves that b  is  in  a ', hence I) c a'. Conversely,
let b  be a n  element o f  o ' (and w e have cmly to  show  that b  is
in tegra l over a). ( i )  If b  is nilpotent, then b  is integral over 0,
hence over a. ( i i )  Now we assume that b  is not nilpotent. Let
a,, • ,  be a  b a se  o f  a  a n d  consider th e  r in g  o lfidb , •-•, a„/b].
Assume for a moment that there exists a prime ideal 443 of the ring
containing O b ( a i)  95b(b) , •••, 0b(a„) Oh ( b )  •  Let i  be such that p, contains
the kernel of 0, and such that MO is contained in 4; . Then there
exists a prim e ideal '-1V in  (o/p,)[0, (a,) /  •  •  ,  ( a „ )  /  0 , ( b ) ]  con-
taining 0; (a) /0 /(b ), •••,0 ; (a,,)/0,(b). Therefore there exists a valua-
tion y  o f  1 ,,  whose valuation r in g  contains 0/p, a n d  such that
y (0 1 (a)/O i(b ))> 0 for every j ,  which shows that v(0i(b)) < v (0,(a))
a n d  i s  a contradiction.  Therefore Ob (a)/Ø,,(b), •••, 01,(a.)/0b(b)
generate the unit ideal in  the  ring  o •••, a d b ] ,  that is , there
exists a  polynomial . f  with coefficients in 0,,(o) such that f ( 0 , ( a ,) /

••• , 0 ,(a„)/0 ,(b ))= 1 and that the constant term of f  is zero.
Let d  be the degree of f .  Then we have a relation of the form :

0,(b)" =4;61,(ci) 0, (b) ,/1 + • • • +4;6,(c,,) E (1 ' ) .

Since the kernel of 0, coincides with 0 : b"'o for a sufficiently large
n i ,  we have
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Since ci  E a ', w e  have proved that b  is  in teg ra l o v er a . T h u s
Theorem 1 is proved completely.

COROLLARY. L et it be the radical of  o. T hen an  ideal b is
integrally  dependent o n  another ideal a  i f  and  on ly  if  b+21/11 is
integrally dependent on a +

REMARK. It is obvious that the derived complete ideal of an
ideal a is contained in the radical of  a . T h erefo re  i f  a n  ideal b
is integrally dependent on a , th e n  b is contained in  th e  radical
of a .

§  2 .  Samuel's equivalence relation

Though Samuel [3] defined th e  equivalence relation only for
non-nilpotent ideals under an  additional condition on radicals, we
shall generalize the difinition according to note 2 ) at the end of the
presente paper.

THEOREM 2. L et a  and b be ideals o f  o. T h en  (1 )  i f  there
exists a  sequence { m„ (n=1, 2, •••)} o f  natural num bers such that
(i) lim  m a / n =1  an d  (ii) _ç a ', then b is integrally dependent on
a, an d  conversely, (2 ) if  b is integrally  dependent on a ,  then there
exists an  integer c such that b "  ç  a" f o r every n=1, 2, •••.

PROOF. (1) Let y be an arbitrary valuation of rank 1 in L, whose
valuation r in g  contains o / p , (i being also arbitrary). T h e n

v (0i (b) ) nv (0, (a ) ) . Therefore y (0, (b) ) v (0 i (a ) ) , which shows
that b is contained in  the derived complete ideal of 03 . It follows
that b is integrally dependent on a .

(2) Since b h as a  finite base, w e have only to show the
existence of c in the case where b is generated by one element b.
Since b is integrally dependent on a, there exists a relation b ' '+
ai fr+ •••+a= 0 with a, E a'. Therefore b̀ +' €>2,b1 0' 1 = a ( >2, b' a " ) .
Then h' +2  E ( 'a ' - 1 ) Ç. a2 ( >2, a' - ' )  and so on. Thus we have

E a"( Y i bia — l)  ç a". Therefore our c  is  the  required element.
COROLLARY. Two ideals a  and b o f  o are  equivalent to each

other i f  and only if  a  and  b are integrally dependent on each other
(or, equivalently, a+b is integrally  dependent on both a  and b).

§  3 .  The cancellation law

T H E O R E M  3. Let a ,  b  an d  c b e  id eals  o f  o. A ssum e that



N ote on a paper of Samuel 169

ac= b c . T hen a  and  b are  equivalent to each other if  the following
condition is satisfied : If  a m inim al prim e divisor p of zero contains
c, then p contains ci and b.

