On exact sequences in Steenrod algebra mod. 2

By

Hirosi Toda

(Received December 10, 1957)

A Steenrod algebra A^{*} will mean a stable Eilenberg-MacLane cohomology group $A^{*}\left(Z_{2}, Z_{2}\right)=\lim H^{*}\left(Z_{2}, n ; Z_{2}\right)$ in which the multiplication is defined by the composition of the squaring operations $S q^{t}$. The formula $\mathcal{P}_{a}(b)=b a$ associates for each element a of A^{*} an (additive) homomorphism $\rho_{a}: A^{*} \rightarrow A^{*}$. We write $\varphi_{a}=\varphi_{t}$ if $a=S q^{t}$, then $A^{*}\left(Z, Z_{2}\right)=A^{*} / \varphi_{1} A^{*}$. We shall give an elementary proof of the following

Theorem I. The following two sequences of homomorphisms are exact.

$$
\begin{aligned}
& A^{*} / \varphi_{1} A^{*} \xrightarrow{\varphi_{3}} A^{*} / \varphi_{1} A^{*} \xrightarrow{\varphi_{3}} A^{*} / \varphi_{1} A^{*} .
\end{aligned}
$$

Several exact sequences are known experimentally for lower dimensions. For example, it seems that the sequence

$$
A^{*} \xrightarrow{\varphi_{2} r} A^{*} /\left(\sum_{i=0}^{r-2} \mathcal{P}_{2^{i}} A^{*}\right) \xrightarrow{\varphi_{2} r} A^{*} /\left(\sum_{i=0}^{r-1} \varphi_{2^{i}} A^{*}\right)
$$

is exact. More generally we propose
Problem. Let $a, b_{1}, \cdots, b_{r} \in A^{*}$. Is the kernel of $\mathscr{P}_{a}: A^{*} \rightarrow$ $A^{*} /\left(\sum_{i=1}^{r} \varphi_{b_{i}} A^{*}\right)$ finitely generated (as a left ideal)?

In place of φ_{a}, take a homomorphism φ_{a}^{*} defined by the formula $\mathscr{P}_{a}^{*}(b)=a b$, then the exactness of analogous sequences is proved by T. Yamanoshita and A. Negishi (cf. [5]).

Theorem II. Let $B^{*}=\sum B^{i}$ be one of the five kernel-images in the exact sequences of Theorem I, then in the sequence

$$
B^{i-1} \xrightarrow{\varphi_{1}^{*}} B^{i} \xrightarrow{\varphi_{1}^{*}} B^{i+1}
$$

we have $\quad\left(\varphi_{1}^{*}\right)^{-1}(0) / \varphi_{1}^{*}\left(B^{i-1}\right) \approx \begin{cases}Z_{2} & \text { for } i \equiv \lambda(\bmod 4), \quad i \geqq 2, \\ 0 & \text { otherwise, }\end{cases}$
where λ takes the following values:

The above two theorems are proved in $\S 2$ under some preparations in §1. In §3, we see some partial exact sequences, which are applied in $\S 4$ to study the cohomology of fibre spaces over a sphere and to calculate the following values of 2 -components of the stable homotopy groups $\pi_{k}=\lim \pi_{k+n}\left(S^{n}\right)$ of the sphere:
$\left.\begin{array}{c|cccccccccccc}k= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2-\mathrm{comp} . \text { of } \pi_{k} & Z_{2} & Z_{2} & Z_{8} & 0 & 0 & Z_{2} & Z_{16} & Z_{2}+Z_{2} & Z_{2}+Z_{2}+Z_{2} & Z_{2} & Z_{8} & 0\end{array}\right)$

We have also a partial result on π_{14} which will be useful for determining the groups π_{14} and π_{15}.
§ 1. Steenrod algebra $A^{*}=A^{*}\left(Z_{2}, Z_{2}\right)$.
Consider a sequence $\mathfrak{X}=\left\{X_{k}, f_{k} ; k=N, N+1, N+2, \cdots\right\}$ which satisfies the conditions
(1.1). i) X_{k} are ($k-1$)-connected spaces.
ii) f_{k} are mappings of the suspensions $S\left(X_{k}\right)$ of X_{k} in X_{k+1}.
iii) For each integer i, there exists an integer $\lambda(i)$ such that $f_{k *}: \pi_{i+k+1}\left(S\left(X_{k}\right)\right) \rightarrow \pi_{i+k+1}\left(X_{k+1}\right)$ are isomorphisms for $k \geqq \lambda(i)$.

Then it is verified that the condition iii) may be replaced by the same condition for homology groups. Denote that

$$
\begin{aligned}
G_{i}(\mathfrak{X}) & =\text { Dir. } \lim \left\{\pi_{i+k}\left(X_{k}\right), f_{k *}: S\right\}, \\
A_{i}(\mathfrak{X}) & =\operatorname{Dir} . \lim \left\{H_{i+k}\left(X_{k}\right), f_{k *} S_{*}\right\}, \\
A^{i}(\mathfrak{X}) & =\operatorname{Inv} . \lim \left\{H^{i+k}\left(X_{k}\right), S^{*} f_{k}^{*}\right\},
\end{aligned}
$$

where S, S_{*} and S^{*} denote the suspension homomorphisms. Remark that these groups can be defined without the condition iii). By the condition iii), we may regard that

$$
\begin{align*}
G_{i}(\mathfrak{X}) & =\pi_{i+k}\left(X_{k}\right), \\
A_{i}(\mathfrak{X}) & =H_{i+k}\left(X_{k}\right), \tag{1.2}\\
A^{i}(\mathfrak{X}) & =H^{i+k}\left(X_{k}\right),
\end{align*}
$$

for sufficiently large k. Cohomological operations which commute with f_{k}^{*} and S^{*} are naturally defined in $A^{i}(\mathfrak{X})$. For example, the squaring operation $S q^{t}: A^{i}\left(\mathfrak{X}, Z_{2}\right) \rightarrow A^{i+t}\left(\mathfrak{X}, Z_{2}\right)$ is defined. The groups $G_{i}(\mathfrak{X}), A_{i}(\mathfrak{X})$ and $A^{i}(\mathfrak{X})$ are called the stable homotopy, homology and cohomology groups of \mathfrak{X} respectively.

The i-th stable homotopy group π_{i} of the sphere is defined by

$$
\pi_{i}=G_{i}(\Im)
$$

where $\mathfrak{S}=\left\{S^{k}, i_{k}\right\}$ is a sequence consists of the k-spheres S^{k} and the identities of $S^{k+1}=S\left(S^{k}\right)$. It is well known that $\pi_{i}=\pi_{i+N}\left(S^{N}\right)$ for $N>i+1$ under the convension (1.2).

The i-th stable Eilenbrg-MacLane homology group $A_{i}(\pi)$ and cohomology group $A^{i}\left(\pi, Z_{2}\right)$ of an abelian group π are defined by

$$
A_{i}(\pi)=A_{i}(\Re(\pi)) \quad \text { and } \quad A^{i}\left(\pi, Z_{2}\right)=A^{i}\left(\Re(\pi), Z_{2}\right)
$$

where $\Re(\pi)$ consists of Eilenberg-MacLane spaces $K(\pi, k)$ and mappings $f_{k}: S(K(\pi, k)) \rightarrow K(\pi, k+1)$ which induce isomorphisms of $(k+1)$-th homotopy groups. It is well known that $A_{i}(\pi)$ $=H_{i+N}(\pi, N)$ and $A^{i}\left(\pi, Z_{2}\right)=H^{i+N}\left(\pi, N ; Z_{2}\right)$ for $N \geqq i+1$ under the convension (1.2).

A symbol I will denote a finite sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ of positive integers. It is convenient to introduce the empty sequence $I=(\phi)$. We use the following notations:

$$
\begin{aligned}
\operatorname{deg} I & =i_{1}+\cdots+i_{r}(\text { degree of } I), \quad \operatorname{deg}(\phi)=0 \\
l(I) & =r \quad(\text { length of } I), \quad l(\phi)=0 \\
t(I) & =i_{,}(j \text {-th element }) \\
t(I) & \left.=i_{r}=t_{l(I)} \text { (last element }\right)
\end{aligned}
$$

A sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ is called to be admissible if $i_{j} \geqq 2 i_{j+1}$ for $j=1, \cdots, r-1$.

By Serre's work [4], the stable Eilenberg-MacLane cohomology
group $A^{i}\left(Z_{2}, Z_{2}\right)$ has its Z_{2}-base $\left\{S q^{I} u\right\}$, where $S q^{I}=S q^{i_{10}} \cdots \circ S q^{i r}$, I is admissible, $\operatorname{deg} I=i$ and u is the fundamental class of $A^{0}\left(Z_{2}\right.$, Z_{2}). For an arbitrary sequence $I, S q^{I} u$ belongs to $A^{i}\left(Z_{2}, Z_{2}\right), i=$ $\operatorname{deg} I$. Thus $S q^{I} u$ is a sum of admissible squares $S q^{I}{ }_{k} u$. The result $S q^{I} u=\sum S q^{I} k u$ is obviously unique and is called the normalization of $S q^{I} u$.

For the simplicity, we set

$$
\begin{equation*}
S q^{I} u=I, \quad A^{i}\left(Z_{2}, Z_{2}\right)=A^{i} \quad \text { and } \quad A^{*}=\sum A^{i} \tag{1.3}
\end{equation*}
$$

Then A^{*} is a graded $Z_{2}-$ module generated by the sequences I with the relation determined by the normalization $I=\sum I_{k}$. Set

$$
I J=\left(i_{1}, \cdots, i_{r}, j_{1}, \cdots, j_{s}\right)
$$

for $I=\left(i_{1}, \cdots, i_{r}\right)$ and $J=\left(j_{1}, \cdots, j_{s}\right)$, then a multiplication is defined in A^{*}, since the product $I J$ corresponds to the composition $S q^{I} \circ S q^{J}$ of the squaring operations. Now A^{*} becomes a graded algebra over Z_{2}, namely Steenrod algebra mod 2.

When $l(I)=2$, the normalization process is given precisely by the Adem's relations [1], [2]:

$$
\begin{equation*}
(2 h-m, h)=\sum_{h-m+t \geqq 0}\binom{m-t-1}{t-1}_{2}(2 h-t, h-m+t) \tag{1.4}
\end{equation*}
$$

where $m>0,\binom{a}{b}_{2}=\binom{a}{a-b}_{2}$ is the binomial coefficient mod 2 with the convension $\binom{a}{b}_{2}=0$ if $b<0$ and we omit the term $h-m+t$ if $h-m+t=0$. The coefficient $\binom{m-t-1}{t-1}_{2}=\binom{m-t-1}{m-2 t}_{2}$ vanishes if $t-1<0$ or $m-2 t<0$. Therefore the summation of (1.4) is valid for the following values of t :

$$
\begin{equation*}
\operatorname{Max.}(1, m-h) \leqq t \leqq m / 2 \tag{1.5}
\end{equation*}
$$

Since $t \leqq m / 2<2 m / 3$, we have $2 h-t>2(h-m+t)$. Thus the relation (1.4) gives the normalization of $(2 h-m, h)$.

Lemma 1.1. Each sequence I is normalized by use of the Adem's relations. The normalization preserves the degree and does not augument the length.

Proof. By (1.4), the lemma is true for $l(I)=2$. Put $I=$ $\left(i_{1}, \cdots, i_{r}\right), r>2$ and assume that the lemma is true for $l(I)<r$ and for $t_{1}(I)>i_{1}$ (and $\left.l(I)=r\right)$. Then $\left(i_{2}, \cdots, i_{r}\right)$ is normalized.

Thus we may assume that $\left(i_{2}, \cdots, i_{r}\right)$ is admissible. If $i_{1} \geq 2 i_{2}, I$ is already admissible. If $i_{1}<2 i_{2},\left(i_{1}, i_{2}\right)$ is normalized to $\sum\left(a_{k}, b_{k}\right)$ where $a_{k}+b_{k}=i_{1}+i_{2}$ and $a_{k} \geq 2 b_{k}$. Then $a_{k}>i_{1}$ and $I=\sum\left(a_{k}, b_{k}\right.$, i_{3}, \cdots, i_{r}), and each term of the summation is normalized by the assumption. Obviously these processes preserve the degree and do not augument the length. The lemma is proved inductively since $t_{1}(I) \leqq \operatorname{deg} I$.

Lemma 1.2. Let $I=\left(i_{1}, \cdots, i_{r}\right)$ be an admissible sequence and let i be a positive integer less than $2 i_{1}$. Let $\sum I_{j}$ be the normalization of $(i) I=\left(i, i_{1}, \cdots, i_{r}\right)$. Then $t_{1}\left(I_{j}\right) \leqq 2 i_{1}-1$ for all j. If $t_{1}\left(I_{j}\right)=2 i_{1}-1$, then $I_{j}=\left(2 i_{1}-1, i-i_{1}+1, i_{2}, \cdots, i_{r}\right)$ or $I_{j}=\left(2 i_{1}-1, i_{2}\right.$, $\left.\cdots, i_{r}\right)$. The term $I_{j}=\left(2 i_{1}-1, i-i_{1}+1, i_{2}, \cdots, i_{r}\right)$ exists if and only if $2\left(i_{1}-1\right) \geq i \geq i_{1}-1$ and $i-i_{1}+1 \geqq 2 i_{2}$. The term $I_{j}=\left(2 i_{1}-1, i_{2}, \cdots, i_{r}\right)$ exists if and only if $i=i_{1}-1$.

Proof. First consider the case $r=1$. By (1.4) and (1.5), each term I_{j} has a form ($2 i_{1}-t, i-i_{1}+t$) for Max. $\left(1, i_{1}-i\right) \leqq t \leqq i_{1}-i / 2$. Then $t_{1}\left(I_{j}\right)=2 i_{1}-t \leqq 2 i_{1}-1$. If $t_{1}\left(I_{j}\right)=2 i_{1}-1$ then $t=1$ and whence the condition $i_{1}-i \leqq t \leqq i_{1}-i / 2$ implies that $2\left(i_{1}-1\right) \geqq i \geqq i_{1}-1$. Conversely, if $2\left(i_{1}-1\right) \geqq i \geqq i_{1}-1$ then the coefficient $\binom{2 i_{1}-i-2}{0}_{2}$ of $\left(2 i_{1}-1, i-i_{1}+1\right)$ equals to 1 . Therefore the lemma is true for $r=1$.

Now let $r>1$ and assume that the lemma is true for $l(I)<r$ and for $l(I)=r$ and $t_{1}(I)<i_{1}$. Applying the lemma of the case $r=1$, we have that $\left(i, i_{1}, \cdots, i_{r}\right)$ is a sum of some $J_{t}=\left(2 i_{1}-t\right.$, $i-i_{1}+t, i_{2}, \cdots, i_{r}$) and the term J_{1} appears if and only if $2\left(i_{1}-1\right)$ $\geq i \geqq i_{1}-1$. The term J_{1} is admissible if $i-i_{1}+1 \geqq 2 i_{2}$ and also if $i-i_{1}+1=0$ since $2 i_{1}-1 \geqq i_{1} \geqq 2 i_{2}$. In the case $0<i-i_{1}+1<2 i_{2}$, applying the lemma to $\left(i-i_{1}+1\right)\left(i_{2}, \cdots, i_{r}\right),\left(i-i_{1}+1, i_{2}, \cdots, i_{r}\right)$ is normalized to $\sum\left(a_{k}, b_{k}, \cdots\right)$ such as $a_{k} \leqq 2 i_{2}-1$. Since $a_{k} \leqq 2 i_{2}-1$ $\leqq i_{1}-1<i_{1}$, we may apply the lemma to $\left(2 i_{1}-1\right)\left(a_{k}, b_{k}, \cdots\right)$ by the assumption. Then $J_{1}=\left(2 i_{1}-1, i-i_{1}+1, i_{2}, \cdots, i_{r}\right)$ is normalized to $\sum I_{j}$ such as $t_{1}\left(I_{j}\right) \leqq 2 a_{j}-1<2 i_{1}-1$. Therefore, when $0<i-i_{1}+1$ $<2 i_{2}$, the normalization of J_{1} has no term I_{m} of $t_{1}\left(I_{m}\right)=2 i_{1}-1$. Next consider the term J_{t} for $t<1$. If J_{t} is not admissible, by similar arguments to the case $t=1$, we have that the normalization of J_{t} consists of I_{j} such as $t_{1}\left(I_{j}\right)<2 i_{1}-1$. If J_{t} is admissible, $t_{1}\left(J_{t}\right)=2 i_{1}-t<2 i_{1}-1$. Consequently we see that the lemma is proved by the induction since $t_{1}(I) \geq 2^{l(I)-1}$.

Lemma 1.3. Let $I=\left(i_{1}, \cdots, i_{r}\right)$ be admissible and $s \geqq 0$. If $2^{s+r-j} \leqq i_{j} \leqq i^{s+r-j+1}$ for $j=1, \cdots, r$, then the normalization of $\varphi_{2^{s+1}} I$ $=\left(i_{1}, \cdots, i_{r}, 2^{s}+1\right)$ is $\left(2^{s+r}+1, i_{1}-2^{s+r-1}, i_{2}-2^{s+r-2}, \cdots, i_{r}-2^{s}\right)+$ $\sum\left(a_{k}, b_{k}, \cdots\right)$ where $a_{k} \leqq 2^{s+r}$ and $i,-2^{s+r-j}$ are omitted if $i_{j}=2^{s+r-j}$.

