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A Steenrod algebra A * will mean a stable Eilenberg-MacLane
cohomology group A *  (Z 2 , Z 2) -=  fim H *  (Z 2 ,  n ; Z 2 ) in  which the
multiplication is defined by the composition of the squaring oper-
ations S e .  The formula p a (b) = b a  associates for each element
a  o f  A *  an (additive) homomorphism pa : A *-->A *. We write

= p ,  i f  a -=-- Sql, then A*(Z, Z,) --- A* I p ,A * .  W e shall give an
elementary proof of the following

Theorem  I. The following two sequences of hornonwrphisms are
exact.

2A* P A*
Î P 3 1P2

A* I p,A * 4- A* I p,A * ,

A* I p  - 2 2 -> A/ TA* 2 1 > A* I qi,A* .

Several exact sequences are known experimentally for lower
dimensions. For example, it seems that the sequence

p e -
A* A* I ( 'E- 2  p 2 iA *) ---> A* I p 2 iA*)

, =0 ,=0

is exact. More generally we propose

Problem. Let a, b„ ••• , b, . E A * .  Is  the kernel

A*I ( p,,,A *) finitely generated (as a left ideal)?, =1
In place of  ' p a ,

 t a k e  a homomorphism p: defined by the
formula p*,(b)=-ab, then the exactness o f analogous sequences
is proved by T. Yamanoshita and A. Negishi (cf. [5]).

o f  P a : A* —>
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Theorem I I .  L et B* -= B i  be one of the five kernel-images in
the exact sequences of Theorem I , then in  the sequence

.Bi-1 .

f o r  i X (mod 4), 2 ,
we have (g)t)' (0) Not (Bi - ')

0 otherwise,

where X takes the following values:

when B* -= im age of P2 P2 P5 P3 P 3

kernel of P 2 99 5 P3 P2 P 3

then X 0 1 1 3 1 or 3 .

The above two theorems are proved in § 2 under some pre-
parations in  §  1 . In  §  3 , we see some partial exact sequences,
which are applied in § 4 to study the cohomology of fibre spaces
over a sphere and to calculate the following values of 2-compo-
nents of the stable homotopy groups 7th lim 7tk+n(S") of the sphere:

k 1 2 3  4  5  6 7 8 9 10 11 12 13

2-comp. of  v k Z 2  Z 2  Z 8  0  0  Z 2  Z„ Z2 + Z2 Z2 + Z2 + Z2 Z2 Z8 0 0.

We have also a partial result on 7r1, which will be useful for
determining the groups 7r1 4 and 7r.„.

§  1 .  Steenrod algebra A* ---=-- A * (Z 2 , Z2 ).

Consider a sequence I= {X k , fk ; le---- -- IV, N +1 ,N +2 , • • •} which
satisfies the conditions

(1.1). i) X k  are  (k -1)-connected spaces.
ii) f k are  mappings of the suspensions S (X k ) of X k  in Xk± i .

iii) For each integer i ,  there ex ists an integer X(i) such that
f k *: 7r.;, -k+i(S(Xkl) r,+k+,(X k+i) are isomorphisms f o r k X(i).

Then it is verified that the condition iii) may be replaced by
the same condition for homology groups. Denote that

G ( )  -=- Dir. lim 17t i + k (X,), f k *  SI
A i  (X) Dir. lim IHi ± k  (X k ) , ick *  -S* 1
A(E) Inv. lim {1-1:± k (X k ) , S *  f t}  ,
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where S, S *  and S* denote the suspension homomorphisms. Remark
that these groups can be defined without the condition iii). By
the condition iii), we may regard that

Gi( )7 ti+k(Xk)
(1. 2) Ai(X) Hi ± k (X k )

A.1 (3) =1/i+ k (X k )

for sufficiently large k. Cohomological operations which commute
with f :  and S * are naturally defined in  A 1 (X). For example, the
squaring operation Sqt: Z2)—>A1±f(X, Z 2) is defined. The groups
Gi (?el, A i (1) and Ai(X) are called the stable homotopy, homology and
cohomology groups of  respectively.

The i- th  stable homotopy group 77. 1 o f  th e  sphere is defined by

=  G R )

where CS' { Sk , ik }  is a  sequence consists of the k-spheres Sk  and
the identities of Sk -"= S (S k ).  It is well known that z i =  z i + N (SN)
for N > i + 1  under the convension (1. 2).

T he i- th  stable Eilenbrg-M acL ane homology group A i ( z )  and
cohomology group Ai(71- , Z 2)  of  an abelian group it a re  defined by

A 1 (7r) A i (n(7r)) a n d  A i(z , Z 2)  = Ai (St(z), Z 2) ,

where ST (7r) consists o f  Eilenberg-MacLane spaces K(7r, k )  and
mappings f k  : S (K (7 k )) K ( 7 r ,  k +1) which induce isomorphisms
of (k +1) -th hom otopy groups. It is  w ell know n that A i (z)
=Hi+N (7r, N ) a n d  Ai(n-, Z2) =Hi+N(7r, N ; Z 2) for + 1  under
the convension (1. 2).

A  symbol I  will denote a  finite sequence I = ( i „ • • • , i r ) of
positive integers. It is convenient to introduce the empty sequence
I =  (4)). We use the following notations :

deg / + •-• + i r  (degree of  I), deg (0) = 0 ,
1(I) =r ( le n g th  o f  I ) , 1(4)) ,  0 ,

t,(/) ( j- th  element)
t(I) =  j ,. ti(') (last elem ent).

A  sequence /-= (i„ ••• , i r )  is called to be adm issible if
for j=1, ••• , r - 1 .

By Serre's work [4], the stable Eilenberg-MacLane cohomology
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group A i(Z „ Z 2 )  has its Z2 -base {Sete} , where Sql -=-Sqiio ••• oSqir,
I  is  admissible, deg I = i  and u  is  the fundamental class of R(Z2,
Z 2). For an arbitrary sequence I, S O ( belongs to A 1 (Z2 , Z 2 ) ,

 j  =-
deg I. Thus S e u  i s  a  sum  of admissible squares S q lk u . The
result S e u = E S ek u is obviously unique and is called the normali-
zation of S eu.

For the simplicity, we set

(1.3)S q i u  =  I , Ai (Z „ Z 2)  = A i  and A *  = A .A i .

Then A * is  a graded Z2 -module generated by the sequences /
with the relation determined by the normalization I= E 4. Set

(i1, ••• i r  :71 • iS)

fo r  I  (i„ • • • , and (fi e), th en  a multiplication is
defined in A*, since the product I f  corresponds to the composition
Sql oSqJ of the squaring operations. Now A * becomes a graded
algebra over Z 2 ,  namely Steenrod algebra mod 2.

When 1(1) = 2 ,  the normalization process is given precisely by
the Adem's relations [1 ], [2 ] :

(1.4) (2h—m, h) =  E t
i
 1 ) (2h —t, h — m +t),

h_ n z i_t  0 G 1 2

where m > 0 , ( ba) ( a a b ) 2 is  the binomial coefficient mod 2  with

the convension (
a

)  = 0 i f  b < 0  and we omit the term h— m +t ifb  2 t n -  t 
)h— m +t= O. The coefficient ( n -

) —
( v a n i s h e s  ift — 1  2 r n - 2 t  2

t - 1 < 0  or m —2t <O. Therefore the summation o f (1. 4) is valid
for the following values of t :

(1.5)M a x .  (1, m—h) m/2.

Since t m /  2 <2m/ 3, we have 2h— t >2(h— m  +t) .  Thus the re-
lation (1.4) gives the normalization of (2h —m, h).

Lemma 1 . 1 .  Each sequence I is normalized by use of the A dem's
relations. The norm alization preserves the degree and does not
augum ent the length.

Pro o f . B y  (1. 4), the lem m a is true fo r  1(I) = 2 .  Put I =
(i1, •••,ir), r > 2  and assume that the lem m a is true for 1(I) < r
and  for t,(/) > i ,  (and 1(1) = r ) .  T hen  (i2 ,  • . ,  i r ) is normalized.
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Thus we may assume that (i2 , ,  i r )  is admissible. If 11 >2 i 2 ,  I
is already admissible. If i1<2 i 2 , (iI, 12) is normalized to E (ak,bk)
where ak +b k

-=-- i i +i 2 and ak .2bk . Then ak > i ,  and I =  E lak,bk,
i

3 • • •  and each term of the summation is normalized by the
assumption. Obviously these processes preserve the degree and
do not augument the length. The lemma is proved inductively
since t,(I) <deg /.

Lemma 1.2. L e t  I =  (i„ i r )  be an adm issible sequence and
let i  be a positive integer less than 2i 1 . L et E I  be the normali-
z ation o f  (i)I = (i, i„ ••• , i t ). T h e n  t 1 ( I )  <2 i 1 - 1  f o r  a l l  

J .
 I f

t 1 (15 ) = 2 i , - 1 ,  then If = (2i,-1, i— i,+1, 12, • ••  or 1--= (2i,-1,
••• i r ) •  The term (2i1-1, — 1 1 +1, 12, • • • , 1,-) exists if  and only if
2(i 1 - 1 ) i i 1 - 1  and T he term  I 3 =(2 i 1 - 1 , i 2 ,
ex ists if  an d  only i f

Pro o f . First consider the case r  = 1 . By (1.4) and (1. 5), each
term Ti has a form (2i,— t, i— i l +t)  for Max. (1, i 1 - 0 < t
Then t,(/)-=-- 2i,— t.<2i,-1. I f  t 1 (14-=2i 1 - 1  then t =1  and whence
the condition i, —  S t  S i i — i/2  implies that 2(11 -1 )
Conversely, i f  2(i,-1) then the coefficient ( 2 1 1 _

0
1_  2 )

o f (2i1 -1 , i —i ±1) equals to 1. Therefore the lemma is true fo;
r

Now let r > 1  and assume that the lemma is true for l(I) < r
and for l(I) = r  and t i (/) < / , .  Applying the lemma of the case
r = 1 ,  w e  have that (1, j1, ••• ,1,) is  a  sum o f some J, =  (2i i —t,
i—i 1 +t, 12, ••• , i r )  and the term J ,  appears if and only i f  2(i,-1)
>  The term J, is  admissible if a n d  also
if i— i,+1 = 0 since In the case 0<1 - 1,+1<212,
applying the lemma to (i—i 1 +1)(1 2 , ••• (1-1 i+1,12 , is
normalized to E kak  b k , such as a,, 2 i 2 - 1 .  S in ce  a,, 2 i 3 - 1
< i i - 1 < i „  we may apply the lemma to (2i, - 1)(ak, bk , • •-) by the
assumption. Then J1=  (2i, - 1, 1- 1, + 1 ,  j 2 ,  . . •  i r )  is normalized to
E I as t ,( I„)  <2 a„-1 <2 i 1 - 1 .  Therefore, when 0< i—i 1 +1
<2 i 2 ,  the normalization o f j ,  has no term /„, o f  t,(I„,) =2 1 ,-1 .
Next consider the term L  fo r t< 1 .  I f  L  is not admissible, by
similar arguments to  the case t = 1 , w e have that the normali-
zation of J, consists of I as t 1 (/3 )< 2 i 1 - 1 .  I f J ,  is admissible,
t i (L) t<2i1--1. Consequently we see that th e lemma is
proved by the induction since t1(1) .2"/)-1.
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Lemma 1. 3. L et I=  (i„ •-., i r ) b e  adm iss ib le  a n d  s I f
2s±r S i s ± r  + 1 f o r  j  = 1 ,  • • • ,  r ,  then th e normalization of

2 8 + 1 )  i s  (2"- r +1, i2-2s+r-2, ••• , +
E (ak ,bk , ••.) where ak S 2s+r and i ., -2s+r - i  are om itted if  i i =2s+r - j.