PROOF. Let c ,, •••,c , be a  b a se  o f  c. F o r  each b  b , there
are  a, 5 E a  such that c ,b =E a,,c i . Let d  be the determinant I a,,b

Then dc,-=0 for every i ,  hence dc.= 0 .  By the condition,
we have db in  nilpotent, hence e lin '=0  fo r  a  natural number m,
which shows that b  is  in tegra l over a . T hus b  is integrally de-
pendent on a . S im ila r ly , a  is integrally dependent on b and there-
fore a  and  b are  equivalent to each other.

THEOREM 4. I f  an  ideal b of  o  contains another ideal a  o f  o
an d  if  b is integrally  dependent on a, then  there  ex ists  a  natural
num ber t  such that bn  = a ir ' f o r n > t.

P R O O F . By the same way as in the proof o f  (2 )  in  Theorem
2, we have b  c  a n - 1  b' for sufficiently large n .  Since b contains

a , w e have b" c ab" - 1  c  If a n d  b"=abn - 1 .
COROLLARY. Tw o ideals a  and b o f  o  are  equivalent to each

other if  and  only if  there exists an  ideal c of  o  such that (i) ac=bc
an d  (ii) c  contains a pow er of  .

PROOF. I f  there exists such a  c ,  then Theorem 3  shows
that a  a n d  b  a re  equivalent to each other. Conversely, assume
that a  and  b are  equivalent to each other. Then for a sufficiently
large t ,  (a+b)`=a (a +b)' - '= b (a  + b )" a n d  c= (a+b)' - '  is  th e  re-
quired ideal.

Now we come to the  cancellation law :
THEOREM 5  (CANCELLATION LAW). L et a, b  an d  h ' be equi-

valence classes o f  ideals in  o. T hen ab =ab ' im plies b =b ' i f  the
following condition is satisfied : If  a m inimal prime divisor p of zero
contains the radical of  a ,  then p contains the radicals of  b  and b'.

P R O O F . Let a , b  and b ' be members o f  a ,  b  a n d  h ' respec-
tively. T h e n  ab is equivalent to ab'. Therefore there exists an
ideal c  o f  o  which contains a  pow er o f a (b+b/) a n d  such that
abc=ab'c by the colollary to Theorem 4. Assume that a minimal
prime divisor p o f  zero contains ac. Then p contains a (b+b/).
If p contains a, then by the condition, p contains b+  b '. Therefore
p contains always b+  b '. Therefore by Theorem 3  we have b and
b' are  equivalent to each other, which shows that b=b'.

R E M A R K . Observe that the condition in Theorem 5 is satisfied
in  each of the  following cases and that th e  last case is nothing
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but the cancellation law due to Samuel [31:
(1) A  member of a  is not contained in  any minimal primed

divisor of zero.
(2) The radical of a  contains those of b and h'.
( 3 )  a, h  and b ' have the same radical (this is a special case

o f  (2)).

§ 4 . Rationality of the limits ib (a )  and Lb (a)

Let a  be  a  non-nilpotent ideal of o and we renum ber the p,'s
so that a E  b , if and only if  i < t. Let a1,•••,a, b e  a base of  a .
Set a1r =01J (a5) (for 1=1, •••, t; j=1, •••,  )  and o1i=0;(0)[all/af1 , •••,
a,,/a 11]  (for ( i ,  j )  such that a,i 0 0 ) .  Let oti  be the derived normal
ring of Lk,. W e  set a '= (n  o )  n ( n Then

THEOREM 6. T he ideal a ' is the derived complete ideal of  a".
Proof. Since 1.1,3 is a Noetherian integral domain, 1.).;.;  is a  Krull

r in g  (see N agata  [31). Therefore a' is a  com plete ideal. If t
0, 0 9  = 0 = 0 , ( o ) .  F o r  a n  arb itrary  i t, l e t  y  b e  a n  arbitrary
valuation o f  L ,  whose valuation r in g  o  contains o/p,. T hen  b
c o n ta in s  a t  le a s t o n e  0,i , hence 14. T hen  v (0, (a')) >y(a4) =
v (Ø ,(e ) ) . Therefore a ' is contained in the derived complete ideal
of a" and therefore a ' is the derived complete ideal of a°.

