MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A
Vol. XXX, Mathematics No. 3, 1957.
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The present paper is based essentially upon R. Nevanlinna’s
theory [1] on Abelian integrals. In §1 we shall establish the first
fundamental theorem of R. Nevanlinna (Theorem 2) for the mero-
morphic covariants of order »(n=0, +1, +2,---) (cf. sec. 4) on
an arbitrary open Riemann surface and give some of its applica-
tions in §2, where Theorem 3 corresponds to Shimizu-Ahlfors’
theorem for covariants.

§1

1. Let R be an arbitrary open Riemann surface. To make our
integration paths unchanged even when the exhausting domains
of R vary, we shall introduce the following coordinates on R.
Let {R,} =0, 1,--- be any exhaustion of R where R, is the com-
pact domain whose boundary /’, consists of a finite number of
analytic Jordan closed curves. We fix a point P,eR, and consider
the Green function g(P)=g(P, P,) of R, with a pole P, and denote
by h(P)=h(P, P,) the conjugate harmonic function of —g(P).
Next we construct the harmonic function #,(P) on R,— (R,._,ul’,_)
which vanishes on /I’,_; and =const., say log o,(>0), on I’, where
o, is chosen such that the period of the conjugate function v, (P)
of u, along I',_, becomes 27. Now we define the function z(P)
=x(P) +iy(P) as follows:

—g(P)+ih(P) for PeR,,
1) z(P) :{ . =1
u, (P) +iv,(P) +§ log o;,

for PeR,—R,_ (n=1, 2,--).
If we put
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S=>log o,

i=1

then ReQ, (parabolic type) if and only if there exists an exhaus-
tion such that S=o (L. Sario |5], K. Noshiro [3]).

2. Let ¢ be a non-negative covariant whose second derivatives
are all continuous except the isolated zero points P, and singular
points @, where, for corresponding local parameters (in general
w=u-+1v stands for the local parameter),

sl’zlwtkshn d=w|'¢, (k, 1>0)
and

” dlog ¢;dudv (1=1, 2)

remain finite in respective neighbourhood.

- Let L, denote the level curves Rz=x. Suppose now that there
exists neither zero nor pole of ¢ on a curve L,. Then we have
by Gauss-Bonnet’s theorem (c. f. R. Nevanlinna [1])

(@) ny(x, 0) —n, (%, )= ,((x)+——K () + zlﬂ 3 10§s"<2>d

where »,(x, 0) and =, (x, «) are respectively the number of zeros
and poles of ¢ (counted with multiplicities) on the domain G.:
{— o< Rz<x}, y(x) is the Euler characteristic of G,, and K, (x)
=f ((;zk._b-gbfdxdy where k, denotes Gauss’ total curvature under
the metric do=¢'|dw|. Integrating (2) from x=ux, to x, we have

@ | T 0) =y (2, o) Jda= [x(x)dx+ 1 J K, ®)dx

A _1 '
o), g @dy— L‘:og 4 @ady.

3. Suppose that for the fixed local parameter ¢=¢+iy at P,

g =10g—ﬂ +r+UQ), ) =¢]"d©) (m 0)
where ¢,(0) %0, « and U is single-valued, harmonic at #=0 and
U(0) =0. Taking x, so small that L, is contained in this neighbour-
hood of P, then we have
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4) j og ¢@dy= | logy :)}j—jf')dh(o:zr log ¢, (0) +

%o =9(%)=zq

+ j log (|| "'[‘“Pdh(c)ﬂ,,o 50 for x> — oo

—y=z,

d-_ =¢|-|1+reg. functlonl at £=0. Since log|z| =x,+7,+0(z])

on the level curve —g(?) =x, the integral (4) is equal to
5) 2z log ¢ (0) + (m+1) (,+x,) ]+4,,
0,>0 for x—>—c0
Let #,(—, @) be the number of a-points (¢=0, ) of ¢ at P,
and

N, (x, a) =§i[nw (x, @) —n,(—o0, @) |dx+n,(—c0, a)x (@=0, ),

then from (3) and (5) we have easily for x,—>— c the fundamental
THEOREM 1 For non-negative covariant ' stated in sec. 2

6) N, 0)—N, oo)_f [y () +1]dx+- g‘j K, () dx +

+—Lj log ¢ (2)dy—7, (1 +my) —x—c,,
27 Ly

where m,=n,(— o, 0) —n,(—c0, ©) and ¢, = hm log (¢ (O |2]79).
N. B. Since y(x) +1=0 for x which is sufﬁc1ent1y near — co,

all the integrals in (6) are finite.