Pro o f . Then lemma is obvious f o r  r  O. Suppose that the
lemma is true fo r  1(I) ,  r  -1 . Then p,s+ ,/-= (t1) ••• 2 s + 1 )

(i1 , 2 s + r - 1  + 1 ,  12 - 2" - r - 2 , • • • , ir - 2 s ) + E ( i „  a k ', b k ', and a'k

By Lemma 1. 2, each term /„,' o f th e  normalization E /„.,' of
(ii, ak i , bk ', •••) satisfies t i (/„„')_<2"- r - 1 .  Next the term (t 1) (2 8 + r - 1  + 1 ,

2s±', • • • , - 2 1) satisfies the conditions 2 (2'+' +1-11
.22 ± r ' + 1 -1  and i, -  (2s + r - 1  4-1) ± 1  2  (i2 - 2 2 ' )  = 2i 2 - 2 '  of

Lemma 1. 2, by the assumption of this lemma. Then the normali-
zation o f  (i„ 2s±' +1, i 2 - 2 s -rt - 2 , • • •  1 , - - - 2 3 ) is (2s±r i1 - 2 s + r - 1 ,

I
2 2 S + r - 2 , •  •  •  , i r - T ) + E ( a „ b „ - - )  where al  _ ‹2 '. T h ere fo re  the
lemma is proved by the induction on 1(I).

For the convenience, we note some relations obtained directly
from (1. 4).

(1, 2i) = (2i +1), (1, 2i-1) = 0,
(2,2 = (3, 1), (3, 2) = 0,

(1.6) (2,3) = (5) + (4, 1), (3, 3) = (5, 1), (4, 3) = (5, 2), (5, 3) -= 0,
(2,4) = (6) + (5, 1), (3, 4) = (7), (4, 4) = (7, 1) + (6, 2), •• • ,
(2,5) = (6, 1), (3, 5) =0, (4, 5) = (9) + (8, 1) + (7, 2), ••• .

§ 2. Proof o f Theorems.

The formula 9 9 ( b )  ba defines a homomorphism p a  of the left
A*-modules. In particular, for an integer t  the homomorphism
P(t), denoted by q, is defined by P t ( i i ,  • • • ,  i ,  t ) .

By (1. 6), •-• , =
-
-
- 0  i f  i7 =--1 . If then • • • ,

(j1, , 4 , 1 )  is admissible. Thus the sequence

A ,  P i  Â , n ,
.n . •

is exact. The kernel-image q, ,(A *) = goi
- 1  (0) of the sequence has

the admissible sequences / o f th e  last element t(/) = 1  as  its
Z2-base. The factor group A*/p 1A* has a Z,--base {11 admissible,
t(/) 2} .

For an odd t, Pt '- (
P1 = - P ( i , t ) :

----- 0  by (1. 6). Then q), defines an
A*-homomorphism of A*/.7) 1A * into A *  which will be denoted by

(2. 1)
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the same symbol
p 1 : A *I (A A *  A *  .

We denote the composition of p ,  and the natural homomor-
phism o f A * onto A* I p i A * by

Ot : A *  A*1q) 1 A* ,
A*1(P1A* A*Iq),A*, t :  odd.

Now the first theorem is stated as follows.

Theorem 1. The following sequences are exact.

(P2 P2i) A* A* A*I0,A*,
05ii) A* A*I p i A* A*1(p,A* ,

iii) A*I0 1A* A*/piA* 2 2 -> A ,

iv) A*1.99114* 2 -1 -> A *  q-±-> A*,
-03

y) A*199,A* A*1.97,A* A* I p,A* .

We introduce the following notations :

a i -=-- (the rank o f A 1) =  the number of the admissible sequen-
ces of a  degree i),

R i =-- (the rank o f  Ai = (the number of the admissible
sequences I of a degree i  such that t(I) 2),i)

R i (t) =  (the rank of the image (pi kA i') in  Ai),

le i (t) .  (the rank of the image .991 (A1- t) in  A i I p i Ai - 1).

An admissible sequence 1=--  i 1 ,••• , ir ) is called to be o f a  type)
(i, s) i f  deg I-=1  and if there exist integers j  and t  such that

21 +1, 1 S j_< r  and t s+ (r —  j)  . Obviously an admissible
sequences of a type (i, s) is of a type (i, s') for s' S s .  Denote that

ryi (2s +1) -= (the number of the admissible sequnces of a type
(i, s)),

+1 )= (the number of the admissible sequences lo fa   type
(i, s) such that t(I) 2).')

1 )  We consider that the empty sequence () satisties the condition t(/) 2 and
has a type (0, s ) for arbitrary s.
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For an admissible sequence 1 = (j
1 , •••, i r )  of a type (i, s), we

define an admissible sequence cr2 s± 1 I  as follows. Let j  be the least
integer such that i ;  has a form 2 '+ 1 .  Then t— (r— j) > .s .  For,
there are t '  and such that i i

, = 2 " + 1  and t'— (r— f) s,
then 2 '+ 1 = i ,> 2 j / - ji i

, > 2 1/ ±1 - 1 + 1  implies t— (r— j)t' —  (r—
Then we set

(2. 2) tre + ,/= + •••, 1r +2t -  ( r - j ) ,  2 1 - ( r - j " , • • •, 2').

It is easily verified that the sequence 0-2s+ 1 / is admissible.
For an admissible sequence 1-=-(i„  •••,i r )  such that w e

define a  sequence q-e _,/ as follows. Let k be the largest integer
such that i k > 2 s + 1

. W e  set k = -0  i f  i ;  <2s+r - 5 ±1 fo r  1 < j < r .
Now we set

(2. 3) , k+1, ik , 2 s + r— k  ± 1 ,  i - 2 s + r — ( k + 1 ) ,  . ."  4 - 2 1

where we omit ik+k-2s±r-(k+n) i f  1k+n,2s+r-ck+k). It is easily seen
that ,7-2 , 1I  is admissible if and only i f  i k  +2s+r - " - ' +1.

Lemma 2 . 1 .  i) L e t I  b e  an admissible sequence o f  a  type
(i + 2 '+ 1 ,  s ) .  Then t(o-2s+ 1 I ) 2', .1-

28+ 1 (0-2s+ 1) = I  and cr,s+ J  is not a
type (1 , s+1 ). I f  t(I) . 2, then is not a ty pe (i, 1). I f  t (I )  2
a n d   then ry e,' is not a ty pe (i, 0).

ii) Let I be an admissible sequence of a degree i  which is not
a type (i, s+1 ) and which has a last elem ent t(I) 2s. Then rr,s,I
i s  an  adm issible sequence of a type  ( i+2 '+1 ,  s )  and w e  have
cr2s+1(7 2, d 1 I)= 1 . Furthermore t(r 2s± 1 I ) 2 if  I  is  n o t a type (i, s).

Pro o f . i) Let 0-2,, /  be defined by (2. 2). Obviously t(0-2, 1I)
W e set 10-2,_,1f l ,  t — s +  j - 1 = r '.  Since (2 '+1 )/  -=--

2 ' "  + 2 , ••• , r—j, w e have
2 n ± r / - ( i + n - 1 ) + 1 , Also t i _1,0-2 1 - , ; 

+ ._ 1 (0- 2s4 J )  = i i + n -1-2t  n

s_ i ) j _ i  > 2(2t + 1) >2t+ 1 =  2 s -  r ' - ( *1 - 1 ) - " .

Then it is verified directly from (2. 3), where j - 1 ,  that T2 s 1

(0- 2s+1I) = I .  Next consider the type of 0-
2s , / .  For 1 < n  j - 1 ,

in  is not a  form 2P  +1 . Since i i + „ < 2 ' - n ±  n=-1, •••,r—  j, if
i 3 + +2 t - n-= 2 P + 1 ,  t h e n  i j + „=-- r ==1 and p=t— n=---t— (r— j). In
this case, however, the condition of the type (i, s+1 ) is not satis-
fied, since p = s + (r'— (r-1))  < s +1 +  (r'—  (r —1)) . T h e elements
2t - ( r- j) - 1 , •••, 2° are not forms 2P +1 except fo r 21 = 2 °+ 1  whence
s=--- 0  or 1. When s---- 0, we have 2° +1= t / - 1 ( a 2 s + I I )  and this does
not satisfy the condition of the type (i, 0 ) since 0 < 0 +  (r'—(r' —1))
= 1 .  When s = 1 ,  w e have 2°+1 = tr/(0-2, + J ) and this does not
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satisfy the condition of the type ( i ,  1 )  since 0 < 1 +  (ri —0 = 1 .
Consequently (re,/ is not a type ( i ,  s + 1 ) .  In the case
the only element o f a  form  2 P + 1  is  2 ' = 2 ° + 1 . Then 0-2 4 1 /  is
not a type (i, 1 ) and further not a type (i, 0 ) if s + 1 .

ii) L e t 72 , 1/  be defined by (2. 3). Since /  is  n o t a type
( i , s+ 1 ), i n = 2 P + 1  implies p < s+ 1 + (r— n )= s+ r— n + 1  and i„ <
2 'n 1 . From i k > 2  we have in  2 k - ni k > 2 ‘ + '  for n <k.
Therefore i „  is not a  form  2P +1 fo r  1 < n  S k .  In particular,
1k+ 2 s + r - k + 1 + 1  and this shows that g- ,s+ ,/ is admissible. Since 47-2 , 1I)
S r + 1 ,  w e  have tk+ i(TSs_■11) = - 2 s + r - k  + 1  and s + r — k s+(1(7 -2411)
— (k +1)) . Thus .7-2 , , /  has a type (i + 2s+ 1, s). Since k ± 1  is  the
least integer such that t k + 1 (T2s , / )  is of a form 2P +1, it is verified
directly from (2. 2) that o-2 , , 1 (72 , + 1 I)=--- I .  Next suppose that t(T s + J )
= 1 , then 1 k ,-= 2 s+ r - ( ')+ 1 , k+n+1=-2

 ( k + n + i ) ,
i r  

= 2 s  for somes ± r

n, and this indicates that I  has a type (i, s). Therefore t(T 2s 1/)>_ 2
i f  I  is not a type (I, s). q. e. d.