THEOREM 7. L et a  an d  b  be non-nilpotent ideals o f  o  which
have the sam e radical. T hen the limits 1b (a) and Lb (a) are rational
numbers, provided that they are well defined. 41

P R O O F . Since La  (b) / b (a) = 1  (see Samuel [41), w e have only
to prove that I ( h )  and L b (a) are  rational numbers. By the sym-
m etry , w e  have on ly  to  show th a t Lb ( a)  is  a  rational number.
W e shall denote by a„ and b„ the derived complete ideals of a ' and
b" respectively. Let m  (n) be such that b„, ( „) C  a„ and  th a t b„, („) _,

a .  W e  s h a l l  u s e  th e  same notations as a,, a, ;  a n d  e i  a s  in
Theorem 6  (app lied  to  ou r a ) a n d  le t p;:j, (k =1, •••, u(i, j)) be
all of the minimal prime divisors of ai i e j  ( fo r  a,i  su c h  th a t  a1j o;',1

4 )  and let v, k b e  the normalized valuation defined by the valua-
tion ring  (4 k ) p* i ik .  Let e be the maximum of IL-A  (0,(a) )/vilk(0i(b) ) •
Then Theorem 6  shows that our m (n ) is characterized by

In (n ) /n >e - > (m (n )-1 )/n .
Therefore lim m (n)/n  =e  and  e  is obviously a  rational number.
Now we have only to show that e=L I, ( a ) .  If w /n (w  and n being
natural numbers) is not less than e , then b-  is integrally dependent
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on a" by Theorem 1  and by our observation. Therefore w /n >
Lb (a) by T heorem  2. I f  w /n <e , then b " ' cannot be integrally
dependent on a n ' fo r any natural num ber u  and w /n< Lb (a).
Therefore e—L b (a) and the proof is completed.

§ 5. The deviations vb(a, n) — lb(0)fl and Lb(a)n— w b (a,n).

THEOREM 8. W ith the same a, an d  b  as  in  Theorem 7 , the
deviations v b (a, n) —/b (a )n  and Lb (a)n — wb (a, n )  are bounded!)

PROOF. By Theorem 7 , lb ( a )  is  a  rational num ber. Let f
and g  be natural numbers such that lb (n) = f i g .  By Theorem 2
a" is integially dependent on a n d  there exists an integer c such
that a"g" c b-e"  for every n=1, 2, • ••. Therefore a"Q+9 c  b f " + "  for
d < n ,  which proves that IN, (a , n)-16(a)n I is not greater than g+c,
which completes the proof for yb (a , n) —lb (ci)n. The proof for
Lb (a )n— w b (a, n )  can be done quite similarly.

§ 6. Counter examples against the 3-rd and the 4-th
problems of Samuel [4]

• Let k  be a field, x  and y algebraically independent elements
over k  and let A =k [x , y] , in =xA  +yA .

(I) The 3-rd problem : We consider the equivalence classes
o f ni-primary ideals in  A ; the set of the classes is denoted by

(A ) .  Consider a lattice ordered group H  in which r;'(. ( A )  is
imbedded naturally (see Samuel [ 4 ] ) .  Assume that there exists
an element c€ m ( A )  such that every element of H which is smaller
than c belongs to Ztim (A ) .  Since every primary ideal belonging to
in contains a power of in , w e m ay assume that c= m', w here  ni
is the class of in.

Set a Then
LEMMA 1. a  is a  valuation ideal o f  A , hence a is complete.
PROOF. Set f =X 2"+ ? " - '. Then f  E a  and f A  is  a prime ideal.

Let y' be a valuation of the field of quotients of A / f A  such that
(y mod. f A ) =1  and the valuation ring b  be the composite of the

valuation ring A 1A and the valuation ring of y'. W e shall show
that a = e b n  A .  Set X =x mod. f A , y- =y  mod. f A .  Then y' =
1 + 1 /2 n  because y' ( y) = 1  and x2 4 + =  O. T h ere fo re  y' (a/fA)
=2n +1 =y'( -x--2"). Thus we have a Ç x2n b n  A .  Conversely, since
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different monomials in  i ,  y of degree less than 2n +1 have different
values under y', we see easily the converse inclusion. Therefore
a=x2nOn A .

Now, let a be the  class of a . S in ce  a  is smaller than nfn,
a n r" is an  element of H  which is smaller than B y  o u r  a s -
sumption, there exists a n  ideal b whose class is am — , i. e., if  b is
the  class of h, then bm"= a.

Then btu" is equivalent to a. Since a  is a  complete ideal,
Inlin is contained in a and h ç  a : inn = m" -". Therefore bm" is larger
than a, which is a contradiction. Thus we have proved that our

m (A )  is a  counter example against the 3-rd problem of Samuel
[4].

