
M E M O IR S O F  T H E  CO LLE G E  O F SC IE N C E , U N IV E R SIT Y  O F K Y O T O , S E R IE S  A

Vol. XXXI, Mathematics No. 1, 1958.

Relative Riemannian Geometry
I. On the affine connection

By

Makoto MATSUMOTO

(Received December 10, 1957)

Preliminaries

In a previous paper [ 1 ]  we treated spaces with an analytic
distance, in which an analytic distance-function d(x, y ) was given
and a fundamental tensor g i ( ; ) (x, y) was introduced by means of
the distance such that

a 2g(x  y)g 1c —  .  g  — - (d (x, y)) 2 .avayo) 2

From this we got the curvature tensor and some of the geometric
notions. But it is clear that these can be derived from any
function which is not necessarily the function as above given,
and hence we can not expect many geometric notions enough to
discuss the properties o f the space. On the other hand we are
under th e  consideration o f  th e  geometric interpretation o f a
system of integral equations

vi(x) u i (x )—  ,Çie(x, y)ui' (y)dyl' ••• dyn',

where the u  and y are vectors and the kernel lely (x, y ) is  the
tensor with respect to a pair of points (x, y). Further we should
assume from  the geometric stand-point that the kernel is of
weight one with respect to  (y). Thus we meet also with a notion
of a  tensor with respect to a pair of points.

From these view-points we shall introduce in  this paper a
notion of a relative affine connection of a p air of manifolds (M, N).
The connection in M  is determined in relation to so-called observ-
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ing point in N .  This situation is similar to the theory given by
E .  Cartan for Finsler spaces [2], in which the connection depends
not only on a point, but also on  a  supporting element. For
Finsler spaces we have an useful condition that the coefficients

of the connection-forms (0'.5 are of degree zero with respect to
a  supporting element [2, the equation (5)], while there is not
such a condition in our case. Instead of this condition we shall
give a mapping g  from the tangent vector space at a point of
M  to the one at a point of N , and impose the condition that the
mapping g  has its inverse. Hence we have to assume that the
dimension of M is equal to the one of N  and that the determinant
of the tensor gl,(x, y), defining the mapping g , does not vanish.
Further we require that the tensor i s  covariant constant.

Under these considerations we shall define a covariant differe-
ntiation and develope the theories, following to the ordinal affine
connections. Various curvature tensors are derived according as
an observing point displaces o r  n o t . In  Finsler spaces it is
essential that a point displaces to the direction of the supporting
element. On the other hand, it will play a role in our case that
a point of M  displaces to the direction corresponding to the dis-
placement of an observing point by the mapping g. From this
idea we shall introduce another covariant differentiation and new
curvature tensor. These will be thought to be important for the
theory of the metric connections, which will be developed in the
following papers. Finally we shall define a path with respect to
an observing point and a remarkable class of connections.

1 .  The affine connection and the mapping g

Let M  and N  be the differentiable manifolds of dimension n,
where the differentiable classes are assumed to be C-  throughout
the paper. We consider points P(x ) in M  and Q(y) in N , the
local coordinates of which are given by (x1)  and (yi i )  respectively.
If a set of functions A '  • • •  k /  ( X  y ) is given and obeys the

.71 . . . .1Q11'
law of transformation

b
i
b

l C d r 37) (x, y)

X a ' Y O P Xil x i q10 b ib q k i f k
( Y 0  rx  a , X  , etc.) ,

Yld'„
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under a change of the local coordinates (x, y) y ), then we
shall call

1•••.1q
i t k ' '  components of a tensor A  of (x)-order (p, q)

.1 • ..1 ;

and (y)-order (r, s). It is easily seen that the partial derivatives
of components of a  tensor of (x)-order (p, q) and (y)-order (0, 0)
define a  tensor of the same (x)-order and (y)-order (0, /).

We shall define the affine connection at a point P(x) in M  with
respect to an observing point Q(y) in N  by the following equations
in  terms of the natural frame ei :

(1.1) dP dxie i  ,

(1.2) dei =

where the connection-forms col are  linear forms o f  dx and  dy,
which are expressed by

(1. 3) y)dxk + y)dyw.