L em m a 2.2.i )  7 1 (2)+7 1 2 (2) = •- ai
ii) Ti(2 ) 5 -',+5(5)  =

iii) +7i+3(3) = ,
iv) 71 (3) +7i+2(2) =
y ) (3) - F ,(3) =  d i  •

P ro o f . i )  1 ( 2 )  is the number of the admissible sequences
/ of a  type (1+ 2, 0 ) such that t ( I ) . . 2 .  a i - 7 1 (2 ) is the number
of the admissible sequences J  of the degree i  which is not a type
(i, 0). By Lemma 2 .1 ,  i ) ,  ŒBI  is not a type (i, 0 )  and T2 (0-2 /)=--/.
By Lemma 2 . 1 , i i) , T j  is an admissible sequence of a type ( i± 2, 0)
such that 0- 2(72J)= ./ and t(T2 J ) > .2 .  Therefore c r ,  and T 2 are the
inverses of the others, and we have T,+2(2) -- --- a i

— ryi (2).
ii) Let I  be an admissible sequence of a type (i + 5, 2) such

that t(I) 2. Let J  be an admissible sequence o f th e  degree i
which is not a type (i, 0) and which satisfies t ( J ) . 2. By Lemma
2. 1, i), 0- 51 is not a type (i, 0 ), rr,(0-51.)-= I  and t(0-5 1) 222 .  Since
J  is not a type (i, 0 ) , we have t(J)= = 2= 2°+ 1  and t ( J )+ 3 = 2 J+ 1 .
Thus J  is not a type (i, 2 )  and t( j).> .4 =  2 2 . Then, by Lemma
2 . 1 , ii) , T ,J  is an admissible sequence of a type (1+5, 2), J
and t(T 5 J ) 2. a-, and T 5 shows the equality 1 1 + 5 (5) = « i —Ti (2).

iii) Let I  be an admissible sequence of a type (1+ 3 ,1 ) .  Let
J  be an admissible sequence o f a  degree i  which is not a type
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(i, 2 ) and which satisfies t ( J ) . 2 .  By Lemma 2. 1, we have that
cr,/ is not a type (1, 2), T 3 (0-31) =  /  and t(G-31) 2  and that T I  is an
admissible sequence o f a  typ e  (1 +3, 1 )  and  0-3 (7-

3 J) ----J. Then
1_3(3) -= (5 ).

The proofs of iv ) and  v )  are  similar to the above one and
omitted. q. e. d.

Lemma 2. 3. y 1 (2s +1) RAT + 1 )  a n d  AT + 1 )  <  (2s +1).
Proof . We order the sequences of A 1 b y  the following rule.

••• (i l •  •  •  7 i f  11 = • • • 1 i 1=  j ,  and ip >  jp  for
some p .  First we prove that for an adm issible sequence of a
type (1, s) the following formula holds :

(2. 4) 4)2s+1(cre+1i) E  4 f o r som e I k  < 1 .

Let CY 2 .5± 1 I  be given by (2. 2), then its subsequence (i, ± 1 + 2 ' ,
••• , 2 ') satisfies the condition of Lemma 1 .  3 .  By Lemma 1. 3,

P2 3 +1 (Cr23-1-11)( j 1 ,  • • • • i5 _1 ) P2s +1 + 2 t 1 , ••• , 2 5)

E , ii_ i,ak ,bk, ak

for some / k• " i .f , ak,bk, •••) < I .  Now assume that there
is a relation (-P ( /  + T1=-0 for some / , > / 2 >  ••• > /„ ., 2s+i scr2s+1-, •-• • cr2s + i- n ,

Then by (2. 4), /, + 0  for some J„,<I, and this implies a
contradiction I =  0 .  Therefore P 2.9 1 (0-

29 , / )  are linearly independent
for all sequences /  of the type (i, s). Thus 7 (2 + 1 ) S R i (2' +1).
Another inequality Fy- ; (2' + 1) ,4i (2 '+ 1 )  is proved similarly.

Proof. o f  T heorem  I. B y  (1. 6), we have that 45 ,09'2 =  °  (j52
fp5 =2.p2 09;.3 -.=- '453 0p 3 -= O . F r o m  .-o2  ( p3 0 , w e have 952 (Ai - 2 )

9)-2- '(0). Thus R i (2 )  < c t i - gi+  2 (2). By Lem m a 2 .  3  an d  2. 2,
s i (2) .ryi  (2) =- a , -  ,± 2 (2) >_.ce,- 13 1+2(2 ) . Therefore O i  (2) = (2)
and this implies that q)2 (A 1  2 ) -Oi l  (0) . Then the exactness of the
sequence i )  of Theorem I  is proved. The exactness of the other
sequences ii) -v )  is proved similarly. q. e. d.

Corollary. 71 (2) ,  (31 (2), q i  (2) = )3 i  (2) , yi (3) =  g i  (3 ), 1 ,(3 ) =  i (3)
and 5' i  (5) =  ( 5 )  .

Define a  homomorphism : A*->11.* by the formula y o (i„
• .•  4 )=4 1 , j 1 , ir)* Then

(2. 5) P:1̀ =  Pt° ( 4  •
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By (1. 6), we have Pnii •• • , 0 for odd i  a n d  Pt(ii • • • , ir)
=  + 1 , 1

2 ,  . •  •  ,  ir )  for even i .  Then it is easy to see that the
sequence

P P  .  PPA' A.'+'

in  exact. Also we have an exact sequence

PiA' / 1A '' Ai+' I p,A i
for i 1. Define subgroups f l; and k  by setting

13; = A i  and Ï = A' 1 .

B y (a  5 ), P t ( M  I = 3 '  a n d  Pt (f3 KJ k+ 1
• S in c e  Pt - Pt = 0,

A*, A* I p,A*, Bt =-- E B  an d  Bp= E .fi; a re  cochain complexes
with respect to the coboundary operator 8 = çp. From the exact-
ness of the above two sequences, we have

(2. 6) H(A i) = 0 f o r  i O,
H(Ai I 0 f o r  i

From Theorem I and (2. 5), we have an exact sequence

0 --> --> A ' —> —> 0
which is compatible with (p f .  This induces the following cohomo-
logy exact sequence :

8*
••• ---> H(A i) --> Half:+ 2 ) —> H(Ai+1 )  — •• .

Then, from (2. 6), we have an isomorphism
(2. 7), i ) S * :  H a j n  H(B ) f o r all i .

Similarly we have the following isomorphisms :

ii) 8* : H(13- 1+4 ) H(B ) f o r  i 2,
iii) 5*: H (B 4 2 ) H(1-3) f o r  i 2,
iv) S*: H(B/i+1 ) H(13;) f o r all j,
y) 5*: H(.f in H a -3D f o r  i 2.

From (1. 6), we calculate easily that M Z y  and
B3 =-- T3 3 B = /3-  = „73.• = /73 = =  =  fjg = o . Then we
obtain the following theorem by the isomorphisms of (2. 7).

Theorem I I .  L et B i be one of  .n  B , /3- t, .1A  and .13 . Then

H(Bi
Z, for (mod 4) and i 2 ,

)
( 0 otherwise,
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where X takes the following values:

B i = I M

X  = 0 1 1 3 1  or 3  .

W e note here the following representatives of the generator
of H(Bi)

H ( B )  H ( B r ')  and H(BV`+1 ) H(B 1)

k z l
k
k
k = 4

(3, 1) (5) (3) (3)
(5, 2, 1) (9) + (7, 2)( 5 , 2 ) ( 5 )
(9, 2, 1)( 9 , 4 ) ( 9 ,  2 )  +  ( 7 ,  3 ,  1 ) ( 5 , 2 )
(9, 4, 2, 1) (17) + (15, 2) + (13, 4) (9, 4, 2) (9) + (7, 2)

+ (11, 4, 2).

§ 3 .  Some tables and lemmas.

In the following, several practical values of pa -images are
calculated by (1. 4).

The table indicated at the end of the previous §  follows from
the following diagram :

Pt
- >

99t(2) (3) (4) (5)
\ 9 9 2 \ 02

(2, 1) (3, 1) (4, 2) (5, 2)
\ 0 2 \952

(4) (5) (4, 2, 1) (5, 2, 1)--->
\ 0 2 \ 0 2

(8) + (6, 2) - - > (9) + (7, 2) (8) + (6, 2) (9) + (7, 2)
(3. 1) \03 \ 02

(8, 2) + (6, 3, 1) ---> (9, 2) + (7, 3, 1) (8,4) (9,4)--->
\02 \992

(8, 2, 1) (9, 2, 1) (8, 4, 2) (9, 4, 2)
\ 0 2 \992

(8, 4) (9, 4) (8, 4, 2, 1) - - > (9, 4, 2, 1)
\ \  -02

(16) + --• (17) + ••• (16) + ••• - - > (17) + •• •
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The im age of the homomorphism .0 4 : A* A* I .fp 1 A * contains
the following linearly independent elements :

(4), (i, 4) for 8; (5 ) , (i, 5) for i 10; (6 ) , (i, 6) for 1 - 12 ;
(7), (i, 7) for i 14 ; (6, 2), (1, 6,2) for i 12;
(9), (7, 2) ; (10) + (8, 2), (7, 3) ; (11) + (9, 2), (9, 2) + (8, 3)
(10, 2), (9, 3) ; (13) + (10, 3), (11, 2) ; (13, 2) + (12, 3) ;
(13, 3), (10, 4, 2) ; (17) + (15, 2), (11, 4, 2) ;
(18)+ (16, 2) + (12, 4, 2), (11, 5, 2) ;
(19)+ (16, 3), (17, 2) + (16, 3) + (12, 5, 2), (13, 4, 2) + (12, 5, 2) ;
(18, 2) + (14, 4, 2), (17, 3), (13, 5, 2) ;
(21) + (18, 3) + (14, 5, 2), (19, 2) + (15, 4, 2)

Consider a  homomorphism q ) 4 -> (.7 9,A* + g),A*) defined
by q .  F or the degrees less than 22, (79, is given from 0 ,  by
adding the following relations generated by (2) -= ; (*, *, 2) =
(*, 2) = (2) =0, (*, 3) = (3) =0, (*, 5) = (5) ---- 0, (9 ) = 0, (9 , 4 ) = 0,
(17) + (13, 4) =0, (17, 4) + (15, 6) =0. Therefore th e  im age  o f rp4

contains the following linearly independent elements (representa-
tives)

(4), (8, 4), (i, 4) for 10 ‹ i ; (6 ), (i, 6) for 12 <1 1 5 ;
(7), (14, 7) ; (10), (11), (13), (18), (19), (21).

