MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXI, Mathematics No. 2, 1958.

p-primary components of homotopy groups II. mod *p* Hopf invariant

By

Hirosi Toda

(Received June 5, 1958)

A mod p Hopf invariant (homomorphism $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is related to the double suspension E^2 by the exactness of the pcomponents of the sequence

$$\pi_{_{2pt-2}}(\mathbf{S}^{_{2t-1}}) \xrightarrow{E^2} \pi_{_{2pt}}(\mathbf{S}^{_{2t+1}}) \xrightarrow{H_p} Z_p.$$

The homomorphism H_p is onto if and only if there exists a cell complex $K = S^m \cup e^{m+2t(p-1)}$ in which $\mathscr{P}^t : H^m(K, \mathbb{Z}_p) \longrightarrow H^{m+2t(p-1)}(K, \mathbb{Z}_p)$ is an isomorphism.

One of the purposes of this section II is to prove

Theorem 2.11. H_p is trivial except for $t = p^r$. If H_p is onto for $t = p^r$, then it is trivial for $t = p^{r+1}$.

It is known that $H_p: \pi_{2p}(S^3) \longrightarrow Z_p$ is onto, then it follows that $H_p: \pi_{2p^2}(S^{2p+1}) \longrightarrow Z_p$ is trivial and $E^2: \pi_{2p^2-2}(S^{2p-1}) \longrightarrow \pi_{2p^2}(S^{2p+1})$ is an isomorphism of the *p*-components.

The above theorem is a consequence of an important theorem (Theorem 2.9) which will be applied in the next section to compute the homotopy groups, in particular, to determine the p-components (Z_p and Z_{p^2}) of the stable homotopy groups $\pi_{2p(p-1)-2}$ and $\pi_{2p(p-1)-1}$.

In the case p=2, $H_2: \pi_{4t}(S^{2t+1}) \longrightarrow Z_2$ is also defined and it is onto if and only if the usual Hopf homomorphism $H: \pi_{4t-1}(S^{2t}) \longrightarrow Z$ is onto. Then our theorem 2.11 is a modification of Adames' theorem (Theorem 2.15).

The notations and results in the previous section [9] are used and referred to such as (1.3), Lemma 1.3, etc. § mod *p* Hopf invariant.

The mod *p* Hopf invariant (homomorphism)

$$(2.1). H_p: \pi_{m+n-1}(S^m) \longrightarrow Z_p, \quad n = 2t(p-1),$$

may be defined in terms of the functional reduced power operations (cf. [7]). Here we introduce the homomorphism H_p in the following manner.

Denote by E^{r+1} the unit (r+1)-cube and by S^r the unit r-sphere of its boundary. Choose generators (orientations) $\iota \in H^m(S^m)$ and $\iota' \in H^{m+n}(E^{m+n}, S^{m+n-1})$. For any element α of $\pi_{m+n-1}(S^m)$, there is a cell complex

$$(2.2). K_{\alpha} = S^m \cup e^{m+n}$$

such that the restriction $f|S^{m+n-1}$ of a characteristic map $f:(E^{m+n}, S^{m+n-1}) \longrightarrow (K_{\alpha}, S^m)$ of e^{m+n} represents α by the given orientations $\partial \iota'$ and ι . It is easy to see that such complexes K_{α} of (2.2) have the same homotopy type.

Let $\iota_m \in H^m(K_{\alpha}, Z_p)$ and $\iota_{m+n} \in H^{m+n}(K_{\alpha}, Z_p)$ be the generators given by ι and $f^*\iota'$ respectively. Then the homomorphism H_p is defined by the following formula.

(2.3).
$$\mathscr{P}^{t}\iota_{m} = H_{p}(\alpha)\iota_{m+n}, \quad n = 2t(p-1).$$

The proof of the formulas

$$\begin{split} H_p(\alpha+\beta) &= H_p(\alpha) + H_p(\beta) \ , \\ H_p \circ E &= \pm H_p \end{split}$$

is omitted.

Lemma 2.1. i). $H_p: \pi_{m+n-1}(S^m) \longrightarrow Z_p$, n = 2t(p-1) is onto if and only if there exists a cell complex $K_{\alpha} = S^m \cup e^{m+n}$ such that $\mathscr{P}^t: H^m(K_{\alpha}, Z_p) \longrightarrow H^{m+n}(K_{\alpha}, Z_p)$ is an isomorphism.

ii). $H_p: \pi_{m+n-1}(S^m) \longrightarrow Z_p$, n = 2t(p-1) is trivial for $m \leq 2t$. For m > 2t, H_p is onto if and only if it is onto for m = 2t+1: $(\pi_{2pt}(S^{2t+1}) \longrightarrow Z_p)$.

iii). If $H_p: \pi_{m+n-1}(S^m) \longrightarrow Z_p$ is onto for n = 2t(p-1), then $t = p^j$ for some integer $j \ge 0$.

Proof. i) is easy. For m < 2t, $\mathscr{P}^t : H^m(K, Z_p) \longrightarrow H^{m+n}(K, Z_p)$ is trivial in general. For m = 2t, $\mathscr{P}^t \alpha = \alpha^p = 0$, since $\alpha^2 \in H^{pm}(K, Z_p) = 0$. By i), it follows that H_p is trivial for $m \leq 2t$. It is known

that the double suspension $E^2: \pi_{m+n-1}(S^m) \longrightarrow \pi_{m+n+1}(S^{m+2})$ is a mod p isomorphism for odd m and for m > 2t [4]. Then the second assertion of ii) follows from i) and from $H_p \circ E = \pm H_p$. Suppose that $p^j < t < p^{j+1}$. By Lemma 1.3, $\mathscr{S}^t < M_{j+1}$. Thus $\mathscr{S}^t < M_{j+1}^*$, in particular, $\mathscr{S}^t \in M_{j+1}^*$. Since $H^{m+i}(K, Z_p) = 0$ for 0 < i < n = 2t(p-1), it follows that $\Delta H^m(K, Z_p) = \mathscr{S}^{pk} H^m(K, Z_p) = 0$ for $k = 0, 1, 2, \cdots, j$. Therefore M_{j+1}^* operates trivially on $H^m(K, Z_p)$ and thus \mathscr{S}^t operates trivially on it. By i), it follows iii).

