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W e consider here a n  analytic n-manifold V  w ith  a distance
function d (p ,  q )  defined fo r  a ll points p ,  q  o f  V, satisfying the
following two axioms :

/. d(p, q) =0 for p=q,
2 .  d (p ,q )= d (q ,  p )  ;

at present we do not assume the so-called triangle axiom.
F urther w e suppose that there exists a  coordinate neighbor-

hood U  containing any pair of points p ,  q and that the square of
d (p ,  q )  is analytically expressed by th e  coordinates (x ) and (y)
of p  and  q  respectively. Such a  m anifold  V  w ill be called the
space  w ith  analy tic  distance and denoted by S. T h e  function
g(x, y )  defined by

1g(x, y) =  - - [d (x ,  y ) ] '
2

will be called fundam ental function of the space S "  a n d  we shall
investigate t h e  properties o f  S '  f ro m  th e  standpoint of the
differential geometry by means of the analyticity of the fundamental
function.

T h e  space w ith analytic distance was formerly investigated
b y  o ne  o f m y  senior Tsutomu ()take, w ho died about ten years
ago without publishing his n o te . In  this paper we shall introduce
and develope his discussions.

§  1 .  Tensors in the space S

It is  na tu ra l by  m eans o f  th e  geometrical meaning that the



120 Makoto Matsumoto

fundamental function g(x , y ) o f S "  i s  invariant under a trans-
formation of the local coordinates

(1 •1) x '-= x '(), y' — y ' ( ) .
Such a transformation o f coordinates is thought of as one in the
product S"x S " .  A  function o f (x) and (y), w hich  is invariant
under (1 •1), is called a scalar. If w e put

a(1.2) g(x, y), gm =  g(x, y),
ax' ay'

these are subjected to the transformations

ax" ay,
- J..g o —go , •ay.

If n  functions it, of variables (x, y) are subjected to the transfor-
mation

ax"fi,=  u„ -
a i'

then u, are called the components of the covariant vector (u) with
respect t o  (x). W e define sim ilarly  a covariant vector with
respect t o  (y). In particular, the functions g , defined by (1.2)
are components of the covariant vector, w hich w ill be called the
slope vector w ith respect to  (x ) and g ( ,)  is called  the slope vector
w ith respect to  (y).

The definition of a tensor of any degree is immediately given.
Thus, if quantities 7'.; (4)  are subjected to the transformation

= T4(;))  ax' a,c h ay,  a y i
axa a i4  a y "  ay

we call TA(4)  components of the tensor (T ) , which is covariant of
the first degree  and i s  contravariant of the first degree with
respect to  (x ) and also  to  (y).

If w e set
a2& g , ag o ,g x, y) — — ,

ax' a y i ay; ax'

then we see easily that the functions g, ( )  a re  components of the
tensor, w hich  is  covariant of the first degree with respect to  (x)
and (y). This tensor is called the relative metric tensor at the pair
of the points p(x) and q ( y ) .  If there exists a  region R  of the
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space S ", such that the determinet Ig, (,) (x, y) I does not vanish at
any points (x ) and (y) in R , then we shall say that the region R
is proper in S " .  An euclidean space is proper in itself. Throughout
the paper it is understood that we consider a proper region alone.
Then we construct the inverse matrix (e ) )  o f (g, ( ,) ) , and it is
easily seen that g 1 ( "  are components of the contravariant tensor,
which is also called the relative metric tensor.

In  Riemannian geometry, we obtain from a  given tensor,
making use of the covariant or contravariant components of the
metric tensor, tensors of the same degree but different character.
This process is usually called as rising the subscripts and lowing
the superscripts. S im ila r ly  in our case, we can obtain from a
given tensor, making use of the relative metric tensor, new tensors,
which shall be called to be conjugate to the given tensor. For an
example, we take a tensor TV. ) ( 1 ) and then we have various types
of tensors as follows :

T (li) n ) =
f;( k) h=g ' (`) T f,;(k..)

( 1) ,

and so o n .  Especially, from covariant components of the slope
vectors g ; and g ( ,) ,  w e have contravariant vectors conjugate to
them, that is,

,u)g  - g  g u ), g  - g

these be called the contravariant components of the slope vectors.
I f  we contract a tensor by the slope vectors, then we obtain

new tensors of the lower degree. As an example, fo r a  tensor
.)  •  V) ,

 we have

T.1;(0,10 = g (k ) r;(k.10

rf,;( '..)( „) =g (') Tf; (1:'(,) ,
and so on. This process will be called the degeneration of a tensor
and may be repeated till we have the scaler. This scalar will be
called the slope function of the tensor. Thus, for the above tensor
T % ) , the slope function is given by

T g, g) g•m g(1
)

It is clear that a  slope function o f a  tensor is equal to one of
tensors conjugate to it. We see easily that the slope function of
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the relative metric tensor is equal to the slope function of the slope
vectors.

§  2 .  Relative covariant differentiations.