Next consider the kernel of (7/5 4 A* -> A* (p ,A * . Since -0 4 (2, 1)
= (2, 1, 4) ----- (2, 5) 0 , -0 4 (7) (7, 4) = 0 an d  (7}4 ((10) + (8, 2) + (7, 3))
=(10, 4) + (8, 6) + (7, 7) = 0, th e  kernel contains (pc2 ,,,,4*+ p, A*
+ 99 0.0)+(8,2)+0 Since q), : A*1991 A*-- > A* is an isomorphism into
and since (pi° : ,  we have from Theorem I
(3. 2). The sequences

R2,i)A* - - >  ,

P 2 P (5 .1 )A* A*Iip,A* A*,

and 0 3 99(3,1)A* A*/99,A* A*

are exact. The rank of the image P(t,i)(A i l  e q a l s  to 13 JO.
I n  A *I(p ,A * w e  h a v e  th e  following linearly independent

elements :
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p7 (2) = (9),7 7 (4) = (11) + (9, 2), p, (6) -= (13) + (10, 3),
p 7 (4, 2) = (11, 2) ; co, 00)+(8.2)+(7.3) ( 2 )  =  ( 1 0 ,  2 ) .

Since ç1(2.1)A * CPiA * , the above images of p, and oo, (10)+(8.2)+(7,3) are
independent o f P(2,1) A * .  Let 79 i (4) and e i b e  the ranks of the
image -0 4A 1 - 4  and the kernel of FO, respectively. Then the following
table follows from the above results.

i
 = 4

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

g i (4) 1 0 1 1 0 0 1 1 1 1 1 1 1 1 3 3 2 3
4 1  0  1  1  1  1  2  2  2  3  3  3  4  4  5  6  6  7

Ri _4(4) 1  1  1  1  1  2  2  2  3  3  2  3  4  4
1  1  1  2  2  2  3  4  4  5  6  6  7  8

8 i _9 (2) = 1  1  0  1  1  1  1  3  2  2  2
8 i-s -  0,_9(2) 1  0  1  1  1  1  2 .

Since (4, 4) = (6, 2) + (7, 1), we have 454 0(7)4 = 0. By a  similar
argument to the proof of Theorem I, we have

Lemma 3 . 1 .  T he sequence

(P4 .
As - 4 199iAi - 5 I  ( P i k '  +q),Ai - 2 )

i s  ex act f or i < 2 2  and the k ern el o f  -04 i s  g en e r a t ed  b y  (2, 1), (7),
(10) + (8, 2) + (7, 3) f o r i< 2 2 .  In the above table the equalities hold.

It seems that this lemma is true for all i.
The image of a homomorphism 8 : A* --- > A*1 (q),A* + q),A*), de-

fined by q , the following linearly independent elements :

(8), (10), (11), (12), (13), (14), (15), (12, 4), (13, 4), (18),
(14, 4), (19), (15, 4), (20) + (16, 4), (14, 6), (21), (15, 6).

By adding relations generated by (4) =- 0, we see that the image
of a homomorphism p 8 : A *  A*/ ((PA * + (P2A* +P,A*), defined by
998 , contains the following linearly independent elements :

(8), (12), (14), (15), (20),

Let fj ; (8) and /4 1 (8) be the ranks of the images (798 (A1 - 8 )  and
j 8 (A 1 8) respectively, then we have the following table :
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1  0 0 0 1 0 1 1 0 0 0 0 1 0
a i _8 - S i _8 (2)= - Ri _3 (5)--- 1 0 0 0 1 0 1 1 1 0 1 1 2 1

=  r( ._2(8) =a i-16 - g 1 0 1 1 1 1.

Since q)8 (1) (9) =P2((4, 2, 1) + (7» +P1((8) + (6, 2)), p 8 (2) (10)
+ (9, 1) =P4(4, 2) + P2 (8) +p,(7, 2) and since p8 (8) (15, 1) + (14, 2)
+ (12, 4) =P4(12) +p2 (14) +p 1 (15), we have

'08(P1A*  + P,A * ) '02(P2(A*)) = 0 .

Then we have the following lemma by a  similar argument to
the proof of Theorem I.

Lemma 3. 2. The sequence

. . 4)8 .
0 -> Ai - 1 6  I 9 9 ,Ai 1 ( P i k  + ),A t - 1 °) A' 1 (P .
+P 2 111-2 4" 99411i - 4 )

is exact fo r  i < 2 2 .  In the above table the equality holds.
Remark that the kernal of contains non-zero elements (4, 2),

(15), etc..
We introduce a Bockstein homomorphism

8 8 8
y -  •  2 ,-. 1 kernel   cokernel, r1 ,

8asfollows. A cohom ologyclass eernel

i f  there exist integral cochains a E Ci (X, A )  and a' E Ci+1 (X , A)
such that aa 2 r a  an d  a  represents a. A  cohomology class

8
E H1 +1 (X, A, Z 2) is in the 2 _1 -image if there exist integral cochains

b E Ci (X, A) and b' E 0+ 1 (X, A) such that 8b 2 ' b '  and h' represents
8 8 .R .  The 2 _1-cokernel is the factor group H1 -I- 1 (X, A, Z 2)1( 2 ,-zmage).

8Let a and a' be integral cochains as above, then - a is defined

as the class represented by a'. Let a, be another integral cochain
such that sa1 ==2"a1' for some a l ' and a, represents a. Then a- a,
-----2b-1-8c for some integral cochains b and c. 2"(a'-a' 1)=-8(a-a 1)

implies that 2r- '(a' Thus a' and a l '  represent the
8same class o f - 8----cokernel, and a Bockstein homomorphism — ..

defined uniquely. The following properties are well known.
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(3. 3) i) -kernel ----the

fi) —
8

-im age/ 
2 r ( 2 - 1
aiii) = S q1: Hi(X , A, Z 2) -> Hi±i(X , A, Z2) •2

8 8iv) The naturality  f* o y
 y o f *  holds for homomorphisms

f *  of cohomology groups induced by a m apping f : (X, A)--->(Y , B).

y )  8* y .8 o 8* f o r coboundary homonzorphisms  8: Hi (A ,

Z 2)->H 1'( X ,  A, Z 2).
8 8vi) y . = 0 .

vii) Let H i (X )  be f initely  generated. T hen the rank  of the
image of i s  the number of direct factors of H i (X )  w hich are
isomorphic to the cyclic group Z 2 r  of the order Z .

Denote by 1-g-,(X , A, Z 2) the factor group —8  -kernel 1 (L im ag e ) .
8 2r 2r

B y  (3. 3), —2  defines a  homomorphism of 1-Tt;--1)(X , A, Z 2)  which

will be denoted by the same symbol (1-A ) =1 -1*)

8(3 c. 4)
2

8  

M -1)(X , A , Z2) H W I) (X , A, Z2) okenral.2"- 1

8By regarding  a s  a  cobundary operator in  H )(X , A, Z2),
we see that M.+1)(X, A, Z 2) is the cohomology group of H ) (X , A, Z2).

Consider the cohomology exact sequence for a pair (X, A ):

i * i * 8*
•••-->Hi (X, A, Z 2 ) --).11i (X, Z2)---> Hi (A, Z 2) — >Hi±i(X , A, Z2) - >. .. •

The following lemma is a modification of theorems in [6], §3.
L em m a 3.3 . i )  For a E Hi (A, Z 2) and 3 E TP(X, A, Z 2) , assume

th at -8- 3 =  {8*a} . T hen there is an element "oi E Hi+1(X , Z 2)  such
that i*re S e a  and 

 8  

,C1*13) (r2r+
ii) For a E Hi (A, Z 2)  and /3 E  +1(X , A, Z 2), assume th at 8*a

and g E —
8  

-k ernel. T hen  there  are elem ents ei EHi+i (X, Z2).
8 8  ,

and 7 EIF+2(X , A, Z 2) such  that i*ed S q l a ,  y 3 =  { 7 }  a n d  
=  f j* 7 1  ( r  2).

kernel o f  
2 '  

.

- image) . t h e  image of —
8  

•
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iii) For a E H (A, Z2 )  and 3  E Hi -"(A, Z2 ) ,  assum e that (8*a)2r

= { 8 * a } . Then there are elements ei E Hi ± 1 (X, Z2 )  and 3' E Hi+2(X, Z2)

such that i*ek i*S =-- S O  and (r 1).

Pro o f . i) Let a E Ci(A) and b  C 1 (X, A ) be representatives of
a and 3  respectively such that Sa =2a'+b 1 and  8b= 2rb ' for some
a' E Ci+i(A) and b„ b' E Ci + 1 (X , A), then a', b, and h' represent Sea,

8*a and -
8

3  respectively. From the assumption I le= {8*a} , we2r 2r
have b1 -b ' --=-2b 2 + c' + 8 c, an d  8c for some c , c , E C i  (X , A)
and b2 , c' E C" -1 (X, A ) . The element b  + 2 ( c  - 2 'a  + 2 ' c l ) represents
j * 3 .  From 8 ( b  + 2 ( c - 2 'a  + 2 ' c i )) 2 r b '  +  28c- n a + 2 r8 c ,  =  2r (b,
- 2b,- c ' -8 c,)+ 2 r c ' - 2r  (2a/ +b,)+2 r 8c, - 2 r +1 (b2 + a ') ,  we see that
8 

2 r  

(j * 3) {ik} for an element à represented by -  (b2 + a ' ) .  Obvi-

ously i* -cé ----Se ( -  a ) , - S e a .
ii) L e t a ECi(A) an d  b EC 1+1 (X, A ) be representatives o f a

and 3  respectively such that 8 a  2 a ' + 1 ), and 8b=-- 2rb' for some
a' E Ci+l(A), b,ECi+ 1 (X, A ) and  b' ECi + 2 (X , A ), then a', b ,  an d  b'

represent S e a, 8*a  and
8  

r

3  respectively. From the assumption
2

8*a---- 13, we have b 1 - b = 2 b 2 + 8 c for some b, E Ci + 1 (X , A ) and C E
Ci (X , A ). From 28 (b2 + a') = 8(b 1 - b  - 8 c )  +  (8a - b1) =  - 2r (
we have 8(b2 + a') = 2 " ( - b ' ) .  Let ei and 7 be represented by b2 + a'
and b '  respectively, then we see that i*&_---secy, 

a 
 3=  171  and

a
2r

2 r_ia { - i * 7} I i * 71.
iii) Let a ECi(A) and b (A ) be representatives of a and

3  respectively such that 8a + a ,  an d  8b= 2b' + b , fo r some
a' ECi±l(A), b' E Ci±2 (A ), a, E C i' l (X , A )  and  b, E Ci±2 (X, A ) .  Then
a ',  b ', a , and b ,  represent S e a ,  S e/9 , 8*a  and 5 * 0  respectively.