Next an alternative definition of the mod p Hopf invariant will be given.

Denote by $\Omega(X)$ the space of loops in X. Then there is an isomorphism $\Omega: \pi_i(X) \approx \pi_{i-1}(\Omega(X))$. Denote that $\Omega^2(X) = \Omega(\Omega(X))$ and $\Omega^2 = \Omega \circ \Omega: \pi_i(X) \approx \pi_{i-2}(\Omega^2(X))$. S^{2t-1} is imbedded canonically in $\Omega^2(S^{2t+1})$ and we have the following commutative diagram

(2.4).
$$\cdots \xrightarrow{\partial} \pi_{i-1}(S^{2t-1}) \xrightarrow{E^2} \prod_{i+1}^{n} (S^{2t+1}) \xrightarrow{J} \prod_{i=1}^{n} (\Omega^2(S^{2t+1}), S^{2t-1})$$
$$\xrightarrow{\partial} \pi_{i-2}(S^{2t-1}) \cdots,$$

where $J = j_* \circ \Omega^2$ and $E^2 = EE$ is the double suspension. It is known [4] that

$$H_i(\Omega^2(S^{2t+1}), Z_p) = \begin{cases} Z_p & \text{for } i = 2pt-2, \ 2pt-1, \\ 0 & \text{otherwise for } 2t-1 < i < 2(p+1)t-3. \end{cases}$$

Let

$$\tilde{H}_{p}: \pi_{2pt}(S^{2t+1}) \longrightarrow H_{2pt-2}(\Omega^{2}(S^{2t+2}), Z_{p}) = Z_{pt-2}(\Omega^{2}(S^{2t+2}), Z_{pt-2})$$

be the composition of Ω^2 and the Hurewicz homomorphism $\tau: \pi_{2pt-2}(\Omega^2(S^{2t+1})) \longrightarrow H_{2pt-2}(\Omega^2(S^{2t+1}), \mathbb{Z}_p).$

Proposition 2.2. $\tilde{H}_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto if and only if $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto.

Proof. We used the notation of [8]. Consider the case $t \ge 2$. Let S_{p-1}^{2t} be (p-1)-reduced product of S^{2t} imbedded in $\Omega(S^{2t+1})$, then the injection homomorphism: $\pi_{2pt-1}(S_{p-1}^{2t}) \longrightarrow \pi_{2pt-1}(\Omega(S^{2t+1}))$ is onto. From the definition of \tilde{H}_p , it follows that \tilde{H}_p is onto if and only if there is a mapping $g: S^{2pt-1} \longrightarrow S_{p-1}^{2t}$ such that $(\Omega g)_*$:

 $H_{2pt-2}(S^{2p-2}) \longrightarrow H_{2pt-2}(\Omega(S^{2t}_{p-1}), Z_p)$ is onto, or equivalently, such that $(\Omega g)^*: H^{2pt-2}(\Omega(S_{p-1}^{2t}), Z_p) = H^{2pt-2}(\Omega^2(S^{2t+1}), Z_p) \longrightarrow H^{2pt-2}(S^{2pt-2}, Z_p)$ is an isomorphism. Let $S_{p-1}^{2t} \cup e^{2pt}$ be a complex such that the attaching map of e^{2pt} is g. By Lemma (4.5) of [8], $(\Omega g)^*$ is an isomorphism if and only if $\mathscr{P}^{t}(e_{1}) = e_{1}^{p} \neq 0$ for a generator e_{1} of $H^{2t}(S_{p-1}^{2t} \cup e^{2pt}, Z_p)$. From the canonical mapping $S_{p-1}^{2t} \times I \longrightarrow S^{2t+1}$, we can construct a mapping of a suspension $S(S_{p-1}^{2t} \cup e^{2pt})$ of $S_{p-1}^{2t} \cup e^{2pt}$ onto $K_{\alpha} = S^{2t+1} \cup e^{2pt+1}$ such that it carries the cells of the dimensions 2t+1 and 2pt+1 with degree ± 1 , where g represents $\pm \Omega(\alpha) \in \pi_{2bt-1}(\Omega(S^{2t+1}))$. Conversely, since the injection homomor- $\text{phism } \pi_{2pt-1}(S_{p-1}^{2t}) \longrightarrow \pi_{2pt-1}(\Omega(S^{2t+1})) \text{ is onto, for arbitrary } \alpha \in \pi_{2pt}(S^{2t+1})$ there is a mapping g having the above properties. Since \mathscr{P}^t is compatible with the suspension, it follows that $\mathscr{P}^{t}(e_{1}) \neq 0$ if and only if $\mathscr{P}^{t}: H^{2t+1}(K_{\alpha}, Z_{p}) \longrightarrow H^{2pt+1}(K_{\alpha}, Z_{p})$ is an isomorphism. Consequently we have from i) of Lemma 2.1 that the proposition is true for $t \ge 2$.

