Notes on meromorphic covariants

By
Yukio Kusunoki

(Received June 1, 1957)

The present paper is based essentially upon R. Nevanlinna's theory [1] on Abelian integrals. In § 1 we shall establish the first fundamental theorem of R. Nevanlinna (Theorem 2) for the meromorphic covariants of order $n(n=0, \pm 1, \pm 2, \cdots$) (cf. sec. 4) on an arbitrary open Riemann surface and give some of its applications in §2, where Theorem 3 corresponds to Shimizu-Ahlfors' theorem for covariants.

§ 1

1. Let R be an arbitrary open Riemann surface. To make our integration paths unchanged even when the exhausting domains of R vary, we shall introduce the following coordinates on R. Let $\left\{R_{n}\right\} \quad n=0,1, \cdots$ be any exhaustion of R where R_{n} is the compact domain whose boundary Γ_{n} consists of a finite number of analytic Jordan closed curves. We fix a point $P_{0} \in R_{0}$ and consider the Green function $g(P)=g\left(P, P_{0}\right)$ of R_{0} with a pole P_{0} and denote by $h(P)=h\left(P, P_{0}\right)$ the conjugate harmonic function of $-g(P)$. Next we construct the harmonic function $u_{n}(P)$ on $R_{n}-\left(R_{n-1} \cup I_{n-1}^{\prime}\right)$ which vanishes on I_{n-1}^{\prime} and $=$ const., say $\log \sigma_{n}(>0)$, on I_{n}^{\prime} where σ_{n} is chosen such that the period of the conjugate function $v_{n}(P)$ of u_{n} along Γ_{n-1} becomes 2π. Now we define the function $z(P)$ $=x(P)+i y(P)$ as follows :
(1) $z(P)=\left\{\begin{array}{l}-g(P)+i h(P) \text { for } P \in R_{0}, \\ u_{n}(P)+i v_{n}(P)+\sum_{i=1}^{n-1} \log \sigma_{i},\end{array}\right.$
for $P \in R_{n}-R_{n-1}(n=1,2, \cdots)$.
If we put

$$
S=\sum_{i=1}^{\infty} \log \sigma_{i}
$$

then $R \in \mathrm{O}_{G}$ (parabolic type) if and only if there exists an exhaustion such that $S=\infty$ (L. Sario [5], K. Noshiro [3]).
2. Let ψ be a non-negative covariant whose second derivatives are all continuous except the isolated zero points P_{\imath} and singular points Q_{μ} where, for corresponding local parameters (in general $w=u+i v$ stands for the local parameter),

$$
\psi^{\prime}=|w|^{k} \xi_{1}^{\prime}, \quad \psi^{\prime}=|w|^{-1} \xi^{\prime}, \quad(k, l>0)
$$

and

$$
\iint \Delta \log \psi_{i}^{\prime} d u d v \quad(i=1,2)
$$

remain finite in respective neighbourhood.
Let L_{x} denote the level curves $\Re z=x$. Suppose now that there exists neither zero nor pole of ψ on a curve L_{r}. Then we have by Gauss-Bonnet's theorem (c. f. R. Nevanlinna [1])
(2) $n_{\psi}(x, 0)-n_{\psi}(x, \infty)=\chi(x)+\frac{1}{2 \pi} K_{\psi}(x)+\frac{1}{2 \pi} \int_{L_{x}} \frac{\partial \log \psi^{\prime}(z)}{\partial x} d y$
where $n_{\psi}(x, 0)$ and $n_{\psi}(x, \infty)$ are respectively the number of zeros and poles of ψ^{\prime} (counted with multiplicities) on the domain G_{x} : $\{-\infty \leqq \Re z<x\}, \chi(x)$ is the Euler characteristic of G_{x}, and $K_{\psi}(x)$ $=\iint_{G_{x}} k_{\psi} \cdot \psi^{2} d x d y$ where k_{ψ} denotes Gauss' total curvature under the metric $d \sigma=\zeta^{\prime}|d w|$. Integrating (2) from $x=x_{0}$ to x, we have
(3) $\int_{x_{0}}^{x}\left[n_{\mu}(x, 0)-n_{\Psi}(x, \infty)\right] d x=\int_{x_{0}}^{x} \chi(x) d x+\frac{1}{2 \pi} \int_{x_{0}}^{x} K_{\varphi}(x) d x$