We should suppose that the coefficients F  s a t is fy  the law of
transformation

y) y)X X+aax;g: ,

while the coefficients q „ ,  are components of a tensor of (x)-order
(1,1) and  (y)-order (0, 1). For the fixed observing point Q(y)
we have

= 11(x, y)dxk .

The r '  are  called the translation-components of the connection.
On the other hand, for the fixed P (x ) we obtain

= Cie(x, 37)c1Ye

and hence the Ci e  a r e  called the rotation-components of the con-
nection. The connection in  N  is also defined similar to the above
equations and the connection-forms 04; are written as

(1. 3') (4 x)dyw +C(x, y)dx' .

Next, we shall define the g-m apping, which carries the tangent
vector space at P  in  M  to  the one at Q  in  N .  Let g' (x, y) be
components o f  a  tensor o f (x)-order (0, / ) and  (y)-order (/, 0).
For any vector V at P, we obtain a  vector Vt' at Q such that
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kt 4) (x, y) .

Hence the tensor g r  defines a  linear mapping g :  Tp--). T0, where
the T , and T Q  are the tangent vector spaces at P  and Q respec-
tive ly . I f  there exists such a relation (1. 41 for two vectors 1/1

and at P  and Q  respectively, then these vectors are said to
be g-re lated . In particular infinitesimal displacements dx and dy
are g-related if and only if the equations

(1. 5) dyl dxi g '  (x, y)

are satisfied. We should like to deal with the manifold N  equal
to  the manifold M , so that we assume that the mapping g  has
its inverse and hence the det. does not v anish. The inverse

is clearly the tensor o f (x)-order (/, 0 ) and  (y)-o rder (0, /),
and we get the inverse mapping : T .

The notion of g-related vectors may be extended to tensors
of any type. For an  example, a  tensor y) is said to be g-
related to a  tensor A' (x, y) if

gr .

The mapping g  may be expressed in  terms o f th e  natural
frames. In fact, from (1. 4) we get

e.,v 1  = e ., gr vi

and hence the mapping g  is thought of as

g: e ig r .

On the other hand, we take a point P '= -P (x+d x ) and the con-
nection in  M  defines the mapping pm  : T , as follows :

p m : ei (x+dx) e i (x) + de, .

Now we require that the condition p m g - 1 =-03N  holds for the
connection and the g-mapping. We have immediately

cpm g - '(e,(y+dy)) =glie .; +g 7;:,(0",e; +dgbe i ,

g(PN(e(Y + dY)) = g9' e1 + e

and hence the above condition is expressible by the equations :
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(1.6)a g i j , g ,axk

(1.7) ag'i, .
a y e

Since the g ' ;  are the inverse of the g ? , ,  it follows from the above
equations that

(1. 6') a g y — g „,i, c k ± a ,
axt

(1. 7')
,  a y k

Now we gave all of the suppositions in order to develop our
theories. We shall call by the theories of the relative a ffin e con-
nection of the  pair (M, N) the objects derived from the connection-
forms wij , wii ;  and the g-tensors g ' ;  which satisfy the above
four equations.

We shall introduce in  this place a cov ariant differentiations
( , )  with respect to xi or y For a tensor i t ,  the rule of the
operation with respect to xm is given by the equation

. f l 1a k '  r  a je, — Af:11(c:, ,n •ax a m  '-`at
c

m C

The one with respect to is defined by the similar rule to the
above, where the coefficients r k ,  and Ci e  are used instead of the
1' ! „  and C .  The covariant derivatives o f a  tensor o f  (x)-order
(p , q ) and (y)-order (r ,  s )  with respect to xi define a  tensor of
(x)-order (p, q+1) and the same (y )-o rd er. This is easily verified
from the law of transformation of the coefficients of the connection-
form s. Then the four equations (1. 6), (1. 7), (1. 6 ') and (1. 7')
imply that the g-tensors are covariant constant with respect to
both of the variables xi and

2 .  The torsion and curvature tensors.