Proof. Then lemma is obvious for $r=0$. Suppose that the lemma is true for $l(I)=r-1$. Then $\varphi_{2^{s}+1} I=\left(i_{1}\right)\left(i_{2}, \cdots, i_{r}, 2^{s}+1\right)$ $=\left(i_{1}, 2^{s+r-1}+1, i_{2}-2^{s+r-2}, \cdots, i_{r}-2^{s}\right)+\sum\left(i_{1}, a_{k}{ }^{\prime}, b_{k}{ }^{\prime}, \cdots\right)$ and $a_{k}{ }_{k} \leq 2^{s+r-1}$. By Lemma 1.2, each term $I_{m}{ }^{\prime}$ of the normalization $\sum I_{m}{ }^{\prime}$ of $\left(i_{1}, a_{k}{ }^{\prime}, b_{k}{ }^{\prime}, \cdots\right)$ satisfies $t_{1}\left(I_{m}{ }^{\prime}\right) \leqq 2^{s+r}-1$. Next the term $\left(i_{1}\right)\left(2^{s+r-1}+1\right.$, $\left.i_{2}-2^{s+r-2}, \cdots, i_{r}-2^{s}\right)$ satisfies the conditions $2\left(2^{s+r-1}+1-1\right) \geq i_{1}$ $\geqq 2^{s+r-1}+1-1$ and $i_{1}-\left(2^{s+r-1}+1\right)+1 \geqq 2\left(i_{2}-2^{s+r-2}\right)=2 i_{2}-2^{s+r-1}$ of Lemma 1.2, by the assumption of this lemma. Then the normalization of $\left(i_{1}, 2^{s+r-1}+1, i_{2}-2^{s+r-2}, \cdots, i_{r}-2^{s}\right)$ is $\left(2^{s+r}+1, i_{1}-2^{s+r-1}\right.$, $\left.i_{2}-2^{s+r-2}, \cdots, i_{r}-2^{s}\right)+\sum\left(a_{l}, b_{l}, \cdots\right)$ where $a_{l} \leqq 2^{s+r}$. Therefore the lemma is proved by the induction on $l(I)$.

For the convenience, we note some relations obtained directly from (1.4).

$$
\begin{aligned}
(1,2 i) & =(2 i+1), \quad(1,2 i-1)=0 \\
(2,2) & =(3,1), \quad(3,2)=0 \\
(1.6) \quad(2,3) & =(5)+(4,1), \quad(3,3)=(5,1), \quad(4,3)=(5,2), \quad(5,3)=0 \\
(2,4) & =(6)+(5,1), \quad(3,4)=(7), \quad(4,4)=(7,1)+(6,2), \cdots \\
(2,5) & =(6,1), \quad(3,5)=0, \quad(4,5)=(9)+(8,1)+(7,2), \cdots
\end{aligned}
$$

§ 2. Proof of Theorems.

The formula $\varphi_{a}(b)=b a$ defines a homomorphism φ_{a} of the left A^{*}-modules. In particular, for an integer t the homomorphism $\varphi_{(t)}$, denoted by φ_{t}, is defined by $\varphi_{t}\left(i_{1}, \cdots, i_{r}\right)=\left(i_{1}, \cdots, i_{r}, t\right)$.

By (1.6), $\varphi_{1}\left(i_{1}, \cdots, i_{r}\right)=0$ if $i_{r}=1$. If $i_{r}>1$, then $\varphi_{1}\left(i_{1}, \cdots, i_{r}\right)$ $=\left(i_{1}, \cdots, i_{r}, 1\right)$ is admissible. Thus the sequence

$$
\begin{equation*}
A^{*} \xrightarrow{\mathcal{P}_{1}} A^{*} \xrightarrow{\varphi_{1}} A^{*} \tag{2.1}
\end{equation*}
$$

is exact. The kernel-image $\varphi_{1}\left(A^{*}\right)=\varphi_{1}^{-1}(0)$ of the sequence has the admissible sequences I of the last element $t(I)=1$ as its Z_{2}-base. The factor group $A^{*} / \mathcal{P}_{1} A^{*}$ has a Z_{2}-base $\{I \mid$ admissible, $t(I) \geq 2\}$.

For an odd $t, \varphi_{t} \circ \varphi_{1}=\varphi_{(1, t)}=0$ by (1.6). Then φ_{t} defines an A^{*}-homomorphism of $A^{*} / \mathscr{\varphi}_{1} A^{*}$ into A^{*} which will be denoted by
the same symbol

$$
\mathcal{P}_{t}: A^{*} / \mathcal{P}_{1} A^{*} \rightarrow A^{*}
$$

We denote the composition of φ_{t} and the natural homomorphism of A^{*} onto $A^{*} / \varphi_{1} A^{*}$ by

$$
\begin{aligned}
& \overline{\mathcal{P}}_{t}: A^{*} \rightarrow A^{*} / \mathcal{P}_{1} A^{*}, \\
& \overline{\mathcal{P}}_{t}: A^{*} / \mathcal{P}_{1} A^{*} \rightarrow A^{*} / \mathscr{\rho}_{1} A^{*}, \quad t: \text { odd. }
\end{aligned}
$$

Now the first theorem is stated as follows.
Theorem 1. The following sequences are exact.
i) $A^{*} \xrightarrow{\varphi_{2}} A^{*} \xrightarrow{\bar{\varphi}_{2}} A^{*} / \mathscr{\varphi}_{1} A_{*}$,
ii) $A^{*} \xrightarrow{\bar{\varphi}_{2}} A^{*} / \mathscr{\rho}_{1} A^{*} \xrightarrow{\bar{\varphi}_{5}} A^{*} / \mathscr{\rho}_{1} A^{*}$,
iii) $A^{*} / \varphi_{1} A^{*} \xrightarrow{\bar{\varphi}_{5}} A^{*} / \varphi_{1} A^{*} \xrightarrow{\varphi_{3}} A^{*}$,
iv) $A^{*} / \varphi_{1} A^{*} \xrightarrow{\varphi_{3}} A^{*} \xrightarrow{\varphi_{2}} A^{*}$,
v) $\quad A^{*} / \varphi_{1} A^{*} \xrightarrow{\bar{\varphi}_{3}} A^{*} / \varphi_{1} A^{*} \xrightarrow{\bar{\varphi}_{3}} A^{*} / \varphi_{1} A^{*}$.

We introduce the following notations:
$\alpha_{i}=\left(\right.$ the rank of $\left.A^{i}\right)=($ the number of the admissible sequences of a degree i),
$\bar{\alpha}_{i}=\left(\right.$ the rank of $\left.A^{i} / \varphi_{1} A^{i-1}\right)=($ the number of the admissible sequences I of a degree i such that $t(I) \geqq 2),{ }^{1)}$
$\beta_{i}(t)=\left(\right.$ the rank of the image $\varphi_{t}\left(A^{i^{-t}}\right)$ in $\left.A^{i}\right)$, $\bar{\beta}_{i}(t)=\left(\right.$ the rank of the image $\bar{\varphi}_{t}\left(A^{i^{-t}}\right)$ in $\left.A^{i} / \varphi_{1} A^{i^{-1}}\right)$.
An admissible sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ is called to be of a type ${ }^{1)}$ (i, s) if $\operatorname{deg} I=i$ and if there exist integers j and t such that $i_{j}=2^{t}+1,1 \leqq j \leqq r$ and $t \geqq s+(r-j)$. Obviously an admissible sequences of a type (i, s) is of a type $\left(i, s^{\prime}\right)$ for $s^{\prime} \leqq s$. Denote that
$\gamma_{i}\left(2^{s}+1\right)=($ the number of the admissible sequnces of a type $(i, s))$,
$\bar{\gamma}_{i}\left(2^{s}+1\right)=($ the number of the admissible sequences I of a type (i, s) such that $t(I) \geqq 2)$. ${ }^{1)}$

[^0]For an admissible sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ of a type (i, s), we define an admissible sequence $\sigma_{2}{ }^{s} I$ as follows. Let j be the least integer such that i_{j} has a form $2^{t}+1$. Then $t-(r-j) \geqq s$. For, there are t^{\prime} and $j^{\prime} \geqq j$ such that $i_{j^{\prime}}=2^{t^{\prime}}+1$ and $t^{\prime}-\left(r-j^{\prime}\right) \geq s$, then $2^{t}+1=i, \geqq 2^{j^{\prime-j}} i_{j^{\prime}} \geqq 2^{t^{\prime}+j^{\prime}-j}+1$ implies $t-(r-j) \geqq t^{\prime}-\left(r-j^{\prime}\right) \geqq s$. Then we set
(2.2) $\sigma_{2^{s}+1} I=\left(i_{1}, \cdots, i_{j-1}, i_{j+1}+2^{t-1}, \cdots, i_{r}+2^{t-(r-j)}, 2^{t-(r-j)-1}, \cdots, 2^{s}\right)$.

It is easily verified that the sequence $\sigma_{2}{ }^{s} I$ is admissible.
For an admissible sequence $I=\left(i_{1}, \cdots, i_{r}\right)$ such that $i_{r} \geqq 2^{s}$, we define a sequence $\tau_{2^{s}+1} I$ as follows. Let k be the largest integer such that $i_{k}>2^{s+r-k+1}$. We set $k=0$ if $i_{j} \leqq 2^{s+r-j+1}$ for $1 \leqq j \leqq r$. Now we set

$$
\begin{equation*}
\tau_{2^{s}+1} I=\left(i_{1}, \cdots, i_{k}, 2^{s+r-k}+1, i_{k+1}-2^{s+r-(k+1)}, \cdots, i_{r}-2^{s}\right) \tag{2.3}
\end{equation*}
$$

where we omit $i_{k+n}-2^{s+r-(k+n)}$ if $i_{k+n}=2^{s+r-(k+n)}$. It is easily seen that $\tau_{2^{s}+1} I$ is admissible if and only if $i_{k} \neq 2^{s+r-k+1}+1$.

Lemma 2.1. i) Let I be an admissible sequence of a type $\left(i+2^{s}+1, s\right)$. Then $t\left(\sigma_{2^{s}+1} I\right) \geqq 2^{s}, \tau_{2^{s}{ }_{+1}}\left(\sigma_{2} s_{+1} I\right)=I$ and $\sigma_{2^{s}+1} I$ is not a type $(i, s+1)$. If $t(I) \geqq 2$, then $\sigma_{2^{s}+1} I$ is not a type $(i, 1)$. If $t(I) \geqq 2$ and $s \neq 1$, then $\sigma_{2^{s}+1} I$ is not a type ($i, 0$).
ii) Let I be an admissible sequence of a degree i which is not a type $(i, s+1)$ and which has a last element $t(I) \geqq 2^{s}$. Then $\tau_{2} s_{+1} I$ is an admissible sequence of a type $\left(i+2^{s}+1, s\right)$ and we have $\sigma_{2^{s}+1}\left(\tau_{2^{s}+1} I\right)=I$. Furthermore $t\left(\tau_{2^{s}+1} I\right) \geqq 2$ if I is not a type $(2, s)$.

Proof. i) Let $\sigma_{2^{s}+1} I$ be defined by (2.2). Obviously $t\left(\sigma_{2}{ }^{s} I I\right)$ $\geq 2^{s}$. We set $l\left(\sigma_{2} s_{+1} I\right)=t-s+j-1=r^{\prime}$. Since $i_{j_{+n}} \leqq\left(2^{t}+1\right) / 2^{n}=$ $2^{t-n}+2^{-n}, n=1, \cdots, r-j$, we have $t_{j+n-1}\left(\sigma_{2^{s}+1} I\right)=i_{j+n}+2^{t-n} \leqq 2^{t-n+1}$ $=2^{s+r^{\prime}-(j+n-1)+1}$. Also $t_{j-1}\left(\sigma_{2} s_{+1} I\right)=i_{j-1} \geq 2\left(2^{t}+1\right)>2^{t+1}=2^{s+r^{\prime}-(j-1)+1}$. Then it is verified directly from (2.3), where $k=j-1$, that $\tau_{2^{s}+1}$ $\left(\sigma_{2} s_{+1} I\right)=I$. Next consider the type of $\sigma_{2^{s}+1} I$. For $1 \leqq n \leqq j-1$, i_{n} is not a form $2^{p}+1$. Since $i_{j+n} \leqq 2^{t-n}+2^{-n}, n=1, \cdots, r-j$, if $i_{j+n}+2^{t-n}=2^{p}+1$, then $i_{j+n}=i_{r}=1$ and $p=t-n=t-(r-j)$. In this case, however, the condition of the type $(i, s+1)$ is not satisfied, since $p=s+\left(r^{\prime}-(r-1)\right)<s+1+\left(r^{\prime}-(r-1)\right)$. The elements $2^{t-(r-j)^{-1}}, \cdots, 2^{s}$ are not forms $2^{p}+1$ except for $2^{1}=2^{0}+1$ whence $s=0$ or 1 . When $s=0$, we have $2^{0}+1=t_{r^{\prime}-1}\left(\sigma_{2^{s}+1} I\right)$ and this does not satisfy the condition of the type ($i, 0)$ since $0<0+\left(r^{\prime}-\left(r^{\prime}-1\right)\right.$) $=1$. When $s=1$, we have $2^{0}+1=t_{r^{\prime}}\left(\sigma_{2^{s}+1} I\right)$ and this does not
satisfy the condition of the type $(i, 1)$ since $0<1+\left(r^{\prime}-r^{\prime}\right)=1$. Consequently $\sigma_{2^{s}+1} I$ is not a type $(i, s+1)$. In the case $t(I)=i_{r} \geq 2$, the only element of a form $2^{p}+1$ is $2^{1}=2^{0}+1$. Then $\sigma_{2^{s}+1} I$ is not a type $(i, 1)$ and further not a type ($i, 0$) if $s \neq 1$.
ii) Let $\tau_{2} s_{+1} I$ be defined by (2.3). Since I is not a type $(i, s+1), i_{n}=2^{p}+1$ implies $p<s+1+(r-n)=s+r-n+1$ and $i_{n} \leqq$ $2^{s+r-n+1}$. From $i_{k}>2^{s+r-k+1}$ we have $i_{n} \geqq 2^{k-n} i_{k}>2^{s+r-n+1}$ for $n \leqq k$. Therefore i_{n} is not a form $2^{p}+1$ for $1 \leqq n \leqq k$. In particular, $i_{k} \neq 2^{s+r-k+1}+1$ and this shows that $\tau_{2} s_{+1} I$ is admissible. Since $l\left(\tau_{2} s_{+1} I\right)$ $\leqq r+1$, we have $t_{k+1}\left(\tau_{2} s_{+1} I\right)=2^{s+r-k}+1$ and $s+r-k \geqq s+\left(l\left(\tau_{2} s_{+1} I\right)\right.$ $-(k+1))$. Thus $\tau_{2^{s}+1} I$ has a type $\left(i+2^{s}+1, s\right)$. Since $k+1$ is the least integer such that $t_{k+1}\left(\tau_{2} s_{+1} I\right)$ is of a form $2^{p}+1$, it is verified directly from (2.2) that $\sigma_{2} s_{+1}\left(\tau_{2} s_{+1} I\right)=I$. Next suppose that $t\left(\tau_{2} s_{+1} I\right)$ $=1$, then $i_{k+n}=2^{s+r-(k+n)}+1, i_{k+n+1}=2^{s+r-(k+n+1)}, \cdots, i_{r}=2^{s}$ for some n, and this indicates that I has a type (i, s). Therefore $t\left(\tau_{2} s_{+1} I\right) \geqq 2$ if I is not a type (i, s). q.e.d.

Lemma 2.2. i) $\gamma_{i}(2)+\bar{\gamma}_{i+2}(2)=\alpha_{i}$,
ii) $\bar{\gamma}_{i}(2)+\bar{\gamma}_{i+5}(5)=\bar{\alpha}_{i}$,
iii) $\bar{\gamma}_{i}(5)+\gamma_{i+3}(3)=\bar{\alpha}_{i}$,
iv) $\gamma_{i}(3)+\gamma_{i+2}(2)=\alpha_{i}$,
v) $\bar{\gamma}_{i}(3)+\bar{\gamma}_{i+3}(3)=\bar{\alpha}_{i}$.

Proof. i) $\bar{\gamma}_{i+2}(2)$ is the number of the admissible sequences I of a type $(i+2,0)$ such that $t(I) \geqq 2 . \quad \alpha_{i}-\gamma_{i}(2)$ is the number of the admissible sequences J of the degree i which is not a type $(i, 0)$. By Lemma 2.1, i), $\sigma_{2} I$ is not a type $(i, 0)$ and $\tau_{2}\left(\sigma_{2} I\right)=I$. By Lemma 2.1, ii), $\tau_{2} J$ is an admissible sequence of a type $(i+2,0)$ such that $\sigma_{2}\left(\tau_{2} J\right)=J$ and $t\left(\tau_{2} J\right) \geqq 2$. Therefore σ_{2} and τ_{2} are the inverses of the others, and we have $\bar{\gamma}_{i+2}(2)=\alpha_{i}-\gamma_{i}(2)$.
ii) Let I be an admissible sequence of a type ($i+5,2$) such that $t(I) \geqq 2$. Let J be an admissible sequence of the degree i which is not a type $(i, 0)$ and which satisfies $t(J) \geq 2$. By Lemma $2.1, \mathrm{i}), \sigma_{5} I$ is not a type $(i, 0), \tau_{5}\left(\sigma_{5} I\right)=I$ and $t\left(\sigma_{5} I\right) \geqq 2^{2} \geqq 2$. Since J is not a type $(i, 0)$, we have $t(J) \neq 2=2^{0}+1$ and $t(J) \neq 3=2^{1}+1$. Thus J is not a type $(i, 2)$ and $t(J) \geqq 4=2^{2}$. Then, by Lemma 2.1, ii), $\tau_{5} J$ is an admissible sequence of a type $(i+5,2), \sigma_{5}\left(\tau_{5} J\right)=J$ and $t\left(\tau_{5} J\right) \geq 2 . \quad \sigma_{5}$ and τ_{5} shows the equality $\bar{\gamma}_{i+5}(5)=\bar{\alpha}_{i}-\bar{\gamma}_{i}(2)$.
iii) Let I be an admissible sequence of a type $(i+3,1)$. Let J be an admissible sequence of a degree i which is not a type
$(i, 2)$ and which satisfies $t(J) \geqq 2$. By Lemma 2.1 , we have that $\sigma_{3} I$ is not a type $(i, 2), \tau_{3}\left(\sigma_{3} I\right)=I$ and $t\left(\sigma_{3} I\right) \geqq 2$ and that $\tau_{3} J$ is an admissible sequence of a type $(i+3,1)$ and $\sigma_{3}\left(\tau_{3} J\right)=J$. Then $\gamma_{i+3}(3)=\bar{\alpha}_{i}-\bar{\gamma}_{i}(5)$.

The proofs of iv) and v) are similar to the above one and omitted. q.e.d.