$$
+\frac{1}{2 \pi} \int_{L_{x}} \log \psi^{\prime}(z) d y-\frac{1}{2 \pi} \int_{\Sigma_{x_{0}}} \log \psi^{\prime}(z) d y
$$

3. Suppose that for the fixed local parameter $\zeta=\xi+i \gamma$ at P_{0}

$$
g(\zeta)=\log \frac{1}{|\zeta|}+\gamma_{0}+U(\zeta), \quad \xi^{\prime}(\zeta)=|\zeta|^{\prime \prime \prime} \xi_{1}^{\prime}(\zeta) \quad(m \gtreqless 0)
$$

where $\psi_{1}^{\prime}(0) \neq 0, \infty$ and U is single-valued, harmonic at $\zeta=0$ and $U(0)=0$. Taking x_{0} so small that $L_{x_{0}}$ is contained in this neighbourhood of P_{0}, then we have
(4) $\int_{L_{x_{0}}} \log \psi^{\prime}(z) d y=\int_{-g(\zeta)=x_{0}} \log \left(\psi(\zeta)\left|\frac{d \zeta}{d z}\right|\right) d h(\zeta)=2 \pi \log \psi_{1}^{\prime}(0)+$

$$
+\int_{-j=x_{0}} \log \left(|\zeta|^{m}\left|\frac{d \zeta}{d z}\right|\right) d h(\zeta)+\grave{o}_{1}, \delta_{1} \rightarrow 0 \text { for } x_{0} \rightarrow-\infty
$$

and $\left.\left|\frac{d \xi}{d z}\right|=|\xi| \cdot \right\rvert\, 1+$ reg. function \mid at $\xi=0$. Since $\log |\xi|=x_{0}+\tilde{r}_{0}+\mathrm{O}(|\xi|)$ on the level curve $-g(\zeta)=x_{0}$, the integral (4) is equal to
(5)

$$
\begin{gathered}
2 \pi\left[\log \varphi_{1}(0)+(m+1)\left(\check{\zeta}_{0}+x_{10}\right)\right]+\grave{o}_{2}, \\
\delta_{2} \rightarrow 0 \text { for } x_{0} \rightarrow-\infty .
\end{gathered}
$$

Let $n_{4}(-\infty, a)$ be the number of a-points $(a=0, \infty)$ of ψ^{\prime} at P_{0} and

$$
N_{\psi}(x, a)=\int_{-\infty}^{x}\left[n_{\psi}(x, a)-n_{\psi}(-\infty, a)\right] d x+n_{\psi}(-\infty, a) x \quad(a=0, \infty),
$$

then from (3) and (5) we have easily for $x_{0} \rightarrow-\infty$ the fundamental
Theorem 1 For non-negative covariant ψ stated in sec. 2

$$
\begin{align*}
N_{\Psi}(x, 0)- & N_{\psi}(x, \infty)=\int_{-\infty}^{x}[\chi(x)+1] d x+\frac{1}{2 \pi} \int_{-\infty}^{x} K_{\psi}(x) d x+ \tag{6}\\
& +\frac{1}{2 \pi} \int_{L_{x}} \log \varphi^{\prime}(z) d y-\gamma_{\varphi}\left(1+m_{\psi}\right)-x-c_{\psi},
\end{align*}
$$