Consider the case t=1. We prove that H_{p} and H_{p} are onto. Let M_k be the k-dimensional complex projective space. Extend the injection $S^2 \subset M_{p-1}$ over a cellular mapping $f: S^2_{p-1} \longrightarrow M_{p-1}$. By Theorem (4.1) of [8], for the class $\alpha \in \pi_{2p-1}(M_{p-1})$ of the attaching map of $e^{2p} = M_p - M_{p-1}$, there is an element β of $\pi_{2p-1}(S^2_{p-1})$ such that $f_*(\beta) = r\alpha$ for some $r \equiv 0 \mod p$. Let g be a representative of β and let a complex $S^2_{p-1} \cup e^{2p}_0$ be given by attaching e^{2p}_0 by g. Then f is extendable over $f: S_{p-1}^2 \cup e_0^{2p} \longrightarrow M_p$ such that e_0^{2p} is mapped to e^{2p} with the degree r. Since $\mathscr{P}^{1}(e_{1}) = e_{1}^{p} \neq 0$ in M_{p} , it follows that $\mathscr{P}^1(e_1) = e_1^n \neq 0$ in $S_{p-1}^2 \cup e_0^{2p}$. Similarly to the above, we have a complex K from $S(S_{p-1}^2 \cup e_0^{2p})$ such that \mathscr{P}^1 is not trivial in K. Therefore H_p is onto. By (4.3) of [8], there is a mapping $g_0: S^{2p-2} \longrightarrow \Omega(S^2_{p-1})$ such that $g_0^*: H^{2p-2}(\Omega(S^2_{p-1}), Z_p) \longrightarrow H^{2p-2}(S^{2p-2}, Z_p)$ is an isomorphism. Let $g: S^{2p-1} \longrightarrow S^2_{p-1}$ be a mapping (a suspension of g_0 such that $g_0 = \Omega g$. That $(\Omega g)^*$ is an isomorphism implies that H_{\flat} is onto, q. e. d.

Corollary 2.3. $H_p: \pi_{2p}(S^3) \longrightarrow Z_p$ and $\tilde{H}_p: \pi_{2p}(S^3) \longrightarrow Z_p$ are isomorphisms of the p-components.

Proposition 2.4. $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto if and only if $J: \pi_{2pt}(S^{2t+1}) \longrightarrow \pi_{2pt-2}(\Omega^2(S^{2t+1}), S^{2t-1})$ is onto of the p-components.

Proof. For the case t=1, this follows from Corollary 2.3 and from $\pi_{2p-2}(S^1)=0$. For the case $t \ge 2$, this follows from the

commutative diagram

$$\begin{aligned} \pi_{2pt-2}(\Omega^2(S^{2t+1})) & \xrightarrow{j_*} \pi_{2pt-2}(\Omega^2(S^{2t+1}), S^{2t-1}) \\ & \downarrow \tau \qquad \qquad \downarrow \tau \\ H_{2pt-2}(\Omega^2(S^{2t+1})) & \xrightarrow{j_*} H_{2pt-2}(\Omega^2(S^{2t+1}), S^{2t-1}) \end{aligned}$$

in which τ of the right side is an isomorphism of the *p*-components by the relative Hurewicz theorem of [6]. q. e. d.

Proposition 2.5. Let ι_{2t} be a generator of $\pi_{2t}(S^{2t})$. Then $H_3: \pi_{6t}(S^{2t+1}) \longrightarrow Z_3$ is onto if and only if $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] = 0$.

Proof. Assume that $[\iota_{2t}, \iota_{2t}, \iota_{2t}] = 0$. Then we construct as in [5] a complex $M_1 = S^{2t+1} \cup e^{6t+1}$ in which \mathscr{P}^t is not trivial. By Lemma 2.1, H_3 is onto.

Next assume that $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] \neq 0$. By (3.1) of [5], 3 $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] = 0$. By [10], $E[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] = 0$. By (5.1), b) of [3], $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] = E\gamma$ for some $\gamma \in \pi_{6t-3}(S^{2t-1})$. These equations show that the 3-component of the kernel of $E^2: \pi_{6t-3}(S^{2t-1}) \rightarrow \pi_{6t-1}(S^{2t+1})$ is not zero. From the exactness of the sequence (2.4), it follows that $J: \pi_{6t}(S^{2t-1}) \longrightarrow \pi_{6t-2}(\Omega^2(S^{2t+1}), S^{2t-1})$ is not onto of the 3-components. Therefore, by Proposition 2.4, H_3 is trivial if $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] \models 0$. q. e. d.

As is seen in this proof, it follows from the exactness of the sequence (2.4) and from Proposition 2.4 that there exists the following exact sequence of *p*-components:

$$(0) \longrightarrow \pi_{2pt-2}(S^{2t-1}) \xrightarrow{E^2} \pi_{2pt}(S^{2t+1}) \xrightarrow{H_p} Z_p \longrightarrow \pi_{2pt-3}(S^{2t-1})$$
$$\xrightarrow{E^2} \pi_{2pt-1}(S^{2t+1}) \longrightarrow 0.$$

§ Iterated reduced join.

Denote by I^q and \dot{I}^q the unit *q*-cube and its boundary. I^1 is the unit interval I=[0, 1] and each point of I^q will be represented by a sequence (t_1, t_2, \dots, t_q) of real numbers $t_1, t_2, \dots, t_q \in I$.

Let

$$\psi_q: (I^q, I^q) \longrightarrow (S^q, y_0)$$

be an identification which shrinks I^{q} to a (base) point y_{0} of S^{q} . S^{q} is a q-sphere.