The relative metric tensor g,o ,  o f S " is transformed under
(1.1) as follows :

_ a-37p
go o )  .  .

ay7

Differentiation of the equation with respect to xk  and contraction
by e i )  give

gi(,) i s ko) &g,,(,,) +axk ax-a 2 i "  axh 
axk a i d  ax' axk ax'axk

Hence, if we put

then it follows

(2.1)

P7i.(x, y) —  g/(j) 
axk

 aï"   ax"
ax-faxi axk axi axJ

Similarly, if we put

(2.3)

then we have

P ( Z)(x ,  Y) — 
a

g i ( i )

 g

JO)
ayk '

a2r  = i .(L) a37'  aY• •  ( , )( • (r,;(,) •ay , ay a y t , )(i)

These 1),/, and I',44 ) are evidently symmetric with respect to sub-
scripts, and we call them the coefficients of linear connection of S",
Making use of these quantities, we shall give a process, by which
we obtain from a tensor new tensors of higher degree.

We take first a scalar T(x, y) and it is easily verified that the
quantities

(2.4)

define respectively components of the vector. Next, let T 1 (x, y) be
a covariant vector with respect to  (x), then the components are
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transformed under (1.1) into t ,  which are given by

ax ' •

Differentiating with respect to x i and substituting from (2.2), we
see that the quantities

T  — T 1; ka X ;

are components of covariant tensor of the second degree with
respect to  (x). The tensor as thus obtained will be called the
derived tensor by means of the process of the relative covariant differ-
entiation with respect to (x) . On the other hand, we see that the
quantities

aT.

are components of a tensor, which is covariant of the first degree
with respect to  (x) and also to (y ). T h is  tensor is said to be
obtained from the original tensor by the relative covariant differenti-
ation with respect to (y).

The above processes may be clearly generalized to the cases
of tensors of any degree, and thus we have the derived tensors of
the given tensor. For instance, we take a  tensor Tj 'a)  and its
derived tensors are given by the following equations :

aT1(k)T ;( g)
 h = .1 ("  4- Tir T Z;) 1'

ax

a 7' 1 (k)T i (k) + T i ( " ) T  1 ( k ) I' (̀')iv); vo (r.)(h) — )(,,) (1) ( n) •ay4

Especially, for a scalar T(x , y ), its derived tensors are defined by
(2•4).

The derived tensors of the slope vectors are given by

a2 ga g  1 '  k

(2.5) ax ax j a  .Vk

a2 g
g ( 1): (i) ay'ayi —

a
g r,(1';),ay k

g m :  i = g j ( i )  9

these satisfy the relations
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g1 ; , = g , ; , , go ; (,) = ; , g, ; (,) = •

For the relative metric tensor, we have as a consequence o f (2.1)
and (2.3)

(2.6)

from which we have
(2.7)

Therefore the relative metric tensor is relatively covariant constant.
It follows that the processes of the covariant differentiation and const-
ruction of tensors conjugate to a tensor are commutative. Finally
we see, for the contravariant components of the slope vectors,

(2.8) g , g "  ( ) ) =(i'j

by means o f (2 .5 ), where a 's are the Kronecker's deltas.

§  3 .  Relative curvature tensors.

We consider first a contravariant vector u' (x, y ) with respect
to ( x ) .  The derived tensor with respect to (x) is given by

au'
ax•1

and hence we have

a q t '1 , 1 " p 1I •; k=
C).r 

T,:k+ 
a X k  I

; „ I
a.r7 aX k 7  

at-+ u"   +axk '
Accordingly, if we put

al". "(3.1) y ) = - al  " k I
a.lek

then we have the following equation :

(3.2) 141 ; .1 ; k ; k ; te  I .

However it is shown that the quantities as above defined by (3.1)
are identically equal to zero, and the same is true for I ' ( ? . ( ) ( ' )

 (x , y),
which are constructed from P( W,,, similarly to ( 3 .1 ) .  This facts
are verified by direct calculation, but we shall here prove them by
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applying the ru le  (3 .2) to  the relative metric tensor. The rule
can be applied equally well to tensor of any degree if  only it is
contravariant of the first degree with respect to  (x). Thus we
have the equation

g g , k , g " (6 )  1- ',;•jk I

th e  left hand m em ber be equal to z e ro  a s  a  result o f  (2 •7).
Hence we have g'“" )  l ' . 2A = 0 ,  from which the above statemens are
immediately proved. Consequently we have for any tensor (T )
the identity

(3.3) •• • • ;,1;k T • •k ; , 1 — °  ;

and also we obtain

(A.) T.•.•.' ; (k) ; co 0 .

Next, differentiating a  vector W (x, y )  covariantly with respect
to x i and then y k , we have

a'u'a u "
a x i a ?  +

 a a y k  .

On the other hand, by interchanging the order of the above differ-
entiations,

—
U ' au»

(k) ; 5 1 "
aXiayk

•

Hence we put
a(3.4) Sjfku)(x, y) Plk(x, y),

and it follows that
; (k )  — (k) ; U a lS ti•  (k) •

Thus we can easily establish the general formula for interchanging
th e  order o f  differentiations with respect to  (x ) and  (y). T he
formula is illustrated, for a tensor TT ) , by the following equations :

T JT;Ik:(m) T 1(5f);
(3.5) T ir — TX s.A( ,„) —  (IV S („M„

4-  Ti ( k,? S

where S  (jf  )(k), is defined by the similar equation to (3 .4 ). The
quantities Sj. k (,)  and ,S(j)( 4), are clearly components of tensors, which



126 Makoto Matsumoto

are called the relative curvature tensors, the former be (x)-component
and the latter (y)-component.

