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Notes on meromorphic covariants
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The present paper is based essentially upon R. Nevanlinna's
theory [I] on Abelian integrals. In § 1 we shall establish the first
fundamental theorem of R. Nevanlinna (Theorem 2 ) for the mero-
morphic covariants of order n(n =0, +1, ±2,...) (cf. sec. 4 )  on
an arbitrary open Riemann surface and give some of its applica-
tions in  § 2, where Theorem 3  corresponds to  Shimizu-Ahlfors'
theorem for covariants.

§1

1. Let R be an arbitrary open Riemann surface. To make our
integration paths unchanged even when the exhausting domains
of R  vary, we shall introduce the following coordinates on R.
Let {R.} n=0, 1,•• be any exhaustion of R  where R . is the com-
pact domain whose boundary /'„ consists o f a  finite number of
analytic Jordan closed curves. We fix a point P o ERo and consider
the Green function g(P) = g(P, P„) of Ro with a pole Po and denote
b y  h (P) =h (P, Po) the conjugate harmonic function o f — g(P) .
Next we construct the harmonic function u (P ) on R„— (R„_,u I'„_,)
which vanishes on P„_, and =const., say log 0-„(> 0), on I'„ where
a- ,  is chosen such that the period of the conjugate function v.(P)
of u„ along b e c o m e s  2 r .  Now we define the function z (P)
=x(P ) + iy  (P ) as follows :

{ —  g(P) + ih (P ) for PE R ,,
(1) z (P) = „--1

u„(P) +iv.(P) +>:, log (T,

for PER.— R„_,(n =1, 2, • • •).
If we put
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CO

S =E  log cri

then REO, (parabolic type) if and only if there exists an exhaus-
tion such that S =0 0  (L. Sario [5], K. Noshiro [31).
2. Let 0  be a  non-negative covariant whose second derivatives
are all continuous except the isolated zero points P , and singular
points Q .  where, for corresponding local parameters (in general
w — u +iv stands for the local parameter),

Sb =lwi - 1 02 (k , 1 > 0 )
and

4 log 0 , d u d v  ( i=1 , 2)

remain finite in respective neighbourhood.
Let L. denote the level curves N z— x. Suppose now that there

exists neither zero nor pole of 0 on a curve L .  Then we have
by Gauss-Bonnet's theorem (c. f. R. Nevanlinna [1])

0 (z) d y(2) n,„ (x, 0) (x, co) =x(x) +  1   K„ (x) 4- 1
7r

a log
27r 2 Lza x

where ng,(x, 0) and n,(x , co) are respectively the number of zeros
and poles o f 0  (counted with multiplicities) on the domain G:
{— co 91z ,  x (x ) is the Euler characteristic of G , and K  (x)
=ç f  k ,,•0 2dxdy  where denotes Gauss' total curvature under„ (;
the metric chr=0idwl. Integrating (2) from x--- x„ to x , we have

(3) [22,,(x, 0) — 14(x, co)]dx=1. x(x)dx+ 
 2

1 K , ( x ) d x
r  . 0

+ 1l o g  0 (z)dy—  1 l o g  0 (z)dy.
27r L L., 2r .,.

3. Suppose that for the fixed local parameter at p,

g ( )  =lo
1:l

g  1 +ro+ u(c), )  I:I ( : )  ( M

where 0, (0) 0 ,  co and U  is single-valued, harmonic at := 0  and
U(0) =0. Taking x„ so small that L is contained in this neighbour-
hood of P0,  then we have
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(4) log 0 (z )dy= log (0 (:)
L,

+ log(1:1 -

d:and =1:l •Il +reg. function l at :=0. Since log1:I =x 0 +7„+00:()
dz

on the level curve - g ( :)  =xo , the integral (4) is equal to

(5) 2771_ log 0, (0) + (m +1)(r+x ))]+ (32 ,
(3,-->0 for x„->- co.

Let n ,(-  0 0 , a )  be the number of a-points ( a =0, co) of 0 at P,
and

N ,(x , a) ---J [n ( x ,  a) -n ,L (- C O , a) jelx +n,,(- 09, a)x  (a=0, co),

then from (3) and (5) we have easily for x„-> co the fundamental
THEOREM 1 F or non-negative covariant sb stated in  sec. 2

(6) N (x , 0 )  -N * (x, co) =Ç  Ix (x )+11dx + 1- f '  K (x )d x +
27.7 - -  •

+  1  lo g  0  (z )dy -r0(1+m  ) -
271.