A reduced join A * B of two spaces A and B, with respect to

their base points $a_0 \in A$ and $b_0 \in B$, is the image of the product space $A \times B$ under an identification which shrinks the subset $A \times b_0 \cup a_0 \times B$ to a point $x_0 \in A * B$. The image of a point (a, b) of $A \times B$ will be denoted by a symbol a * b. We take the point $x_0 =$ $a_0 * b_0$ as a base point of A * B. In the case $B = S^q$, the reduced join $A * S^q$ will be denoted by $S^q A$ and it is a *q*-fold suspension of A. In fact $S^q A$ and $S^1(S^{q-1}A)$ are homeomorphic by the correspondence: $a * \psi_q(t_1, \dots, t_{q-1}, t_q) \leftrightarrow (a * \psi_{q-1}(t_1, \dots, t_{q-1})) * \psi_1(t_q)$ and $S^1 A$ is a suspension SA (with some sigularities) of A.

The *q*-fold iterated reduced join $A * A * \cdots * A$ will be denoted by the symbol $A^{(q)}$, each point of which may be represented by $a_1 * a_2 * \cdots * a_q$ for some $a_1, a_2, \cdots, a_q \in A$. Let σ be a permutation of *q* letters $\{1, 2, \dots, q\}$. Define a homeomorphism $h_{\sigma} : A^{(q)} \longrightarrow A^{(q)}$ by the formula $h_{\sigma}(a_1 * a_2 * \cdots * a_q) = a_{\sigma(1)} * a_{\sigma(2)} * \cdots * a_{\sigma(q)}$. Then it holds the equality $h_{\sigma} \circ h_{\tau} = h_{\tau\sigma}$.

Consider the case $A = SB = B * S^1$. Let D be a (closed) subset of $A^{(q)} = (SB)^{(q)} = (B * S^1)^{(q)}$ which consists of the points

$$z = (b_1 * \psi_1(t_1)) * \dots * (b_{q-1} * \psi_1(t_{q-1})) * (b_q * \psi_1(t_q))$$

such that $0 < t_1 \le \cdots \le t_{q-1} \le t_q$ and $b_1, \cdots, b_{q-1}, b_q \in B$. Consider the formula

(2.5).
$$k(z) = (b_1 * \psi_1(t_1/t_2)) * \cdots * (b_{q-1} * \psi_1(t_{q-1}/t_q)) * (b_q * \psi_1(t_q)).$$

Lemma 2.6. There exists uniquely a continuous mapping k: $(SB)^{(q)} \longrightarrow (SB)^{(q)}$ such that the formula (2.5) holds on D and the equality

$$k \cdot h_{\sigma} = k$$

holds for all permutations σ . Let x_0 be the base point of $(SB)^{(q)}$, then the inverse image $k^{-1}((SB)^{(q)}-x_0)$ is the union of q! disjoint open subsets h_{σ} (Int. D) each of which is mapped by k homeomorphically onto $(SB)^{(q)}-x_0$. Let k_0 be a mapping of $(SB)^{(q)}$ on itself given by setting $k_0|D=k|D$ and $k_0((SB)^{(q)}-D)=x_0$, then k_0 is homotopic to the identity.

Proof. Consider a mapping $g: I^q \longrightarrow S^q$ given by the formula

$$g(t_1, t_2, \cdots, t_q) = \psi_q(t_1 t_2 \cdots t_q, t_2 \cdots t_q, \cdots, t_q)$$

and denote that $g(I^q) = \Delta$ and $g(\dot{I}^q) = \dot{\Delta}$. g maps $I^q - \dot{I}^q$ homeomorphically onto $\Delta - \dot{\Delta}$. Then the formula $k'(x) = \psi_q(g^{-1}(x)), x \in \Delta$, defines a mapping

$$k': (\Delta, \dot{\Delta}) \longrightarrow (S^q, y_0)$$

which maps $\Delta - \dot{\Delta}$ homeomorphically onto $S^q - y_0$. The continuity of k' follows from the compactness of I^q , h_σ operates on S^q by the formula

$$h_{\sigma}(\psi_q(t_1, \cdots, t_q)) = \psi_q(t_{\sigma(1)}, \cdots, t_{\sigma(q)}).$$

Since Δ is the set of all the points $\psi_q(t_1, t_2, \dots, t_q)$ such that $t_1 \leq t_2 \leq \dots \leq t_q$, it follows that

$$\bigcup h_{\sigma}(\Delta) = S^q$$
.

 $\dot{\Delta}$ is the boundary of Δ . $\Delta - \dot{\Delta}$ is the set of all $\psi_q(t_1, t_2, \dots, t_q)$ such that $0 < t_1 < t_2 < \dots < t_q < 1$. Then

$$h_{\sigma}(\Delta) \cap \Delta \subset \Delta$$

if σ is not the identity. Consider a mapping

$$\tilde{k}_{\sigma}: \quad (B^{(q)} * h_{\sigma}^{-1}\Delta, \ B^{(q)} * h_{\sigma}^{-1}\dot{\Delta}) \longrightarrow (B^{(q)} * S^{q}, \ x_{0} * y_{0})$$

given by the formula $\tilde{k}_{\sigma}(x*y) = h_{\sigma}(x)*k'(h_{\sigma}(y)), x \in B^{(q)}, y \in h_{\sigma}^{-1}\Delta$. $B^{(q)} \times h_{\sigma}^{-1}\Delta$ is closed in $B^{(q)} \times S^{q}$ and $B^{(q)} * S^{q}$ has the topology of the identification, then $B^{(q)} * h_{\sigma}^{-1}\Delta$ is closed in $B^{(q)} * S^{q}$. Two mappings \tilde{k}_{σ} and \tilde{k}_{τ} coincide on the intersection $B^{(q)} * h_{\sigma}^{-1}\Delta \cap B^{(q)} * h_{\tau}^{-1}\Delta$. For, $y \in h_{\sigma}^{-1}\Delta \cap h_{\tau}^{-1}\Delta$ implies $h_{\sigma}(y) \in \Delta \cap h_{\tau}^{-1}{}_{\sigma}\Delta \subset \dot{\Delta}$ and also $h_{\tau}(y) \in \dot{\Delta}$, then $\tilde{k}_{\sigma}(x*y) = \tilde{k}_{\tau}(x*y) = x_{0}*y_{0}$. Therefore a continuous mapping