Lemma 2. 3. $\gamma_{i}\left(2^{s}+1\right) \leqq \beta_{i}\left(2^{s}+1\right)$ and $\bar{\gamma}_{i}\left(2^{s}+1\right) \leqq \bar{\beta}_{i}\left(2^{s}+1\right)$.
Proof. We order the sequences of A^{i} by the following rule. $I=\left(i_{1}, \cdots, i_{r}\right)>J=\left(j_{1}, \cdots, j_{s}\right)$ if $i_{1}=j_{1}, \cdots, i_{p-1}=j_{p-1}$ and $i_{p}>j_{p}$ for some p. First we prove that for an admissible sequence of a type (i, s) the following formula holds:
(2.4) $\quad \varphi_{2} s_{+1}\left(\sigma_{2} s_{+1} I\right)=I+\sum I_{k} \quad$ for some $\quad I_{k}<I$.

Let $\sigma_{2}{ }_{+1} I$ be given by (2.2), then its subsequence $\left(i_{j_{+1}}+2^{t-1}\right.$, $\cdots, 2^{s}$) satisfies the condition of Lemma 1.3. By Lemma 1.3,

$$
\begin{aligned}
\varphi_{2^{s}+1}\left(\sigma_{2} s_{+1} I\right) & =\left(i_{1}, \cdots, i_{j-1}\right) \varphi_{2^{s}+1}\left(i_{j+1}+2^{t-1}, \cdots, 2^{s}\right) \\
& =I+\sum\left(i_{1}, \cdots, i_{j-1}, a_{k}, b_{k}, \cdots\right), \quad a_{k} \leqq 2^{t} \\
& =I+\sum I_{k}
\end{aligned}
$$

for some $I_{k}=\left(i_{1}, \cdots, i_{j-1}, a_{k}, b_{k}, \cdots\right)<I$. Now assume that there is a relation $\mathscr{P}_{2} s_{+1}\left(\sigma_{2} s_{+1} I_{1}+\cdots+\sigma_{2} s_{+1} I_{n}\right)=0$ for some $I_{1}>I_{2}>\cdots>I_{n}$. Then by (2.4), $I_{1}+\sum J_{m}=0$ for some $J_{m}<I_{1}$ and this implies a contradiction $I_{1}=0$. Therefore $\rho_{2^{s}+1}\left(\sigma_{2^{s}+1} I\right)$ are linearly independent for all sequences I of the type (i, s). Thus $\gamma_{i}\left(2^{s}+1\right) \leqq \beta_{i}\left(2^{s}+1\right)$. Another inequality $\bar{\gamma}_{i}\left(2^{s}+1\right) \leqq \bar{\beta}_{i}\left(2^{s}+1\right)$ is proved similarly.

Proof. of Theorem I. By (1.6), we have that $\bar{\varphi}_{2} \circ \mathscr{\varphi}_{2}=\bar{\varphi}_{5} \circ \overline{\mathcal{\varphi}}_{2}$ $=\mathscr{P}_{3}: \bar{\varphi}_{5}=\mathscr{P}_{2} \circ \varphi_{3}=\bar{\varphi}_{3} \circ \overline{\mathcal{P}}_{3}=0$. From $\overline{\mathcal{P}}_{2} \circ \mathscr{\varphi}_{2}=0$, we have $\varphi_{2}\left(A^{i-2}\right)$ $\subset \bar{\varphi}_{2}^{-1}(0)$. Thus $\beta_{i}(2) \leqq \alpha_{i}-\bar{\beta}_{i+2}(2)$. By Lemma 2.3 and 2.2, $\beta_{i}(2) \geq \gamma_{i}(2)=\alpha_{i}-\bar{\gamma}_{i+2}(2) \geq \alpha_{i}-\bar{\beta}_{i+2}(2)$. Therefore $\beta_{i}(2)=\alpha_{i}-\bar{\beta}_{i+2}(2)$ and this implies that $\rho_{2}\left(A^{i^{-2}}\right)=\bar{\rho}_{2}^{-1}(0)$. Then the exactness of the sequence i) of Theorem I is proved. The exactness of the other sequences ii)-v) is proved similarly. q.e.d.

Corollary. $\quad \gamma_{i}(2)=\beta_{i}(2), \quad \bar{\gamma}_{i}(2)=\bar{\beta}_{i}(2), \quad \gamma_{i}(3)=\beta_{i}(3), \bar{\gamma}_{i}(3)=\overline{\beta_{i}}(3)$ and $\bar{\gamma}_{i}(5)=\bar{\beta}_{i}(5)$.

Define a homomorphism $\varphi_{u}^{*}: A^{*} \rightarrow A^{*}$ by the formula $\varphi_{u}^{*}\left(i_{1}\right.$, $\left.\cdots, i_{r}\right)=\left(u, i_{1}, \cdots, i_{r}\right)$. Then

$$
\begin{equation*}
\mathscr{P}_{u}^{*} \cdot \varphi_{t}=\varphi_{t} \circ \mathscr{P}_{u}^{*} \tag{2.5}
\end{equation*}
$$

By (1.6), we have $\mathcal{P}_{1}^{*}\left(i_{1}, \cdots, i_{r}\right)=0$ for odd i_{1} and $\varphi_{1}^{*}\left(i_{1}, \cdots, i_{r}\right)$ $=\left(i_{1}+1, i_{2}, \cdots, i_{r}\right)$ for even i_{1}. Then it is easy to see that the sequence

$$
A^{i^{-1}} \xrightarrow{\varphi_{1}^{*}} A^{i} \xrightarrow{\varphi_{1}^{*}} A^{i^{+1}}
$$

in exact. Also we have an exact sequence

$$
A^{i-1} / \varphi_{1} A^{i-2} \xrightarrow{\varphi_{1}^{*}} A^{i} / \mathcal{P}_{1} A^{i-1} \xrightarrow{\varphi_{1}^{*}} A^{i+1} / \mathscr{\varphi}_{1} A^{i}
$$

for $i \geq 1$. Define subgroups B_{t}^{t} and \bar{B}_{t}^{t} by setting

$$
B_{t}^{t}=\mathcal{\varphi}_{t}\left(A^{i-t}\right) \subset A^{i} \quad \text { and } \quad \bar{B}_{t}^{t}=\bar{\varphi}_{t}\left(A^{i^{-t}}\right) \subset A^{i} / \mathcal{P}_{1} A^{i^{-1}} .
$$

By (2.5), $\rho_{1}^{*}\left(B_{t}^{t}\right) \subset B_{t}^{i+1}$ and $\varphi_{1}^{*}\left(\bar{B}_{t}^{t}\right) \subset \bar{B}_{t}^{i+1}$. Since $\varphi_{1}^{*} \varphi_{1}^{*}=0$, $A^{*}, A^{*} / \mathcal{P}_{1} A^{*}, B_{t}^{*}=\sum B_{t}^{i}$ and $\bar{B}_{t}^{*}=\sum \bar{B}_{t}^{i}$ are cochain complexes with respect to the coboundary operator $\delta=\mathcal{P}_{1}^{*}$. From the exactness of the above two sequences, we have

$$
\begin{gather*}
H\left(A^{i}\right)=0 \quad \text { for } \quad i \geqq 0 \tag{2.6}\\
H\left(A^{i} / \mathscr{\varphi}_{1} A^{i-1}\right)=0 \quad \text { for } \quad i \geqq 1
\end{gather*}
$$

From Theorem I and (2.5), we have an exact sequence

$$
0 \rightarrow B_{2}^{i} \rightarrow A^{i} \rightarrow \bar{B}_{2}^{i+2} \rightarrow 0
$$

which is compatible with \mathcal{P}_{1}^{*}. This induces the following cohomology exact sequence :

$$
\cdots \rightarrow H\left(A^{i}\right) \rightarrow H\left(\bar{B}_{2}^{i+2}\right) \xrightarrow{\delta^{*}} H\left(B_{2}^{+1+1}\right) \rightarrow H\left(A^{i+1}\right) \rightarrow \cdots
$$

Then, from (2.6), we have an isomorphism

$$
(2.7), \quad \text { i) } \quad \delta^{*}: H\left(\bar{B}_{2}^{i+1}\right) \approx H\left(B_{2}^{i}\right) \quad \text { for all } i
$$

Similarly we have the following isomorphisms:
ii) $\quad \delta^{*}: H\left(\bar{B}_{5}^{i+4}\right) \approx H\left(\bar{B}_{2}^{i}\right) \quad$ for $i \geqq 2$,
iii) $\quad \delta^{*}: H\left(B_{3}^{t+2}\right) \approx H\left(\bar{B}_{5}^{i}\right) \quad$ for $i \geqq 2$,
iv) $\quad \delta^{*}: H\left(B_{2}^{t+1}\right) \approx H\left(B_{3}^{\prime}\right) \quad$ for all i,
v) $\quad \delta^{*}: H\left(\bar{B}_{3}^{t+2}\right) \approx H\left(\bar{B}_{3}^{t}\right) \quad$ for $i \geqq 2$.

From (1.6), we calculate easily that $\bar{B}_{3}^{3} \approx B_{3}^{3} \approx \bar{B}_{5}^{5} \approx Z_{2}$ and $B_{3}^{2}=\bar{B}_{3}^{2}=B_{3}^{4}=\bar{B}_{3}^{4}=\bar{B}_{5}^{2}=\bar{B}_{5}^{3}=\bar{B}_{5}^{4}=\bar{B}_{5}^{6}=\bar{B}_{5}^{7}=\bar{B}_{5}^{8}=0$. Then we obtain the following theorem by the isomorphisms of (2.7).

Theorem II. Let B^{i} be one of $B_{2}^{t}, \bar{B}_{2}^{t}, \bar{B}_{5}^{t}, B_{3}^{t}$ and \bar{B}_{3}^{t}. Then

$$
H\left(B^{i}\right) \approx \begin{cases}Z_{2} & \text { for } i \equiv \lambda(\bmod 4) \text { and } i \geqq 2 \\ 0 & \text { otherwise }\end{cases}
$$

where λ takes the following values:

$B^{i}=$	B_{2}^{i}	\bar{B}_{2}^{i}	\bar{B}_{5}^{t}	B_{3}^{t}	\bar{B}_{3}^{i}
$\lambda=$	0	1	1	3	1 or 3.

We note here the following representatives of the generator of $H\left(B^{i}\right)$.

	$H\left(B_{1}^{4 k}\right)$	$H\left(\bar{B}_{2}^{4 k+1}\right)$ and $H\left(\bar{B}_{5}^{4 k+1}\right)$	$H\left(B_{3}^{4 k-1}\right)$	$H\left(\bar{B}_{3}^{2 k+1}\right)$
$k=1$	$(3,1)$	(5)	(3)	(3)
$k=2$	$(5,2,1)$	$(9)+(7,2)$	$(5,2)$	(5)
$k=3$	$(9,2,1)$	$(9,4)$	$(9,2)+(7,3,1)$	$(5,2)$
$k=4$	$(9,4,2,1)$	$(17)+(15,2)+(13,4)$ $(9,4,2)$	$(9)+(7,2)$	
		$+(11,4,2)$.		

§ 3. Some tables and lemmas.

In the following, several practical values of \mathcal{P}_{a}-images are calculated by (1.4).

The table indicated at the end of the previous \S follows from the following diagram:
(3. 1)

$(8)+(6,2) \xrightarrow[\backslash \overline{\mathcal{P}}_{5}]{\searrow}(9)+(7,2)$

The image of the homomorphism $\bar{\varphi}_{4}: A^{*} \rightarrow A^{*} / \mathscr{\varphi}_{1} A^{*}$ contains the following linearly independent elements:

$$
\begin{aligned}
& \text { (4), }(i, 4) \text { for } i \geqq 8 ;(5),(i, 5) \text { for } i \geqq 10 ;(6),(i, 6) \text { for } i \geqq 12 \text {; } \\
& \text { (7), }(i, 7) \text { for } i \geqq 14 ;(6,2),(i, 6,2) \text { for } i \geqq 12 ; \\
& \text { (9), (7,2) ; (10) }+(8,2),(7,3) ;(11)+(9,2),(9,2)+(8,3) ; \\
& (10,2),(9,3) ;(13)+(10,3),(11,2) ;(13,2)+(12,3) ; \\
& (13,3),(10,4,2) ;(17)+(15,2),(11,4,2) ; \\
& (18)+(16,2)+(12,4,2),(11,5,2) ; \\
& (19)+(16,3),(17,2)+(16,3)+(12,5,2),(13,4,2)+(12,5,2) ; \\
& (18,2)+(14,4,2),(17,3),(13,5,2) ; \\
& (21)+(18,3)+(14,5,2),(19,2)+(15,4,2) ; \cdots .
\end{aligned}
$$

Consider a homomorphism $\tilde{\varphi}_{4}: A^{*} \rightarrow A^{*} /\left(\mathscr{P}_{1} A^{*}+\mathscr{\varphi}_{2} A^{*}\right)$ defined by φ_{4}. For the degrees less than $22, \tilde{\mathcal{\rho}}_{4}$ is given from $\overline{\mathscr{\rho}}_{4}$ by adding the following relations generated by $(2)=0 ;(*, *, 2)=$ $(*, 2)=(2)=0, \quad(*, 3)=(3)=0, \quad(*, 5)=(5)=0, \quad(9)=0, \quad(9,4)=0$, $(17)+(13,4)=0, \quad(17,4)+(15,6)=0$. Therefore the image of $\tilde{\rho}_{4}$ contains the following linearly independent elements (representatives) :
(4), $(8,4),(i, 4)$ for $10 \leqq i \leqq 16$; (6), $(i, 6)$ for $12 \leqq i \leqq 15$;
(7), (14, 7) ; (10), (11), (13), (18), (19), (21).

Next consider the kernel of $\overline{\mathcal{P}}_{4}: A^{*} \rightarrow A^{*} / \mathscr{\varphi}_{1} A^{*}$. Since $\overline{\mathcal{\rho}}_{4}(2,1)$ $=(2,1,4)=(2,5)=0, \quad \bar{\varphi}_{4}(7)=(7,4)=0$ and $\overline{\mathcal{\rho}}_{4}((10)+(8,2)+(7,3))$ $=(10,4)+(8,6)+(7,7)=0$, the kernel contains $\varphi_{(2,1)} A^{*}+\varphi_{7} A^{*}$ $+\varphi_{(10)+(8,2)+(7,3)} A^{*}$. Since $\varphi_{1}: A^{*} / \varphi_{1} A^{*} \rightarrow A^{*}$ is an isomorphism into and since $\varphi_{(t, 1)}=\varphi_{1} \circ \bar{\varphi}_{t}: A^{*} \rightarrow A^{*}$, we have from Theorem I
(3.2). The sequences

$$
\begin{aligned}
& A^{*} \xrightarrow{\varphi_{2}} A^{*} \xrightarrow{\varphi_{(2,1)}} A^{*}, \\
& A^{*} \xrightarrow{\bar{\varphi}_{2}} A^{*} / \varphi_{1} A^{*} \xrightarrow[(5,1)]{\varphi_{(5,1)}} A^{*}, \\
& A^{*} \xrightarrow{\bar{\varphi}_{3}} A^{*} / \varphi_{1} A^{*} \xrightarrow{\varphi_{(3,1)}} A^{*}
\end{aligned}
$$

are exact. The rank of the image $\varphi_{(t, 1)}\left(A^{i-t}\right)$ eqals to $\bar{\beta}_{i}(t)$.
In $A^{*} / \varphi_{1} A^{*}$ we have the following linearly independent elements :

$$
\begin{aligned}
& \varphi_{7}(2)=(9), \quad \varphi_{7}(4)=(11)+(9,2), \quad \varphi_{7}(6)=(13)+(10,3), \\
& \varphi_{7}(4,2)=(11,2) ; \quad \varphi_{(10)+(8,2)+(7,3)}(2)=(10,2)
\end{aligned}
$$

Since $\varphi_{(2,1)} A^{*}<\varphi_{1} A^{*}$, the above images of φ_{7} and $\varphi_{(10)+(8,2)+(7,3)}$ are independent of $\varphi_{(2,1)} A^{*}$. Let $\tilde{\beta}_{i}(4)$ and ε_{i} be the ranks of the image $\tilde{\rho}_{4} A^{i-4}$ and the kernel of $\bar{\rho}_{4}$ respectively. Then the following table follows from the above results.

i	$=4$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21																	
$\tilde{\beta}_{i}(4) \geqq 1$	0	1	1	0	0	1	1	1	1	1	1	1	1	3	3	2	3
$\bar{\alpha}_{i-4}=1$	0	1	1	1	1	2	2	2	3	3	3	4	4	5	6	6	7
$\bar{\beta}_{i-4}(4) \geqq$				1	1	1	1	1	2	2	2	3	3	2	3	4	4
$\alpha_{i-8}=$				1	1	1	2	2	2	3	4	4	5	6	6	7	8
$\bar{\beta}_{i-9}(2)=$						1	1	0	1	1	1	1	3	2	2	2	
$\varepsilon_{i-8}-\bar{\beta}_{i-9}(2) \geqq$										1	0	1	1	1	1	2.	

Since $(4,4)=(6,2)+(7,1)$, we have $\tilde{\mathcal{P}}_{4} \circ \overline{\mathcal{P}}_{4}=0$. By a similar argument to the proof of Theorem I, we have

Lemma 3.1. The sequence

$$
A^{i-8} \xrightarrow{\overline{\mathscr{P}}_{4}} A^{i-4} / \varphi_{1} A^{i-5} \xrightarrow{\tilde{\mathscr{P}}_{4}} A^{i} /\left(\mathscr{P}_{1} A^{i-1}+\varphi_{2} A^{i^{-2}}\right)
$$

is exact for $i<22$ and the kernel of $\overline{\mathcal{P}}_{4}$ is generated by (2,1), (7), $(10)+(8,2)+(7,3)$ for $i<22$. In the above table the equalities hold.