We shall define in  this section a torsion tensor and three
kinds of curvature tensors. We put

(2.1)

where the sign ( A )  denotes the operation o f  exterior product.
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These 2-forms a re  called th e  torsion-form s an d  expressed as
follows

(2.2)A  de +Ci e  dx-i A dye .

where the T i k  is given by

(2. 3) 2735 = rtfD* •

I t  is clear that the T .  a re  th e  components o f a  tensor of (x)-
order (1, 2) and (y)-order (0 , 0 ) . Next we have from (1. 3)

(2.4) dcol coT A 4 -1-121,

where the sign (d), operating to a  form, denotes th e  exterior
differentiation, and the S-21 are the 2-forms expressed by

1(2. 5) nal — dxk A de d.xk A dy"2 •

— —

1
dye A dy" .2

These coefficients are given in  terms of the coefficients of the
connection-forms col as follows :

(2. 6) =__ arkkR
1•51 a x j ) iCk A n  7

(2. 7) a y ,  —  a x „ ,a rh aci„

(2. 8) aa c
y

l
ick' +clue c !,,Ip i •

The fact that these quantities RI. k „ RI.„ 2 , and n e e  define tensors
will be verified later on.

We consider two infinitesimal parallel circuits in M  and N
consisting of the four vertices P(x ), P,(x +dx ), P 2  (X  dx + 8(x +dx)),
P R x  8x) and of the (2(Y ), (21(y+dy), (22(Y +4+ 8 (y+dy)), (21' (Y +8.Y)
respectively. We develope the tangent affine space at P 2 along
the infinitesimal side P2P , and then P ,P  on the tangent affine
space at P  by means of the usual process, using (1. 1) and (1. 2),

*  W e use for brev ity the s ign  [ i i ]  throughout the paper, which means
- riki •
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and then we get the point P ' and the vectors ei '  as the images
o f P , and the frame vectors ei a t  P ,  respectively. By the same
process using the point P 1 '  instead of P „ we have then the point
P "  and the vectors e i "  as the images. The differences AP -= P' —
P "  and a r e  given by

A p  (S d- (18)P, Ae i  (8 d —  c18)e, .

By the direct calculation we obtain their expressions :

(2.9)A P  (27- ii ,dx f +C i k , dxi aye dy e)e„

(2.10)A e (RI. k., axl d e  al
— l a k e  a xk +  dye ay(i )e  .

W e see from  (2. 9) that the ZIP is equal to zero fo r  the fixed
observing point Q  if and only if th e  tensor Ti,. vanishes, and
hence we denote this tensor by the torsion tensor.

Next we consider the latter equation (2. 10). In  the first
place, for the fixed Q(y ) we have

Ae i  R i . k i a x i  e  •

The tensor R i.,, is expressed in terms of the translation-parts of
the connection alone and has the similar geometric meaning to
the curvature tensor in  Riemannian spaces. We call that the
translation-curvature. On the other hand, if the point P(x ) in M
is fixed, then we get

Ae i  d y e  S i , ' ei  .

which expresses the difference between the two rotations of the
frame vectors ei a t P(x ) according as the observing point Q, displ-
aces along the sides Q,--> Q and Q, --> Q,' —> Q .  The tensor

constitutes of the rotation-parts of the connection, and
hence we call this the rotation-curvature. Finally we take ax
and d y  =0 , and then we get

Ae i  l a k e  de ay" e .

In  this case the frame vectors ei a t  P ,  enjoy first the rotation
according to the displacement Q,' —>Q of the observing point, and
then the vectors as thus obtained are carried into the vectors ei '
of the tangent space at the origin P  for the fixed Q . Next, the
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frame vectors at P, are carried first into the vectors of the tangent
space at P  with respect to the fixed observing point (21', and then
the images enjoy a rotation according to the displacement Q,'
and become the vectors e , " .  The above equations give the differ-
ence de, = e i ' — e," of the vectors as thus obtained. We shall refer
to the tensor R. as the mixed curvature.