REMARK. Let a, b and c be ideals of o. Assume that (i) a
is complete, (ii) b c is equivalent to a. T h e n  a  is equivalent to
(a : c)c. Assume furthermore that iii) if a m inim al prim e divisor
p of zero contains c then o contains b and a : c. Then b is equiva-
lent to a : c.

PROOF. Since a  is complete, we h av e  bc C a  a n d  b c a: c.
Therefore bc c (a: c)c ç a. Therefore (a : c)c is equivalent to a
and bc, because bc is equivalent to a. By the cancellation law we
see also the last assertion.

(II) The 4-th problem:
LEMMA 2. If an  ideal a of (a Noetherian ring) o is generated

by elements a„ •••, a„ then fo r  every n =1 , 2, •••, the ideal an is
equivalent to the ideal a„ generated by a t", •••, a,".

PROOF. F o r  every valuation y of L , ,  whose valuation ring
contains o/O;, v(01(a")) =v (Ø,(a,.)) and the assertion is proved.

Applying Lemma 2 to our in, we see that c=x 2 A + Y A  and
b-----, x2 A + (x + y ) 2 A  are  equivalent to ni 2 . B ut cn b is contained in
x2 A+11-13 which is not equivalent to n1 2 . T h u s  th e  operation of
intersection of ideals is not compatible with the equivalence relation.

§ 7 .  Some remarks on non-Noetherian case

Let f  be a  r in g  (with identity) which may not Noetherian.
Let n be the radical of f. Then —a generalization o f th e  corol-
lary to Theorem 1:

THEOREM 9. A n  element b of f is integral over an ideal a of
f if and only if b mod. n is integral over a  mod. n.
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PROOF. Only if part is obvious. I f  b  mod. n is integrally
dependent on a mod. it, there exists a relation

bn+a,bn - ' +•••+a n =cE n  (at E ai).

Since c is nilpotent, we see that b is integral over c i.
THEOREM 10. T heorem  I can be generaliz ed to th e  non-

Noetherian case under the assumption that there exists only a finite
number of  m inim al prim e divisor of zero.

P R O O F . By Theorem 9, we can reduce to the case where o
has no nilpotent elements. If o  is an integral domain, then the
same proof is applied (the number of the ai 's may infinite). Then
the following lemma proves our assertion :

LEMMA 3. L et 1 1 „  • • • ,  n, be ideals of  f such that n, n • • • n n,.=0.
Let a  be the natural homomorphism f rom  f onto f/ n i. Let b be an
element of  f and let a be an  ideal of  f. Then b is integral over a
if  and only if  0-i (b ) is integral over cr,(a) f o r every i.

P R O O F . The only if part is obvious. From that 0-
 i (b )  is

integral over o-, (a), it follows the existence of relation of the form

bn+c,bn- 1 + ••• +c„ E (C I  E a').

Making the product of these monic polynomials in b , we see the
integral dependence of b on a.

An analogy of the proof of Lemma 3 proves
LEMMA 4. A ssum e that there ex ist only  a  f inite num ber of

m inim al prim e divisor of zero in f .  T h e n  an element b of the total
quotient ring of  f is integral over f if  an d  only i f  v (c (b ) )> 0  for
every v and  0- , where a  is the natural homomorphism f rom  f  onto
f / p  with a m inim al prim e divisor p  of  z ero  and v  is  a  valuation
of the f ield of quotients of  0-(f) whose valuation ring  contains 0-(f).

Furthermore, by the same proof as there,
THEOREM 11. Theorem 2 , (2) and Theorem 4 can be generaliz-

ed to the non-Noetherian case if  b/a is generated by a finite number
of  elements.

On the other hand, Lemma 2  can be generalized to the  non-
Noetherian case by the following proof (a may have no finite base) :

We have only to prove that a" is integrally dependent on n„
which is quite easy because if w is a monomial o f degree n in a
base of a, then w" is in a„".

As an application of Lemma 4, we shall prove the following
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THEOREM 12. L et a,, •-•, a,., be elements of which are  not
zero-divisors. Set •••, a,/ad and b=  n T hen b is
integral over

PROOF. Let b be an element of b. Then there exists a natural
number n  such that bain E a"  for every i ,  w here a  is  the ideal
generated by ai , •••, a,. Since there exists a  finitely generated
subring I ' of such that b E n •••, a,/a,J, (a, E f '), we may
assume that f is  Noetherian. Then Lemma 4 can be applied and
we see that b is integral over

§ 8. A  remark on form ideals

Let P  be a (Noetherian) local ring and let a  b e  an ideal of
P .  In the form ring F  of P , there corresponds the form ideal
to a. I f  a n  element b of P  is integral over a, then the correspond-
in g  fo rm  to  1) is integral over i, as is easily seen by the defini-
tion of integral dependence. Therefore

THEOREM. 13. The form  ideal of the derived complete ideal of
a  is contained in  the derived complete ideal of  ci. In  Partic u lar, if_
a is complete, then a  is also complete.