From the assumption (8*a) -=18*31, w e have 8(12 = 2rb2, a2 -

-=-2c+8c 1 , b 2 - b 1 =-2d 1 + d'+ 8d 2 and 2r-1 d' = ad for some a2 , c, d 2 , d
E Ci+l(X, A ), c, E Ci (X, A ) and d', d, E Ci+2 (X, A ) .  From 28(a' +2"b
+ d + 2 r - 1 d , -  c )= 8 ( 8 a -  a i ) + 2r(2b + b1 ) + 2 rd '-  2r(2d, + d' + bi -  b2)
- 8 ( a , -  a , -  8 c,)=  2r + 1 (b' -  d 1)+ (2 r b 2 - 8 (12) =  2r “  (b' - d i ), w e  have
8(a' + 2r - 1 b  (d +2r+12 d 2 -  c)) = 2 r (b' - cl,). Let Cc and S be represented
by a' + 2 'b + ( d + 2 ' d 2 - c )  and b ' - d ,  respectively, then we see

that i* -ek =  S ea +2r -10, -=Sq'R and =  {$} . q. e. d.
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Remark that the above lemma is valid for a fibre space in
the following manner. Let X  be a fibre space over an m-connected
space B  having an  n-connected fibre F .  Then, for i r n + n + 1 ,
we have isomorphisms

p*  : Hi(B , Z 2) Hi(X , F, Z2) .

By the above isomorphisms, Lemma 3. 1. is valid for the exact
sequence of the fibering :

A*
••• ---> Z2) H'(B , Z 2) 4 .  Hi (X, Z 2)---i--->*  H i (F, Z 2) ----> ••• ,

replacing H'(X , A, Z 2)  by Hi(B, Z2), j*  b y  p *  and 8* by A*.

§ 4 . Application to the stable homotopy groups of the sphere.

Let S N  be an N-sphere. Consider a  CW-complex K k , k  2,
whose (N+k)-skeleton l a ' "  is S N .  By attaching cells of dim.

.N +k  to K k ,  we can construct a  CW-complex K ,„ such that
Kf:T=','- 1 -=----SN and mi (K k „).-=-- 0 for i N + k - 1 .  Repeating

this construction from KN-=- --  SN ,  we have a sequence of complexes

••• Kk ••• SN

such that K ,',f4 ' = S N  a n d  z i (K „)=0  fo r i N + k .  It is easy to
see that the injection j :  S N C K , induces isomorphisms

i * : r  1 (S ') i (Kk ) f o r  i < N +k  .

Let Y k  be a  space of the paths in  K k  starting in  S N .  S N  is
naturally imbedded in  Y k a s  its deformation retract. We have a
retraction (fibering)

P o :  Yk SN

by associating to each path the starting po in t. Also associating
the end point, we have a fibering

p , :  Yk K k

in  th e  sense of Serre E n  a fibre X k of which is a  space of the
paths in  K k starting in  Si" and ending at a point. The restriction

p ' : X k  • S N

of p o on  X , is also a  fibering. Consider a  diagram
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7ti( Yk) \\ P 1 *
A

z i + 1 ( K ) '  i ( X k ) I A *  )  i ( K k )

14\ 
n'i(SN) /1*

then it is easily verified from the conditions on 7ri (K ,) and i*  that

7ri(x k )1
0 f o r  i <N ± k  ,

i(S N ) f o r  i . N +k  .

This indicates that X k  is  an (N +k -1)-connectiv e f ibre space
over SN.

Since X k  and K k  are  (N +k -1)--- and (N -1)-connected respec-
t iv e ly , w e  h a v e  th e  following homology exac t sequence for
i <2 N +k - 1 :

a
••• Hi (xk ) H ( K k ) - - - - - H i_ i (x k ) •

Since H i (Yk )= - Hi (SN) ,  0 for id= 0, N , we have isomorphisms

(4.1) a* : H i (K k ) •--, -- H i _ ,(X k ) f o r N d =i <2 N +k -1 .

Similarly we have isomorphisms

(4. 1)' 8 *  :  H i'(X k , Z 2 ) (Kk , Z2) f o r  N + i S 2 N + k - 1 .

Combining (4 .1 ) to the Hurewicz isomorphism, we have
(4. 2) I rN + k (S N ) N+k(Xk) '". ' ' ' H N + k (X k ) H N + k + 1 (K k )

" f o r  1 S k < N - 1 .
Remark that (4.2) is proved directly as follows :

a
H N + k + i(. k ) iiN . , •k±i( , k , 0 -  ) 7rN - rk ,1 ( K k , ) ZN_Ek .

Let k k ,  be a  space of the paths in  K k  which start in  Kk-Fi.
Then k k ,  is a fibre space over K k  containning K k ± i  as its defor-
mation retract. Let F k  be a fibre of this fibering and consider a
diagram

z i+ I ( K k ) — * n (F ) 7 r i( k k + i ) - - - -  i ( l f fr) •••

1i*

z i ( K k + i ) n ' i ( S N ) .

Then it is verified easily from the conditions of 71" k ) ,  I r i ( K k + i )

and i*  that
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7rN+k(SN ) f o r  i N+ k ,
zi(Fk) 0 f o r  i N ±  k .

Therefore F k  is  a n  Eilenberg-MacLane space of the type
(7rN+k(SN ), N+ k) and Hi (Fk , Z2) 7-L- -  H'( 7t N+k(SN ), N+ k, Z 2). Since Kk
and Fk are (N -1 )- and (N+k-1)-connected respectively, we have
the following exact sequence for i <2N+ k —1 :

(4.3) • • • (Kk , H'(Kk-F,, Z2) .- ( 7t N+ k(SN ), N+k, Z2) --> .

Now we write K k  K k (N )  and consider K k (N + 1 ).  The suspen-
sion S(Kk (N )) of K k (N ) is a  CW-complex whose (N+k +1)-skeleton
is SN4 4 . Since z 1 (K k (N+1))=-- 0 for k +1, we can construct
a  mapping

: S(K k (N )) K k (N + 1)

such that f r  is identical on the (N+k+1)-skeletons. It is easy
to see that the sequence

Stk IKk(N), fV v ) }
satisfies the conditions of (1.1). Then the stable groups

A i (% )  a n d  k (Stk Z2)

are  defined. By th e  convension (1. 2), we may regard that for
sufficiently large N,

Ai(Stk) H i+N (K k (N )) H i+N (K k )
Ai ( k ,  Z 2) Hi+N(Kk (N ), Z 2) = Hi+N(Kk , Z2) .

Then from (4. 2) and (4. 3), we have

(4. 4) i) 7r k " '" Ak+ " )  •

ii) The follow ing sequence is exact.
p* i* A *

• • • —> A 1 ( ,k  , Z 2) — >  A' ( a k i , z 2 ) - - - - >  A ' k  (7r  k ,  Z 2 )  - - - - - ) '

1 ( a k , • • •  •

T h e  squaring operations i n  A*(Stk , Z2) =  E Ai(ak , Z o  and
A*(7rk , Z 2) =  E Ai(nrk, Z2 )  define naturally a  (left) A*-module struc-
ture of A*(ft k , Z2)  and A*(z k , Z 2 ). T h en  the above exact sequence
is one of A*-homomorphisms, since the squaring operation com-
mutes with the homomorphisms of the sequence.
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The Bockstein homomorphism 
8  

is also defined naturally in2r

A*(R, , Z2)  and A*(7-e k , Z2 )  and it satisfies the properties of (3. 3),
i)-vii) by replacing H  by A 1 , H i b y  A i and  8* by A*• T h e n  the
following lemma follows from Lemma 3. 3.

L em m a 4.1. i )  For a E A "(7r,, Z 2 )  and 13 E A' (Stk  , Z2 ), assume
that —

8

{A*a} T h e n  t h e re  i s  an  element2r
psuch that -= Sqla and

8

- ( *13) ,  {a}.
ii) F o r  a E A i' (7r k  ,  Z 2 ) a n d  13 E A i  1 1 (-Stk,

A*ce r > 1  an d  /3 E 2
8
_, k ernel. T hen there

A i'l(a k , , ,  Z 2 )  and  7 E .71; : 2 (Sek  , Z 2 )  such  that i*I'x
8and  2 ,,_,ek Ip*71.

iii) F o r a E k  (7r k  ,  Z 2) an d  3 E Ai - "  (7r k  , Z 2 ) ,  assum e that
z1-

2

8
- (  *a) = {A*,8}.  T hen there are elem ents"i-e e (ak, , z2) and

E A i+ 2(sek+ , , z2 ) s u c h  th a t  i* 'ck = Sq1 c e+ 2 ',8 , -= SO  and
8
2 r

a = {01.
By [3], 7i- k  is a finite group for k  + 0 . Then by [4], A 1(7rk , Z2)

is isomorphic to the sum of some A1 and  A' I + A/- 1 1(pi Ai - 2 .
In  the following lemma, we denote by u , u 0 EA°(7rk , Z2 )  and

u, E A1 (7rk , Z 2) t h e  fundamental elements which generate direct
summands A * and A* l p ,A * .  Note that Sq 1u 0 =-- Sq1 u, = 0 .  Consider
the exact sequence of (4. 4), ii).

L em m a 4.2. i )  A ssume that A*Sq2u -= 0  and that Sql : p*Ak 4  5

( a l e ,  Z2) ----->P* A k + 6 (ak , Z2) is  an  isomorphism into. T hen there is an
element y  o f  A k 2 ( S t k - 2 ,  Z 2 )  such that i* v= S q 2u , S ev -= -0  and  that
the A *-submodule generated by y  and by the image of p* is isomorphic
to A*1(p3A*- - P* Aflak, Z2 )  (direct sum  of  A *-m odules).

ii) A ssum e th a t  A*Sq3u = 0  an d  th a t  Sqi : p*Ak -H(Slk  , Z 2) —

p*A k + i-i(s -e k ,  z 2 ) ,  i =4, 8, are isomorphisms into. T hen there is an
element 2) of  Ak + 3 (ak+i, Z2 )  such that i* y= S q 3u, Sqlv== Sev=---0 and
that the A *-subm odu le generated by y and by the im age of  p *  i s  iso-
morphic to A* I (cp,A * +(p,A *)+ p*A *(a k , Z2).

A ssum e that A *S eu 0 = 0  (resp . A *S eu i = 0 ) an d  p*Ak.+6

(Stk, Z --= P*Ak+,  (tq k  , Z2) ----- 0. (resp . P *A " 7 (a k  Z2)-= P* Ak + 8 (Stk , Z2)
=  0 ). Then there is an element y  of Ak  + 5 (Stk+i, Z2 )  ( r e s p .  A k + 6 (ak+i, Z2))
su c h  th at i*v u o  ( r e s P .  u 1), S q ly  =  S q 2v =  0  an d  th at  th e  A*-

o f  A1 + 1 (Stk +2, Z2)

Z 2 ), assum e that
are  elements i  E

= S e a ,  —

s
{7}

2r
 3
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subm odule generated by v  and by the im age of  p *  is isomorphic to
A*1(q) 1A*+9, 2A*)+p*A*(ak, 2'2).

iv) A ssume th at A*Seu o = 0  (resp. A*Sq 2u 1 =z0 o r A *SeS eu
--=-0) an d  that p*A k - 4 (Stk , Z 2) = 0  (resp. P*A k + 5 (Sek  Z 2) = 0 ) .  Then
there is an element o  o f  Ak + 2 (Stk+i, Z2) (resp. Ak+ 3 (sek+i, z2)) such that
i* v --= Seu o ( r e s p .  S e ll, o r Sq2S eu ) ,  S e v := 0  and  th at the A*-sub-
module generated by v and by the im ag of p*  is isomorphic to A*Ip 2A*
+ p* A* (a k  , Z2).