It seems that this lemma is true for all i.
The image of a homomorphism $\tilde{\mathscr{P}}_{8}: A^{*} \rightarrow A^{*} /\left(\mathscr{P}_{1} A^{*}+\varphi_{2} A^{*}\right)$, defined by \mathscr{P}_{8}, contains the following linearly independent elements:

$$
\begin{aligned}
& (8),(10),(11),(12),(13),(14),(15),(12,4),(13,4),(18), \\
& (14,4),(19),(15,4),(20)+(16,4),(14,6),(21),(15,6)
\end{aligned}
$$

By adding relations generated by $(4)=0$, we see that the image of a homomorphism $\hat{\mathcal{\rho}}_{8}: A^{*} \rightarrow A^{*} /\left(\mathcal{P}_{1} A^{*}+\varphi_{2} A^{*}+\varphi_{4} A^{*}\right)$, defined by φ_{8}, contains the following linearly independent elements:
(8), (12), (14), (15), (20),

Let $\tilde{\beta}_{i}(8)$ and $\widehat{\beta}_{i}(8)$ be the ranks of the images $\tilde{\mathscr{q}}_{8}\left(A^{i-8}\right)$ and $\hat{\mathcal{P}}_{8}\left(A^{i-8}\right)$ respectively, then we have the following table:

$$
i=819101112131415161718192021
$$

Since $\mathscr{P}_{8}(1)=(9)=\mathscr{P}_{2}((4,2,1)+(7))+\mathscr{P}_{1}((8)+(6,2)), \varphi_{8}(2)=(10)$ $+(9,1)=\varphi_{4}(4,2)+\varphi_{2}(8)+\varphi_{1}(7,2)$ and since $\varphi_{8}(8)=(15,1)+(14,2)$ $+(12,4)=\mathscr{\varphi}_{4}(12)+\mathscr{P}_{2}(14)+\mathcal{P}_{1}(15)$, we have

$$
\tilde{\mathcal{P}}_{8}\left(\mathcal{P}_{1} A^{*}\right)=\hat{\mathscr{P}}_{8}\left(\mathcal{P}_{1} A^{*}+\mathcal{P}_{2} A^{*}\right)=\hat{\mathcal{P}}_{8}\left(\tilde{\mathcal{P}}_{8}\left(A^{*}\right)\right)=0 .
$$

Then we have the following lemma by a similar argument to the proof of Theorem I.

Lemma 3.2. The sequence

$$
\begin{aligned}
& 0 \rightarrow A^{i-16} / \varphi_{1} A^{i-17} \xrightarrow{\widetilde{\mathcal{P}}_{8}} A^{i-8} /\left(\varphi_{1} A^{i-9}+\varphi_{2} A^{i-10}\right) \xrightarrow{\hat{\mathcal{P}}_{8}} A^{i} /\left(\varphi_{1} A^{i-1}\right. \\
& \left.+\varphi_{2} A^{i-2}+\varphi_{4} A^{i-4}\right)
\end{aligned}
$$

is exact for $i<22$. In the above table the equality holds.
Remark that the kernal of $\tilde{\mathcal{P}}_{8}$ contains non-zero elements $(4,2)$, (15), etc..

We introduce a Bockstein homomorphism

$$
\frac{\delta}{2^{r}}: \frac{\delta}{2^{r-1}} \text {-kernel } \rightarrow \frac{\delta}{2^{r-1}} \text {-cokernel, } \quad r \geqq 1
$$

as follows. A cohomology class $\alpha \in H^{i}\left(X, A, Z_{2}\right)$ is in the $\frac{\delta}{2^{r-1}}-$ kernel if there exist integral cochains $a \in C^{i}(X, A)$ and $a^{\prime} \in C^{i+1}(X, A)$ such that $\delta a=2^{r} a^{\prime}$ and a represents α. A cohomology class $\beta \in H^{i+1}\left(X, A, Z_{2}\right)$ is in the $\frac{\delta}{2^{r-1}}$-image if there exist integral cochains $b \in C^{i}(X, A)$ and $b^{\prime} \in C^{i+1}(X, A)$ such that $\delta b=2^{r-1} b^{\prime}$ and b^{\prime} represents β. The $\frac{\delta}{2^{r-1}}$-cokernel is the factor group $H^{i+1}\left(X, A, Z_{2}\right) /\left(\frac{\delta}{2^{r-1}}\right.$-image $)$. Let a and a^{\prime} be integral cochains as above, then $\frac{\delta}{2^{r}} \alpha$ is defined as the class represented by a^{\prime}. Let a_{1} be another integral cochain such that $\delta a_{1}=2^{r} a_{1}{ }^{\prime}$ for some $a_{1}{ }^{\prime}$ and a_{1} represents α. Then $a-a_{1}$ $=2 b+\delta c$ for some integral cochains b and $c . \quad 2^{r}\left(a^{\prime}-a_{1}^{\prime}\right)=\delta\left(a-a_{1}\right)$ $=2 \delta b$ implies that $2^{r-1}\left(a^{\prime}-a_{1}{ }^{\prime}\right)=\delta b$. Thus a^{\prime} and $a_{1}{ }^{\prime}$ represent the same class of $\frac{\delta}{2^{r-1}}$-cokernel, and a Bockstein homomorphism $\frac{\delta}{2^{r}}$ is defined uniquely. The following properties are well known.
$(3.3) \quad$ i) $\frac{\delta}{2^{r}}$-kernel $=$ the kernel of $\frac{\delta}{2^{r}}$.
ii) $\frac{\delta}{2^{r}}$-image $\left(\frac{\delta}{2^{r-1}}\right.$-image $)=$ the image of $\frac{\delta}{2^{r}}$.
iii) $\frac{\delta}{2}=S q^{1}: H^{i}\left(X, A, Z_{2}\right) \rightarrow H^{i+1}\left(X, A, Z_{2}\right)$.
iv) The naturality $f^{*} \circ \frac{\delta}{2^{r}}=\frac{\delta}{2^{r}} \circ f^{*}$ holds for homomorphisms f^{*} of cohomology groups induced by a mapping $f:(X, A) \rightarrow(Y, B)$.
v) $\delta^{*} \circ \frac{\delta}{2^{r}}=\frac{\delta}{2^{r}} \circ \delta^{*}$ for coboundary homomorphisms $\delta^{*}: H^{i}(A$, $\left.Z_{2}\right) \rightarrow H^{i+1}\left(X, A, Z_{2}\right)$.
vi) $\frac{\delta}{2^{r}} \circ \frac{\delta}{2^{s}}=0$.
vii) Let $H_{i}(X)$ be finitely generated. Then the rank of the image of $\frac{\delta}{2^{r}}$ is the number of direct factors of $H_{i}(X)$ which are isomorphic to the cyclic group $Z_{2^{r}}$ of the order 2^{r}.

Denote by $H_{(r)}^{*}\left(X, A, Z_{2}\right)$ the factor group $\frac{\delta}{2^{r}}$ - kernel $/\left(\frac{\delta}{2^{r}}\right.$-image $)$. By (3.3), $\frac{\delta}{2^{r}}$ defines a homomorphism of $H_{(r-1)}^{*}\left(X, A, Z_{2}\right)$ which will be denoted by the same symbol ($H_{(0)}^{*}=H^{*}$)

$$
\begin{equation*}
\frac{\delta}{2^{r}}: H_{(r-1)}^{i}\left(X, A, Z_{2}\right) \rightarrow H_{(r-1)}^{i+1}\left(X, A, Z_{2}\right) \subset \frac{\delta}{2^{r-1}} \text {-cokenral. } \tag{3.4}
\end{equation*}
$$

By regarding $\frac{\delta}{2^{r+1}}$ as a cobundary operator in $H_{(r)}^{*}\left(X, A, Z_{2}\right)$, we see that $H_{(r+1)}^{*}\left(X, A, Z_{2}\right)$ is the cohomology group of $H_{(r)}^{*}\left(X, A, Z_{2}\right)$.

Consider the cohomology exact sequence for a pair (X, A) :
$\cdots \rightarrow H^{i}\left(X, A, Z_{2}\right) \xrightarrow{j^{*}} H^{i}\left(X, Z_{2}\right) \xrightarrow{i^{*}} H^{i}\left(A, Z_{2}\right) \xrightarrow{\delta^{*}} H^{i+1}\left(X, A, Z_{2}\right) \rightarrow \cdots$.
The following lemma is a modification of theorems in [6], §3.
Lemma 3. 3. i) For $\alpha \in H^{i}\left(A, Z_{2}\right)$ and $\beta \in H^{i}\left(X, A, Z_{2}\right)$, assume that $\frac{\delta}{2^{r}} \beta=\left\{\delta^{*} \alpha\right\}$. Then there is an element $\tilde{\alpha} \in H^{i+1}\left(X, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha$ and $\frac{\delta}{2^{r+1}}\left(j^{*} \beta\right)=\{\tilde{\alpha}\} \quad(r \geqq 1)$.
ii) For $\alpha \in H^{i}\left(A, Z_{2}\right)$ and $\beta \in H^{i+1}\left(X, A, Z_{2}\right)$, assume that $\delta * \alpha$ $=\beta$ and $\beta \in \frac{\delta}{2^{r-1}}$-kernel. Then there are elements $\tilde{\alpha} \in H^{i+1}\left(X, Z_{2}\right.$, and $\gamma \in H^{i+2}\left(X, A, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha, \frac{\delta}{2^{r}} \beta=\{\gamma\}$ and $\frac{\delta}{2^{r-1}} \tilde{\alpha}$ $=\left\{j^{*} \gamma\right\} \quad(r \geqq 2)$.
iii) For $\alpha \in H^{i}\left(A, Z_{2}\right)$ and $\beta \in H^{i+1}\left(A, Z_{2}\right)$, assume that $\frac{\delta}{2^{r}}\left(\delta^{*} \alpha\right)$ $=\left\{\delta^{*} \alpha\right\}$. Then there are elements $\tilde{\alpha} \in H^{i+1}\left(X, Z_{2}\right)$ and $\tilde{\beta} \in H^{i+2}\left(X, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha+2^{r-1} \beta, i^{*} \tilde{\beta}=S q^{1} \beta$ and $\frac{\delta}{2^{\gamma}} \tilde{\alpha}=\{\tilde{\beta}\} \quad(r \geqq 1)$.

Proof. i) Let $a \in C^{i}(A)$ and $b \in C^{i}(X, A)$ be representatives of α and β respectively such that $\delta a=2 a^{\prime}+b_{1}$ and $\delta b=2^{r} b^{\prime}$ for some $a^{\prime} \in C^{i+1}(A)$ and $b_{1}, b^{\prime} \in C^{i+1}(X, A)$, then a^{\prime}, b_{1} and b^{\prime} represent $S q^{1} \alpha$, $\delta^{*} \alpha$ and $\frac{\delta}{2^{r}} \beta$ respectively. From the assumption $\frac{\delta}{2^{r}} \beta=\left\{\delta^{*} \alpha\right\}$, we have $b_{1}-b^{\prime}=2 b_{2}+c^{\prime}+\delta c_{1}$ and $\delta c=2^{r-1} c^{\prime}$ for some $c, c_{1} \in C^{i}(X, A)$ and $b_{2}, c^{\prime} \in C^{i+1}(X, A)$. The element $b+2\left(c-2^{r-1} a+2^{r-1} c_{1}\right)$ represents $j^{*} \beta$. From $\delta\left(b+2\left(c-2^{r-1} a+2^{r-1} c_{1}\right)\right)=2^{r} b^{\prime}+2 \delta c-2^{r} \delta a+2^{r} \delta c_{1}=2^{r}\left(b_{1}\right.$ $\left.-2 b_{2}-c^{\prime}-\delta c_{1}\right)+2^{r} c^{\prime}-2^{r}\left(2 a^{\prime}+b_{1}\right)+2^{r} \delta c_{1}=-2^{r+1}\left(b_{2}+a^{\prime}\right)$, we see that $\frac{\delta}{2^{r+1}}\left(j^{*} \beta\right)=\{\tilde{\alpha}\}$ for an element $\tilde{\alpha}$ represented by $-\left(b_{2}+a^{\prime}\right)$. Obviously $i^{*} \tilde{\alpha}=S q^{1}(-\alpha)=S q^{1} \alpha$.
ii) Let $a \in C^{i}(A)$ and $b \in C^{i+1}(X, A)$ be representatives of α and β respectively such that $\delta a=2 a^{\prime}+b_{1}$ and $\delta b=2^{\prime} b^{\prime}$ for some $a^{\prime} \in C^{i+1}(A), b_{1} \in C^{i+1}(X, A)$ and $b^{\prime} \in C^{i+2}(X, A)$, then a^{\prime}, b_{1} and b^{\prime} represent $S q^{1} \alpha, \delta * \alpha$ and $\frac{\delta}{2^{r}} \beta$ respectively. From the assumption $\delta * \alpha=\beta$, we have $b_{1}-b=2 b_{2}+\delta c$ for some $b_{2} \in C^{i+1}(X, A)$ and $c \in$ $C^{i}(X, A)$. From $2 \delta\left(b_{2}+a^{\prime}\right)=\delta\left(b_{1}-b-\delta c\right)+\delta\left(\delta a-b_{1}\right)=-\delta b=2^{r}\left(-b^{\prime}\right)$, we have $\delta\left(b_{2}+a^{\prime}\right)=2^{r-1}\left(-b^{\prime}\right)$. Let $\tilde{\alpha}$ and γ be represented by $b_{2}+a^{s}$ and b^{\prime} respectively, then we see that $i^{*} \tilde{\alpha}=S q^{1} \alpha, \frac{\delta}{2^{r}} \beta=\{\gamma\}$ and $\frac{\delta}{2^{r-1}} \tilde{\alpha}=\left\{-j^{*} \gamma\right\}=\left\{j^{*} \gamma\right\}$.
iii) Let $a \in C^{i}(A)$ and $b \in C^{i+1}(A)$ be representatives of α and β respectively such that $\delta a=2 a^{\prime}+a_{1}$ and $\delta b=2 b^{\prime}+b_{1}$ for some $a^{\prime} \in C^{i+1}(A), \quad b^{\prime} \in C^{i+2}(A), \quad a_{1} \in C^{i+1}(X, A)$ and $b_{1} \in C^{i+2}(X, A)$. Then $a^{\prime}, b^{\prime}, a_{1}$ and b_{1} represent $S q^{1} \alpha, S q^{1} \beta, \delta^{*} \alpha$ and $\delta^{*} \beta$ respectively. From the assumption $\frac{\delta}{2^{r}}\left(\delta^{*} \alpha\right)=\left\{\delta^{*} \beta\right\}$, we have $\delta a_{2}=2^{r} b_{2}, a_{2}-a_{1}$ $=2 c+\delta c_{1}, b_{2}-b_{1}=2 d_{1}+d^{\prime}+\delta d_{2}$ and $2^{r-1} d^{\prime}=\delta d$ for some a_{2}, c, d_{2}, d $\in C^{i+1}(X, A), c_{1} \in C^{i}(X, A)$ and $d^{\prime}, d_{1} \in C^{i+2}(X, A)$. From $2 \delta\left(a^{\prime}+2^{r-1} b\right.$ $\left.+d+2^{r-1} d_{2}-c\right)=\delta\left(\delta a-a_{1}\right)+2^{r}\left(2 b^{\prime}+b_{1}\right)+2^{r} d^{\prime}-2^{r}\left(2 d_{1}+d^{\prime}+b_{1}-b_{2}\right)$ $-\delta\left(a_{2}-a_{1}-\delta c_{1}\right)=2^{r+1}\left(b^{\prime}-d_{1}\right)+\left(2^{r} b_{2}-\delta a_{2}\right)=2^{r+1}\left(b^{\prime}-d_{1}\right)$, we have $\delta\left(a^{\prime}+2^{r-1} b+\left(d+2^{r+1} d_{2}-c\right)\right)=2^{r}\left(b^{\prime}-d_{1}\right)$. Let $\tilde{\alpha}$ and $\tilde{\beta}$ be represented by $a^{\prime}+2^{r-1} b+\left(d+2^{r-1} d_{2}-c\right)$ and $b^{\prime}-d_{1}$ respectively, then we see that $i^{*} \tilde{\alpha}=S q^{1} \alpha+2^{r-1} \beta, i^{*} \tilde{\beta}=S q^{1} \beta$ and $\frac{\delta}{2^{r}} \tilde{\alpha}=\{\tilde{\beta}\}$. q. e.d.

Remark that the above lemma is valid for a fibre space in the following manner. Let X be a fibre space over an m-connected space B having an n-connected fibre F. Then, for $i \leqq m+n+1$, we have isomorphisms

$$
p^{*}: H^{i}\left(B, Z_{2}\right) \approx H^{i}\left(X, F, Z_{2}\right)
$$

By the above isomorphisms, Lemma 3.1. is valid for the exact sequence of the fibering :

$$
\cdots \rightarrow H^{i^{-1}}\left(F, Z_{2}\right) \xrightarrow{\Delta^{*}} H^{i}\left(B, Z_{2}\right) \xrightarrow{p^{*}} H^{i}\left(X, Z_{2}\right) \xrightarrow{i^{*}} H^{i}\left(F, Z_{2}\right) \rightarrow \cdots,
$$

replacing $H^{i}\left(X, A, Z_{2}\right)$ by $H^{i}\left(B, Z_{2}\right), j^{*}$ by p^{*} and δ^{*} by Δ^{*}.

§4. Application to the stable homotopy groups of the sphere.

Let S^{N} be an N-sphere. Consider a $C W$-complex $K_{k}, k \geq 2$, whose $(N+k)$-skeleton K_{k}^{N+k} is S^{N}. By attaching cells of dim. $\geqq N+k$ to K_{k}, we can construct a $C W$-complex K_{k-1} such that $K_{k-1} \supset K_{k}, K_{k-1}^{N+k-1}=S^{N}$ and $\pi_{i}\left(K_{k-1}\right)=0$ for $i \geqq N+k-1$. Repeating this construction from $K_{N}=S^{N}$, we have a sequence of complexes

$$
K_{1} \supset K_{2}>\cdots>K_{k-1}>K_{k} \supset \cdots>K_{N-1}>S^{N}
$$

such that $K_{k}^{N+k}=S^{N}$ and $\pi_{i}\left(K_{k}\right)=0$ for $i \geqq N+k$. It is easy to see that the injection $i: S^{N} \subset K_{k}$ induces isomorphisms

$$
i_{*}: \pi_{i}\left(S^{N}\right) \approx \pi_{i}\left(K_{k}\right) \quad \text { for } \quad i<N+k .
$$

Let Y_{k} be a space of the paths in K_{k} starting in $S^{N} . S^{N}$ is naturally imbedded in Y_{k} as its deformation retract. We have a retraction (fibering)

$$
p_{0}: Y_{k} \rightarrow S^{N}
$$

by associating to each path the starting point. Also associating the end point, we have a fibering

$$
p_{1}: Y_{k} \rightarrow K_{k},
$$

in the sense of Serre [3], a fibre X_{k} of which is a space of the paths in K_{k} starting in S^{N} and ending at a point. The restriction

$$
p^{\prime}: X_{k} \rightarrow S^{N}
$$

of p_{0} on X_{k} is also a fibering. Consider a diagram
then it is easily verified from the conditions on $\pi_{i}\left(K_{k}\right)$ and i_{*} that

$$
\pi_{i}\left(X_{k}\right)\left\{\begin{array}{cl}
=0 & \text { for } \quad i<N+k, \\
\stackrel{p_{*}^{\prime}}{\approx} \pi_{i}\left(S^{N}\right) & \text { for } \quad i \geqq N+k .
\end{array}\right.
$$

This indicates that X_{k} is an $(N+k-1)$-connective fibre space over S^{N}.