Let us find some identities satisfied by the components of the
relative curvature tensors. From the definition, we have

(3.6) S k ( ,)  •

Next, if  we apply (3.5) to the relative metric tensor, we have
( )

(J
)( 1 ) —  g  ( j )  ;  ( 1) k ga (j) S il

'k(1) gi o , S (
“

j) . )k —  O ,

, i ( J ) " 1 0 ) U) n
; k —  6  : W : k — 6 4(1) (Ilk —  " •

These equations a n d  (3.6) are  expressed in  terms o f th e  tensors
conjugate to the relative curvature tensors as follows :

u)k(1) =
 S (1)i (1)k SC1) •kV) =  Su. )

( 1) 1, S j(i)ky) =  S  O N )

from which we have

(3.7) S.,(4)4 (,) = Si (/) (J) •

Next, we apply (3.5) to the slope vectors and then we get

; j ; (k) g  vo ; — g „S :j(k )

g(i) ; ; k — ;  k ;  (j) — — g ( )  S( „6) I : .

Making use of (2.5) a n d  (2.6), these equations a re  written in the
forms

; j ;  ( k) + ,

g ( i : (1) k  g o ,S (, 6,4= 0 .

T he second  terms o f  th e  above a re  tensors obtained from the
relative curvature tensors by degeneration by th e  slope vectors,
which are  written as  S,j ( ,) a n d  Sow respectively. Thus we have

ag "  +S , -0)(h)
(3.8)

; , ( j)k =  °  •axk

If  we apply the similar process to the contravariant components of
the slope vectors, then we have in virtue o f  (2.8)

(3.9)
g ': (k) J(k) =

, S  
(.)(j)k 0  ,
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where S: j ( k )  and ST( j ) k  are defined by

S : j ( ,,, =ga S,i. j ( k)S  (2(j)k= g(a) S ( a )(.1i ) k

§ 4. The Bianchi's identities and the space
of constant relative curvature.

We shall give some identities satisfied by the derived tensors
of the relative curvature tensors. W e have first from  (3.4)

s i f 'k (1) ; S  j• le (a) i(7(k) •a y' ayh

It implies that the equation

(4.1) Sif,;(k); ( ,) =S j i.k (,) ; (k)

is satisfied. N e x t ,  covariant differentiation of the equation

U  ;  ;  ( k ) ; (k ) ; — S1'..j(k )

with respect to  x ' gives

j (k); I
—

 Ul ; (k); I
=

 — Ua; 1.5/ .1(k ) S  j( k 1

W e subtract from the above the equation obtained by interchang-
ing indices j  and 1 ,  and then  the following equation is got as a
consequence o f (3.3)

14
11,1;(k ):1 — U 1 ;1 ;( k ) :j

= J S  ; . / ( k ) —  Ua ; I S 1 :j(k )
—

 U r , (S  ; : j (k )  ;  1
—

 S  1 :1(k ) ;j ) •

The left hand member is expressed by means o f (3 .5 )  as
— ; j ;  ; ( k) + tire:+ ; „S / ( k) )

— (u, ; , ;( , ) +  ita  ,, SI:j ( k)  4- tti; a SI:j(k))

which is written from  (3.3) and (3 .6 )  in the form

=u „ ; j S,"., ( k)—u„ ; , SI:j ( k) •
Consequently we obtain

(4.2) S ," • j(k )  1
=

 S  i
'
•1(k ) ; j •

I t  is  c le a r  th a t  w e  have the equations analogous to (4 .1 )  and
(4-2) for (y)-components of the relative curvature tensors. These
equations are thought of as the generalizations of the Bianchi's
identities satisfied by the curvature tensor of Riemannian geometry.
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The equations (4 .1) and (4.2) give the following identities satisfied
by the tensors conjugate to the derived tensors, that is,

S h (i) j (k );  (1 )
-

 S h ()); (1 ).  (k )

(4.3)
S ( 4

•
3
'.1(k); (1)

=  S ( , )
!J(1) ; (k)

S
h (i)i(k ); 1

=
 S k (i )1 (k );  j

S ( .43 : , i ( k )  ;  =  S Un tt(k) ; 1 •

Next, covariant differentiation of (3 .8 ) with respect to y' gives

S i ( k) ;  ( 1) — SIN ) : (k ) •

We also obtain from (3 •9)

S ! , ( k) ;  =  Sf/(k) ; .1 •

Now, we consider such a space C "  that the tensor S/01)40/) are
expressed in the form

S m k 0 i)=g i( j)Pk (1 )  g k ( J) p ,

where p f,„  is a tensor. If follows immediately from (3 .7 ) that
Pi ( ,) ---pg,. ( , ) ,  I , be a function o f (x, y ) .  Hence we have

(4.4) ( ) k )  i " ( g , o ) g k o  g k o  g' 0 ) ) )

Covariantly differentiating (4 .4 ) with respect to x "' and making
use of (4.3), we have p; „.= O. The similar process and (4 .3 ) give
also p;  0 0 = 0 .  Hence a scalar , 0  is constant. This result is similar
to  the well-known theorem o f Schur in Riemannian geometry.
The space C "  as now considered will be called the space of  con-
stant relative curvature and p in (4 .4 ) the relative curvature.