,  0,  p * A R+7( a k p * A k + 1 4 ( s f e k ,y ) A ssu m e  th a t  A*Seu o

= 0  an d  th at  S e  p * A k+ii ( a k  z  p* Al? +12 kV C  Z2) is  an isomorphism
into. T hen there is an  element v  o f  Ak"(n k ,„  Z 2)  su ch  th at iv
=  S eu o ,  S eS ev  S e v  -= (S q " + S eS e+ S eS e )v  = --  0  an d  th at  the
A *-submodule generated by v and by the im a g  of  p* is isomorphic to
A*1 (P(2,1).4* + (7, 7A*+ P(10)+(3.2) (7 3)A * ) PM * (R k Z 2 ) f or dim ensions
less than 21.

Pro o f . i) From th e  exactness o f  th e  sequence (4. 4), ii),
A*5q2u = 0 implies the existence of an element y  such that i v
--=Sq2u .  Also from i* (S ev )= S eS eu -=  0, we have that there is an
element w of Ak+5(st k ,  z 2 ) such that p*w = S O ) .  Since 0 =S O O )

p*w  is in the kernel o f S :p * A k + 5 (gek, Z2)—p*A k r"(ak ,e
Z2). Thus S e v  p * w  = 0 .  Let A t be the A*-submodule generated
by y and the image of p * .  The formula f ( a u )=  av, c E A *, defines
an A*-homomorphism f '  o f A * in to  A . S ince f/(q),(ceu)) =. aS ev
=0, f '  defines a n  A*-homomorphism f  o f  A* 1 (p,A* into A .
Obviously the composition i* . f : A* IT),A* - .A *  equals to p2 . By
Theorem I ,  i* o f  is  an isomorphism in to . Therefore A * q),A* is
isomorphic to f(A*1(733A *) which is a d irect summand of A .
Since A t P*A*Mk, i * ( f ( A *  I P2A*)), w e have At=--  f (A * p,A*)
+ p* A* (k, Z2).

The proofs o f  ii)-v ) are similar by use of Theorem I, (3. 2)
or Lemma 3. 1. q. e. d.

In the following, we treat A*-module structures of A*(Slk , Z2)
and some Bockstein operators in  it . Then several results on the
stable homotopy groups 7 r , of the sphere are clarified.

Since K = -S N , we have easily

(4. 5) Ai(ft,,, Z2 ) =-- 0 f o r  0 < i .‹ k  .

The complex K , has the on ly non-trivial homotopy group
7 t A K  1) A S") Then K , is  an Eilenberg-MacLane space of
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a type (Z , N ), and we have
Proposition 4. 3. A *(ft„ Z 2 )  is  an A *-module generated by an

element a,E24°(n„ Z 2 ). W e  hav e a relation S ea 1 =0  a n d  a n  iso-
m orphism  A *(„ A * I T , A * .  The B ockstein operators —

8  

are
triv ial f o r r>1 .

The triviality follows from (2. 6) : H(AVp1A 1 - ') -=A 1 ) (St1 , Z2)
= 0  fo r  i > 1 .  A2 (n,, Z 2) =--- {Seal}, A-3 (St1, Z2 )=-{ Sea 1 }  and  SeSq 2a,
---, S e a , .  Then from (3. 3), vii) and (4. 4), i), we have

C o r o lla r y . 2-component of 71-'1= Z 2
From th e  corollary, A*(7r1 , Z 2 ) is isomorphic to A * and is

generated by an element u E A
°
(7r„ Z 2 ). Consider the exact sequence

of (4. 4), ii) for k = 1.
Proposition 4 .4 .  T h e re  e x is ts  a n  e lem en t b , o f  A 3 (a2, Z2)

such that i*b 2 =S q 2u . A *  (2 , Z 2 )  is  an A *-m odule generated by a2
p*a i and b 2 . W e hav e relations S ea,---S ea 2 =S e b 2 = 0  and an

isom orphism  A 1 (St2 , Z 2 ) A ` I  (P iA ' +P,A i
 - 2) e I ." The

Bockstein homomorphisms —

8  

r > 1 ,  are  triv ial except for the case
2r

r = 2  a n d  deg (mod. 4), and in the case the rank  of  the image
aof i s  1 .  In particular, 

s

-S e a 2 = {SA } ,  -
s

-S e a 2
, ----{SeSq2b2 }  and

8  4 4 4
—
4

SeSq 4a2 = {(Sq 8S e+S eS eS e)b 2 }.

Proof . By (4. 5), A2 (St2 , Z2) = 0 .  Then A* : A°(7r1 , Z2) - - >A2 (ft1, Z2)
IS ea i l is onto an d  A*u ,---Sq2a1 . Since b,*ceu aSq2a, ,  A* is

equivalent to 0 2  A* A* IT ,A * . By Theorem I, the kernel of A*
is generated by Sq2u .  From the exactness of the sequence (4. 4),
ii), w e have that A*(se2 , zo is generated by a2 =-- p*a1 an d  an
element b2 such that i*b2 =S q 2u. We see that P*.A6 (ge1, Z2)=- ISq6 a21
an d  p*A 7 (St„ Z2 ) ISea 2 1. Then S e: p*A 6 (St, Z 2 ) —> P*-117

 (S , Z2)
is an isomorphism. By Lemma 4. 2, i) w e have an  isomorphism
Ai(St2 , Z 2 ) A i - 3 1(7)2Ai - 6  ep*Ai (st, , Z2 ) a n d  a  r e la t io n  Sq3b = 0.
Obviously p* A i (al ,  2 ) ,  A/  p*Sea i = 0 and
Sq2a2 =--- p*Sea,-= p*A>14u= 0.

By Theorem I , A* (p3 A * and A*/ (P,A* -1-(7, 2A * ) a r e  (A*-)iso-
morphic to q, ,A * = HI and (7),A* -= B t .  Since -=p f , we have
from Theorem II that

1 )  B i =  C i  Di= means that B *  5 1, B i  is a direct sum of A*-moducles C* =120
and D* -= .
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Z, i 0, 1 (mod 4), i 4 ,
' 1)( 2, Z2) 0 i 2, 3 (mod 4).

8By Lemma 4. 1, i), we see that 
4
— : A ) (. 3 ,, Z 3 ) A ' ( 3 , Z 2 )

is not triv ia l and  hence an isomorphism. Then At.)(St2, Z,) =0
fo r r 2. T h e last assertion of the lemma follows from the
diagram (3. 1). q .  e .  d.

A3 (ST3 , Z 2 )-= 0,1 and A4(St2 , Z 2 )={ Sq 1b2 , Sea,}  , then from (3. 3),
vii) and (4. 4), i), we have

Corollary. 2-component of 7r,-= Z,.
From the corollary, A*(7r„ Z 2 )  is isomorphic to A * and gene-

rated by an element u  of A° (7r„ Z2 ). Consider the exact sequence
of (4. 4), ii) for k -= 2.

Proposition 4. 5. There exists an element c, of A 5 (ft„ Z,) such
that i*c3 =S eu. A *  (S t, Z ,) is generated by p*a, a n d  c , .  We
have relations S q 1 a,-=--S ea,=--Sqlc,=-- S ec,-.--- 0  an d  an  isomorphism
Ai (St, Z 2 ) Ai I (p i Ai - 1 +-p2 Ai - 2 ) e Ai -5 1 (p i A i' +p,A i - "). The Bock-
stein homomorphisms r > 1 ,  are triv ial except for the case r = 3'
and  deg = 0  (mod 4), and  in  the  case  the  rank o f  th e  im ag e  of
8a 8 is 1. In particular, Sea, {c,} , 

8
 Sea, -= {Sq4

8 c3}, a n d8 
— SeSq 4 a3 = { (S e +S eS q 2 )c3 }.8

Proof. A' (sT2 , Z 2)= 0 by (4. 5), then A* : A°(7 2 , Z2) - - > (St2, Z2)
=  {b ,}  is  on to  an d  A*(cu) = a b .  From th e  exactness of the
sequence (4. 4), ii) an d  from  Proposition 4. 4, w e  have that
p*A *M„ Z 3 )  is generated by a,----- - p*a, and isomorphic to A*1(p,A*
+cp,A *) and that the kernal of A*, i.e. the image of i*, is generated
by S e u .  Therefore A*(St„ Z 2 )  is generated by a3 and an  element
c ,  such that i*c3 = S e u .  W e see that p*Ai(St2,Z2) =  { Sqia,}  for
= 6, 7, 10 and 1 1 .  Then Se : p*Ai(St 2 , Z 3 ) p * A i -NST„ Z2 )  is  an

isomorphism if 1 = 6 o r  10. Applying Lemma 4. 2, ii), we have
relations S e c ,=S e c ,= 0  and an isomorphism :  Ai , Z3) ------- Ai - 5 /
(P IA ' + ED P*A i (g „  Z2) Ai - 5 1 (piAi - 6  +M i - 1 °) e Ai I (q),Ai - '
+P2A i - 2 ). For Bockstein operators, the proof is similar to the
previous proposition. q. e. d.

A4(. 3, Z,) = {Sea,}  , A 5 (ft3 , Z,) {c3} an d  T 3-8  Sq 4 a3 --= c3 ,  then by
(3. 3), vii) and (4. 4), i),
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Corollary. 2-component o f  7r3 =  Z4 .
From th e  corollary, A*(7r3 , Z 2 ) is isomorphic to A*1<pi A*

+A *1(p,A * generated by elements uo  E A
°
(7r3 , Z 2 )  and u, E .11.1 (7r3, Z2)

such that - - u0 u Consider the exact sequence (4. 4), ii) for8 
k -=- 3. Denote that p * a ,  a4 .

Proposition 4. 6. There exist elements d, E  (ft,, 2'2 )  and e, E
M(T" Z 2 ) such that i*d 4 ==Seu o  an d  i*e4

, ---- S eu l . W e have relations
Sea,=---Sea„-=-Sq 4 a, =- See 4 = S e e , S e S e d ,-= S e d 4 =  (Se° +S e S e +

8 88S eS e)d,—  0, 
1 6  

S q8 = Sq"a4--=--{ Sed4}  and -
8
-((S e +S eS e)d,4

+8Sq"a4) { S e e , }  f o r so m e  6 = 0  o r  1. Let E A i ;  b e  an
A *-submodule generated by  a, and e „ then A  A i  I  (9),Ai - i+q),A i - 2

+99 4A 4) ED A ' /  (T,A i - i° +9, 2 Ai - 1 1 ). For i <2 1 , Ai (R4 , Z 2 ) is generated
b y  a „ d , an d  e „  an d  A 1 (St„ Z 2 ) A E l )  A i ' (q)(2,1)Ai-io

Pcio)+(3,2)-F(7,3)Ai 17).