$$\tilde{k}: B^{(q)} * S^q \longrightarrow B^{(q)} * S^q$$

is defined by setting $\tilde{k} | (B^{(q)} * h_{\sigma}^{-1} \Delta) = \tilde{k}_{\sigma}$.

Since h_{σ} and $k' | (\Delta - \dot{\Delta})$ are homeomorphisms, it follows that \tilde{k} maps each subsets $B^{(q)} * h_{\sigma} \Delta - B^{(q)} * h_{\sigma} \dot{\Delta} = \text{Int} (B^{(q)} * h_{\sigma} \Delta)$ homeomorphically onto $B^{(q)} * S^q - x_0 * y_0$. Consider a homeomorphism

$$\varphi: \quad B^{(q)} * S^q \longrightarrow (SB)^q .$$

given by the formula $\varphi((b_1 * \cdots * b_q) * \psi_q(t_1, \cdots, t_q)) = (b_1 * \psi_1(t_1)) * \cdots * (b_q * \psi_1(t_q))$. Then $D = \varphi(B^{(q)} * \Delta)$ and the composition $k = \varphi \circ \tilde{k} \circ \varphi^{-1}$ satisfies the conditions of the lemma. The uniqueness of k is obvious.

Next define a mapping $k'_0: (S^q, y_0) \longrightarrow (S^q, y_0)$ by setting

 $k'_0 | \Delta = k' \text{ and } k'_0(S^q - \Delta) = y_0$. It is easy to see that k' is a mapping of degree 1. Then there is a homotopy $k'_t : (S^q, y_0) \longrightarrow (S^q, y_0)$, $0 \leq t \leq 1$, such that k'_1 is the identity. Consider the formula $\tilde{k}_t(x * y) = x * k'_t(y), x \in B^{(q)}, y \in S^q$. $k_t = \varphi \cdot \tilde{k}_t \quad \varphi^{-1} : (SB)^{(q)} \longrightarrow (SB)^{(q)}$ is a homotopy satisfying the condition that $k_0 | D = k | D, k_0((SB)^{(q)} - D)$ $= x_0$ and k_1 is the identity. This completes the proof, q. e. d.

Let $K = S^m \cup e^{m+n}$ be a cell complex which consists of cells e_0 , e_1 and e_2 of the dimensions 0, m and m+n respectively, where m > 0, n > 0, $S^m = e_0 \cup e_1$ and $e_2 = e^{m+n}$. The q-fold product $(K)^q = K \times K \times \cdots \times K$ of K is a cell complex of the cells $e_{i_1} \times e_{i_2} \times \cdots \times e_{i_q}$ for $i_1, i_2, \cdots, i_q = 0, 1, 2$. The iterated reduced join $K^{(q)}$ is the image of $(K)^q$ under the identification $i: (K)^q \longrightarrow K^{(q)}$ given by $i(x_1, x_2, \cdots, x_q) = x_1 * x_2 * \cdots * x_q$. Then $K^{(q)}$ is a cell complex of the cells $x_0 = e_0 * e_0 * \cdots * e_0$ and

$$e_{i_1} * e_{i_2} * \cdots * e_{i_q} = i(e_{i_1} \times e_{i_2} \times \cdots \times e_{i_q}),$$

for $i_1, i_2, \dots, i_q = 1$ or 2. The homeomorphism h_{σ} maps $e_{i_1} * e_{i_2} * \dots * e_{i_q}$ onto $e_{i_{\sigma(1)}} * e_{i_{\sigma(2)}} * \dots * e_{i_{\sigma(q)}}$. Denote by e_1^{qm+rm} , $0 \leq r \leq q$, the cell $e_1 * \dots * e_1 * e_2 * \dots * e_2 = e_1^{(q-r)} * e_2^{(r)}$. Then the cells of the dimension qm + rn in $K^{(q)}$ are $h_{\sigma}(e_1^{qm+rn})$ and the number of the different (qm+rn)-cells is $\binom{q}{r} = q ! / r ! (q-r) !$. Denote by $e_1^{qm+rn}, e_2^{qm+rn}, \dots, e_{\binom{qm}{r}}^{qm+rn}$ the different cells of the dimension qm+rn. Then we have a cell-decomposition:

$$K^{(q)} = x_0 + \sum_{r=0}^{q} \sum_{i=1}^{\binom{q}{r}} e_i^{qm+rn}.$$

Taken orientations on e_1 and e_2 , the orientations in $(K)^q$ are given by the cross products. The cells e_i^{qm+rn} of $K^{(q)}$ are oriented such that the identification *i* preserve the orientations.

Now we suppose that m and n are even. Then the homeomorphism h_{σ} preserves the orientations.

Also we suppose that K is a suspension $SB = B * S^1$ of a cell complex $B = e'_0 \cup e'_1 \cup e'_2$ such that $e_0 = e'_0 * y_0$, $e_1 = e'_1 * (S^1 - y_0)$ and $e_2 = e'_2 * (S^1 - y_0)$. It is remarkable that the mapping $k : K^{(q)} \longrightarrow K^{(q)}$ and the homotopy $k_t : K^{(q)} \longrightarrow K^{(q)}$ in the proof of the Lemma 2.6 are cellular.