§ 5 . Riemannian spaces associating with S'a.

It follows from the definition of the fundamental function of
S '

(5.1) g(x, x) =0 .

We shall prove the identities

(5.2) g,(x, x) =0 , g o (x, x) = 0

In fact, we see from (5.1)

ag(x, x) 0 _(  g (x , y)+ (ag(x , y)  ')
ax1 ax'1 o., 0
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which is written in the form g,(x, x) + g(l) (x, x) =0 . S ince g(x, y)
is symmetric function o f (x ) and (y), we have g,(x , x )=g ( i ) (x, x),
from which it follows (5.2).

If (x) and (x+ dx) are neighboring points, then the fundamental
function g(x +dx , x ) is expanded as follows :

g(x+ dx , x )= 1 g ( x '  Y ) ) dxidx'+ ••• .
2 ax' ax'

Hence, if we put

(5.3)

then we have

—  (a2  e x ' ,
ax 1 ax'

(5. 4 ) [d (x + dx, x)] 2 = g,,(x) dx' + • • • ,
where the function d(x, y )  is the distance between (x) and (y).
We obtain from (2.5) and (5.2) g,,(x) = —g1, ,(x, x). On the other
hand, we get

&g, (x, x) _( y )) +( y ) )
ax.'

1
, ay /

from which we obtain by means of (2.5), (5.2) and (5.3) — g,,(x)
+ g, ( ) (x, x) = 0. Therefore we have

(5.5) g,,(x)= g, u ) (x, x) — g,,,(x, x).

It is clear that the functions g„(x ) are components of a covariant
tensor of the second degree with respect to (x), and the quadratic
form g ,,p 'y  is positive definite by means o f (5 .4 ). Therefore we
can define a Riemannian metric ds2 =g,dx ' dx" in an neighborhood
of a point (x) and thus we have a Riemannian space V ", the
underlying manifold be the same as S " .  We call V " the Rieman-
nian space associating with S " .  Any tensor of V " is thought of as
one of S ", whose components are functions of variables (x ) alone,
and hence the tensor g,,(x ) as above defined is called the metric
tensor of S".

Let us find the relation between the coefficients of the linear
connection in  V", that is to say, the Christoffel's symbols 
constructed by the metric tensor g,„ and coefficients of the linear
connection in S " .  We obtain immediately by means of (2 •1) and
(2•3) x )  =  PuS?k, (x, x). Also, from (5-5), we get
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ag,,(x)  _(agi
( p(x, y ))+ (   agiu ,(x, y)  )
axk ( r , 4axk al° ( , , )

The right hand menber are written from (2.6) in the form

(x, x) (x, x) +g („) (x, x) l'ô;'())0 (x, x).
Hence we have as a consequence of (5.5)

gii(x) g  „( x )  Pi )̀ (x, x) + gia(x) PIZ(x, x).
X k

Since, in V" associating with Sn , the equation

gafJx( IX) 
— g ( x )  ill (X) +  ( x) ill (X) 9

is satisfied and both of P fk and { i
i
k } are symmetric with respect

to subscripts, then we conclude

(5.6) (x) = Pik(x, x) = P(IWk)(x, x)

Further, we shall express the curvature tensor o f V ' in terms of
the relative curvature tensors of S " .  For this purpose we observe
first

a {i lk } (x)
_ (   apA(x, y)± (   al7k (x, y) 

axi ax1 10-, 4 ay' 1(.,4
as a consequence of (5 •6 ). The last term is equal to S.,:t ( ,) (x, x)
from (3.4). Hence, from the above equation and P1fki =0, it follows
that the curvature tensor R i :k i o f V '

a {iik} 
R a  x i  — xk ( jk )  (al) ( j l) (ak )

is given by

(5.7) j. la (X) = S j.km (X, — .

We consider a connected, complete, analytic Riemannian space
V .  In this space, there is at least one geodesic arc joining any
pair of points, which is the shortest arc among arcs joining the
points ( ?) . Hence we can define a distance between the points as
the arc-length of the shortest arc, and so we can define the funda-
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mental function, which is analytic a s  a  consequence of analyticity
of the space. Therefore the Riemannian space has th e  space
with which the former associates.

Conversely, i f  w e consider a  space S ", then  a  Riemannian
space  V " associating with S "  m ay be defined a s  above shown.
Hence, any objects i n  V " a re  regarded as one in  S " .  Thus, we
may define in  S "  t h e  length  o f  a  c u rv e , th e  m agnitude of a
vector, the angle betw een tw o vectors at the sam e point and so
o n .  W e shall use these notions hereafter in  order to study S".

Finally, we give the following theorem which is easily shown
b y  (4 .4 ), (5 .5 ) a n d  (5.7)

Theorem. A  Riemannian space associating with a  space C" of
constant relativ e curv ature is o f  constant curvature, the curvature
be equal to the relative curvature of C".