Since X_{k} and K_{k} are $(N+k-1)$ - and ($N-1$)-connected respectively, we have the following homology exact sequence for $i \leqq 2 N+k-1$:

$$
\cdots \rightarrow H_{i}\left(X_{k}\right) \rightarrow H_{i}\left(Y_{k}\right) \rightarrow H_{i}\left(K_{k}\right) \xrightarrow{\partial_{*}} H_{i-1}\left(X_{k}\right) \rightarrow \cdots .
$$

Since $H_{i}\left(Y_{k}\right)=H_{i}\left(S^{N}\right)=0$ for $i \neq 0, N$, we have isomorphisms

$$
\begin{equation*}
\partial_{*}: H_{i}\left(K_{k}\right) \approx H_{i-1}\left(X_{k}\right) \quad \text { for } \quad N \neq i \leqq 2 N+k-1 \tag{4.1}
\end{equation*}
$$

Similarly we have isomorphisms
(4.1)' $\quad \delta^{*}: H^{i-1}\left(X_{k}, Z_{2}\right) \approx H^{i}\left(K_{k}, Z_{2}\right) \quad$ for $\quad N \neq i \leqq 2 N+k-1$.

Combining (4.1) to the Hurewicz isomorphism, we have

$$
\begin{align*}
\pi_{N+k}\left(S^{N}\right) \approx \pi_{N+k}\left(X_{k}\right) \approx H_{N+k}\left(X_{k}\right) \approx & H_{N+k+1}\left(K_{k}\right) \tag{4.2}\\
& \text { for } 1 \leqq k<N-1 .
\end{align*}
$$

Remark that (4.2) is proved directly as follows:

$$
H_{N+k+1}\left(K_{k}\right) \stackrel{j_{*}}{\approx} H_{N+k+1}\left(K_{k}, S^{N}\right) \approx \pi_{N+k+1}\left(K_{k}, S^{N}\right) \stackrel{\partial}{\approx} \pi_{N+k}\left(S^{N}\right) .
$$

Let \tilde{K}_{k+1} be a space of the paths in K_{k} which start in K_{k+1}. Then \tilde{K}_{k+1} is a fibre space over K_{k} containning K_{k+1} as its deformation retract. Let F_{k} be a fibre of this fibering and consider a diagram

$$
\begin{array}{r}
\cdots \rightarrow \pi_{i+1}\left(K_{k}\right) \rightarrow \pi_{i}\left(F_{k}\right) \rightarrow \pi_{i}\left(\tilde{K}_{k+1}\right) \longrightarrow \pi_{i}\left(K_{k}\right) \rightarrow \cdots \\
\vdots \\
\pi_{i}\left(K_{k+1}\right) \stackrel{i_{*}}{\longleftrightarrow} \pi_{i}\left(S^{N}\right) .
\end{array}
$$

Then it is verified easily from the conditions of $\pi_{i}\left(K_{k}\right), \pi_{i}\left(K_{k+1}\right)$ and i_{*} that

$$
\pi_{i}\left(F_{k}\right) \approx \begin{cases}\pi_{N+k}\left(S^{N}\right) & \text { for } \quad i=N+k \\ 0 & \text { for } \quad i \neq N+k\end{cases}
$$

Therefore F_{k} is an Eilenberg-MacLane space of the type $\left(\pi_{N+k}\left(S^{N}\right), N+k\right)$ and $H^{i}\left(F_{k}, Z_{2}\right) \approx H^{i}\left(\pi_{N+k}\left(S^{N}\right), N+k, Z_{2}\right)$. Since K_{k} and F_{k} are $(N-1)$ - and $(N+k-1)$-connected respectively, we have the following exact sequence for $i \leqq 2 N+k-1$:

$$
\begin{equation*}
\cdots \rightarrow H^{i}\left(K_{k}, Z_{2}\right) \rightarrow H^{i}\left(K_{k+1}, Z_{2}\right) \rightarrow H^{i}\left(\pi_{N+k}\left(S^{N}\right), N+k, Z_{2}\right) \rightarrow \cdots \tag{4.3}
\end{equation*}
$$

Now we write $K_{k}=K_{k}(N)$ and consider $K_{k}(N+1)$. The suspension $S\left(K_{k}(N)\right.$) of $K_{k}(N)$ is a $C W$-complex whose ($N+k+1$)-skeleton is S^{N+1}. Since $\pi_{i}\left(K_{k}(N+1)\right)=0$ for $i \geqq N+k+1$, we can construct a mapping

$$
f_{k}^{(N)}: S\left(K_{k}(N)\right) \rightarrow K_{k}(N+1)
$$

such that $f_{k}^{(N)}$ is identical on the $(N+k+1)$-skeletons. It is easy to see that the sequence

$$
\Re_{k}=\left\{K_{k}(N), f_{k}^{(N)}\right\}
$$

satisfies the conditions of (1.1). Then the stable groups

$$
A_{i}\left(\Omega_{k}\right) \quad \text { and } \quad A^{i}\left(\Omega_{k}, Z_{2}\right)
$$

are defined. By the convension (1.2), we may regard that for sufficiently large N,

$$
\begin{aligned}
& A_{i}\left(\Omega_{k}\right)=H_{i+N}\left(K_{k}(N)\right)=H_{i+N}\left(K_{k}\right) \\
& A^{i}\left(\Omega_{k}, Z_{2}\right)=H^{i+N}\left(K_{k}(N), Z_{2}\right)=H^{i+N}\left(K_{k}, Z_{2}\right)
\end{aligned}
$$

Then from (4.2) and (4.3), we have
i) $\pi_{k} \approx A_{k+1}\left(\mathscr{R}_{k}\right)$.
ii) The following sequence is exact.

$$
\begin{aligned}
& \cdots \rightarrow A^{i}\left(\Omega_{k}, Z_{2}\right) \xrightarrow{p^{*}} A^{i}\left(\Omega_{k+1}, Z_{2}\right) \xrightarrow{i^{*}} A^{i-k}\left(\pi_{k}, Z_{2}\right) \xrightarrow{\Delta^{*}} \\
& A^{i+1}\left(\Omega_{k}, Z_{2}\right) \rightarrow \cdots .
\end{aligned}
$$

The squaring operations in $A^{*}\left(\Re_{k}, Z_{2}\right)=\sum A^{i}\left(\Re_{k}, Z_{2}\right)$ and $A^{*}\left(\pi_{k}, Z_{2}\right)=\sum A^{i}\left(\pi_{k}, Z_{2}\right)$ define naturally a (left) A^{*}-module structure of $A^{*}\left(\Omega_{k}, Z_{2}\right)$ and $A^{*}\left(\pi_{k}, Z_{2}\right)$. Then the above exact sequence is one of A^{*}-homomorphisms, since the squaring operation commutes with the homomorphisms of the sequence.

The Bockstein homomorphism $\frac{\delta}{2^{r}}$ is also defined naturally in $A^{*}\left(\Omega_{k}, Z_{2}\right)$ and $A^{*}\left(\pi_{k}, Z_{2}\right)$ and it satisfies the properties of (3.3), i)-vii) by replacing H^{i} by A^{i}, H_{i} by A_{i} and δ^{*} by Δ^{*}. Then the following lemma follows from Lemma 3.3.

Lemma 4.1. i) For $\alpha \in A^{i-k}\left(\pi_{k}, Z_{2}\right)$ and $\beta \in A^{i}\left(\Re_{k}, Z_{2}\right)$, assume that $\frac{\delta}{2^{r}} \beta=\{\Delta * \alpha\}$. Then there is an element $\tilde{\alpha}$ of $A^{i+1}\left(\Omega_{k+1}, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha$ and $\frac{\delta}{2^{r+1}}\left(p^{*} \beta\right)=\{\tilde{\alpha}\}$.
ii) For $\alpha \in A^{i-k}\left(\pi_{k}, Z_{2}\right)$ and $\beta \in A^{i+1}\left(\Re_{k}, Z_{2}\right)$, assume that $\Delta * \alpha=\beta, r>1$ and $\beta \in \frac{\delta}{2^{r-1}}-$ kernel. Then there are elements $\tilde{\alpha} \in$ $A^{i+1}\left(\Omega_{k+1}, Z_{2}\right)$ and $\gamma \in A^{i+2}\left(\Omega_{k}, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha, \frac{\delta}{2^{j}} \beta=\{\gamma\}$ and $\frac{\delta}{2^{r-1}} \tilde{\alpha}=\left\{p^{*} \gamma\right\}$.
iii) For $\alpha \in A^{i-k}\left(\pi_{k}, Z_{2}\right)$ and $\beta \in A^{i-k+1}\left(\pi_{k}, Z_{2}\right)$, assume that $\frac{\delta}{2^{r}}(\Delta * \alpha)=\{\Delta * \beta\}$. Then there are elements $\tilde{\alpha} \in A^{i+1}\left(\Re_{k+1}, Z_{2}\right)$ and $\tilde{\beta} \in A^{i+2}\left(\Re_{k+1}, Z_{2}\right)$ such that $i^{*} \tilde{\alpha}=S q^{1} \alpha+2^{r-1} \beta, \quad i * \tilde{\beta}=S q^{1} \beta \quad$ and $\frac{\delta}{2^{2}} \tilde{\alpha}=\{\tilde{\beta}\}$.

By [3], π_{k} is a finite group for $k \neq 0$. Then by [4], $A^{i}\left(\pi_{k}, Z_{2}\right)$ is isomorphic to the sum of some A^{i} and $A^{i} / \mathcal{P}_{1} A^{i-1}+A^{i-1} / \mathscr{P}_{1} A^{i-2}$.

In the following lemma, we denote by $u, u_{0} \in A^{0}\left(\pi_{k}, Z_{2}\right)$ and $u_{1} \in A^{1}\left(\pi_{k}, Z_{2}\right)$ the fundamental elements which generate direct summands A^{*} and $A^{*} / \varphi_{1} A^{*}$. Note that $S q^{1} u_{0}=S q^{1} u_{1}=0$. Consider the exact sequence of (4.4), ii).

Lemma 4. 2. i) Assume that $\Delta^{*} S q^{2} u=0$ and that $S q^{1}: p^{*} A^{k+5}$ $\left(\Omega_{k}, Z_{2}\right) \rightarrow p^{*} A^{k+6}\left(\Omega_{k}, Z_{2}\right)$ is an isomorphism into. Then there is an element v of $A^{k+2}\left(\Omega_{k+1}, Z_{2}\right)$ such that $i^{*} v=S q^{2} u, S q^{3} v=0$ and that the A^{*}-submodule generated by v and by the image of p^{*} is isomorphic to $A^{*} / \mathscr{D}_{3} A^{*}+p^{*} A^{*}\left(\Omega_{k}, Z_{2}\right)$ (direct sum of A^{*}-modules).
ii) Assume that $\Delta^{*} S q^{3} u=0$ and that $S_{q}: p^{*} A^{k+i}\left(\Omega_{k}, Z_{2}\right) \rightarrow$ $p^{*} A^{k+i+1}\left(\Re_{k}, Z_{2}\right), i=4,8$, are isomorphisms into. Then there is an element v of $A^{k+3}\left(\Omega_{k+1}, Z_{2}\right)$ such that $i^{*} v=S q^{3} u, S q^{1} v=S q^{5} v=0$ and that the A^{*}-submodule generated by v and by the image of p^{*} is isomorphic to $A^{*} /\left(\mathscr{P}_{1} A^{*}+\varphi_{5} A^{*}\right)+p^{*} A^{*}\left(\Omega_{k}, Z_{2}\right)$.
iii) Assume that $\Delta^{*} S q^{5} u_{0}=0$ (resp. $\Delta^{*} S q^{5} u_{1}=0$) and $p^{*} A^{k+6}$ $\left(\Re_{k}, Z_{2}\right)=p^{*} A^{k+7}\left(\Omega_{k}, Z_{2}\right)=0 . \quad\left(r e s p . \quad p^{*} A^{k+7}\left(\Re_{k}, Z_{2}\right)=p^{*} A^{k+8}\left(\Re_{k}, Z_{2}\right)\right.$ $=0$). Then there is an element v of $A^{k+5}\left(\Omega_{k+1}, Z_{2}\right)$ (resp. $A^{k+6}\left(\Omega_{k+1}, Z_{2}\right)$) such that $i^{*} v=u_{0}\left(\right.$ resp. $\left.u_{1}\right), S q^{1} v=S q^{2} v=0$ and that the A^{*} -
submodule generated by v and by the image of p^{*} is isomorphic to $A^{*} /\left(\mathcal{P}_{1} A^{*}+\mathcal{P}_{2} A^{*}\right)+p^{*} A^{*}\left(\Omega_{k}, Z_{2}\right)$.
iv) Assume that $\Delta^{*} S q^{2} u_{0}=0$ (resp. $\Delta^{*} S q^{2} u_{1}=0$ or $\Delta^{*} S q^{2} S q^{1} u$ $=0$) and that $p^{*} A^{k+4}\left(\Re_{k}, Z_{2}\right)=0$ (resp. $\left.p^{*} A^{k+5}\left(\Re_{k}, Z_{2}\right)=0\right)$. Then there is an element v of $A^{k+2}\left(\Omega_{k+1}, Z_{2}\right)$ (resp. $\left.A^{k+3}\left(\Re_{k+1}, Z_{2}\right)\right)$ such that $i^{*} v=S q^{2} u_{0} \quad\left(\right.$ resp. $S q^{2} u_{1}$ or $\left.S q^{2} S q^{1} u\right), S q^{2} v=0$ and that the $A^{*}-s u b-$ module generated by v and by the imag of p^{*} is isomorphic to $A^{*} / \mathscr{P}_{2} A^{*}$ $+p^{*} A^{*}\left(\Re_{k}, Z_{2}\right)$.
v) Assume that $\Delta^{*} S q^{4} u_{0}=0, p^{*} A^{k+7}\left(\Omega_{k}, Z_{2}\right)=p^{*} A^{k+14}\left(\Omega_{k}, Z_{2}\right)$ $=0$ and that $\mathrm{Sq}^{1}: p^{*} A^{k+11}\left(\Omega_{k}, Z_{2}\right) \rightarrow p^{*} A^{k+12}\left(\Omega_{k}, Z_{2}\right)$ is an isomorphism into. Then there is an element v of $A^{k+4}\left(\Omega_{k+1}, Z_{2}\right)$ such that $i^{*} v$ $=S q^{4} u_{0}, S q^{2} S q^{1} v=S q^{7} v=\left(S q^{10}+S q^{8} S q^{2}+S q^{7} S q^{3}\right) v=0$ and that the A^{*}-submodule generated by v and by the imag of p^{*} is isomorphic to $A^{*} /\left(\mathcal{P}_{(2,1)} A^{*}+\mathscr{P}_{7} A^{*}+\mathscr{\varphi}_{(10)+(8,2)+(7,3)} A^{*}\right)+p^{*} A^{*}\left(\Re_{k}, Z_{2}\right)$ for dimensions less than 21.

Proof. i) From the exactness of the sequence (4.4), ii), $\Delta^{*} S q^{2} u=0$ implies the existence of an element v such that $i^{*} v$ $=S q^{2} u$. Also from $i^{*}\left(S q^{3} v\right)=S q^{3} S q^{2} u=0$, we have that there is an element w of $A^{k+5}\left(\Re_{k}, Z_{2}\right)$ such that $p^{*} w=S q^{3} v$. Since $0=S q^{1} S q^{3} v$ $=S q^{1} p^{*} w, p^{*} w$ is in the kernel of $S q^{1}: p^{*} A^{k+5}\left(\Omega_{k}, Z_{2}\right) \rightarrow p^{*} A^{k+6}\left(\Re_{k}\right.$, Z_{2}). Thus $S q^{3} v=p^{*} w=0$. Let A_{0}^{*} be the A^{*}-submodule generated by v and the image of p^{*}. The formula $f^{\prime}(\alpha u)=\alpha v, \alpha \in A^{*}$, defines an A^{*}-homomorphism f^{\prime} of A^{*} into A_{0}^{*}. Since $f^{\prime}\left(\mathcal{P}_{3}(\alpha u)\right)=\alpha S q^{3} v$ $=0, f^{\prime}$ defines an A^{*}-homomorphism f of $A^{*} / \mathcal{P}_{3} A^{*}$ into A_{0}^{*}. Obviously the composition $i^{*} \circ f: A^{*} / \varphi_{3} A^{*} \rightarrow A^{*}$ equals to $\mathscr{\varphi}_{2}$. By Theorem I, $i^{*} \circ f$ is an isomorphism into. Therefore $A^{*} / \varphi_{3} A^{*}$ is isomorphic to $f\left(A^{*} / \mathcal{P}_{3} A^{*}\right)$ which is a direct summand of A_{0}^{*}. Since $A_{0}^{*} / p^{*} A^{*}\left(\Omega_{k}, Z_{2}\right) \approx i^{*}\left(f\left(A^{*} / \mathscr{P}_{3} A^{*}\right)\right)$, we have $A_{0}^{*}=f\left(A^{*} / \mathscr{\varphi}_{3} A^{*}\right)$ $+p^{*} A^{*}\left(\Re_{k}, Z_{2}\right)$.

The proofs of ii)-v) are similar by use of Theorem I, (3.2) or Lemma 3.1. q.e.d.

In the following, we treat A^{*}-module structures of $A^{*}\left(\Re_{k}, Z_{2}\right)$ and some Bockstein operators in it. Then several results on the stable homotopy groups π_{k} of the sphere are clarified.