Pro o f . A 4 (ge4 , Z 2 ) 0 by (4. 5), then M': A°(7 3 , Z2) - ->A4 (St3, Z2)
= { S ea,}  is  onto . Thus A*uo  = S ea , and A*zei c ,  b y  (3. 3), IT).
It follows from (4. 4), ii) that p* A* (R„ Z 2 ) is generated by a4 =-,p*a3

and isomorphic to A*1 (g),A* +(p2 11* + (P4A *). Since A *Seu 1 =-S ec 3 =0
a n d  *Sq4u0 =-- SeSea3 =S e S q 2a3 +S e S e a 3 = 0, there are  elements
e, and d4 such that i*e 4 .----Seu, and i*d4 =-- Sq4u0 . Let A T and AT
b e  A*-submodules generated by e ,  and 1 4 respectively. Since
p * Aio( st _ p* A l l  3  9o r  Z2) 0 ,  w e  have from Lemma 4. 2, iii)
that A* =  AT +p*A *(%, Z 2 ) an d  A T  A * I (P,A* + 992 A*) . Since
p*A "(St, Z 2 ) = p* A" (St , Z 2 ) = 0  a n d  S e  : p*A"(ST3 , Z 2 ) -=  ISql4 a41
,-------p*A"(ST,, Z2 ) ISq15a41 , w e  have from  Lemma 4. 2, v) that
p* A* (a„ Z 2 ) \ -J Al` 1 ) = p*A*(st, zo +A l and it  A*/ (P(2.1).A* +q)721 *

+ ( 1 0 +( , .2 ) - 4 - ( 7 ,„A
*

) for dimensions less than 21. From Lemma 3. 1
and from  (4. 4), ii), w e  have A*(St4 , Z2) =-- P*A*(ge3, Z 2 ) v A i A T
for dimensions less than 21. S in ce  A  and A T are  imbedded by
i*  into direct factors, w e have A* (St , zo =--- p*A*(st, z2) A- ± A '
for dimensions less than 21.

. 8Since —
8

S ea 3 -= {Sec,}  A * S e u „  we have from Lemma 4. 1,
8i), an  element E ir(St4 , Z 2 )  such that -

8

l_
( P * S q 8 a 3 )  

- - - - -

-

16 S q 8 a 4 = { à }

and i*ek i* e 4 . Since p*A 9 (,Ç3 , Z2 ) ---- 0, i* "&" i*e,

1 )  1 3 *  C* means the minimal A*-submodule containning 13* and C*.
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8implies 62 =e 4 a n d  i

s

6 Sea4 = le 4 1. Similarly from 9   Sq"a3 = Sq 13 a3

=-- eSSeSea 3 = A *Sq-6-S- eu o , SeSeSeu e
, -- -SeSeu e =i*ged 4 an d  from

p*A 13 (St„ Z 2 )== 0 , we have - -8  Sq"a4 = ISQ6a41-
. 8 8 4

Since —
8

SeSq4 a3 =  
8

-A*5eu e =-- (Se +SeSe)c,=- A*(Se +SeSe)u1,

w e have, from Lemma 4. 1, i i i) , elements ei A"(St„ Z2 )  and
A"(it,„ Z2 )  such that =  0 1 ,  Prei S e S e u „ ,=- (Se +SeSe)Sq 4u0

i* (Sq5 + Se Se)d 4 a n d  i* Se (Se + S e S e u ,  =  i * S e e  4 .
From p*A 1 3 (St3 , Z 2 ) 0  and p*A"(St„ Z2)---- IS9' 2 a41, w e have that
/8=-- See4 a n d  "er ---- (Se +SeSql)d 4 +6Sq"a4 f o r  some E == 0 o r  1.

8Then —((Se+SeSq 1)d4 + Sq 12a4)={Sq 4e4 }. q. e. d.8
A5 (ST4 , Z 2 ) A 6 ( 4 , Z 2 ) --=--- 0, A 7 (S 4 , Z 2 )  =  {d4} an d  A8 (g 4 ,  Z2)

{Sed,, Sea 4 }. B y (3. 3), vii), and (4. 4), i), the 2-component of
7r4  vanishes. Then A* (7r 4 , Z 2 ) = 0 .  From the exact sequence (4. 4),
ii) , we have an isomorphism

p* : A*(S14 , Z2 ) A*(Se5, Z2) •

Similarly we have an isomorphism

p* : A*(Se„ Z 2 )----- A*(ST6, Z2) •

Again from (3. 3), vii) and (4. 4), i),

C o r o lla r y . 2-component of  71- 4 =  2-component of  71-
5 = O,

2-component of 77'6 Z 2  •

From th e  corollary, A*(7r„ Z 2 )  is isom orphic to A * and is
generated by a n  element u  o f  A°(7r6 , Z 2 ). Consider the exact
sequence of (4. 4), ii) for 1 z 6, where we identify A*(St„ Z2 )  with
A* (S14 , Z2 )  by the above two isomorphisms p * .  Denote that a,=--
p*a4 E A° (g„ Z 2 )  and e,------ p*e4 EA 9 (se7, z2).

P ro p o s itio n  4 .7 .  T here ex ists elem ents f, E A9 (a 7 , Z,), f,' G
ANSt , Z2 )  and f," E , Z 2 )  such that i*f, -= Sq2Seu, i*f7 ' =Sete
an d  i*f," -=(Sq"+Sq 5S e+ S eS e )u . L e t  A t  b e  a n  A*-submodule
generated by a7 , e, and f 7 . W e have relations Sea7 --, -- Sea7 =Sea,
=---- See,-=See,-= Sq2f,---- 0 and an isom orphism  A  A 11 (971A, - 1 + (p2 A i '
+P4A i - 4 ) ED A' - 9 / (P1lli - 1 ° ±4)2Ai - 1 1 ) A 1 9 1(P2Ai - 1 1 . A * (n„ Z 2 )1 A t has
a  linearly  independent base  1f71 , S e f, ',  f7 ", S q 2 f , "  ;  S e f , ' ,
SeSef,' ; •••1.
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Pro o f . The existence of f , ,  f , ' and f , "  follows from (4. 4), ii)
and the previous proposition. The second assertion follows from
Lemma 4. 2, iv ) since p*2111 (ge„ Z2)= O. The last assertion follows
from (4. 4), ii) and from th e  calculation in  th e  proof o f Lemma
3.1. q . e . d .

We see A 8 (. 7 , Z2) =----- ISq8 a2 1  and A 9 ( 7 , Z2) = {6 '7, A l • B y pro-
8 8position 4. 6 an d  (3. 3), iv ) ,  "6-Sea, = p* 176-S ea, = IP*e41 {6 '7} •

Then by (3. 3), vii) and (4. 4), i),
Corollary. 2-component of Z16.
A *(7r„ Z 2)  is isomorphic to A*/P1lL1* + A *Rp,A * and generated

E itr(7t„ Z 2 ) a n d  u, E Al ( 7r 7 ,  Z 2 )  such that 1

8

6 u, = u, . Consider

the exact sequence (4. 4), ii) fo r k-= 7. Denote that p*a7 a 8 ,
P* .f7=f 8 , P* f 7 '=.f .' and P*1-7"

Porposition 4. 8. T here ex ist elem ents ga E A 8 (ST8 , Z 2 ), g a ' E
Z 2)  an d  ha E A "(aa, Z 2)  such that i*ga =-- Sq2u0 ,  i* g a ' =--- Seua ,

i*h8 ---=S q 2u 1 a n d  S eh a = O. L et At be an  A *-subm odule generated
by  a„ f a ,  ga a n d  ha , th e n  w e  hav e relations Sqlaa S e a a =  Sea,
=  S eas = Sq2f 8 -= Sq 2g8 -= 0 an d  an  isom orphism  No A 1 I +
( 7 ,2

A 1
-2+ ( p 4 A 1 -4 ± ,p 8 A 1 -2)( 3 )

A*(Sla , Z 2)/ A ' h as  a  linearly independent base { f8' ; Sq2  fa', g8';  f a" :
5q41;1 , Sq 2g8 ' ; S e f a " , S e g a ' ; Sq4Sq2f8', S e e  ;

Pro o f . As is seen in the proof of Proposition 4. 6, A*u0 -•=--  Sea,
and A *u,=-- e,. From Proposition 4. 8, Lemma 3.2 and from (4. 4),
ii), there are  elements ga , g a '  and ha'  such that i*g8 =S q 2 u0 , i*ga '
=S q 8u0 a n d  i*ha ' =S q 2u , .  Since i*S eh a ' S q 2Sq 2u, -= 0  and  since
p*Al 2 (St7 , ISq2Sqlfal , we have Sq2h8 ' , ---- 9Sq 2S q'f8 fo r some E -- = O
o r  1. Setting ha =  ha' + eS q'fa w e  h av e  that i*ha S q 2 u1 an d
Sq2 h8 -= O. Remark that the condition p*A k +5 (Stk , Z2)= 0  of Lemma
4. 2, iv )  may be replaced by the condition Sev -=-- 0 .  Then the
proposition is proved by Lemma 4. 2, iv), the exact sequence (4. 4),
ii) and by Lemma 3. 2. q .  e .  d.

W e see  R A  , Z2) { f8  g 8 }  and A 1 0 ( 8 , Z 2) ,== { S O .
8 , Sqlg„ h 8}.

By (3. 3), vii) and (4. 4), i),
Corollary. 2-component o f  z a = Z2 + Z2 .
Then A*(7r8 , Z 2) A* + A * .  We may chose generators u  and

u ' o f A*(7r8 , Z 2 )  such that, in  the exact sequence (4. 4), ii) for
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k ==8, the relations A*u =-- and A * u ' g „ h o ld . Denote that pl'a8

(197 p * f 8/ f 9 /  e f 8// f g / / ,  p * g 8 / g 9 ,  and p*h 8 _=h9 .
Since *Seu = Se f , 0  and *Sett' Sq2g9 -= 0 ,  there exist

elements i , ' and j , ' of A") (St9 , Z 2 )  such that

= Sett a n d  i*j,' S e u ' .

To determine S e i,' and S e  we shall consider the Bockstein
operators in  Ai(Se, , Z 2 )  for i 12, 13 and k =7, 8, 9.

Al 2 (a 7 , Z 2 ) { S e a„ S e S e  f ,}  and At3 (St7 , Z2)=  {See, , Se f, , f7'}.
Then the following three possibilities are considered.

8(4. 6) i) Sa8  ' 1 2 1 7  — a n d  —
8

SeSq 1f, =--- {See,}4
8

ii) 8  Sea, =---  { S ee ,}  a n d  -
8

- S eS ef , ;4
8 8iii) S q"a, = { S ee,}  a n d  T SeSe f , = { f,' + See,} .