§ 6. Parallel displacement.

We shall introduce the notion of parallel displacements in  our
space S " .  L et u (l) (x0)  b e  a  contravariant vector at a  fixed point
( )  in  S " , and  then w e construct covariant vector v (x )  at any
point (x ), which is conjugate to u  and so the components vj  o f  y
are given by

y1 (x) = it" (x n ) g,, ) (x, x0).
H ence, by m eans o f  th e  contravariant components (x )  of the
metric tensor at the point (x), the contravariant components y' (x)
of y are given by

(6.1) (x) u(') gi ( , ) (x. x0 ) go (x) .
In  the  first place, if w e take  (x) ( .x ), it follows that the vector y
coincides with the original vector u , making use  of (5 .5 ) .  Next,
if (x) is  an neighboring point of (x„) and w e put dx' — x „ 1, then
the  functions gi ( „) (x, x„) and gIi(x ) are  expanded in  the  forms

gm) (x, xo) =gi. (xo) +gk. (x0)1 1
1.?/ ‘f (x0) dx' + • • • ,

g".1 (x) =gal (x0 ) — g".1 (x„) j(x „) dx ' —  g' (x„) (x0) dx` +...,

and hence we see that du', the differential of the vector u, is given
b y  duj= —W{

a
i

j
}dx 5,  from  w hich  it fo llow s tha t th e  vector at
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(x „) is displaced in  parallel with itself from (x0)  to  ( x )  in the
sense of Levi-Civita. Hence we may say that the vector as defined
b y  (6.1) is obtained from the original vector u  by parallel dis-
placement from (x0 )  to (x).

The notion of parallel displacement is formally generalized to
tensors o f  any degree. A s a n  example, components Uji (x) of a
tensor (U )  obtained from a  tensor T61

)
) (x,) a t a  p o in t  (x9)  by

parallel displacement to a  p o in t (x ) a re  given by definition as
follows :

(x) —T c;,3)  gh(„) (x, x o )g" (x) e " )  (x, xo)gu (x).

If the original vector u (x9)  is non-zero and if the vector v(x)
as given by (6.1) vanishes, then the determinant g, 11, (x, x9) I must
be equal to zero and  hence (x )  is not included in  th e  proper
region o f  (x0). Therefore we may construct a  fie ld  o f parallel
vectors in  a  proper region by means of parallel displacement of
a  vector at a point fixed in the region. A s a  consequence of the
well-known theorem proved by H. Hopf ( 3 ) , we have the

Theorem . The Euler-Poincaré characteristic of  a closed, proper
space S " is equal to zero.

We shall examine a variation of length of a vector owing to a
parallel displacement. T h e  length I u I of the original vector u  is
Vg ( ,) ( ,,) 7,&  ,  where g („) ( h) is  the metric tensor at the original point
(x i) , and  length I vi of the vector v defined by (6.1) is given by

Iv12 =g,ie vi = gi ;  g „ t o  u ( c )  g d o

from which we have

(6.2) v12---gicognmg"u(') u(" ) .

Thus we may say that a  parallel displacement changes generally
a  length of a vector. The condition that the length of any vector
at (xi)  is invariant under parallel displacement to (x) is given by
the following equation :

(6.3) (h ) =  g io )  g

which is easily seen from (6.2).
Next, suppose that the vector v (x ) is obtained from u (x0)  by

parallel displacement from (x0) to  (x )  and then the vector ù (x0 )
is obtained from the above v(x) by parallel displacement from (x)
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to the original point (x0 ). The vector y is given by (6 .1 ) and it
is given by means o f (6 .1 ) as follows :

f i c.)_, u  (2) g k o  g g.(6) g V P )  ( I )

If the vector a coincides with u  and latter is any vector at (x ) ),
then the condition (6 .3 ) is necessary and sufficient, as will be
immediately shown. Therefore the condition that, if a vector y (x)
is parallel to u(x „), then the latter is conversely parallel to the
former, is given by (6.3).

Now, by the definition, when we construct a vector v (x ) at
a point (x )  parallel to a  vector u(x „) at a point (x0 ) ,  we have
first a vector y, conjugate to ut" and then have the contravariant
components vz o f y  by rising subscript. On the other hand, we
may proceed in the following manner. First we construct covariant
components of the given vector by lowing superscript and then
the covariant components by parallel displacement of the covariant
vector as above found. This process gives us the vector 3, its
covariant components be as follows :

(x)—u t„,g' ( 4 )  gb,=u ( ''
Since the covariant and contravariant components of the vector
should be thought of as different representations of the same object,
it seems to be natural that D as above given coincides with covariant
components o f v, namely v ,= e ) g, (,) . W e have immediately the
equation (6 •3 ) as the condition, under which the above require-
ment is satisfied.

Consequently, we know that the equation (6 .3 ) must be
required in  order that the notion of parallel displacement has
various desirable properties. The space Sa , such that (6-3) holds
throughout the space, will be called the space admitting a parallel-
ism . These spaces will be treated in detail in the Section 8.

§  7 .  Geodesics with the center.