Since $K_{k}^{N+k}=S^{N}$, we have easily

$$
\begin{equation*}
A^{i}\left(\Omega_{k}, Z_{2}\right)=0 \quad \text { for } \quad 0<i \leqq k \tag{4.5}
\end{equation*}
$$

The complex K_{1} has the only non-trivial homotopy group $\pi_{N}\left(K_{1}\right) \approx \pi_{N}\left(S^{N}\right) \approx Z$. Then K_{1} is an Eilenberg-MacLane space of
a type (Z, N), and we have
Proposition 4.3. $A^{*}\left(\Re_{1}, Z_{2}\right)$ is an A^{*}-module generated by an element $a_{1} \in A^{0}\left(\Omega_{1}, Z_{2}\right)$. We have a relation $S q^{1} a_{1}=0$ and an isomorphism $A^{*}\left(\AA_{1}, Z_{2}\right) \approx A^{*} / \varphi_{1} A^{*}$. The Bockstein operators $\frac{\delta}{2^{r}}$ are trivial for $r>1$.

The triviality follows from (2.6): $H\left(A^{i} / \varphi_{1} A^{i-1}\right)=A_{(1)}^{i}\left(\Omega_{1}, Z_{2}\right)$ $=0$ for $i>1$. $A^{2}\left(\Omega_{1}, Z_{2}\right)=\left\{S q^{2} a_{1}\right\}, A^{3}\left(\Omega_{1}, Z_{2}\right)=\left\{S q^{3} a_{1}\right\}$ and $S q^{1} S q^{2} a_{1}$ $=S q^{3} a_{1}$. Then from (3.3), vii) and (4.4), i), we have

Corollary. 2-component of $\pi_{1}=Z_{2}$.
From the corollary, $A^{*}\left(\pi_{1}, Z_{2}\right)$ is isomorphic to A^{*} and is generated by an element $u \in A^{0}\left(\pi_{1}, Z_{2}\right)$. Consider the exact sequence of (4.4), ii) for $k=1$.

Proposition 4.4. There exists an element b_{2} of $A^{3}\left(\Omega_{2}, Z_{2}\right)$ such that $i^{*} b_{2}=S q^{2} u . \quad A^{*}\left(\Re_{2}, Z_{2}\right)$ is an A^{*}-module generated by a_{2} $=p^{*} a_{1}$ and b_{2}. We have relations $S q^{1} a_{1}=S q^{2} a_{2}=S q^{3} b_{2}=0$ and an isomorphism $\quad A^{i}\left(\Omega_{2}, Z_{2}\right) \approx A^{i} /\left(\mathscr{P}_{1} A^{i-1}+\varphi_{2} A^{i-2}\right) \oplus A^{i-3} / \mathcal{P}_{3} A^{i-6} .{ }^{1)} \quad$ The Bockstein homomorphisms $\frac{\delta}{2^{r}}, r>1$, are trivial except for the case $r=2$ and $\operatorname{deg} \equiv 0$ (mod. 4), and in the case the rank of the image of $\frac{\delta}{4}$ is 1. In particular, $\frac{\delta}{4} S q^{4} a_{2}=\left\{S q^{2} b_{2}\right\}, \frac{\delta}{4} S q^{8} a_{2}=\left\{S q^{4} S q^{2} b_{2}\right\}$ and $\frac{\delta}{4} S q^{8} S q^{4} a_{2}=\left\{\left(S q^{8} S q^{2}+S q^{6} S q^{3} S q^{1}\right) b_{2}\right\}$.

Proof. By (4.5), $A^{2}\left(\Omega_{2}, Z_{2}\right)=0$. Then $\Delta^{*}: A^{0}\left(\pi_{1}, Z_{2}\right) \rightarrow A^{2}\left(\Omega_{1}, Z_{2}\right)$ $=\left\{S q^{2} a_{1}\right\}$ is onto and $\Delta^{*} u=S q^{2} a_{1}$. Since $\Delta^{*} \alpha u=\alpha S q^{2} a_{1}, \Delta_{*}$ is equivalent to $\overline{\mathcal{\rho}}_{2}: A^{*} \rightarrow A^{*} / \varphi_{1} A^{*}$. By Theorem I, the kernel of Δ^{*} is generated by $S q^{2} u$. From the exactness of the sequence (4.4), ii), we have that $A^{*}\left(\Re_{2}, Z_{2}\right)$ is generated by $a_{2}=p^{*} a_{1}$ and an element b_{2} such that $i^{*} b_{2}=S q^{2} u$. We see that $p^{*} A^{6}\left(\Re_{1}, Z_{2}\right)=\left\{S q^{6} a_{2}\right\}$ and $p^{*} A^{7}\left(\Re_{1}, Z_{2}\right)=\left\{S q^{7} a_{2}\right\}$. Then $S q^{1}: p^{*} A^{6}\left(\Omega_{1}, Z_{2}\right) \rightarrow p^{*} A^{7}\left(\Omega_{1}, Z_{2}\right)$ is an isomorphism. By Lemma 4.2, i) we have an isomorphism $A^{i}\left(\Omega_{2}, Z_{2}\right) \approx A^{i^{-3}} / \mathcal{P}_{3} A^{i-6} \oplus p^{*} A^{i}\left(\Omega_{1}, Z_{2}\right)$ and a relation $S q^{3} b=0$. Obviously $p^{*} A^{i}\left(\Omega_{1}, Z_{2}\right) \approx A^{i} /\left(\mathcal{P}_{1} A^{i-1}+\varphi_{2} A^{i-2}\right), S q^{1} a_{2}=p^{*} S q^{1} a_{1}=0$ and $S q^{2} a_{2}=p^{*} S q^{2} a_{1}=p^{*} \Delta^{*} u=0$.

By Theorem I, $A^{*} / \mathscr{\rho}_{3} A^{*}$ and $A^{*} /\left(\mathscr{P}_{1} A^{*}+\mathscr{\varphi}_{2} A^{*}\right)$ are (A^{*}-)isomorphic to $\mathcal{P}_{2} A^{*}=B_{2}^{*}$ and $\bar{\varphi}_{5} A^{*}=\bar{B}_{5}^{*}$. Since $\frac{\delta}{2}=S q^{1}=\varphi_{1}^{*}$, we have from Theorem II that

[^1]\[

A_{(1)}^{i}\left(\Omega_{2}, Z_{2}\right) \approx $$
\begin{cases}Z_{2} & i \equiv 0,1(\bmod 4), \quad i \geq 4 \\ 0 & i \equiv 2,3(\bmod 4)\end{cases}
$$
\]

By Lemma 4.1, i), we see that $\frac{\delta}{4}: A_{(1)}^{4 k}\left(\Omega_{2}, Z_{2}\right) \rightarrow A_{(1)}^{4 k+1}\left(\Omega_{2}, Z_{2}\right)$ is not trivial and hence an isomorphism. Then $A_{(r)}^{*}\left(\Omega_{2}, Z_{2}\right)=0$ for $r \geqq 2$. The last assertion of the lemma follows from the diagram (3.1). q.e.d.
$A^{3}\left(\Re_{2}, Z_{2}\right)=\left\{b_{2}\right\}$ and $A^{4}\left(\Omega_{2}, Z_{2}\right)=\left\{S q^{1} b_{2}, S q^{4} a_{2}\right\}$, then from (3.3), vii) and (4.4), i), we have

Corollary. 2-component of $\pi_{2}=Z_{2}$.
From the corollary, $A^{*}\left(\pi_{2}, Z_{2}\right)$ is isomorphic to A^{*} and generated by an element u of $A^{0}\left(\pi_{2}, Z_{2}\right)$. Consider the exact sequence of (4.4), ii) for $k=2$.

Proposition 4.5. There exists an element c_{3} of $A^{5}\left(\Re_{3}, Z_{2}\right)$ such that $i^{*} c_{3}=S q^{3} u . \quad A^{*}\left(\Omega_{3}, Z_{2}\right)$ is generated by $a_{3}=p^{*} a_{2}$ and c_{3}. We have relations $S q^{1} a_{3}=S q^{2} a_{3}=S q^{1} c_{3}=S \dot{q}^{5} c_{3}=0$ and an isomorphism $A^{i}\left(\Omega_{3}, Z_{2}\right) \approx A^{i} /\left(\mathcal{P}_{1} A^{i-1}+\mathcal{P}_{2} A^{i-2}\right) \oplus A^{i-5} /\left(\mathcal{P}_{1} A^{i^{-6}}+\mathcal{P}_{5} A^{i-10}\right)$. The Bockstein homomorphisms $\frac{\delta}{2^{r}}, r>1$, are trivial except for the case $r=3$ and $\operatorname{deg} \equiv 0(\bmod 4)$, and in the case the rank of the image of $\frac{\delta}{8}$ is 1. In particular, $\frac{\delta}{8} S q^{4} a_{3}=\left\{c_{3}\right\}, \frac{\delta}{8} S q^{4} a_{3}=\left\{S q^{4} c_{3}\right\}$, and $\frac{\delta}{8} S q^{8} S q^{4} a_{3}=\left\{\left(S q^{8}+S q^{6} S q^{2}\right) c_{3}\right\}$.

Proof. $\quad A^{3}\left(\Re_{3}, Z_{2}\right)=0$ by (4.5), then $\Delta^{*}: A^{0}\left(\pi_{2}, Z_{2}\right) \rightarrow A^{3}\left(\Re_{2}, Z_{2}\right)$ $=\left\{b_{2}\right\}$ is onto and $\Delta *(\alpha u)=\alpha b_{2}$. From the exactness of the sequence (4.4), ii) and from Proposition 4.4, we have that $p^{*} A^{*}\left(\Omega_{2}, Z_{2}\right)$ is generated by $a_{3}=p^{*} a_{2}$ and isomorphic to $A^{*} /\left(\varphi_{1} A^{*}\right.$ $+\mathscr{\varphi}_{2} A^{*}$) and that the kernal of Δ^{*}, i.e. the image of i^{*}, is generated by $S q^{3} u$. Therefore $A^{*}\left(\Omega_{3}, Z_{2}\right)$ is generated by a_{3} and an element c_{3} such that $i^{*} c_{3}=S q^{3} u$. We see that $p^{*} A^{i}\left(\Omega_{2}, Z_{2}\right)=\left\{S q^{i} a_{2}\right\}$ for $i=6,7,10$ and 11. Then $S q^{1}: p^{*} A^{i}\left(\Omega_{2}, Z_{2}\right) \rightarrow p^{*} A^{i+1}\left(\Re_{2}, Z_{2}\right)$ is an isomorphism if $i=6$ or 10. Applying Lemma 4.2, ii), we have relations $S q^{1} c_{3}=S q^{5} c_{3}=0$ and an isomorphism: $A^{i}\left(\Re_{3}, Z_{3}\right) \approx A^{i-5} /$ $\left(\mathcal{P}_{1} A^{i-6}+\varphi_{5} A^{i-10}\right) \oplus p^{*} A^{i}\left(\Omega_{2}, Z_{2}\right) \approx A^{i-5} /\left(\mathscr{(}_{1} A^{i-6}+\mathcal{\varphi}_{5} A^{i-10}\right) \oplus A^{i} /\left(\mathcal{P}_{1} A^{i-1}\right.$ $+\mathscr{P}_{2} A^{i-2}$). For Bockstein operators, the proof is similar to the previous proposition. q.e.d.

$$
\begin{aligned}
& A^{4}\left(\Omega_{3}, Z_{2}\right)=\left\{S q^{4} a_{3}\right\}, A^{5}\left(\Re_{3}, Z_{2}\right)=\left\{c_{3}\right\} \text { and } \frac{\delta}{8} S q^{4} a_{3}=c_{3} \text {, then by } \\
& \text { (3.3), vii) and (4.4), i), }
\end{aligned}
$$

Corollary. 2-component of $\pi_{3}=Z_{8}$.
From the corollary, $A^{*}\left(\pi_{3}, Z_{2}\right)$ is isomorphic to $A^{*} / \mathcal{P}_{1} A^{*}$ $+A^{*} / \mathscr{P}_{1} A^{*}$ generated by elements $u_{0} \in A^{0}\left(\pi_{3}, Z_{2}\right)$ and $u_{1} \in A^{1}\left(\pi_{3}, Z_{2}\right)$ such that $\frac{\delta}{8} u_{0}=u_{1}$. Consider the exact sequence (4.4), ii) for $k=3$. Denote that $p^{*} a_{3}=a_{4}$.

Proposition 4.6. There exist elements $d_{4} \in A^{7}\left(\Re_{4}, Z_{2}\right)$ and $e_{4} \in$ $A^{9}\left(\Re_{4}, Z_{2}\right)$ such that $i^{*} d_{4}=S q^{4} u_{0}$ and $i^{*} e_{4}=S q^{5} u_{1}$. We have relations $S q^{1} a_{4}=S q^{2} a_{4}=S q^{4} a_{4}=S q^{1} e_{4}=S q^{2} e_{4}=S q^{2} S q^{1} d_{4}=S q^{7} d_{4}=\left(S q^{10}+S q^{8} S q^{2}+\right.$ $\left.S q^{7} S q^{3}\right) d_{4}=0, \frac{\delta}{16} S q^{8} a_{4}=\left\{e_{4}\right\}, \frac{\delta}{4} S q^{12} a_{4}=\left\{S q^{6} d_{4}\right\}$ and $\frac{\delta}{8}\left(\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}\right.$ $\left.+\varepsilon S q^{12} a_{4}\right)=\left\{S q^{4} e_{4}\right\}$ for some $\varepsilon=0$ or 1 . Let $A_{0}^{*}=\sum A_{0}^{i}$ be an A^{*}-submodule generated by a_{4} and e_{4}, then $A_{0}^{i} \approx A^{i} /\left(\varphi_{1} A^{i-1}+\varphi_{2} A^{i-2}\right.$ $\left.+\varphi_{4} A^{i-4}\right) \oplus A^{i-9} /\left(\varphi_{1} A^{i-10}+\varphi_{2} A^{i-11}\right)$. For $i<21, A^{i}\left(\Re_{4}, Z_{2}\right)$ is generated by a_{4}, d_{4} and e_{4}, and $A^{i}\left(\Re_{4}, Z_{2}\right) \approx A_{0}^{i} \oplus A^{i-7} /\left(\mathcal{P}_{(2,1)} A^{i-10}+\varphi_{7} A^{i-14}+\right.$ $\left.\mathcal{P}_{(10)+(8,2)+(7,3)} A^{i-17}\right)$.

Proof. $A^{4}\left(\Re_{4}, Z_{2}\right)=0$ by (4.5), then $\Delta^{*}: A^{0}\left(\pi_{3}, Z_{2}\right) \rightarrow A^{4}\left(\Omega_{3}, Z_{2}\right)$ $=\left\{S q^{4} a_{3}\right\}$ is onto. Thus $\Delta^{*} u_{0}=S q^{4} a_{3}$ and $\Delta^{*} u_{1}=c_{3}$ by (3.3), v). It follows from (4.4), ii) that $p^{*} A^{*}\left(\Re_{3}, Z_{2}\right)$ is generated by $a_{4}=p^{*} a_{3}$ and isomorphic to $A^{*} /\left(\mathscr{P}_{1} A^{*}+\mathscr{P}_{2} A^{*}+\mathscr{P}_{4} A^{*}\right)$. Since $\Delta^{*} S q^{5} u_{1}=S q^{5} c_{3}=0$ and $\Delta^{*} S q^{4} u_{0}=S q^{4} S q^{4} a_{3}=S q^{6} S q^{2} a_{3}+S q^{7} S q^{1} a_{3}=0$, there are elements e_{4} and d_{4} such that $i^{*} e_{4}=S q^{5} u_{1}$ and $i^{*} d_{4}=S q^{4} u_{0}$. Let A_{e}^{*} and A_{a}^{*} be A^{*}-submodules generated by e_{4} and d_{4} respectively. Since $p^{*} A^{10}\left(\Omega_{3}, Z_{2}\right)=p^{*} A^{11}\left(\Omega_{3}, Z_{2}\right)=0$, we have from Lemma 4. 2, iii) that $A^{*}=A_{e}^{*}+p^{*} A^{*}\left(\Omega_{3}, Z_{2}\right)$ and $A_{e}^{*} \approx A^{*} /\left(\mathcal{P}_{1} A^{*}+\varphi_{2} A^{*}\right)$. Since $p^{*} A^{10}\left(\Omega_{3}, Z_{2}\right)=p^{*} A^{17}\left(\Omega_{3}, Z_{2}\right)=0$ and $S q^{1}: p^{*} A^{14}\left(\Omega_{3}, Z_{2}\right)=\left\{S q^{14} a_{4}\right\}$ $\approx p^{*} A^{15}\left(\Omega_{3}, Z_{2}\right)=\left\{S q^{15} a_{4}\right\}$, we have from Lemma 4.2, v) that $p^{*} A^{*}\left(\Omega_{3}, Z_{2}\right) \cup A_{d}^{* 1)}=p^{*} A^{*}\left(\Omega_{3}, Z_{2}\right)+A_{d}^{*}$ and $A_{d}^{*} \approx A^{*} /\left(\varphi_{(2,1)} A^{*}+\varphi_{7} A^{*}\right.$ $\left.+\mathcal{P}_{(10)+(8,2)+(7,3)} A^{*}\right)$ for dimensions less than 21. From Lemma 3.1 and from (4.4), ii), we have $A^{*}\left(\Re_{4}, Z_{2}\right)=p^{*} A^{*}\left(\Omega_{3}, Z_{2}\right) \cup A_{\alpha}^{*} \cup A_{e}^{*}$ for dimensions less than 21. Since A_{a}^{*} and A_{e}^{*} are imbedded by i^{*} into direct factors, we have $A^{*}\left(\Omega_{4}, Z_{2}\right)=p^{*} A^{*}\left(\Omega_{3}, Z_{2}\right)+A_{a}^{*}+A_{e}^{*}$ for dimensions less than 21.