where $m_{\psi}=n_{\psi}(-\infty, 0)-n_{\psi}(-\infty, \infty)$ and $c_{\varphi}=\lim _{\zeta \rightarrow 0} \log \left(\psi(\zeta)|\zeta|^{-m} \psi\right)$.
N . B. Since $\chi(x)+1=0$ for x which is sufficiently near $-\infty$, all the integrals in (6) are finite.
4. Now we consider a (meromorphic) differential of order n on R, by which we shall understand the invariant form

$$
f(w) d w^{n}
$$

where $f(w)$ is meromorphic with respect to a local parameter w and is transformed under the change of local parameters by the rule $f(\zeta)=f(w)\left(\frac{d w}{d \zeta}\right)^{n}$. We call f the (meromorphic) covariant of order n. The differentials of order n are usually called as functions, differentials, quadratic differentials, reciprocal differentials and so on, according as $n=0,1,2,-1$ and so on. In the expansion of f with respect to a local parameter w

$$
f(w)=c_{0} w^{k}+c_{1} w^{k+1}+\cdots \quad\left(c_{0} \geqslant 0\right)
$$

we call $|k|$ the order of zeros (if $k>0$) and poles (if $k<0$) of $f(w) d w^{n}$ (or $f(w)$) respectively. This order is obviously invariant under the change of local parameters.
5. If $\varphi_{1}, \varphi_{2}, \cdots$ are meromorphic covariants (of order 1) and $\xi^{\prime}=\sqrt{ } \sum_{i}\left|\varphi_{i}\right|^{2}$, we have

$$
\begin{gather*}
-K_{\psi}(x)=\iint_{G_{x}} \frac{\sum_{i, j}\left|\varphi_{i} \varphi_{j}^{\prime}-\varphi_{i}^{\prime} \varphi_{j}\right|^{2}}{\left(\sum\left|\varphi_{i}\right|^{2}\right)^{2}} d x d y \equiv 2 A_{\psi!}(x) \geqq 0, \tag{7}\\
T_{\psi}(x)=\frac{1}{\pi} \int_{-\infty}^{r} A_{\psi}(x) d x
\end{gather*}
$$

which vanish if and only if the space $\left(\varphi_{1}, \varphi_{2}, \cdots\right)$ is one dimensional. (R. Nevanlinna [1], [2]). Hence if $A_{\varphi} \neq 0, T_{\varphi}(x) \geqq \mathrm{O}(x)$. (cp. (12)) 6. THEOREM 2. If φ is a meromorphic covariant of order $n(n=0$, $\pm 1, \pm 2, \cdots)$, we have

$$
\begin{align*}
& N_{\varphi}(x, 0)-N_{\varphi}(x, \infty)=\frac{1}{2 \pi} \int_{L_{x}} \log |\varphi(z)| d y-c_{|\varphi|}-m_{\varphi} \cdot r_{0} \\
&+n\left[\int_{-\infty}^{x}(\chi(x)+1) d x-x-\gamma_{0}\right] \quad(-\infty \leqq x<S) . \tag{8}
\end{align*}
$$

Proof. First we note that for any two covariants φ_{1}, φ_{2} we have always for any $x(-\infty \leqq x<S)$

$$
\begin{align*}
n_{\varphi_{1} / \rho_{2}}(x, 0)-n_{\varphi_{1} / \varphi_{2}}(x, \infty)= & n_{\varphi_{1}}(x, 0)-n_{\varphi_{1}}(x, \infty) \tag{9}\\
& -\left[n_{\varphi_{2}}(x, 0)-n_{\gamma_{2}}(x, \infty)\right] .
\end{align*}
$$

Now for any given meromorphic covariant φ_{1} of order $n+1(n>1)$ we take a meromorphic covariant φ of order n (the existence is well known), then since $\psi=\left|\varphi_{1} / \varphi\right|$ becomes a covariant (of order 1), we have under the remark of sec. 5 the formula (6) without a term $\int_{-\infty}^{x} K_{4}(x) d x$. Therefore, if we assume that the formula (8) holds for n, we see that it is valid for $(n+1)$ under the considerations of (9) and the relations

$$
m_{\varphi / \varphi 1}+m_{\varphi,}=m_{\varphi}, \quad c_{|\varphi / \varphi| \mid}+c_{|\vartheta,|}=c_{|\varphi|} .
$$

Hence we can conclude, by induction that (8) holds for any positive integer n, since it is valid for $n=1$ (i.e. (6)). We can analogously obtain the formula (8) for $n=0,-1,-2, \cdots$, q.e.d.