Let C  be a  curve in S ", the equation be given by the form
x i=x i(s) ; where s  is arc-length. The unit vector e. tangent to C
is given by E'— dx 7ds. We take any point (x0 )  fixed in S " and
construct a vector A (x„) from ,•'; by parallel displacement from (x)
to (x „). Then the components of A are given by

(7.1) Ao (x0 ) *'"(x)g„(,) (x, x0)e)(1)(x„).
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When the original point (x) of s' displaces along the curve C, the
final point of the vector À will describe a curve 7 around (x„). If
we denote by (T. arc-length of 7, we obtain

(7 •2) do-2= g ( t o (x ) )(P ( ')

From  (7.1) w e have

(7.3)

where we put

(7.4)

—  ) 7 .  g a ( 6 )  g(h)( , )
d S

a d e ' -Pc ce Pb7(x, x9)=E•a;F, '' •ds

It follow s from  (7 .3 ) tha t the vector e ) =dP ) /ds coincides with
the vector obtained from )2- by parallel displacement to (x0 ). The
vector )2 is  c a lle d  the f irst norm al vector of the curve C  with
reference to the point (xo ). From  (7.2) and (7.3) it follows that
the length lid of p  is given by Idoldsl.

The first normal )2 of C  may be depend upon the choice of
a reference point (x0), and the condition that the vector be uniquely
determined is given by the equation

(7.5) S i . ' k v  dxi
) (x, xo )  — o ,

d s  d s

which is im m ediate result o f (7 .4 ). Further, the vector )2 may
not be orthogonal to  the tangent vector in general. W e shall show
in the  next section th a t the first normal vector is orthogonal to
the tangent vector in spaces admitting a parallelism.

A curve C, such that the curve 7 as above defined is reduced
to a point,i s called the geodesic with the center (x0 ) .  For such a curve,
each vector obtained from its tangent vector by parallel displace-
ment to the center (x0 )  is  constant, as the origin of tangent vector
displaces along C . F ro m  (7 .4 ) it fo llow s th a t the differential
equation

d2x1 d x i  d x *  (7 • 6) +  P ik  (x, xo) — 0
ds2 d s  d s

defines the geodisic w ith the cen te r  (x0 ). The equation (7 •6) is
analogous to the equation of geodesic in Riem annian space. It is
c lear tha t the condition for a geodesic, such that any point of S"
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m ay be its center, is given by (7-5) and  (7-6).
W e  c o n s id e r  a  sp a c e  C 4  of constan t re la tive  curvature.

According to (4 .4 ) a n d  (7-5) w e have easily p=0 , so  that the
relative curvature vanishes. Hence we have the

Theorem . T he f irst norm al vector o f  a curve in  a  space of
constant relative curvature is independent of  choice of the reference
point, if  and only if  the relative curvature vanishes.

Corollary. A  geodesic with the center i n  a  space of constant
relative curvature has any point Os its center, if  and  only  if  the
relative curvature vanishes.

5 8 . Some properties of S 4  admitting a  parallelism 1.

W e defined spaces admitting a  parallelism in the Section 5.
Such spaces may have some interesting geometrical properties, and
hence we consider such spaces in  this section. W e shall denote
hereafter by P" a  space admitting a  parallelism.

In  the first place, w e have from the definition (6-4)
P 1 . Each of the space P" is proper in  itself.
A s a  consequence of the theorem in  the Section 6, w e have
P 2 . The Euler-Poincaré characteristic of closed P " is equal

to  zero.
T he  d iscussions in  the  Section 6  g ive  th e  following three

properties of P".
P 3 . The Parallel displacements in  P" preserve a  length of a

vector.
P 4 . The Parallel displacements of vectors in  P " satisfy the

condition of reflexivity. That is to say, if a vector v(y ) is parallel
to  a  vector u(x ), then the latter is also parallel to the former.

P 5 . In  P", a  vector obtained from a  vector by parallel dis-
placement is uniquely determined by the latter. Strictly speaking,
th e  vector obtained from  th e  contravariant components of the
given vector u by the parallel displacement coincides with the vector
obtained from the covariant components of u by the parallel displace-
ment.

The equation (6.4) is written in  the convenient form
g i  a g.(.1) g  g  ( a ) ( J )  9

gm  ( a )  g m,== g a ( , )

(8-1)
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from which we see
g g g (,) ( i )  g5 0) g = go  ( j )

This result may be stated as follows :
P 6 . T h e  metric tensor at any poin t (x )  of P " is obtained

from the metric tensor at a point (x0)  by the parallel displacement
from ( . ; )  to (x).

Since P "  has th e  property P  3 ,  we can define an angle
between a  vector u at a point (x ) and a  vector v at a point (y).
W e suppose first that both o f the  vectors u  and v are of length
u n it. I f  th e  vector fi at ( y )  is obtained from u  by parallel dis-
placement from (x) to (y ), this vector a is of length unit as well.
The angle a between fi and v is given by

cos a = g , u ) tt' vu ) ,

which is easily verified by means o f  (7 .1 ) a n d  (8 .1 ). On the
other hand, if the vector D at (x) is obtained from v by the parallel
displacement from (y )  to (x), then the angle between u and i is
also given by th e  above equation, which is immediately seen.
Therefore we define the angle between unit vectors u  at (x ) and
v at (y) as the quantity a  given by the above equation. Thus the
angle between u (x) and v(y ), whose lengths are  not necessarily
unit, is defined as follows :

litl . lv cos (u v) = gi o ui v( ' ) .