Let x be a point of e_i^{qm+rn} and consider the local degree of $k | e_j^{qm+rn}$, $j=1, 2, \dots, {q \choose r}$ about the point x. By (2.5), $k^{-1}(x) \cap D$

is a point, say $x_1 \in e_i^{qm+rn}$. From the homotopy k_t , it follows that the local degree of $k | e_i^{qm+rn} \cap D$ about x is 1. There are $r!(q-r)! = q! / \binom{q}{r}$ points of $k^{-1}(x)$ in e_i^{qm+rn} and each of which is mapped by some orientation preserving homeomorphism h_σ to x_1 . Therefore the local degree of $k | e_i^{qm+rn}$ about x is r!(q-r)! (m, n: even). Also considering suitable h_σ , it follows that the local degree of $k | e_j^{qm+rn}$ about x is r!(q-r)! for every $j=1, 2, \dots, \binom{q}{r}$. Then we have a formula

(2.6).
$$k^* e_i^{q_{m+rn}} = r!(q-r)! \sum_{j=1}^{\binom{q}{r}} e_j^{q_{m+rn}}, \quad 0 \le r \le q, \quad 1 \le i \le \binom{q}{r},$$

where k^* is the endomorphism of $H^{qm+rn}(K^{(q)})$ induced by k and where we use the following convention. A cohomology class of $H^s(K, G)$ represented by a cell (cocycle) $e^s \subset K$ will denoted by the same symbol $e^s \in H^s(K, G)$ without any confusions.

Shrinking the subset S^m of K to a single point y_0 , we obtain a mapping $P': (K, S^m) \longrightarrow (S^{m+n}, y_0)$ which maps e^{m+n} homeomorphically onto $S^{m+n} - y_0$. Define a mapping

$$P: \quad K^{(q)} \longrightarrow S^{m+n} K^{(q-1)} = K^{(q-1)} * S^{m+n}$$

by the formula $P(x_1 \ast \cdots \ast x_{q-1} \ast x_q) = (x_1 \ast \cdots \ast x_{q-1}) \ast P'(x_q).$

Denote that

$$\tilde{e}_{i}^{qm+rn} = e_{i}^{(q-1)m+(r-1)n} * (S^{m+n} - y_{0}), \quad 1 \leq r \leq q, \quad 1 \leq i \leq {q-1 \choose r-1},$$

then we have a cell decomposition

$$S^{m+n}K^{(q-1)} = x_0 * y_0 + \sum_{r=1}^{q} \sum_{i=1}^{\binom{p-1}{r-1}} \hat{e}_i^{qm+rn}.$$

If $e_j^{qm+rn} = e_i^{(q-1)m+(r-1)n} * e_2$, then P maps e_j^{qm+rn} homeomorphically onto \hat{e}_i^{qm+rn} . Then we orient \hat{e}_i^{qm+rn} such that $P | e_j^{qm+rn}$ preserves the orientations. If $e_j^{qm+rn} = e^{(q-1)m+rn} * e_1$, then P maps e_j^{qm+rn} into the ((q-1)m+n)-skeleton of $S^{m+n}K^{(q-1)}$. It follows easily that the induced homomorphism

$$P^*: \quad H^{qm+rn}(S^{m+n}K^{(q-1)}) \longrightarrow H^{qm+rn}(K^{(q)})$$

is an isomorphism into such that $P^* \tilde{e}_i^{qm+rn} = e_j^{qm+rn}$ for $e_j^{qm+rn} = e_i^{(q-1)m+(r-1)m} * e_2$. Let

$$\kappa = P \circ k : \quad K^{(q)} \longrightarrow S^{m+n} K^{(q-1)}$$

be the composition of k and P. Then from (2.6),

(2.7).
$$\kappa^* \hat{e}_j^{q_{m+rn}} = r!(q-r)! \sum_{i=1}^{\binom{q}{r}} e_i^{q_{m+rn}}, \quad 1 \leq r \leq q, \quad 1 \leq j \leq \binom{q-1}{r-1}.$$

Suppose that $(e_1 \in H_p(K, Z_p) \text{ and } e_2 \in H^{m+n}(K, Z_p))$

$$\mathscr{P}^t e_1 = e_2 \pmod{p}, \quad n = 2t(p-1),$$

in the complex $K = S^m \cup e^{m+n}$. Then in the product complex $(K)^q = K \times K \times \cdots \times K$, it follows from the Cartan's formula $\mathscr{P}^k(x \times y) = \sum_{i+j=k} (\mathscr{P}^i x \times \mathscr{P}^j y)$ that

$$\mathscr{P}^{rt}(e_1 \times \cdots \times e_i) = \sum e_{i_1} \times \cdots \times e_{i_q} \pmod{p}$$

where the summation runs over the indices (i_1, \dots, i_q) such that $i_1, \dots, i_q = 1, 2$ and $i_1 + \dots + i_q = q + r$. Since the identification homomorphism $i^* : H^*(K^{(q)}, Z_p) \longrightarrow H^*((K)^q, Z_p)$ is an isomorphism into, it follows

(2.8).
$$\mathscr{P}^{rt}e_1^{qm} = \sum_{i=1}^{\binom{q}{r}} e_i^{qm+rn}$$
, (mod p) for $0 \leq r \leq q$.