In  term s o f the covarian t differentiations ( , ) th e  mixed
curvature an d  th e  rotation-curvature a r e  written in  th e  forms
respectively

(2. 7') aye

(2. 8') RI.k/ 1/ CICW,e) CICV g h a t ]  ± 20h/ T r/1  .

The second equation shows that the RI.„,,/ is  a tensor of (x)-order
(1, 1) and (y)-order (0 , 2 ) .  And, since it is easily seen  that the
arik /ay i '  are  components of a tensor, it fo llow s from  th e  first
equation that the R I . ,  is a  tensor of (x)-order (1, 2) and (y)-order
(0, 1).

If, in place of the manifold M , we consider the manifold /V
and M  is regarded as the observing manifold, we obtain similarly
the torsion tensor r j ; k 1  and  the curvature tensors
and 1 0 ., 1 of /V, which are given by the similar equations to (2. 3),
(2. 6), (2.7) an d  (2. 8).

The condition of integrability of the covariant differentiation
( , ) is immediately obtained as follows :

(2. 11) c„,„0 -= A4R'jz.„„,+ A '5 7;
— 2A 1

.3
71;,„Tg„,

(2. 12) -=-- R l+ A i 7;
— A'A; —2A4;,a1Tg„,, ,

(2. 13) 1A i
7:; „,,,, =- A Z — A l.„„,, — A i 7; „

+ R7; h— + AYi;,a/C711:'h •

(We should remark that the algebraic sign o f the third term in
the right hand member o f th e  last equation is m in u s .) I f  we
apply the ru le (2. 11) to a  vector V', then we get

TJI Va R t .j k — 2 V  !„T  ,
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from which we see that the is a tensor o f  (x)-order (/, 3)
and vanishing ( y) -order.

3. Various identities satisfied by the torsion

and curvature tensors

We shall find the identities satisfied by the torsion tensor, the
curvature tensors and their covariant derivatives. First o f all we
have directly from definitions

(3. 1) R1.( ) = 0 , -=---- 0*

Next, applying to the g-tensor g'; the equations (2. 11), (2. 12) and
13), and making use of the fact that the tensor is covariant

constant, we get

= 0 , = 0
= 0,

and further we have also the similar equations for the inverse
Hence we can define the tensors such that

DL' .11 , = gr.r R 7.5 „
= ,

(3. 2) R3; .k, ,
R g  ..W.t .k / 1 1  =  e t /  1Pf, ..k ,  /

and moreover

g f̀ R;; ; •1c/1 = R3.1k,

— ,
from which we see

(3. 4)
R 1

.1.51 = gb;

Rg;.„,,, gle e

(3. 5)

The equation (3. 4) shows that, in  so  fa r as  th e  contravariant

*  The sign ( i i )  is used to mean

M •ck ii — RI•kz - FRI•tk •

(3. 3)
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index and the first covariant index, the translation-curvature of
M (N ) is g-related to the rotation-curvature of N (M ).

In  order to  find  th e  identities satisfied by the covariant
derivatives of the torsion tensor, we operate to (2. 1) the exterior
differentiation and then we get as a consequence o f (2. 4)

(3.6)d n i A dxj -=- —co AwjA dX .i

Comparing the coefficients of the both sides we obtain the
following two equations :

(3. 7) R t i .k z ) -=2T ,,,,,,-4T ,k ,71, ) *

(3.8)1 6 .7 0 1 , -=-- 2 — I 1 '1  ,k ) - -  271'k 271f,,Ctp,, .

Further, by means of the same process from (2. 4), we have

(3.9)d a l  =  o4 A 1.21,—  f2T ,

and the following four equations :

(3. 10) 2Ri-h(7c Tim)
(3. 11)

(3. 12) h/ I Q : , )7,

(3.13) R  1.(k/ z /, m/) 2 1 ah 'O C ' T I ' ' ■):1) •

These equations are the generalizations of the Bianchi's identities
in Riemannian geometry.