Remark 1°. $c_{|\varphi|}$ can be also expressed as

$$
c_{|\varphi|}+m_{\varphi \gamma_{0}}=\lim _{\zeta \rightarrow 0}\left[\log |\varphi(\zeta)|+m_{\varphi} g(\zeta)\right] .
$$

Hence (8) just accords with (1), (1') (p. 184) of Parreau [4], when $n=0$ (i.e. $\varphi=$ function) and $R_{0}=R(-\infty \leqq x<0)$. If $R \in \mathrm{O}_{G}$ and $R_{0} \rightarrow R$ as in Parrau [4], then the Robin constant γ_{0} in (8) would tend to infinity and if R_{0} is fixed, then the term x in the remainder increases to $S(\leqq \infty)$. (8) for $n=1$ and (6) are nothing else but R. Nevanlinna's formulas ($10^{\prime \prime \prime}$) and (10) in [1] resp., which only differ from ours in the remainder and the choice of coordinates. 2°. Starting from (2) we can also prove the following: for a meromorphic covariant φ of order n we have

$$
\begin{equation*}
n_{\varphi}(x, 0)-n_{\varphi}(x, \infty)=n \chi(x)+\frac{1}{2 \pi} \int_{L_{x}} \frac{\partial \log |\varphi(z)|}{\partial x} d y \tag{10}
\end{equation*}
$$

where it is supposed that φ has no zero and pole on L_{x}.

§ 2.

As an application of above results, some relations on the meromorphic covariants $\varphi_{1}, \varphi_{2}, \cdots$ (of order 1) will be obtained. For simplicity we take P_{0} in this paragraph as different from anyone of zeros and poles of $\varphi_{1}, \varphi_{2}, \cdots$.
7. For $\varphi_{1}=p^{\prime}(p=-g+i h), \varphi_{2}=\varphi$ and $\psi=\sqrt{\left|p^{\prime}\right|^{2}+|\varphi|^{2}}$ on R_{0} it follows that from (7)

$$
\begin{array}{r}
A_{\psi}(x)=\iint_{G_{x}} \frac{\left|\varphi^{\prime}\right|^{2}}{\left(1+|\varphi|^{2}\right)^{2}} d x d y, \quad T(x, \varphi) \equiv \\
\frac{1}{\pi} \int_{-\infty}^{x} A_{\psi}(x) d x \\
(-\infty \leqq x<0)
\end{array}
$$

and $c_{\psi}=0, m_{\varphi}=-1, N_{\psi}(x, \infty)=N_{\varphi}(x, \infty)+x, 0 \leqq N_{\varphi}(x, 0) \leqq N_{\mu^{\prime}}(x, 0)$ $=\int_{-\infty}^{n}(\chi(x)+1) d x$, because $p^{\prime} d z$ is the Schottky differential on every G_{x}, therefore (16) holds. Hence Theorem 1 reduces to