Since $\frac{\delta}{8} S q^{8} a_{3}=\left\{S q^{4} c_{3}\right\}=\Delta * S q^{4} u_{1}$, we have from Lemma 4.1, i), an element $\tilde{\alpha} \in A^{9}\left(\Re_{4}, Z_{2}\right)$ such that $\frac{\delta}{16}\left(p^{*} S q^{8} a_{3}\right)=\frac{\delta}{16} S q^{8} a_{4}=\{\tilde{\alpha}\}$ and $i^{*} \tilde{\alpha}=S q^{1} S q^{4} u_{1}=S q^{5} u_{1}=i^{*} e_{4}$. Since $p^{*} A^{9}\left(\Omega_{3}, Z_{2}\right)=0, i^{*} \tilde{\alpha}=i^{*} e_{4}$

1) $B^{*} \cup C^{*}$ means the minimal A^{*}-submodule containning B^{*} and C^{*}.
implies $\tilde{\alpha}=e_{4}$ and $\frac{\delta}{16} S q^{8} a_{4}=\left\{e_{4}\right\}$. Similarly from $\frac{\delta}{2} S q^{12} a_{3}=S q^{13} a_{3}$ $=S q^{6} S q^{3} S q^{4} a_{3}=\Delta * S q^{6} S q^{3} u_{0}, S q^{1} S q^{6} S q^{3} u_{0}=S q^{6} S q^{4} u_{0}=i^{*} S q^{6} d_{4}$ and from $p^{*} A^{13}\left(\Omega_{3}, Z_{2}\right)=0$, we have $\frac{\delta}{4} S q^{12} a_{4}=\left\{S q^{6} a_{4}\right\}$.

Since $\frac{\delta}{8} S q^{8} S q^{4} a_{3}=\frac{\delta}{8} \Delta * S q^{8} u_{0}=\left(S q^{8}+S q^{6} S q^{2}\right) c_{3}=\Delta^{*}\left(S q^{8}+S q^{6} S q^{2}\right) u_{1}$, we have, from Lemma 4.1, iii), elements $\tilde{\alpha} \in A^{12}\left(\Re_{4}, Z_{2}\right)$ and $\tilde{\beta} \in$ $A^{13}\left(\Omega_{4}, Z_{2}\right)$ such that $\frac{\delta}{8} \tilde{\alpha}=\{\tilde{\beta}\}, \quad i * \tilde{\alpha}=S q^{1} S q^{8} u_{0}=\left(S q^{5}+S q^{4} S q^{1}\right) S q^{4} u_{0}$ $=i^{*}\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}$ and $i^{*} \tilde{\beta}=S q^{1}\left(S q^{8}+S q^{6} S q^{2}\right) u_{1}=S q^{4} S q^{5} u_{1}=i^{*} S q^{4} e_{4}$. From $p^{*} A^{13}\left(\Re_{3}, Z_{2}\right)=0$ and $p^{*} A^{12}\left(\Re_{3}, Z_{2}\right)=\left\{S q^{12} a_{4}\right\}$, we have that $\tilde{\beta}=S q^{4} e_{4}$ and $\tilde{\alpha}=\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}+\varepsilon S q^{12} a_{4}$ for some $\varepsilon=0$ or 1 . Then $\frac{\delta}{8}\left(\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}+\varepsilon S q^{12} a_{4}\right)=\left\{S q^{4} e_{4}\right\}$. q.e.d.
$A^{5}\left(\Re_{4}, Z_{2}\right)=A^{6}\left(\Re_{4}, Z_{2}\right)=0, \quad A^{7}\left(\Re_{4}, Z_{2}\right)=\left\{d_{4}\right\} \quad$ and $\quad A^{8}\left(\Re_{4}, Z_{2}\right)$ $=\left\{S q^{1} d_{4}, S q^{8} a_{4}\right\}$. By (3.3), vii), and (4.4), i), the 2 -component of π_{4} vanishes. Then $A^{*}\left(\pi_{4}, Z_{2}\right)=0$. From the exact sequence (4.4), ii), we have an isomorphism

$$
p^{*}: A^{*}\left(\Re_{4}, Z_{2}\right) \approx A^{*}\left(\Re_{5}, Z_{2}\right)
$$

Similarly we have an isomorphism

$$
p^{*}: A^{*}\left(\Re_{5}, Z_{2}\right) \approx A^{*}\left(\Re_{6}, Z_{2}\right)
$$

Again from (3.3), vii) and (4.4), i),
Corollary. 2-component of $\pi_{4}=2$-component of $\pi_{5}=0$, 2-component of $\pi_{6}=Z_{2}$.
From the corollary, $A^{*}\left(\pi_{6}, Z_{2}\right)$ is isomorphic to A^{*} and is generated by an element u of $A^{\circ}\left(\pi_{6}, Z_{2}\right)$. Consider the exact sequence of (4.4), ii) for $k=6$, where we identify $A^{*}\left(\Omega_{6}, Z_{2}\right)$ with $A^{*}\left(\Omega_{4}, Z_{2}\right)$ by the above two isomorphisms p^{*}. Denote that $a_{7}=$ $p^{*} a_{4} \in A^{0}\left(\Omega_{7}, Z_{2}\right)$ and $e_{7}=p^{*} e_{4} \in A^{9}\left(\Omega_{7}, Z_{2}\right)$.

Proposition 4.7. There exists elements $f_{7} \in A^{9}\left(\Omega_{7}, Z_{2}\right), f_{7}^{\prime} \in$ $A^{13}\left(\Omega_{7}, Z_{2}\right)$ and $f_{7}^{\prime \prime} \in A^{16}\left(\Re_{7}, Z_{2}\right)$ such that $i^{*} f_{7}=S q^{2} S q^{1} u, i^{*} f_{7}^{\prime}=S q^{7} u$ and $i^{*} f_{7}^{\prime \prime}=\left(S q^{10}+S q^{8} S q^{2}+S q^{7} S q^{3}\right) u$. Let A_{0}^{*} be an A^{*}-submodule generated by a_{7}, e_{7} and f_{7}. We have relations $S q^{1} a_{7}=S q^{2} a_{7}=S q^{4} a_{7}$ $=S q^{1} e_{7}=S q^{2} e_{7}=S q^{2} f_{7}=0$ and an isomorphism $A_{0}^{i} \approx A^{i} /\left(\varphi_{1} A^{i-1}+\varphi_{2} A^{i-2}\right.$ $\left.+\mathscr{\varphi}_{4} A^{i-4}\right) \oplus A^{i-9} /\left(\mathcal{P}_{1} A^{i-10}+\varphi_{2} A^{i-11}\right) \oplus A^{i-9} / \mathcal{P}_{2} A^{i-11} . \quad A^{*}\left(\Omega_{7}, Z_{2}\right) / A_{0}^{*}$ has a linearly independent base $\left\{f_{7}^{\prime}, S q^{2} f_{7}^{\prime}, f_{7}^{\prime \prime}, S q^{4} f_{7}^{\prime}, S q^{2} f_{7}^{\prime \prime} ; S q^{6} f_{7}^{\prime}\right.$, $\left.S q^{4} S q^{2} f_{7}^{\prime} ; \cdots\right\}$.

Proof. The existence of f_{7}, f_{7}^{\prime} and $f_{7}^{\prime \prime}$ follows from (4.4), ii) and the previous proposition. The second assertion follows from Lemma 4.2, iv) since $p^{*} A^{11}\left(\Omega_{4}, Z_{2}\right)=0$. The last assertion follows from (4.4), ii) and from the calculation in the proof of Lemma 3.1. q.e.d.

We see $A^{8}\left(\Re_{7}, Z_{2}\right)=\left\{\operatorname{Sq}^{8} a_{7}\right\}$ and $A^{9}\left(\Re_{7}, Z_{2}\right)=\left\{e_{7}, f_{7}\right\}$. By proposition 4.6 and (3.3), iv), $\frac{\delta}{16} S q^{8} a_{7}=p^{*} \frac{\delta}{16} S q^{8} a_{4}=\left\{p^{*} e_{4}\right\}=\left\{e_{7}\right\}$. Then by (3.3), vii) and (4.4), i),

Corollary. 2-component of $\pi_{7}=Z_{16}$.
$A^{*}\left(\pi_{7}, Z_{2}\right)$ is isomorphic to $A^{*} / \mathscr{\varphi}_{1} A^{*}+A^{*} / \varphi_{1} A^{*}$ and generated $u_{0} \in A^{0}\left(\pi_{7}, Z_{2}\right)$ and $u_{1} \in A^{1}\left(\pi_{7}, Z_{2}\right)$ such that $\frac{\delta}{16} u_{0}=u_{1}$. Consider the exact sequence (4.4), ii) for $k=7$. Denote that $p^{*} a_{7}=a_{8}$, $p^{*} f_{7}=f_{8}, p^{*} f_{7}^{\prime}=f_{8}{ }^{\prime}$ and $p^{*} f_{7}^{\prime \prime}=f_{8}^{\prime \prime}$.

Porposition 4.8. There exist elements $g_{8} \in A^{9}\left(\Omega_{8}, Z_{2}\right), g_{8}{ }^{\prime} \in$ $A^{15}\left(\Re_{8}, Z_{2}\right)$ and $h_{8} \in A^{10}\left(\Omega_{8}, Z_{2}\right)$ such that $i^{*} g_{8}=S q^{2} u_{0}, i^{*} g_{8}{ }^{\prime}=S q^{8} u_{0}$, $i^{*} h_{8}=S q^{2} u_{1}$ and $S q^{2} h_{8}=0$. Let A_{0}^{*} be an $A^{*-s u b m o d u l e ~ g e n e r a t e d ~}$ by a_{8}, f_{8}, g_{8} and h_{8}, then we have relations $S q^{1} a_{8}=S q^{2} a_{8}=S q^{4} a_{8}$ $=S q^{8} a_{8}=S q^{2} f_{8}=S q^{2} g_{8}=0$ and an isomorphism $A_{0}^{i} \approx A^{i} /\left(\mathscr{P}_{1} A^{i-1}+\right.$ $\left.\varphi_{2} A^{i-2}+\varphi_{4} A^{i-4}+\varphi_{8} A^{i-8}\right) \oplus A^{i-9} / \varphi_{2} A^{i-11} \oplus A^{i-9} / \rho_{2} A^{i-11} \oplus A^{i-10} / \varphi_{2} A^{i-12}$. $A^{*}\left(\Omega_{8}, Z_{2}\right) / A_{0}^{*}$ has a linearly independent base $\left\{f_{8}^{\prime} ; S q^{2} f_{8}^{\prime}, g_{8}{ }^{\prime} ; f_{8}^{\prime \prime}\right.$: $\left.S q^{4} f_{8}^{\prime}, S q^{2} g_{8}{ }^{\prime} ; S q^{2} f_{8}^{\prime \prime}, S q^{3} g_{8}{ }^{\prime} ; S q^{6} f_{8}{ }^{\prime}, S q^{4} S q^{2} f_{8}^{\prime}, S q^{4} g_{8}{ }^{\prime} ; \cdots\right\}$.

Proof. As is seen in the proof of Proposition 4.6, $\Delta^{*} u_{0}=S q^{8} a_{7}$ and $\Delta u_{1}=e_{7}$. From Proposition 4. 8, Lemma 3.2 and from (4.4), ii), there are elements $g_{8}, g_{8}{ }^{\prime}$ and $h_{8}{ }^{\prime}$ such that $i^{*} g_{8}=S q^{2} u_{0}, i^{*} g_{8}{ }^{\prime}$ $=S q^{8} u_{0}$ and $i * h_{8}{ }^{\prime}=S q^{2} u_{1}$. Since $i * S q^{2} h_{8}{ }^{\prime}=S q^{2} S q^{2} u_{1}=0$ and since $p^{*} A^{12}\left(\Omega_{7}, Z_{2}\right)=\left\{S q^{2} S q^{1} f_{8}\right\}$, we have $S q^{2} h_{8}^{\prime}=\varepsilon S q^{2} S q^{1} f_{8}$ for some $\varepsilon=0$ or 1. Setting $h_{8}=h_{8}{ }^{\prime}+\varepsilon S q^{1} f_{8}$ we have that $i^{*} h_{8}=S q^{2} u_{1}$ and $S q^{2} h_{8}=0$. Remark that the condition $p^{*} A^{k+5}\left(\Omega_{k}, Z_{2}\right)=0$ of Lemma 4.2 , iv) may be replaced by the condition $S q^{2} v=0$. Then the proposition is proved by Lemma 4.2, iv), the exact sequence (4.4), ii) and by Lemma 3.2. q.e.d.

We see $A^{9}\left(\Re_{8}, Z_{2}\right)=\left\{f_{8}, g_{8}\right\}$ and $A^{10}\left(\Re_{8}, Z_{2}\right)=\left\{S q^{1} f_{8}, S q^{1} g_{8}, h_{8}\right\}$. By (3.3), vii) and (4.4), i),

Corollary. 2-component of $\pi_{8}=Z_{2}+Z_{2}$.
Then $A^{*}\left(\pi_{8}, Z_{2}\right) \approx A^{*}+A^{*}$. We may chose generators u and u^{\prime} of $A^{*}\left(\pi_{8}, Z_{2}\right)$ such that, in the exact sequence (4.4), ii) for
$k=8$, the relations $\Delta * u=f_{8}$ and $\Delta^{*} u^{\prime}=g_{8}$ hold. Denote that $p^{*} a_{8}$ $=a_{9}, p^{*} f_{8}^{\prime}=f_{9}^{\prime}, p^{*} f_{8}^{\prime \prime}=f_{9}{ }^{\prime \prime}, p^{*} g_{8}{ }^{\prime}=g_{9}{ }^{\prime}$ and $p^{*} h_{8}=h_{9}$.

Since $\Delta^{*} S q^{2} u=S q^{2} f_{8}=0$ and $\Delta^{*} S q^{2} u^{\prime}=S q^{2} g_{8}=0$, there exist elements $i_{9}{ }^{\prime}$ and $j_{9}{ }^{\prime}$ of $A^{10}\left(\Re_{9}, Z_{2}\right)$ such that

$$
i^{*} i_{9}^{\prime}=S q^{2} u \quad \text { and } \quad i^{*} j_{9}^{\prime}=S q^{2} u^{\prime}
$$

To determine $S q^{3} i_{9}{ }^{\prime}$ and $S q^{3} j_{9}$, we shall consider the Bockstein operators in $A^{i}\left(\Omega_{k}, Z_{2}\right)$ for $i=12,13$ and $k=7,8,9$.
$A^{12}\left(\Omega_{7}, Z_{2}\right)=\left\{S q^{12} a_{7}, S q^{2} S q^{1} f_{7}\right\}$ and $A^{13}\left(\Re_{7}, Z_{2}\right)=\left\{S q^{4} e_{7}, S q^{4} f_{7}, f_{7}^{\prime}\right\}$. Then the following three possibilities are considered.
i) $\frac{\delta}{8} S q^{12} a_{7}=\left\{f_{7}^{\prime}\right\} \quad$ and $\quad \frac{\delta}{4} S q^{2} S q^{1} f_{7}=\left\{S q^{4} e_{7}\right\} ;$
ii) $\frac{\delta}{8} S q^{12} a_{7}=\left\{S q^{4} e_{7}\right\} \quad$ and $\quad \frac{\delta}{4} S q^{2} S q^{1} f_{7}=\left\{f_{7}^{\prime}\right\}$;
iii) $\quad \frac{\delta}{8} S q^{12} a_{7}=\left\{S q^{4} e_{7}\right\} \quad$ and $\quad \frac{\delta}{4} S q^{2} S q^{1} f_{7}=\left\{f_{7}^{\prime}+S q^{4} e_{7}\right\}$.

Proof. First we remark that $p^{*} A^{12}\left(\Re_{4}, Z_{2}\right)=\left\{S q^{12} a_{7}\right\}$ and $p^{*} A^{13}$ $\left(\Re_{4}, Z_{2}\right)=\left\{S q^{4} e_{7}\right\}$. By Proposition 4.6, $\frac{\delta}{4} S q^{12} a_{4}=\left\{S q^{6} d_{4}\right\}=\left\{\Delta^{*} S q^{6} u\right\}$. Since $i^{*} f_{7}^{\prime}=S q^{7} u=S q^{1} S q^{6} u$, we have by Lemma 4.1, i), $\frac{\delta}{8} S q^{12} a_{4}$ $=\left\{f_{7}^{\prime}+\lambda S q^{4} e_{7}\right\}$ for some $\lambda=0$ or 1. By Proposition 4.6, $\frac{\delta}{8}\left(\left(S q^{5}\right.\right.$ $\left.\left.+S q^{4} S q^{1}\right) d_{4}+\varepsilon S q^{12} a_{4}\right)=\left\{S q^{4} e_{4}\right\}=\left\{S q^{4} e_{4}+S q^{6} d_{4}\right\}$. In the case $\varepsilon=0$, applying Lemma 4.1, ii), we have from $S q^{2} S q^{1} S q^{2} S q^{1} u=S q^{1}\left(S q^{5}\right.$ $\left.+S q^{4} S q^{1}\right) u$ that $\frac{\delta}{4}\left(S q^{2} S q^{1} f_{7}+\nu S q^{12} a_{7}\right)=\left\{S q^{4} e_{7}\right\}$ for some ν. Since $S q^{12} a_{7} \in \frac{\delta}{4}$-kernel, we have $\frac{\delta}{4}\left(S q^{2} S q^{1} f_{7}\right)=\left\{S q^{4} e_{7}\right\}$. Since $S q^{4} e_{7} \in \frac{\delta}{4}-$ image, $\frac{\delta}{8} S q^{12} a_{7}=\left\{f_{7}^{\prime}+\lambda S q^{4} e_{7}\right\}=\left\{f_{7}^{\prime}\right\}$. Then we have the case i). Next consider the case $\varepsilon=1$. By (3.3), iv), $\frac{\delta}{8}\left(\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}\right.$ $\left.+S q^{12} a_{4}\right)=\left\{S q^{4} e_{4}\right\}$ implies $\frac{\delta}{8} S q^{12} a_{7}=\left\{S q^{4} e_{7}\right\}$. Since $\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}$ $+S q^{12} a_{4} \in \frac{\delta}{4}$-kernel, we have $\frac{\delta}{4} S q^{12} a_{4}=\frac{\delta}{4}\left(S q^{5}+S q^{4} S q^{1}\right) d_{4}=\left\{S q^{6} d_{4}\right\}$. Then we have from Lemma 4.2, iii), $\frac{\delta}{4}\left(S q^{2} S q^{1} f_{7}+\lambda S q^{12} a_{7}\right)=\left\{f_{7}^{\prime}+\right.$ $\left.\nu S q^{4} e_{7}\right\}$ for some $\lambda, \nu=0$ or 1. Since $S q^{12} a_{7} \in \frac{\delta}{4}$-kernel, $\frac{\delta}{4}\left(S q^{2} S q^{1} f_{7}\right)$ $=\left\{f_{7}{ }^{\prime}+\nu S q^{4} e_{7}\right\}$. Then we have the cases ii) and iii). q.e.d.
$A^{12}\left(\Omega_{8}, Z_{2}\right)=\left\{S q^{2} S q^{1} f_{8}, S q^{2} S q^{1} g_{8}\right\}$ and $A^{13}\left(\Omega_{8}, Z_{2}\right)=\left\{f_{8}^{\prime}, S q^{2} S q^{1} h_{8}\right.$, $\left.S q^{4} f_{8}, S q^{4} g_{8}\right\}$. Then the following three possibilities are considered.

$$
\begin{align*}
& \text { i) } \frac{\delta}{4} S q^{2} S q^{1} g_{8}=\left\{f_{8}^{\prime}\right\} \quad \text { and } \quad \frac{\delta}{8} S q^{2} S q^{1} f_{8}=\left\{S q^{2} S q^{1} h_{8}\right\} ; \tag{4.7}\\
& \text { ii) } \frac{\delta}{4} S q^{2} S q^{1} f_{8}=\left\{f_{8}^{\prime}\right\} \quad \text { and } \quad \frac{\delta}{8} S q^{2} S q^{1} g_{8}=\left\{S q^{2} S q^{1} h_{8}\right\} ; \\
& \text { iii) } \quad \frac{\delta}{4} S q^{2} S q^{1} f_{8}=\left\{f_{8}^{\prime}\right\} \quad \text { and } \quad \frac{\delta}{8} S q^{2} S q^{1}\left(f_{8}+g_{8}\right)=\left\{S q^{2} S q^{1} h_{8}\right\} .
\end{align*}
$$

Proof. First we remark that the term $S q^{4} f_{8}$ does not appear in any representatives of a $\frac{\delta}{2^{r}}$-image, because $S q^{1} S q^{4} f_{8}=S q^{5} f_{8} \neq 0$. Applying the Lemma 4.1, i) and ii), we have from the case i) of (4. 6) that $\frac{\delta}{4} S q^{2} S q^{1}\left(g_{8}+\lambda f_{8}\right)=\left\{f_{8}^{\prime}\right\}$ and $\frac{\delta}{8} S q^{2} S q^{1} f_{8}=\left\{S q^{2} S q^{1} h_{8}+\nu f_{8}^{\prime}\right\}$ for some λ and ν. Then $\frac{\delta}{4} S q^{2} S q^{1} f_{8}=0$ and $\left\{S q^{2} S q^{1} h_{8}+\nu f_{8}^{\prime}\right\}$ $=\left\{S q^{2} S q^{1} h_{8}\right\}$. Therefore (4.6), i) implies (4.7), i).