Proof. First we remark that p*Al 2 (a„ Z 2) -=- {Sq"a,} and p*A "

(g4, { S ee,}  . By Proposition 4. 6, -8
4 - Sq12 a4 -= {Sed,} == *Sett} .

Since i*f,' = -- Se u  -  S e S e u , we have by Lemma 4 . 1 , i) , -8--8  Sq"a 4

8-- { f,' +X See,} for some X=0 o r  1. By Proposition 4. 6, -8  ((Se
+ SeSe)d + 8 S e a 4 ) = ISee41 { S q 4e4+ Seel,}  . In  th e  case  & 0 ,
applying Lemma 4 . 1 , ii) , w e have from  Sq2SeSq 2S eu ------  Se (Se

8+S e S e )u  that — (Sq2Sq1f 7 + vSq"a,) =-- {See,}  fo r some v. Since4
Sq"a, E 

4
—

8
-kernel, we have - - { S ee,}  . Since See, E —

8
-

4 4
im age, —

8

Sq"a, = {f,' +X S e e ,}  {f,'} . Then we have the case i).8 s 8Next consider th e  case  &  =  1 . B y  (3. 3), iv), ((Sq5 + SeSe)d,
8+ Sq12 a4 ) =-- {See 4 } implies --Sq' 2a, { S e e ,}  .  Since (Se + SeSe)d48  8

+ Sq"a„ E —

s  
-kernel, w e  have — Sq"a4 =--- —

8  

(Se + SeSql)d, {Se d4}4 4 4
Then we have from Lemma 4 . 2 , iii) , 

a 
(SeSqlf, +X Sea,) =-- { f7 '+4 8 8vS v iej for some X, -=-- 0 or 1. Since Sea, E - 4-  -kernel, (S eS ef )

{ f,' + vSee,} . Then we have the cases ii)  and iii). q. e. d.
21.12 (, 8 , Z 2) { SeSeA , Sq 2Sq'g8 }  and A" (Se, , Z 2){  f , ',  S q 2Sq'h8 ,

Sef , , Sege} . Then the following three possibilities are considered.
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(4. 7) i )  -
8

- Sq2Sq1 g8 = {  f a l  a n d  -

8  

Sq2Sq1f 8{ S e S e l i a }4 8

ii) - -Sq 2Sqlf8 -= { f 8 ' }  a n d  - S q 2 Sqlg8 = IS q 2 S eh a l4 8
8

iii)
8  

Sq2S q'fa =-- 
{ f 8 ' }

 a n d  -SeSql ( f a + V= {Sq2Sql ha } .
4 8

P r o o f .  First we remark that the term Sq4f 8 does not appear

in any representatives of a - ' -image, because Sq'Sq 4f ; =S q 5f ; +0.

Applying the Lemma 4. 1, i) and ii), we have from the case i) of

q(4. 6) that 
84
 S q 2 Sqi (ga +X  fa )=--  {A l  and -

8

8

- 2,Sq'f8 =--  {Sq2 Sq1118+ vi8/ }
8fo r  some X  and v. T h e n Sq2 S q'f8 -= 0 an d  { SeSq'h s  + vf;'}
4

ha } . Therefore (4. 6), i) implies (4. 7), i).
Next consider the cases ii) and iii) o f  (4. 6). B y  (3. 3),

8  

 SeSqlf , -= {f,' + S q 4e7 } im p lies  
8  

Sq2S q'fa = . Applying4 4 8 Lemma 4. 1, i n )  t o  
8
 S e a , .  {Sq4e7 } , w e  have that 

8  
Sq2Sq18 (ga

+ X A) {SeSql ha + {Sq2Sq1178} . Then we have the case ii)
and iii). q. e. d.

From (4. 4), ii) fo r k = 8 and from Theorem I ,  we have that
A*(St„ Z 2)/P*A*(St8 , Z 2) is isomorphic to A* I (p,A* + A* I q),A* and
generated by i , ' and j 9 ' .  I n  particular Ai 2 (ST9, Z 2)== {Sq2 i9 ' , j,'}
and A1 3 (5 9 , Z2) ISq2Sql129, Sq2Sq1 .  Then the following
three possibilities are considered.

8 .(4.8) D =  {A l  a n d  -
4  

S O , =-- {Sq2 S 0 9 } ;

ii) { f,'} an d  —

8  

S e ISq2Sq11291
4

iii) 5q3 19 ' =  {f ,'}  and - (i,' + .19 ') {SeSqlh,}
4

P r o o f .  Consider the case i) o f (4. 7). From Lemma 4. 1, ii),
we have elements and 7 such that i*ik =-SqlSq2Sq'u' = Sq 2Sq2 u'

i*5q 2.19', { 7}  -= 1f8 1 1 and p * 7 .  Since p*A"(ft, , Z2 ) = 0,

i*5q 2j 9 '  implies ei =  .19 '. Since 2
8  -image = 0 in A l 2 ( 8, Z2),

{7} = { A l implies 7 = l a '  and p*7= f9 '. Therefore S e j,' =  8
2   Se j,'

=f9 1 .  We have also, from Lemma 4. 1, ii), Sq2 i9 ' = {Sq 2Sqlh9 +8 f 9'}
-= {SeSql .
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Sim ilarly (4. 7), ii) implies (4. 8), ii) an d  (4. 7), iii) implies
(4. 8), iii). q. e. d.

Now we define elements 1 9 an d  j ,  o f  A ln „ Z 2)  a s  follows
corresponding for each cases of (4. 8) ;

i) i,' and j,'
ii) an d  1

9
 — j 9 ,

iii) and j, --= .

Then Sq3j 9 f , ' ,  —

s

-=-- {SeSq'h,} and  Sq3i, — S e i,== O.
4 2

Obviously 19 and j ,  generate A*(R9 , Z2)/P* A* (St8, Z 2). By making
use of the condition Sq3i9 --= 0, in place of the condition on Sql in
Lemma 4. 2, i), we have

Proposition 4. 9. L et At be an A *-submodule generated by h,
and  i,, then we have relations Sq 2 h9 =--Sq34 ,= 0 and an isomorphism
At) ,,....„ A1-10 pp 2 Ai-12 ( E ) A * ( f t , ,  Z 2 )I A t h a s  a  linearly
independent base { Sq 16 a9 ; g9

1, Sqig,', i 2, 3, 4 ;  f ," ,  Set'," ; S e j„
I+  (5, 1)}, for dim ensions less than 20.

Remark that f
9
'-=-- Sq3j

9 , S q 2f ,'=-- (Sq5 +Sq 4S 0 j, ,
Sef ,' -=--SeSej, and Sq4S e f 9 ' (Se +Sq 8Sql +Sq'Sq2 +S eS eS ql)j,.

Since i*Sef,' -=-- Sq3Seu = (Sq 4Sq2Sqi+Sq 7)Sq2Sq1u i* ( S q 4Sq2Sql
+  f „  w e have Sq3f 7 ' — (Sq4SeSq 1 + f ,  E p*A"(sT4 , {Sq"a„
Sq7e7 } . By operating p * ,  w e have th a t Se f ,' &  S q "a, for some
6 = 0  or 1. Thus we consider the following two cases :

A) Sq5Sq1j9 --= Sq3f 9 ' =  0,
B) Sq5S e j9 = S q 3f 9 ' =-- Sq"a,.

B y  (3. 3), vii) and  (4. 4), i), w e have from  A'° (% , Z2) {h9,
j9} an d  A"(ST„ Z2 )=--  {Sqlh„ Sqli,, Sq 1j 9 },

C o r o lla r y . 2-component of 7r9 =-Z 2 +Z 2 +Z 2 .
A*(7r9 , Z 2 ) + A* + A * .  We may chose generators u, u' and

u " such that the relations A*u.=- 179 ,  A u ' and A * u " = j, hold
in  th e  ex ac t sequence (4. 4), ii), k =--- 9. Denote that p*a9 -=
P*.r9'--- .6 ') and p*g- = g 0 .

Proposition 4 .1 0 .  There exist elements k„EA "(ST„, Z 2)  and
l„ EA"(a,o, Z 2)  such that i*k„-- =Sq 2u  and i*1 10 ==Sq3u/. L e t  At be
an A *-submodule generated by le„ an d  l„, then we have relations

8Sek„ Sel„ -=-- 0 and -l„-= { S q 2k 10 } a n d  a n  isomorphism4



On exact sequences in Steenrod algebra mod. 2. 63

A t) ,__, A i  - p  3 A ;  -,3 E D  A i -,1
1 A 1

-,2 5A i  - i6,) For the case A), A*(Sto ,
Z 2)/ -=--- m„ ; Sq"a ,„ fg ; See° ; S q 2E 6, S q 3e 0  ; ...1 where
i*m10 =Sq 5Sq1u " .  For the case B), A* (S 10 , Z2)1 A(t --=- {e0; f1' ;Sq2g 1'0 ;

Sq3gf 0 ; -•.1.
P ro o f. From the previous proposition, *Seu *Sett' = 0,

p*Ai (Se„ Z 2 ) =  0 , i 12, 13, and Sq' : p*A 1 7 (n„ Z2) ISq2 e01
p*A (R 9 , Z 2 ) ISq3g1'0, Sq2f1'61 i s  an isomorphism in to . Then we
have, from i) and ii) o f  Lemma 4. 2, the first two assertions of

the proposition. Since p*Al2 (ST2 Z 2) p*A13 n'Ntat Z 2 ) 0 ,  - Sq2 i,
8 4

.----{Sq 2,50 9 }  implies -71 , /10 = ISq 2kio l by Lemma 4. 1, iii). The last
two assertions are verified directly. q. e. d.

From All(g„, Z2) Ikol and A l 2  ( S , z2) = 
C o r o lla r y . 2-component o f zio= Z2
The A*(7r10 , Z 2 )  is isom orphic to A *  and generated by an

element u o f A )̀ (7r1 0 , Z2).
Continuing our calculation, we have the following results

without difficulties :

A*(Sl i „ Z 2 ) ta„; I l l ; n„; S q 2 11 1 ; e l ,  Sq3 11, m i l ,  S en „;
Sq"a l l , Sql,„ Sen„; Sq4n„;

where i*n1 ,-=Seu and the elements ml l  and Sq"a„ are omitted for

the case B). {nu}

A * (S112, Z2) = 1(112; g•1'2, m12; Sea12, 012; ••-}

where i*o„-- -- Sqsuo  and the elements ni1 2 and Sq"a12 are omitted for
the case B).

Therefore we have from (3. 3), vii) and (4. 4), i),
Proposition 4 .1 1 .  i )  2-component o f 7r1 1 -=--Z 8 ,

ii) 2-component o f 7. 12 =2-component o f  71-1 3 --= 0 ,

iii) the 2-component o f 7i- 1 , has at most two generators.

Rem ark. If 7rN (S N ), k N ,7 rN +I ( S N ) ,  km-2, •-• are Postnikov's in-
variant system of SN, then Kk has an invariant system z N (S N ),

7rN+1,- i ( " ) ,  0 , 0 , ....
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