Similarly

(2.9).
$$\mathscr{P}^{rt} \hat{e}_1^{qm+n} = \sum_{i=1}^{\binom{q-1}{r}} \hat{e}_i^{qm+(r+1)n}, \pmod{p} \text{ for } 0 \leq r \leq q-1.$$

Identifying $K^{(q)} \cup S^{m+n} K^{(q-1)} \cup K^{(q)} \times I$ by the relation (x, 0) = xand $(x, 1) = \kappa(x), x \in K^{(q)}$, a mapping cylinder L_q of κ is obtained. L_q is a cell complex by the natural cell-decomposition:

$$L_{q} = K^{(q)} + S^{m+n} K^{(q)} + x_{0} \times (I - \dot{I}) + \sum \sum e_{i}^{qm+rn} \times (I - \dot{I}) + \sum \sum e_{$$

By setting $h_{\sigma}(x, t) = (h_{\sigma}(x), t), x \in K^{(q)}, t \in I$, we have a transformation (homeomorphism)

$$\overline{h}_{\sigma}: (L_{q}, K^{(q)}, S^{m+n}K^{(q-1)}) \longrightarrow (L_{q}, K^{(q)}, S^{m+n}K^{(q-1)})$$

such that $\bar{h}_{\sigma}|K^{(q)} = h_{\sigma}$. The restriction $\bar{h}_{\sigma}|S^{m+n}K^{(q-1)}$ is the identity since $\kappa \circ h_{\sigma} = P \circ k \circ h_{\sigma} = P \circ k = \kappa$. Obviously $\bar{h}_{\sigma} \circ \bar{h}_{\tau} = \bar{h}_{\tau\sigma}$. Consider the following commutative diagram:

(2.10).

$$\begin{array}{c} \cdots \rightarrow H^{k}(L_{q}, Z_{p}) \xrightarrow{i^{*}} H^{k}(K^{(q)}, Z_{p}) \xrightarrow{\delta^{*}} H^{k+1}(L_{q}, K^{(q)}, Z_{p}) \xrightarrow{j^{*}} H^{k+1}(L_{q}, Z_{p}) \rightarrow \cdots \\ i^{*}_{0} \downarrow \uparrow r^{*} \nearrow \kappa^{*} \qquad \qquad \searrow j^{*}_{0} \qquad i^{*}_{0} \downarrow \uparrow r^{*} \\ H^{k}(S^{m+n}K^{(q-1)}, Z_{p}) \qquad \qquad H^{k+1}(S^{m+n}K^{(q-1)}, Z_{p}) , \end{array}$$

where i, i_0 , j and j_0 are injections and r is a retraction given by $r(x, t) = \kappa(x)$. Since i_0 and r are homotopy equivalences, i_0^* and r^* are isomorphisms.

Lemma 2.7. Suppose that *m* is an even positive integer, p=q is an odd prime, n=2t(p-1) and that $\mathscr{P}^t e_1 = e_2 \mod p$ in the complex $K=e_0 \cup e_1 \cup e_2 = S^m \cup e^{m+n} = EB$. Then we have the following properties in the diagram (2.10).

i). $i^*r^*\tilde{e}_1^{pm+n} = \kappa^*\tilde{e}_1^{pm+n} = -\mathscr{P}^t e_1^{pm} \pmod{p}$.

ii). $j^*: H^{p(m+n)}(L_p, K^{(p)}, Z_p) \longrightarrow H^{p(m+n)}(L_p, Z_p)$ and $\delta^*: H^{p(m+n)}(K^{(p)}, Z_p) \longrightarrow H^{p(m+n)+1}(L_p, K^{(p)}, Z_p)$ are isomorphisms. The Bockstein homomorphism $\Delta: H^{p(m+n)}(L_p, K^{(p)}, Z_p) \longrightarrow H^{p(m+n)+1}(L_p, K^{(p)}, Z_p)$ is an isomorphism and it carries $j^{*-1}(\mathscr{P}^{(p-1)t}r^*\hat{e}_1^{p(m+n)})$ to $\delta^*(\mathscr{P}^{pt}e_1^{pm})$.

iii). Let $1 \ge s \ge p-1$. If an element α of $\delta^* H^{pm+sn}(K^{(p)}, Z_p)$ satisfies the equality $\bar{h}^*_{\sigma} \alpha = \alpha$ for all the permutations σ , then $\alpha = 0$.

Proof. i) follows from (2.7) and (2.8).

$$\begin{split} H^{p(m+n)}(K^{(p)},Z_p) \text{ and } H^{p(m+n)}(L_p,Z_p) \text{ are generated by } e_1^{p(m+n)} &= 0 \\ \text{and } r^* \hat{e}_1^{p(m+n)} &= 0 \text{ respectively. By } (2,8) \text{ and } (2,9), e_1^{p(m+n)} &= \mathscr{P}^{pt} e_1^{pm} \\ \text{and } r^* \hat{e}_1^{p(m+n)} &= r^{*(p-1)t} \tilde{e}_1^{pm+n} &= \mathscr{P}^{(p-1)t} r^* \hat{e}_1^{pm+n}. \text{ By } (2,7), i^* (r^* \hat{e}_1^{p(m+n)}) &= \\ \kappa^* \hat{e}_1^{p(m+n)} &= p! e_1^{p(m+n)} &= 0 \pmod{p}. \text{ Then } i^* : H^{p(m+n)}(L_p, Z_p) \longrightarrow \\ H^{p(m+n)}(K^{(p)}, Z_p) \text{ is trivial. From the exactness of the sequence} \\ (2, 10) \text{ and from } H^{p(m+n)-1}(K^{(p)}, Z_p) &= H^{p(m+n)+1}(L_p, Z_p) = 0, \text{ it follows} \\ \text{the first assertion of ii). Denote that } \bar{e} &= e_1^{p(m+n)} \times (I-I) \text{ and orient} \\ \text{the cell } \bar{e} \text{ such that } \delta e_1^{n(m+n)} &= \bar{e}. \text{ In the integral coefficient, by } (2,7), \\ r^* \hat{e}_1^{p(m+n)} &= \hat{e}_1^{p(m+n)} + p! e_1^{p(m+n)}. \text{ Since } r^* \hat{e}_1^{p(m+n)} \text{ is a cocycle, it follows} \\ \delta \hat{e}_1^{p(m+n)} &= -p! \delta e_1^{n(m+n)} &= -p! \bar{e}. \text{ Then } \frac{\delta}{p} \tilde{e}_1^{n(m+n)} &= -(p-1)! \bar{e} = \bar{e} \mod p. \\ \text{Thus } \Delta (j^{*-1} \mathscr{P}^{(p-1)t} r^* \tilde{e}_1^{pm+n}) &= \Delta (j_0^{*-1} \tilde{e}_1^{p(m+n)}) &= \delta^* e_1^{n(m+n)} &= \delta^* \mathscr{P}^{pt} e_1^{nm} \\ (\text{mod } p), \text{ and then the second assertion of ii) follows.} \end{split}$$