The definition a n d  (8.1) gives us the following two properties of
P "

P 7 . If a vector v at a  po in t (y ) is parallel to a  vector u  at
a  po in t (x), then the angle between them is equal to zero or r.

P 8 . Let u  and v be two vectors at a point (x ), and fi and D be
the vectors obtained from u and v respectively by th e  parallel dis-
placement to a  p o in t  (y ) . Then the angle between fi a n d  is equal
to the angle between u and v.

From  (9.1 ) we have relative covariant differentiation with
respect to xk, gi„, kg" ( ')  = 0 , which gives

(8.2)

Thus we have
P 9 . The metric tensor in  P " is relative covariant constant.
From this it follows that

g i j  ; k = 0 •
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f 'gx ,  y ) }(.1•

Hence coefficients o f  th e  linear connection o f  P" a re  inde-
pendent of the second variables (y) and so we see by means of
the definition of the relative curvature tensor the following property :

P 10. The relative curvature tensor of P" is identically equal
to zero.

From (5.7) we see
P 11. T h e  Riemannian space associating with P" is locally

euclidean.
We consider the  inverse  of P  1 0 .  Let S "  be such that the

relative curvature tensors vanish. We call such a  space to be
relatively f lat. Coefficients / ,( x ,  y) of the linear connection of the
space is independent o f  ( y), and so they are  equal to the Christ-.
offers symbols 

y . 1 l e F „ ,  
as a consequence of (5.6), so that the metric

tensor is relative covariant constant. Conversely, if  th e  metric
tensor is relative covariant constant, then the  space is evidently
relatively flat. Thus we have an important class of relatively flat
spaces, and the class inclndes all of spaces admitting a  parallelism.
It is clear that, if  S ” is relatively fiat, the first normal vector of
a  curve is equal to th e  vector which is the first norm al in the
sense of the Riemannian geometry, and hence the vector is orthogonal
to the curve.

§ 9. Some properties of S " admitting a  parallelism II.

We shall see some properties of a  closed P" in  the large. L et
u (x) be a  field of differentiable vectors of length u n i t .  That there
exists such a field is already known, by means of P 2  in  the last
section. From the assumption we have g, j (x)u' (x)uJ (x) = 1. Rela-
tive covariant differentiation o f  this equation with respect to x'
gives

(9.1) g, i (x ) (x )u = 0 ,
in  consequence o f  (8 .2 ). This implies that the rank of the matrix
(tti, k (x ) )  is less than n  throughout th e  space. Further we take
a  u n it  vector y" )  a t  a  fixed poin t (x0)  and  then the angle a (x)
between u  and y is given by

cos a (x) = gi ( i ) (x, x„)21" u (x) .
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This i s  a  differentiable function o f (x )  defined throughout the
space. Hence the function has to receive its minimum and maximum
in P", since P" is closed. Therefore there exist at least two points
(x1,) ( p = 1 ,  2 )  where all of the partial derivatives of cos x(x) are
equal to zero. Thus w e have

(9.2) giv)(x, x,) , ( x )  =  0 (x=x„).

Now the equations (9.1) and (9.2) are expressible in the forms

k (x)u, (x) 0
(9.3) (x=x„),

ui : (x )y j  (x) =

where ui  (x) are the values of covariant components of u at the point
(x„) and y i (x„) are covariant components of the vector obtained
from y at the point (x,) by Parallel displacement to the point (;)•
As a consequence of (9.3), if u,(x„) and v(x) are linearly inde-
pendent, then the m atrix  (u3 (x „)) is  o f rank less than (n -1 ) .
If that is not the case, then we have easily u i (x„) = ±y i (x„), from
which it follows that uf(x„) is equal to a vector obtained from the
given y a t the point (x,) by the parallel displacement to the point
(x „) to within algebraic sign.

Gathering the foregoing results we have the
Theorem . L et u  be a field of differentiable vectors of length

unit in a closed P " .  Then the rank  of  the m atrix  (u.i,,(x )) is less
th an  n  throughout the  space. F u rth e r,  if  th e  rank  is equal to
( n - 1 )  throughout the space, then there ex ist at least tw o points,
where u  is equal to a  vector obtained from the given vector at the
point f ixed in P" by parallel displacement to within algebraic sign.

It is to be rem arked that the first part of the theorem is also
satisfied in  a  closed R iem annian space w hose Euler-Poincaré
characteristic vanishes. The proof is quite  sim ilar to  the above
shown.