Theorem 3. For meromorphic covariant φ of order 1

$$
\begin{array}{rl}
\frac{1}{2 \pi} \int_{L_{x}} \log \sqrt{ } 1+|\varphi(z)|^{2} & d y+N_{\varphi}(x, \infty) \tag{11}\\
& =T(x, \varphi)+s(x) \int_{-\infty}^{x}(\chi(x)+1) d x
\end{array}
$$

where $-1 \leqq s(x) \leqq 0,-\infty \leqq x<0$.
$s=-1$ if $\varphi \neq 0$ at zero points of p^{\prime}, and $s=0$ if the function φ / p^{\prime} is regular at the same points. (11) corresponds to Shimizu-Ahlfors'
theorem in the theory of meromorphic functions in the circle $(\chi(x)+1=0)$. To obtain the corresponding theorem for a meromorphic function f, it suffices to take the covariant $\psi=\sqrt{\left|p^{\prime}\right|^{2}+|\varphi|^{2}}$ where $\varphi=f p^{\prime}$. Then we see that $N_{\psi}(x, 0)-N_{\varphi}(x, \infty)=N_{p^{\prime}}(x, 0)$ $-N_{f}(x, \infty)-x, m_{\psi}=-1$ and $c_{\psi}=\log \sqrt{ } 1+\left|f\left(P_{0}\right)\right|^{2}$. Hence we can analogously obtain the

TheOrem 3^{\prime}. For the meromorphic function f on R

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{L_{x}} \log \sqrt{1+|f(z)|^{2}} d y+N_{f}(x, \infty) \\
& \quad=T(x, f)+\log \sqrt{1+\left|f\left(P_{0}\right)\right|^{2}}(-\infty \leqq x<0) . \text { (cf. [4] p. } 185 \text { (3)) }
\end{aligned}
$$

8. By (2), (6), (8) and (10) we have for quadratic covariant $\varphi=\sum_{i}\left(c_{i} \varphi_{i}\right)^{2} \quad\left(c_{i}:\right.$ const. $)$ and the covariant $\psi=\sqrt{ } \sum_{i}\left|c_{i} \varphi_{i}\right|^{2}$
(12) $\quad N_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right) \leqq N_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right)+\frac{1}{2 \pi} \int_{L_{x}} \log \frac{\psi^{2}(z)}{|\varphi(z)|} d y=2 T_{\psi}(x)+C$,

$$
\begin{equation*}
n_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right)=\frac{2}{\pi} A_{\psi}(x)+\frac{1}{2 \pi} \int_{L_{x}} \frac{\partial}{\partial x} \log \frac{|\varphi(z)|}{\psi^{2}(z)} d y \tag{13}
\end{equation*}
$$

where $C=\log \frac{\psi^{2}\left(p_{0}\right)}{\left|\varphi\left(p_{0}\right)\right|} \geqq 0 \quad$ and $\quad n_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right)=\left[n_{\varphi}(x, 0)-2 n_{\psi}(x, 0)\right]$ $+\left[2 n_{\psi}(x, \infty)-n_{p}(x, \infty)\right] \geqq 0$ in which the first term gives the number of zeros of φ which exceed those of ψ^{2} and the second one the number of poles of ψ^{2} which exceed those of φ, and $N_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right)=\int_{-\infty}^{e} n_{1}\left(x,\left\{c_{i} \varphi_{i}\right\}\right) d x \geqq 0$.
9. Now we take a compact subregion W, e.g. $W=R_{0}$ and suppose that for $\varphi_{1}, \varphi_{2}, \cdots$ either the condition

$$
\begin{equation*}
\int_{L_{0}} \frac{\partial}{\partial x} \log \frac{|\varphi(z)|}{\psi^{2}(z)} d y \geqq 0 \quad \text { or } \quad \int_{L_{0}} \log \frac{\psi^{2}(z)}{|\varphi(z)|} d y \leqq 2 \pi C \tag{14}
\end{equation*}
$$