4. Now we consider a (meromorphic) differential of order » on

R, by which we shall understand the invariant form

f(w) dw"
where f(w) is meromorphic with respect to a local parameter w
and is transformed under the change of local parameters by the
rule f (&) =f(w)(‘2—zf>. We call f the (meromorphic) covariant of
order n. The dif‘férentials of order » are usually called as func-
tions, differentials, quadratic differentials, reciprocal differentials

and so on, according as #=0, 1, 2, —1 and so on. In the expan-
sion of f with respect to a local parameter w

S W) =caw*+ew ™+ (¢, x0),
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we call |k| the order of zeros (if 2>0) and poles (if k<0) of
S (w)dw" (or f(w)) respectively. This order is obviously invariant
under the change of local parameters.

5 If ¢, ¢, - are meromorphic covariants (of order 1) and
¢=v>]l¢:|*, we have

2

. j 721 le:0/ — o/ ¢l

7 K@= 7 axdy=24, x>0,
(7) @ =) e =240 =
T, (%) =+ J A, (%) dx
TJ—o

which vanish if and only if the space (¢,, ¢,,---) is one dimensional.
(R. Nevanlinna [1], [2]). Hence if A,%0, T, (x) =>0(x). (cp.(12))
6. THEOREM 2. If ¢ is a meromorphic covariant of order n(n=0,
+1, +2,--+), we have

N, (@ 0) =N, (5, ) == logle @) |dy—cip—my 7y
2m L,

®) ,
+al| @@ +Ddr—x-1] (-0 <2<8).

Proof. First we note that for any two covariants ¢, ¢, we
have always for any x(—o S<x<S)

(9) nfil/?! (x’ 0) Ny e (x) OO) =Ny, (xa O) — Ny, (x, OO)
—[n?z(x’ 0) _n’r'z(xy G))J. :

Now for any given meromorphic covariant ¢, of order #+1(%>1)
we take a meromorphic covariant ¢ of order # (the existence is well
known), then since ¢'=|¢,/¢| becomes a covariant (of order 1),
we have under the remark of sec. 5 the formula (6) without a

term rK+ (x)dx. Therefore, if we assume that the formula (8)
holds for #, we see that it is valid for (r+1) under the considera-
tions of (9) and the relations

Moo, T My, =My,  Cipppy €5y =Clg -

Hence we can conclude, by induction that (8) holds for any posi-

tive integer =, since it is valid for »=1 (i.e. (6)). We can

analogously obtain the formula (8) for »=0, —1, —2,---, q.ed.
Remark 1°. ¢, can be also expressed as
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Cio + 4o =lim [logle () [ +m,g(O) ] -

Hence (8) just accords with (1), (1) (p. 184) of Parreau [4],
when =0 (i.e. ¢=function) and Ry=R (—o0 <x<0). If ReQ¢
and R,—R as in Parrau [4], then the Robin constant 7, in (8) would
tend to infinity and if R, is fixed, then the term x in the remainder
increases to S(< ). (8) for =1 and (6) are nothing else but
R. Nevanlinna’s formulas (10"’) and (10) in [1] resp., which only
differ from ours in the remainder and the choice of coordinates.
2°, Starting from (2) we can also prove the following: for a
meromorphic covariant ¢ of order » we have

A0 (5 0) =, (5, @) =my @)+, | 218Dy
2 )y, ox

where it is supposed that ¢ has no zero and pole on L,.

§2.

As an application of above results, some relations on the
meromorphic covariants ¢,, ¢,,--- (of order 1) will be obtained.
For simplicity we take P, in this paragraph as different from any-
one of zeros and poles of ¢,, ¢.,--.