10. Squares of spaces S".

W e shall return to  the consideration of a general space S".
A  product space ( S T  o f S ' by itself w ill be called the square
of S ", in which coordinates (z ) of a point are given  by  zi=x',
z n+'=y i, (i=1, •••, n). We consider a transformation of coordinates
only of the ty p e  (1 .1 ) in the square ( S T  and then tensors of
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(S 4 ) 2 can be defined. As an example, we denote by To ( * )  com-
ponents of a tensor of the second degree in (S ) 2 . These quanti-
ties are subjected under (1 -1 ) to the following transformations.

 
ax6

• a i ,  '

a Y "  a X
— T ( ,, ) ,, _ 9

T io —  Ta(b)  3x4  a Y b
'

T ay" ay'
u)(i) — Togo ay ay. ,  •

Now, we consider a covariant vector u, (x, y ) with respect to
(x )  in  S "  and then um =u“ga("g (,,) m  are covariant components of
a  vector conjugate to the given vector. If the space is P  ad-
mitting a  parallelism, then we have the given vector u , from
b y  the converse process. Therefore we have a vector (u„)
= (u,, um )  of the square (F".) 2 .

The above method applies equally well for any tensors of P .
Thus we consider a covariant tensor u i j  (x, y) of the second degree
with respect to (x ), from which we define ui ( j ) ,  um i and u m c p  as
follows :

u ig " ' ) g (ow , 110 .1= u . i eb ) g( 0 0

u c o w = ug '( '"  g ( ,„(3) g"(') g( )(.,) = u,„(3) g"(b) g y o u l  .

However, we see easily by means of (8 .1 )  u(a)jgb ( ")  gbi= uci . Hence
we obtain a covariant tensor (uŒ0 =  (14119 UR ) ) ,  14(, )j, U ( ,) (i ) ) . Each of

u,(,) ,  um ,  and um w  is called a factor of ( u ) ,  and the tensor
(14, ) th e  extension of each factor. It has above shown that the
extension is uniquely determined by each factor in the case of a
space admitting a parallelism.

From (8 -1 ) we obtain a tensor

(g 4 ) -.= (g,j , g, u ) , g (i).7 = g x , ) , g c o (3 ) ) ,

which is the extension of the relative metric tensor as well as the
metric tensor. This (go )  is called the fundamental tensor of (P") 2 .

Let (T )  be a tensor in sn , then we have its derived tensors
(T. ; 3)  and (T....., ( , ) )  with respect to (x ) and also to ( y ) .  Hence
it is clear that the quantities

(*) In the following it is understood that latin indices teak the values 1,—, 2n.
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T.' ; .*; j + T . . ;
 w g"a )  gbi  ,

a re  respectively components of tensors. These tensors (T.
an d  ( T.'.*.* / ( i ) )  shall be called the derived tensors of  com pounded
type with respect to (x )  and to ( y ) .  We see easily for the relative
metric tensor

gi(J)Ik — gi(j)I(k) =0  .

We consider a square ( S T  of S '  and a tensor T.r„ which is
the extension of the tensor Ti.1 in  S n , and whose factors are T f i ,

P f ) i  and T q n  . But we see immediately that the quantities
and (I) are not always an extension of one of its factors.

Because, for instance, the equation

Tf i ;  (k) = 7 ' f j;,( g a ( 6 ) g(„),k)

will not hold. However, in ( P " ) ,  we shall prove that the derived
tensor (T k  ,  T , ( j ) ) of compounded type is defined the extension
of one of its factors. In fact, factors of T:1, are given from T f j

by the following equations :
r w = 71 :„ A m( j ) ,

• =  TZI g . ( , ) g(b ) " )

Tcp( j) = g o o  g(C)( i) gh(d) g ( a ) ( i )

Since the equations

gi2Ik= ° gim k )=-- 0
are evidently statisfied, we have from (10.1)

TI. u ) I k =T fal l, gam  g (b) ( i )

and so o n . Hence P u m , P f ) i ,, and T " .j) Ik  are conjugate to T i/ k .

Next we have

r j j a  ga ( b)  g m ( k) = ; cogli "  g 1.)  g a ( b )  g(b ) (k)

from which we have as a consequence of (8.1)

= P i ;  w e " g,(0  + T f j ;  a g" ( b)  go)(k)

7'; j P . ; ;  ga ( b)  g o )(k) =  ',lick) •

Hence T i/ (,) is conjugate to P. m , from which Tf, i v ( ,) , P i.) ;/ (k) and
Tt.%) ,( ,) a re  also conjugate to T:,,. Consequently we have proved
the above statement.

(10.1)
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It is at once shown that, for P" , covariant differentiation of
compounded type are not depend upon the order of differentiations ;
while, for general space Sn, the circumstances are complicated,
because we have terms containing the derived tensor of the metric
tensor, which does not always vanish. But we obtain the follow-
ing terms :

B e t b )  (S40) g a l
— Si?,(,,) g ak )

BA(1) =  S 4(0 -  S1( ) g. ' " g(C )
( ' )  g 4 (b )  g d k

B  (k)(1) = - - e h )  (sil..(k)go)(,)- S , ( , )
 g (b )(k ))

and the similar terms Bv 3 ,  B( ,.1( ,)  an d  B( IIi.4) ( i ) . It is a  little
interesting for us that the curvature tensor of the Riemannian
space associating with S " coincides with the quantities x)
Big, k (1) (x, X ) ,  B ili (k)(t)(x, ••••
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