But, even when a is complete, a may not be complete. We
shall construct such an example under additional conditions that
( i )  P  is a regular local ring and (ii) a is  a primary ideal belong-
ing to the maximal ideal.

EXAMPLE. Let x , y, z be algebraically independent elements
over a field K  and set P-- -.K[x , y,L e t  q  be the ideal of
P  generated by x 2 +y3, y4 . T h e n  q is a primary ideal belonging
to the maximal ideal m = (x, y , z). Let a be the derived complete
ideal o f q . Then the form ideal of a is not complete.

PROOF. We have only to show that the form ideal -a  of a
does not contain xz. Let I), be the valuation ring a n d  l e t
L ' be the residue class field of t .  y  a n d  z  are algebraically in-
dependent over K  in L'. Therefore there exists a valuation y' of
L ' such that v '( f (y ,z ) )  =minimum of the values of terms of f (y ,
z) for preasigned values of y and z, where f (y ,  z ) is  an arbitrary
element of K [y , 21 . We choose y' so that v' (y) =2 and v'(x) =4.
Then v' (x) = 3 .  Let v be the composite of a valuation defined by
I), with v'. Then v(q) =8, whence v (a) = 8 .  W e shall show that
if fE ni has xz as its leading form, then v (f ) =6 or 7. v(xz) =7,
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v(x2 m) =8, v(xzm) = 9 , v(xy2 ) =7, v(y 3 ) =6, v(y 2 z) =8, v(em) =10,
v (z m2 ) =8, v(m 4 ) =8. Therefore, if the coefficient of 3,3 in  f  is
different from zero, then v (f) =6 and we assume that the coefficient
of y3 is  zero. Then we may assume that f=xz+cxy 2 (c e P ) ,  be-
cause we have only to know that v(f ) = 7 .  Then f =x(z+cy2 )  and
by our choice of y , v (f ) = v(x) + v (z + cy')= 3 + 4=7, which com-
pletes the proof.

R E M A R K . The ideal h of P  generated by x2+y3 and z2 i s  a
valuation ideal, hence is a complete ideal, whose form ideal is not
complete.

P R O O F . Let 1.)1 b e  as before and let b "  be the valuation ring
P ( ., 52,z) /(x2 +3 3 ). Let b* b e  the composite of b i w ith  b". Then
b=z 2 e n P ,  because z2 b * n P  is  a primary ideal containing .%~' +y3

and because (A-2 +A  z)/(x 2 + ? )  is  a principal prime ideal. The
form ideal o f I) is obviously generated by x2 and z2 ,  which does
not contain xz, whence it is not complete.

Mathematical Institute, Kyoto University

BIBLIOGRAPHY

[1] H. Muhly, A note on a paper of P. Samuel, Annals of Math. vol. 60 (1954), pp.
576-577.

[2] D. G. Northcott—D. Rees, Reduction o f  ideals in local rings, Proc. Cambridge
Phil. Soc. vol. 50, Part 2 (1954), pp. 145-158.

[3] M. Nagata, On the derived normal rings of Noetherian integral domains, Memoirs
Kyoto Univ. ser. A, vol. 29, No. 3 (1955), pp. 293-303.

[4] P. Samuel, Some asymptotic properties o f  powers o f  ideals, Ann. of Math. vol.
56 (1952), pp. 11-21.

Notes

1) These integers may not be defined (fo r  example, let a=b b e  idempotent) and
therefore Samuel 14] assumed furthermore that the intersection of the powers of
the radical of a is  zero. But we can treat similarly i f  these integers are well
defined.

2) We shall generalize the definition o f  equivalence as follows (including the case
where vb(n, n ) and tcb(a, n ) are not defined): a and 6 are equivalent to each
other if there are integers v (n ) and w (n ) for n=1, 2, 3 ,  • • •  such that 6" .

('.).ga .g
a t

,
t) and such that lim v(n)In-=lim w(n)In=1.

Theorem 2 below shows that this definition covers the definition of Samuel [4],
and the operations of multiplication and addition are compatible with this equiva-
lence relation.

3) W e use here Theorem 6 below (the special case where n=1).
4) The assumption that a and fi have the same radical is not essential, if we treat

one of /b (a ) and L b(a).
5 )  Cf. Note 4).