7. For ¢,=p' (p=—g+ih), ¢,=¢ and ¢=V|p'|°’+]|¢|* on R, it
follows that from (7)

A= s, T o ={ A,
(—0=x<0)

and ¢,=0, m,=—1, N, (x, ©) =N, (x, ©) +x, 0= N, (%, 0) < N,, (x, 0)

:j gjx (x) +1)dx, because p’dz is the Schottky differential on every

G., therefore (16) holds. Hence Theorem 1 reduces to
THEOREM 3. For meromorphic covariant ¢ of order 1

an lj logV1+]¢ @ [Fdy+N, (x, )
2m Ly
| =T ) +5s@ | G+ D
where —1<s(x) <0, —oo <x<0.

s=—1 if ¢5#0 at zero points of p’, and s=0 if the function ¢/p’
is regular at the same points. (11) corresponds to Shimizu-Ahlfors’
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theorem in the theory of meromorphic functions in the circle
(x(x) +1=0). To obtain the corresponding theorem for a mero-
morphic function f, it suffices to take the covariant ¢= v'|p/|*+|¢|*
where ¢=fp’. Then we see that N,(x, 0) —N,(x, ) =N, (x, 0)
—N, (&, ©) —x, my=—1 and c¢,=logv'1+[f(P,)[*. Hence we can
analogously obtain the

THEOREM 3'. For the meromorphic function f on R

ZLH j ,los vIF[F@ Fdy+N,(x, ©)

=T, ) +logVI+|f(P)|? (—0<x<0). (cf. [4] p. 185 (3)).

8. By (2), (6), (8 and (10) we have jfor quadratic covariant
p=>1(ci9;)* (c::const.) and the covariant ¢=v"3)|c.o:l*

12) N {eed) <N, {c,so,-}>+21—j log-¥"®_gy—oT, (%) +C,

o, e@)|
2 le@ |
13) m lep) =2 A0+, [ I log % Elay
where C-log’l (P =0 and n,(x, {ce}) =[n,(x, 0) —2n,(x, 0)]

lp (b | —
+[2n, (x, 00)—n»(x ©)]=0 in which the first term gives the

number of zeros of ¢ which exceed those of ¢* and the second
one the number of poles of ¢* which exceed those of ¢, and

N, (x, {c:e:}) =£n, (%, {cip:})dx=0.

9. Now we take a compact subregion W, e.g. W=R, and suppose
that for ¢,, ¢.,--- either the condition

(19) j log £ 2% 1 IS"(z)la’y>0 or j log—"—%2 ¢ (2) dy< 2zC

10 0% ¢*(2) o |e@)]
is satisfied. From (12) or (13) it is seen that under the condition
(14) (@), @s,---) is one dimensional (¢;=comst. ¢,; i=2, 3,--+) if and
only if n,(0, {c:¢:}) =0 for c, c,,--- such that ¢==0. For instance,
let & be the space of differentials on W (real Schottky differentials
on W) and ¢dz, ¢.dz---€3, c,c, - be real constants, then both
conditions (14) are certainly fulfilled. Moreover by (10) (cf. (16))
1, (0, 0) —n,(0, ) =2y,(y,; Euler characteristic of W), hence in
the case of ¢, dzeS (=1, 2,--) (¢), ¢s,++) is one dimensional if and
only if for real constants c;#0 such that ¢==0,
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(15) 1y (0, 0) =2, (0, ) =y,

where ny (0, 0) is just the number of common zeros of ¢, ¢.,-- on
W and n,(0, ) the number of all polcs of them. We may here
choose constants ¢,, ¢,--- such that ¢ has the same multiplicities
at the zero points and poles as ¢* does. That is, let PPy P
(m;=0) be the divisor of ¢* and 7;,=a,, + v —1p8; be the myth
coefficient in the expansion of ¢;(i=1,---, p) with respect to the
fixed local parameter at each P, It is sufficient to take as
(c? c}+-) an arbitrary point of the first quadrant @ in the space
(%, x,) with the exception of at most / spaces of dimension
=Ep— 1) each of which appears as the intersection of (hyper)

plane z.x (a@;;—f3;) =0 and Zx, .3:;=0. Hence the condition (15)

can be stated also such that for any point (c¢? c¢*---) belonging
to @, ¢ has the same divisor as ¢°.

10. Finally, we see by (10) immediately that if ¢ dz is a differential
of order n which is real or imaginary on every contour of L, then

(16) 7,0, 0) —#,(0, ) =ny,

where the numbers in the left hand side should be counted with
half its multiplicities if zeros or poles lie on L, Especially for
p=g—ih, ip'dzeS and p’ has a simple pole at P,, hence the number
of multiple points of Green niveau curves on W is (2p+q—1),
where p is the genus and q the number of contours of W. This
relation is reduced to a familiar one if W is a plane domain.
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