is satisfied. From (12) or (13) it is seen that under the condition (14) $\left(\varphi_{1}, \varphi_{2}, \cdots\right)$ is one dimensional ($\varphi_{i}=$ const. $\varphi_{1} ; i=2,3, \cdots$) if and only if $n_{1}\left(0,\left\{c_{i} \varphi_{i}\right\}\right)=0$ for c_{1}, c_{2}, \cdots such that $\varphi \equiv 0$. For instance, let \mathfrak{C} be the space of differentials on W (real Schottky differentials on W) and $\varphi_{1} d z, \varphi_{2} d z, \cdots \in \mathbb{\Im}, c_{1}, c_{2}, \cdots$ be real constants, then both conditions (14) are certainly fulfilled. Moreover by (10) (cf. (16)) $n_{\varphi}(0,0)-n_{\varphi}(0, \infty)=2 \chi_{\nu}\left(\chi_{0} ;\right.$ Euler characteristic of W), hence in the case of $\varphi_{i} d z \in \mathbb{S}(i=1,2, \cdots)\left(\varphi_{1}, \varphi_{2}, \cdots\right)$ is one dimensional if and only if for real constants $c_{i} \neq 0$ such that $\varphi \equiv 0$,

$$
\begin{equation*}
n_{\psi}(0,0)-n_{\psi}(0, \infty)=\chi_{0} \tag{15}
\end{equation*}
$$

where $n_{\psi}(0,0)$ is just the number of common zeros of $\varphi_{1}, \varphi_{2}, \cdots$ on W and $n_{\psi}(0, \infty)$ the number of all polcs of them. We may here choose constants c_{1}, c_{2}, \cdots such that φ has the same multiplicities at the zero points and poles as ψ^{2} does. That is, let $P_{1}^{m_{1}} P_{2}^{m_{2}} \ldots P_{l}^{m_{l}}$ ($m_{i} \gtrless 0$) be the divisor of ψ^{2} and $\gamma_{i j}=a_{i j}+\sqrt{-1} \beta_{i j}$ be the m_{j}-th coefficient in the expansion of $\varphi_{i}(i=1, \cdots, p)$ with respect to the fixed local parameter at each P_{j}. It is sufficient to take as $\left(c_{1}^{2}, c_{2}^{2}, \cdots\right)$ an arbitrary point of the first quadrant Q in the space $\left(x_{1}, \cdots, x_{p}\right)$ with the exception of at most l spaces of dimension ($\leqq p-1$) each of which appears as the intersection of (hyper) plane $\sum_{i=1}^{n} x_{i}\left(a_{i j}^{i}-\beta_{i j}^{2}\right)=0$ and $\sum_{i=1}^{p} x_{i} a_{i j} \beta_{i j}=0$. Hence the condition (15) can be stated also such that for any point ($c_{1}{ }^{2}, c_{2}{ }^{2}, \cdots$) belonging to Q, φ has the same divisor as ψ^{2}.
10. Finally, we see by (10) immediately that if $\varphi d z$ is a differential of order n which is real or imaginary on every contour of L_{0}, then

$$
\begin{equation*}
n_{\varphi}(0,0)-n_{\varphi}(0, \infty)=n \chi_{0} \tag{16}
\end{equation*}
$$

where the numbers in the left hand side should be counted with half its multiplicities if zeros or poles lie on L_{0}. Especially for $p=g-i h, i p^{\prime} d z \epsilon \mathbb{S}$ and p^{\prime} has a simple pole at P_{0}, hence the number of multiple points of Green niveau curves on W is $(2 \rho+q-1)$, where $;$ is the genus and q the number of contours of W. This relation is reduced to a familiar one if W is a plane domain.

Mathematical Institute
 Kyoto University

REFERENCES

[1] R. Nevanlinna, Beitrag zur Theorie der Abelschen Integrale. Ann. Acad. Sci. Fenn. 100, Ser. A. I. (1951)
[2] R. Nevanlinna, Uniformisierung. Berlin (1953)
[3] K. Noshiro, Open Riemann surface with null boundary. Nagoya Math. Jour. vol 3 (1951)
[4] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. de L'institute Fourier. Tom. 3. (1951)
[5] L. Sario, Über Riemannsche Flächen mit hebbarem Rand. Ann. Acad. Sci. Fenn, Ser. A. I. 50 (1948)