4 .  The notions of the g - torsion and g - curvature

We shall restrict our consideration in this section within the
case where the displacement dy  of an observing point Q(y) in N
is g-related to the dx of a point P(x ) in M .  Then the connection-
forms 04 and 4 ; are written in the forms

(4.1) --- A dx5
, 01; = dye ,

where we put

(4.2) Ail, (x, y) 1 k+ , r r k t  a h gt/
*  W e use, for brevity, the s ign  ( i f  k) which means

TI o T T 10 71+  T la T  i + T .
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By means of these coefficients A l,  and Ar, ,, we can introduce
new operations ( /)  of covariant differentiations, the rule of which
are written, for a tensor A ,  in  the forms

A n hA a k  A  —A az ;Aaa x h J t ah 111

 +A.i.57;m:w—NA;Ah ,  •ay h

For a vector Vi we put

oyJ

However, we have to remark that the g-tensors are not covariant
constant with respect to these differentiations ( /)  and we get from
(1.6) and  (1.7)

i k C g  , g  f i e , = — ,

g 1.1/ ik =  —  C n :  ,  g  / „ ,  g  C V „

where putting

(4. 5) CT:, =  Ci e+  Cg; g bi / g Z, . g!: g ,e : .

We shall use at present this operation ( / )  to write simply the
following equations. The condition of integrability of the ( I ) -

differentiation is given by

(4. 6) Ail;; ./1 Q3 .h.— 2A SL, •

(4. 7) = Q1:,; — ALika ; Q7;2 A ,

(4. 81=  A "11— Ay,',; A7;

where we put
AL

(4.9)(4. 9) = N j h2 " ay1'

aA ,(4. 101 —  a x iiik A !;,,A f h i
l )

---= qh,,ckej' + Chia , g È̀;,g?;;+2C,,,, TZ„

and further the , and A'j;.,/ z a re  defined by the similar

(4. 3)

(4. 4)
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equations in terms of the A , in stead  of the A'j , .
Now we set

4.11) — Oti  A  dxj,

which are written in the forms

(4. 12) =  S d x j  A de , 0 1' =-- S dy / A dyk' .

These coefficients Sfj ,  a n d  S 1  a re  clearly the components of
tensors, which are said the g-torsion of M  and N  respectively.

I f  we take generally a function f (x , y), then we obtain

a f  .  a fd f  = + .axi ay i

Hence, i f  we use the sign A for g-related dxi and dy i' instead of
the d , then we get

A f ., g, —a f  a f  j ,)d
x
 _  ( a f  a f  , ) d

ox , a y , C y ,  uX

Therefore i f  we put

 a f  a f A f  a f  af
Axi a x i  a y .e -  f y 1  a X'

then we have

Af 
= f .

= = -- A f, dyi'
xi Ayl

and

A f  A f  g 1(4. 13 1) Axi A yi"'" •

Let (,) be a p-form of g-related dx i and dy j', and then it follows
by direct calculation that

(0(4.14) co (-1)P
i  

dxi (-1)P  A 6 ) , A  dyi/ ,
X

.A y . /

where the A /Axi and A/ Ay/ operating to a  form denote the A-
differentiation o f its coefficients alone.

Applying to (4. 1) the A-differentiation and making use of
(4. 14), we obtain

, — 0:1; A dy / .
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(4. 15)

where we put

(4. 16)

AO; =  A CI; ,

AO;; 01
.;; A ,

0 ;
1

—  P ; .k id e A dx' ,2
1CV; — ,

A dye ,2

and the coefficients are given by

(4. 17) p 114 7c , . . qt11) Qij•kZ A ii•Liclhil 6k i A x l ) — •

and the P .„ , , ,  are defined by the similar equations in  terms of
the g k,  instead of the A .  The coefficients P j . k y  define a tensor
which is called the g-curvature tensor of M.