where m = n ( - c o ,  0) -2 1 ,( -  C O , 0 0  )  and lirn log (0 ) j '" ) .
N. B. Since x (x) + 1= 0 for x  which is sufficiently near - co,

all the integrals in  (6 ) are  finite.
4. Now we consider a (meromorphic) differential of order n  on
R , by which we shall understand the invariant form

f  (w)dw'

where f (w )  is meromorphic with respect to a  lo ca l parameter w
and is transformed under the change of local parameters by the
rule f  (:) f  (w )( d

d :

w ) n . We call f  the (meromorphic) covariant of

order n .  The differentials of order n  are usually called a s  func-
tions, differentials, quadratic differentials, reciprocal differentials
and so on, according as n = 0, 1 , 2 , -1  and  so on. In the expan-
sion of f  with respect to a local parameter w

f  ( w ) o ivk  c  k  +  1
W  +  • ( c 0 ,

dz  )dh(:)= 27: log 0, (0) +

dC )dh(C)d-a„ a i —A) for X, - oo
dz
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we call ik I th e  order o f  zeros (if k > 0 ) a n d  poles ( if  k < 0) of
f (w) d ie  (or f (w )) respectively. This order is obviously invariant
under the change of local parameters.
5. I f  ço„ F2 ,••• a r e  meromorphic covariants (of order 1 )  and
ih= V>15,9,1' , we have

• E  5 0 ,i0 i1  - - F/S0 .112

(7) — K(x) = 1 2 )  dxdy—=-2A,(x) 0,

(x )=-14
;T

which vanish if and only if the space (F 1 , F2 ,•••) is one dimensional.
(R. Nevanlinna [1], [2]). Hence if A , O ,  7'4,(x) >_ 0(x). (cp. (12))
6. THEOREM 2. I f  so is a meromorphic covariant of order n(n=0,
+1, w e have

N(x, 0) — N,(x, Do) =  1  -j loglio (z)IdY  — cm — m•;-
2'r

(8)
+714 (X (x) +1) — (— 00 x  <S )

P ro o f  First we note that fo r any two covariants F„ 50, we
have always for any x(—co x <S )

(9) nq 11,p2 (x, 0) — n1 v z  (x , c o )  = n 1„ (x , 0) —  n Ipt (x, co)

—[n„(x, 0) — n,(x , co)].

Now for any given meromorphic covariant yo, of order n+1(n -> 1)
we take a meromorphic covariant F of order n  (the existence is well
known), then since Iço1/oI becomes a covariant (of order 1),
we have under th e  remark o f sec. 5  the formula (6 ) without a

te rm  K ,,(x )dx . Therefore, i f  we assume that the  fo rm ula  (8)
holds for n , we see that it is valid for (n + 1) under the considera-
tions o f  (9 ) and the relations

+ m„-- m„, c 1 1 11 +c 1 ,1 =C 191 .

Hence we can conclude, by induction that (8 ) holds for any posi-
tive integer n ,  since it is valid f o r  n = 1  (i.e. (6)). We can
analogously obtain the formula (8 ) for n=0, — 1, — 2, •••, q.e.d.

R em ark  1°. c l„, can be also expressed as
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cm + m,ro = lim [logo ( )  I + n4g(C) ] .

Hence ( 8 )  just accords with (1 ) ,  ( 1 ')  (p. 184) of Parreau [4],
when n = 0  (i.e. ç 9= function) and R„=-

-
R  0 0  < 0 ) .  If REO,

and R„ R  as in Parrau [4], then the Robin constant 7-0 in (8) would
tend to infinity and if R . is fixed, then the term x  in the remainder
increases to S(_< cc). ( 8 )  for n =1  and (6 ) are nothing else but
R. Nevanlinna's formulas ( 1 0 ')  and (10) in [1] resp., which only
differ from ours in the remainder and the choice o f coordinates.
2°. Starting from (2 )  we can also prove the following :  fo r a
meromorphic covariant so of order n  we have

1  (' a  loglio(z)1  d y(10) n,(x, 0) n,(x , 00) =nx (x ) +
271.

where it is supposed that io has no zero and pole on L .

§ 2.

As an application of above results, some relations on the
meromorphic covariants so„ io„• • (of order 1 )  will be obtained.
For simplicity we take po in this paragraph as different from any-
one of zeros and poles of io„ ço,,•••.
7. For 5), ( p  — g+ih), S02=s0 and 0 =  ip'12+ k012 on R o it
follows that from (7)

A .(x )= 1 /12 d x d y , T(x, 'p) ==_ A. (x) dx
.
1.
f  z li° 1 2 )2

CO X  KO)

and c.= 0, m.= — 1, N.(x, 00) =N,(x, 00) +x, 0 N ,  (x, 0) f  N,,, (x, 0)
=  (2{ (x) +1)dx, because p' dz is the Schottky differential on every
Gx , therefore (16) holds. Hence Theorem 1  reduces to