Next consider the cases ii) and iii) of (4.6). By (3.3), $\frac{\delta}{4} S q^{2} S q^{1} f_{7}=\left\{f_{7}^{\prime}+\nu S q^{4} e_{7}\right\}^{\bullet} \quad$ implies $\quad \frac{\delta}{4} S q^{2} S q^{1} f_{8}=\left\{f_{8}^{\prime}\right\}$. Applying Lemma 4.1, iii) to $\frac{\delta}{8} S q^{12} a_{7}=\left\{S q^{4} e_{7}\right\}$, we have that $\frac{\delta}{8} S q^{2} S q^{1}\left(g_{8}\right.$ $\left.+\lambda f_{8}\right)=\left\{S q^{2} S q^{1} h_{8}+\nu f_{8}^{\prime}\right\}=\left\{S q^{2} S q^{1} h_{8}\right\}$. Then we have the case ii) and iii). q.e.d.

From (4.4), ii) for $k=8$ and from Theorem I, we have that $A^{*}\left(\Re_{9}, Z_{2}\right) / p^{*} A^{*}\left(\Re_{8}, Z_{2}\right)$ is isomorphic to $A^{*} / \varphi_{3} A^{*}+A^{*} / \mathscr{P}_{3} A^{*}$ and generated by $i_{9}{ }^{\prime}$ and $j_{9}{ }^{\prime}$. In particular $A^{12}\left(\Re_{9}, Z_{2}\right)=\left\{S q^{2} i_{9}{ }^{\prime}, S q^{2} j_{9}{ }^{\prime}\right\}$ and $A^{13}\left(\Re_{9}, Z_{2}\right)=\left\{S q^{2} S q^{1} h_{9}, f_{9}^{\prime}, S q^{2} S q^{1} i_{9}^{\prime}, S q^{2} S q^{1} j_{9}{ }^{\prime}\right\}$. Then the following three possibilities are considered.
$(4.8) \quad$ i) $S q^{3} j_{9}{ }^{\prime}=\left\{f_{9}{ }^{\prime}\right\} \quad$ and $\quad \frac{\delta}{4} S q^{2} i_{9}{ }^{\prime}=\left\{S q^{2} S q^{1} h_{9}\right\}$;
ii) $S q^{3} i_{9}{ }^{\prime}=\left\{f_{9}{ }^{\prime}\right\} \quad$ and $\frac{\delta}{4} S q^{2} j_{9}{ }^{\prime}=\left\{S q^{2} S q^{1} h_{9}\right\}$;
iii) $\quad S q^{3} i_{9}{ }^{\prime}=\left\{f_{9}{ }^{\prime}\right\} \quad$ and $\frac{\delta}{4} S q^{2}\left(i_{9}{ }^{\prime}+j_{9}{ }^{\prime}\right)=\left\{S q^{2} S q^{1} h_{9}\right\}$.

Proof. Consider the case i) of (4.7). From Lemma 4.1, ii), we have elements $\tilde{\alpha}$ and γ such that $i^{*} \tilde{\alpha}=S q^{1} S q^{2} S q^{1} u^{\prime}=S q^{2} S q^{2} u^{\prime}$ $=i^{*} S q^{2} j_{9}^{\prime}, \quad\{\gamma\}=\left\{f_{8}^{\prime}\right\}$ and $\frac{\delta}{2} \tilde{\alpha}=p^{*} \gamma$. Since $p^{*} A^{12}\left(\Re_{8}, Z_{2}\right)=0$, $i^{*} \tilde{\alpha}=i^{*} S q^{2} j_{9}{ }^{\prime}$ implies $\tilde{\alpha}=S q^{2} j_{9}^{\prime}$. Since $\frac{\delta}{2}$-image $=0$ in $A^{12}\left(\Re_{8}, Z_{2}\right)$, $\{\gamma\}=\left\{f_{8}^{\prime}\right\}$ implies $\gamma=f_{8}{ }^{\prime}$ and $p^{*} \gamma=f_{9}^{\prime}$. Therefore $S q^{3} j_{9}{ }^{\prime}=\frac{\delta}{2} S q^{2} j_{9}{ }^{\prime}$ $=f_{9}{ }^{\prime}$. We have also, from Lemma 4.1, ii), $\frac{\delta}{4} S q^{2} i_{9}{ }^{\prime}=\left\{S q^{2} S q^{1} h_{9}+\varepsilon f_{9}{ }^{\prime}\right\}$ $=\left\{S q^{2} S q^{1} h_{9}\right\}$.

Similarly (4.7), ii) implies (4.8), ii) and (4.7), iii) implies (4.8), iii). q.e.d.

Now we define elements i_{9} and j_{9} of $A^{10}\left(\Re_{9}, Z_{2}\right)$ as follows corresponding for each cases of (4.8) ;
i) $\quad i_{9}=i_{9}{ }^{\prime} \quad$ and $j_{9}=j_{9}{ }^{\prime}$,
ii) $\quad i_{9}=j_{9}{ }^{\prime}$ and $\jmath_{9}=i_{9}{ }^{\prime}$,
iii) $\quad i_{9}=i_{9}{ }^{\prime}+j_{9}{ }^{\prime}$ and $j_{9}=i_{9}{ }^{\prime}$.

Then $S q^{3} j_{9}=f_{9}^{\prime}, \frac{\delta}{4} S q^{2} i_{9}=\left\{S q^{2} S q^{1} h_{9}\right\} \quad$ and $S q^{3} i_{9}=\frac{\delta}{2} S q^{2} i_{9}=0$. Obviously i_{9} and j_{9} generate $A^{*}\left(\Omega_{9}, Z_{2}\right) / p^{*} A^{*}\left(\Omega_{8}, Z_{2}\right)$. By making use of the condition $S q^{3} i_{9}=0$, in place of the condition on $S q^{1}$ in Lemma 4.2, i), we have

Proposition 4.9. Let A_{0}^{*} be an A^{*}-submodule generated by h_{9} and i_{9}, then we have relations $S q^{2} h_{9}=S q^{3} i_{9}=0$ and an isomorphism $A_{0}^{i} \approx A^{i-10} / \varphi_{2} A^{i^{-12}} \oplus A^{i-10} / \varphi_{3} A^{i^{-13}} . \quad A^{*}\left(\Omega_{9}, Z_{2}\right) / A_{0}^{*}$ has a linearly independent base $\left\{S q^{16} a_{9} ; g_{9}{ }^{\prime}, S q^{i} g_{9}{ }^{\prime}, i=2,3,4 ; f_{9}^{\prime \prime}, S q^{2} f_{9}{ }^{\prime \prime} ; S q^{I} j_{9}\right.$, $I \neq(5,1)\}$, for dimensions less than 20.

Remark that $f_{9}^{\prime}=S q^{3} j_{9}, S q^{2} f_{9}^{\prime}=\left(S q^{5}+S q^{4} S q^{1}\right) j_{9}, S q^{4} f_{9}^{\prime}=S q^{5} S q^{2} j_{9}$, $S q^{6} f_{9}^{\prime}=S q^{6} S q^{3} j_{9}$ and $S q^{4} S q^{2} f_{9}^{\prime}=\left(S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}+S q^{6} S q^{2} S q^{1}\right) j_{9}$.

Since $i^{*} S q^{3} f_{7}^{\prime}=S q^{3} S q^{7} u=\left(S q^{4} S q^{2} S q^{1}+S q^{7}\right) S q^{2} S q^{1} u=i^{*}\left(S q^{4} S q^{2} S q^{1}\right.$ $\left.+S q^{7}\right) f_{7}$, we have $S q^{3} f_{7}^{\prime}-\left(S q^{4} S q^{2} S q^{1}+S q^{7}\right) f_{7} \in p^{*} A^{16}\left(\Re_{4}, Z_{2}\right)=\left\{S q^{16} a_{7}\right.$, $\left.S q^{7} e_{7}\right\}$. By operating p^{*}, we have that $S q^{3} f_{9}^{\prime}=\varepsilon S q^{16} a_{9}$ for some $\varepsilon=0$ or 1 . Thus we consider the following two cases:
A)

$$
S q^{5} S q^{1} j_{9}=S q^{3} f_{9}^{\prime}=0
$$

B)
$S q^{5} S q^{1} j_{9}=S q^{3} f_{9}^{\prime}=S q^{16} a_{9}$.
By (3.3), vii) and (4.4), i), we have from $A^{10}\left(\Omega_{9}, Z_{2}\right)=\left\{h_{9}\right.$, $\left.i_{9}, j_{9}\right\}$ and $A^{11}\left(\Re_{9}, Z_{2}\right)=\left\{S q^{1} h_{9}, S q^{1} i_{9}, S q^{1} j_{9}\right\}$,

Corollary. 2-component of $\pi_{9}=Z_{2}+Z_{2}+Z_{2}$.
$A^{*}\left(\pi_{9}, Z_{2}\right) \approx A^{*}+A^{*}+A^{*}$. We may chose generators u, u^{\prime} and $u^{\prime \prime}$ such that the relations $\Delta^{*} u=h_{9}, \Delta^{*} u^{\prime}=i_{9}$ and $\Delta^{*} u^{\prime \prime}=j_{9}$ hold in the exact sequence (4.4), ii), $k=9$. Denote that $p^{*} a_{9}=a_{10}$, $p^{*} f_{9}^{\prime \prime}=f_{10}^{\prime \prime}$ and $p^{*} g_{9}^{\prime}=g_{10}^{\prime}$.

Proposition 4.10. There exist elements $k_{10} \in A^{11}\left(\Omega_{10}, Z_{2}\right)$ and $l_{10} \in A^{12}\left(\Re_{10}, Z_{2}\right)$ such that $i^{*} k_{10}=S q^{2} u$ and $i^{*} l_{10}=S q^{3} u^{\prime}$. Let A_{0}^{*} be an A^{*}-submodule generated by k_{10} and l_{10}, then we have relations $S q^{3} k_{10}=S q^{1} l_{10}=S q^{5} l_{10}=0$ and $\frac{\delta}{4} l_{10}=\left\{S q^{2} k_{10}\right\}$ and an isomorphism
$A_{0}^{i} \approx A^{i-10} / \varphi_{3} A^{i-13} \oplus A^{i-11} /\left(\mathcal{P}_{1} A^{i-12}+\varphi_{5} A^{i-16}\right)$. For the case $\left.A\right), A^{*}\left(\Omega_{10}\right.$, $\left.Z_{2}\right) / A_{0}^{*}=\left\{g_{10}^{\prime \prime}, m_{10} ; S q^{16} a_{10}, f_{10}^{\prime \prime} ; S q^{2} g_{10}^{\prime} ; S q^{2} f_{10}^{\prime \prime}, S q^{3} g_{10}^{\prime} ; \cdots\right\}$ where $i^{*} m_{10}=S q^{5} S q^{1} u^{\prime \prime}$. For the case $\left.B\right), A^{*}\left(\Omega_{10}, Z_{2}\right) / A_{0}^{*}=\left\{g_{10}^{\prime} ; f_{10}^{\prime \prime} ; S q^{2} g_{10}^{\prime}\right.$; $\left.S q^{2} f_{10}^{\prime \prime}, S q^{3} g_{10}^{\prime} ; \cdots\right\}$.

Proof. From the previous proposition, $\Delta * S q^{2} u=\Delta * S q^{3} u^{\prime}=0$, $p^{*} A^{i}\left(\Re_{9}, Z_{2}\right)=0, \quad i=12,13$, and $S q^{1}: p^{*} A^{17}\left(\Omega_{9}, Z_{2}\right)=\left\{S q^{2} g_{10}^{\prime}\right\} \rightarrow$ $p^{*} A\left(\Omega_{9}, Z_{2}\right)=\left\{S q^{3} g_{10}^{\prime}, S q^{2} f_{10}^{\prime \prime}\right\}$ is an isomorphism into. Then we have, from i) and ii) of Lemma 4.2, the first two assertions of the proposition. Since $p^{*} A^{12}\left(\Re_{9}, Z_{2}\right)=p^{*} A^{13}\left(\Re_{9}, Z_{2}\right)=0, \frac{\delta}{4} S q^{2} i_{9}$ $=\left\{S q^{2} S q^{1} h_{9}\right\}$ implies $\frac{\delta}{4} l_{10}=\left\{S q^{2} k_{10}\right\}$ by Lemma 4.1, iii). The last two assertions are verified directly. q.e.d.

From $A^{11}\left(\Omega_{10}, Z_{2}\right)=\left\{k_{10}\right\}$ and $A^{12}\left(\Omega_{10}, Z_{2}\right)=\left\{S q^{1} k_{10}, l_{10}\right\}$,
Corollary. 2-component of $\pi_{10}=Z_{2}$.
The $A^{*}\left(\pi_{10}, Z_{2}\right)$ is isomorphic to A^{*} and generated by an element u of $A^{0}\left(\pi_{10}, Z_{2}\right)$.

Continuing our calculation, we have the following results without difficulties:

$$
\begin{aligned}
A^{*}\left(\Omega_{11}, Z_{2}\right)= & \left\{a_{11} ; l_{11} ; n_{11} ; S q^{2} l_{11} ; g_{11}^{\prime}, S q^{3} l_{11}, m_{11}, S q^{2} n_{11} ;\right. \\
& \left.S q^{16} a_{11}, f_{11}^{\prime \prime}, S q^{4} l_{11}, S q^{3} n_{11} ; S q^{2} g_{11}^{\prime}, S q^{4} n_{11} ; \cdots\right\}
\end{aligned}
$$

where $i^{*} n_{11}=S q^{2} u$ and the elements m_{11} and $S q^{16} a_{11}$ are omitted for the case B). $\quad \frac{\delta}{8} l_{11}=\left\{n_{11}\right\}$.

$$
A^{*}\left(\Omega_{12}, Z_{2}\right)=\left\{a_{12} ; g_{12}^{\prime}, m_{12} ; S q^{16} a_{12}, f_{12}^{\prime \prime}, o_{12} ; \cdots\right\}
$$

where $i^{*} o_{12}=S q^{5} u_{0}$ and the elements m_{12} and $S q^{16} a_{12}$ are omitted for the case B).

Therefore we have from (3.3), vii) and (4.4), i),
Proposition 4.11. i) 2 -component of $\pi_{11}=Z_{8}$,
ii) 2-component of $\pi_{12}=2$-component of $\pi_{13}=0$,
iii) the 2-component of π_{14} has at most two generators.

Remark. If $\pi_{N}\left(S^{N}\right), k_{N}, \pi_{N+1}\left(S^{N}\right), k_{N+2}, \cdots$ are Postnikov's invariant system of S^{N}, then K_{k} has an invariant system $\pi_{N}\left(S^{N}\right), k_{N}$, $\cdots, \pi_{N+k-1}\left(S^{N}\right), 0,0, \cdots$.

REFERENCES

[1] J. Adem, The relations on Steenrod powers of Cohomology classes, Algebraic geometry and Topology, Princeton.
[2] H. Cartan, Sur l'itération des opérations de Steenrod, Comm. Math. Helv., 29 (1955) 40-58.
[3] J-P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., 54 (1951) 425505.
[4] J-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comm. Math. Helv., 27 (1953) 198-231.
[5] A. Negishi, Exact sequences in the Steenrod algebra, Jour. Math. Soc. Japan, 10 (1958) to appear.
[6] T. Yamanoshita, On certain cohomology operations, Jour. Math. Soc. Japan, 8 (1956), 300-344.

[^0]: 1) We consider that the empty sequence (ϕ) satisties the condition $t(I) \geqq 2$ and has a type $(0, s)$ for arbitrary s.
[^1]: 1) $\quad B^{i}=C^{j} \oplus D^{k}$ means that $B^{*}=\sum B^{i}$ is a direct sum of A^{*}-moducles $C^{*}=\Sigma C^{j}$ and $D^{*}=\Sigma D^{h}$.