A s a consequence of (1. 6), (1. 7), (1. 6') and (1. 7') we get

=
xk

—
Ay°

and the similar equations for e l ,  where we set

=  A  „  g  , A;he,

Therefore if  we introduce the covariant g - d i f f e r e n t i a t i o n  ( ; )  such
that, for a tensor Ailì ;

AA'k(4. 18) h A x .'41
; A Z A L -1 -A ;7 ;A ! ,',4 — A ;„k ;A az; i, ,

and the similar equation for Ai.4; h', then these derivatives define
clearly tensors and that we have

g".1, ;ic =  0 =  0  ,

O, °
Moreover the covariant g-differentiation has a  useful property :

(4. 19) Afj;,/,/ = ,

which is the direct consequence of (4. 13). And we get also from
(4. 3)
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(4. 20)

I f  we put

4. 21)

Makoto Matsumoto

Arl; ;J, A +

D . g'.); g • 7C:

S  —  „ g,ce

then we have

and

(4. 22)

—Dtgc e,' ,

er( - =  — 2 N b eji gq,)
A y r )

œ
b ''-'-'-- a— 2N ; g  g )  •a k )

Making use of these equations we have the conditions of integra-
bility of A-differentiation as follows :

(4. 23)

A  fZf 
Ax (14 LS.xii) —

A A f
Ayce \ A y

We get immediately, in virtue o f (4. 23), for a vector V '

(4. 24)
V: [i jk —2 VitaS3k—  2 3a y

V 1)3' ,

.17 = 2re S 'Fk ,  — 2 ax'

where the 1
=
I t. ik  are components o f th e  g-curvature, while the

P Z ,„, are given by

A A '  P ct i y e  — +A-1,:u, le i  •Axe )

T h e first o f  (4. 24) shows that the P a'..1,  is  certa in ly  a tensor,
because the a V, / r a ,  is  a tensor. We see, however, from
the second of (4. 24) th a t the P>cr i ,„ , is  n o t a tensor, because
the a Vi/axa is  no t a tensor. Making use of the covariant  (I) -

differentiation we may rewrite the second of (4. 24) in the form
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V a  r t gyk l —  2 S51;e— (17;a — Vb AL)D k ,

ya(PVy k , + 2ALM , , , )

which shows that the quantities

define a tensor. However we get

(4. 25)

which is the immediate result from the equations (4. 19) and
(4 . 24 ). Consequently we establish the condition of integrability
of the covariant g-differentiation as follows :

(4. 26) 24̀fl; P ki; P  h + A '.37; P 'rz; .„„,— P ̀,̀; •„„,
—2A 7 S!,1; „ Z„— 2A n a , DZ. .

I f  we want to get the expressions for the A ; , „ , , ;  and A. ;

they are easily established by means o f (4. 19) and (4. 26). Apply-
ing (4. 26) to the g-tensors and making use of (4. 4), we obtain

—2g C1'1 ,  D  TT:
P l :/ .1c1 — 2 g  C  D "bi •

Remembering the definition of the I- CV, and (4. 25), the above
equations give that, if the g-torsion of M is g-related to the one
o f  N, or if the rotation parts of the connection o f M is different
from the tensor g-related to the one of N  in  a  poin t of algebraic
sign alone, then the g-curvature of M is g-related to the one of N

Finally we shall find the identities satisfied by the covariant
g-derivatives of the g-torsion and g-curvature. Operating A to
(4. 11) and making use of (4. 15), we get

(4.28')A 0 i  =  —  A 61, A dxj—CYJ d x i
Comparing the coefficients of the both sides we have

(4.29) 2Stik; 4S1( S Zi )  .

This is  of the same form as (3. 7). Next, i f  we operate A to
(4. 14) and substitute from (4. 23), then  w e have the general
formula

(4. 27)

a. .,.A2,„) =--  .
a y i '

(4. 30)
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where we put Di' dxk A d x t .  Applying this formula to the
form (4. 15), we get

(4. 31) ----- O7j A ® —  A A D '.a

Comparison of the coefficients of the both sides gives us

(4. 32) P!,.(ki;•,i)=--  2P 1.11(ic S ilm ) —  2A  .1.0c1h , 1D 1L;za) •

This is of a little different form from (3. 10). However, if the
torsions areare g-related, then they has the same form.