THEOREM 3. For meromorphic covariant ço of order 1
1(11) iogv i+Iso(z )rdy +N ,(x ,

2 r  1",,

=T (x , so) + (x)f  (Z(x) +1) dx—
w here — 1 s (x) 00 x  <O.
s= —1 if 5,9 0  at zero points of p ', and s= 0  if the function 99/P'
is regular at the same points. (11) corresponds to Shimizu-Ahlfors'
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theorem in the theory o f meromorphic functions in the circle
(x (x ) + 1 = 0 ). To obtain the corresponding theorem for a mero-
morphic function f ,  it suffices to take the covariant 0= V1#1 2 +140 12

where 50—fp'. Then we see that 1■14,(x, 0) (x, co)=1\r„,(x, 0)
—N1  (x, co) —x, m,v = —1 and =log V1 +1 f ( P o )12. Hence we can
analogously obtain the

THEOREM 3'. For the meromorphic function f  on R

1 log Vl +If (z)1 2 dy+ N f (X , C O )
272- Lx

= T (x , f )+  log A/1 +1f(P0)12 (— co x KO). (cf. [4] p. 185 (3)).

8. B y  ( 2 ) ,  ( 6 ) ,  ( 8 )  and (10 ) w e  have f o r quadratic covariant
F = E (c i ço; ) 2 (c,:const.) and the covariant 0= VE1 co, 2

(12) N,(x, N,(x, {Q50,}) +
1 j

. log  çb' ( 2 )   dy-2T, v (x) + C,
27r L., I50 (z)

(13) n, (x, {0 5 0 ;})= -
2

A .(x ) + 1 - - a log 
 iS t)(z) I  dy,

i t2 7 r  i„ax (z)

where C= log O a n d  n,(x, {c, soi }) -=[n,(x, 0) —211„,(x, 0)]
(P.)1

+1_2n,Jx, co)—n,(x, 00) -1 0  in  which the first term  gives the
number of zeros o f 50 which exceed those o f 462 and the second
one the number of poles o f 02 w hich exceed those o f 50, and
N i (x, 1(.69,1) —  f n,(x, {c,F,})dx O.
9. Now we take a compact subregion W, e.g. W=R, and suppose
that for so„ ço,,••• either the condition

(14) IF (z ) I  dy or log  Vi 2 ( 2 )   dy - 271-C
Lo ax (Z) Le IF (z)1 —

is satisfied. From (12) or (13) it is seen that under the condition
(14) (50„ 50,, • • •) is  one dimensional (50,—const. 50,; i = 2, 3 ,— ) if  and
only  if  n, (0, ) =0 f o r c„ c,„ ••• such that 50* 0 .  For instance,
let be the space of differentials on W(real Schottky differentials
on W ) and F,dz„ 502c/z,• • • EZ , c„ c2,• • • be real constants, then both
conditions (14) are certainly fulfilled. Moreover by (10) (cf. (16))
n9(0, 0) — n9 (0 , co) —2X0(X0; Euler characteristic of W ), hence in
the case of  soi d zE (i= 1 , 2,• • •) (Sci, 40 2,• • •) i s  one dimensional if  and
only  if  for real constants c  4  0  such that 50  J  0,
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(15) -n tp  (0 , C °) =  X 0

where n (0, 0) is just the number of common zeros of 9 0 2 , •  on
W and n,, (0, co) the number of all polcs of  them . We may here
choose constants c„ c2 ,••• such that io has the same multiplicities
at the zero points and poles as VP does. That is, let P1

- 1P1
- 2.-Pi'l

0) be the divisor of 02 and ri, =a ,,  + — 1  pi , be the mi th
coefficient in the expansion of 991 (i=1,•••, p) with respect to the
fixed local parameter at each P. It is sufficient to take as
(c1

1 , c2
2 ,• • .) an arbitrary point of the first quadrant Q in the space

(x„ x p) with the exception of at most 1 spaces of dimension
(_<p-1) each o f which appears as the intersection of (hyper)
plane .x,((4,— it )  =0  and i x 1a„t91i = 0 .  Hence the condition (15)i=1
can be stated also such that for any point (c1=, 0, •.) belonging
to Q, o has the same divisor as 02.
10. Finally, we see by (10) immediately that if F dz is a differential
of order n  which is real or imaginary on every contour of L.0, then

(16) n,(0, 0) —n, (0, co) =nx„

where the numbers in  the  left hand side should be counted with
half its multiplicities i f  zeros or poles lie  o n  L .  Especially for
p =g - ih , ip'dzE and p ' has a simple pole at p„ hence the number
of  m ultiple points of  Green niv eau curves on W  is  (2p+q-1),
where I , i s  the genus and q  the number of  contours of  W. This
relation is reduced to a familiar one if W is a plane domain.
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