5 .  T h e notion o f  paths

We shall define a  parallelism o f vectors. L e t Vi (x, y )  be a
vector field. It is natural from (1. 2) that the V 1 is said to enjoy
the parallel displacem ent if the equations

(5.1)d V :  + V i ( 1 ) , G (x, y)dxk+Cji k /(x, y)dy e )  = 0

are satisfied. Tithe displacement dy  of the observing point Q(y)
is g-related  to the dx  of the origin P(x), then the above equation
is reducible to

(5.2)d V i  + V i y)dxk = 0 .

We shall use this in order to define a path. That is, we consider
a curve C : x i = x t(t) in M  and, if the equations

(5. 3) +A (x, de
 = n,(x, y)dt 2d t  d t  

are satisfied under the suitable choice of a parameter t ,  then the
C  is denoted the p ath  in  M  w ith respect to  the observing point
Q (y ) . This definition is probably natural and useful, because the
displacement d y  of the observing point Q(y) is not contained in
(5. 3).

On the other hand, w e have a remarkable class o f  curves,
such that every tangent vector dxi I dt of a curve C: xi = xi (t) in
M  is g-related to a constant vector V/ at an  observing point
Q(y) in N .  We differentiate the equations

dxi •—  = y) Vi'dt
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with respect to t  and make use of (1. 6), and then it follows that

d2x clx-1(5. 4) dt2 + (Fenc (x, y)— g3" C;k(y, x )g .W  d t  d t °

The curve C satisfying the above equations is called the central
path.

Now we see that the equation (5. 4) does not generally coin-
cide with the equations (5 . 3 ) o f a  p a th . However, I think to
be natural from the stand-point of our geometry that the condition
o f coincidence o f  (5 . 3) and (5 . 4) is imposed. The condition is
written by

At3k)

that is

(5.5)C r „ ,  - - =  0

Thus we arrive a t a  connection such that the CV, defined by
(4. 5 ) vanish, that is

(5.6)C / Cg;ceiglig;',/ .

In the following we show that such a connection may be defined.
If the translation-parts 1  o f  th e  co'i a r e  arbitrarily given,
then the rotation-parts Cii ; ,  of the coti ;  are uniquely determined
such that the equations (1 . 6 ) hold. W h ile  w e  h a ve  y e t  an
arbitrariness in  order to take the a n d  q„, satisfying (1. 7).
Hence if the Cij k ,  are determined by (5 . 6) in  terms o f th e C ij;k,

then the r ,  are uniquely taken to satisfy (1. 7). The pair (col,
4 )  as thus determined is called to be (—g)-connection.

In this case we see some interesting circumstances. First of
all, since (5. 5) holds, a central path is always a path. Next, we
see from  (4 . 4 ) that the g-tensors are covariant constant with
respect to  the covariant (/  )-differentiations. Hence, applying to
the g-tensor the formulae (4. 6), (4. 7) and (4. 8), we have

(5.7) = = 0
(5.8) + A'.;;.zq  .=- 0

As a consequence o f (4. 10) we have the expression of the transl-
ation-curvature as follows :
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(5. 9) R '.1.51 = Cp./ , — CaiC .1„/ gg' r , „

and from (4. 17) we obtain for the g-curvature

(5. 10)

and from (4. 27)

(5.11)

= gd1;

It follows from (4.25) and (5. 11) that the g-curvature tensor of
M  is g-related to the one of N.

Finally, we give a simple example of a (—g)--connection. We
take a  vector field p i  and put

pi gt, ,

and then the FÇ, a re  uniquely determined such that the equations
(1. 7) are satisfied. We define the q k by

=

where the vector p i ,  is g-related to the p .  It follows easily that
the equation (5. 6) holds good. And further, if  we determine the
I , „  b y  (1. 6), then  w e get the special type of a (—g)--connection.
In  th is case by means of (5. 9), we obtain the simple expression
of the translation-curvature

j •k , -= P — 2P; s i

and for the rotation-curvature we have from its definition (2. 8')

=  p p  p ck , p t
i /j +2p ;  T .
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