Let $\beta = \sum_{i} b_{i} e_{1}^{pm+sn}$ be an element of $H^{pm+sn}(K^{(p)}, Z_{p})$ such that $\delta^{*}\beta = \alpha$. Since the homomorphisms induced by \bar{h}_{σ} commute with the sequence of (2.10), it follows that $\delta^{*}(h_{\sigma}^{*}\beta - \beta) = \bar{h}_{\sigma}^{*}\alpha - \alpha = 0$. Thus $h_{\sigma}^{*}\beta - \beta \in i^{*}H^{pm+sn}(L_{p}, Z^{p})$. By (2.7) and by $\kappa^{*} = i^{*} \circ r^{*}$, it follows that $i^{*}H^{pm+sn}(L_{p}, Z_{p})$ is generated by the element $\sum_{i} e_{i}^{pm+sn}$. Therefore

$$h_{\sigma}^{*}\beta = h_{\sigma}^{*}\sum_{i} b_{i}e_{i}^{pm+sn} = \sum_{i} (b_{i}+c_{\sigma})e_{i}^{pm+sn}$$

for some integer c_{σ} which depends on σ . For two indices *i* and *j*, there exists a permutation σ such that $h_{\sigma}(e_i^{pm+sn}) = e_j^{pm+sn}$ and

§ Theorems.

We shall construct a space W_r^N having the following properties:

$$\begin{aligned} \pi_i(W_r^N) &\approx \begin{cases} Z & \text{for } i = N, \\ Z_p & \text{for } i = N + 2p^j(p-1) - 1, & 0 \leq j < r, \\ 0 & \text{otherwise}, \end{cases} \\ \mathscr{P}^{p^j} H^N(W_r^N, Z_p) &= 0 & \text{for } 0 \leq j < r. \end{cases}$$

 W_0^N is an Eilenberg-MacLane space of a type (Z, N). If a space W_r^N is given, we may imbed W_r^N into an Eilenberg-MacLane space X of a type $(Z_p, N+2p^r(p-1))$ such that the injection homomorphism maps a fundamental class of $H^{N+2p^r(p-1)}(X, Z_p)$ onto $\mathscr{P}^{p^r}u$, where u is a fundamental class of $H^N(W_r^N, Z_p)$. Let W_{r+1}^N be a space of the paths in X starting at a point and ending in W_r^N . Then W_{r+1}^N satisfies the above properties. Associating to each path of W_{r+1}^N its end point, we have a fibering

$$f_r: W_{r+1}^N \longrightarrow W_r^N$$

whose fibre $F_r = \Omega(X)$ is an Eilenberg-MacLane space of a type $(Z_p, N+2p^r(p-1)-1)$. Let $(k \le 2N-1 \le 2N+2p^r(p-1)-2)$

$$(2.11) \qquad \cdots \xrightarrow{\delta^*} H^k(W_r^N, Z_p) \xrightarrow{f_r^*} H^k(W_{r+1}^N, Z_p) \xrightarrow{i^*} H^k(F_r, Z_p) \xrightarrow{\delta^*} \cdots$$

be the cohomology exact sequence associated with the above fibering. We choose a fundamental class u_r of $H^{N+2p^r(p-1)-1}(F_r, Z_p)$ such as $\delta^* u_r = \mathscr{P}^{p^r} u$. $(u = (f_{r-1}^* \circ \cdots \circ f_0^*) u_0)$

In the following, we take N sufficiently large such as the exactness of the sequences (2.11) holds in our considerations. Then, from [2], there is an \mathcal{S}^* -isomorphism:

$$H^{k}(F_{r}, Z_{p}) = H^{k}(Z_{p}, N+2p^{r}(p-1)-1, Z_{p}) \approx \mathcal{S}^{k-N-2p^{r}(p-1)+1}$$

(for sufficiently large N).

The homomorphisms of (2.11) are \mathscr{S}^* -homomorphisms, may be different in sign. Then the image of δ^* is $\mathscr{S}^*\mathscr{D}^{p^r}u$. It follows that the image of $H^*(W_0^N, Z_p)$ in $H^*(W_r^N, Z_p)$ under $f_{r-1}^* \circ \cdots \circ f_0^*$ is $\mathscr{S}^* u/M_r^* u = \mathscr{S}^* u/(\mathscr{S}^* \Delta u + \mathscr{S}^* \mathscr{P}^{-1} u + \cdots + \mathscr{S}^* \mathscr{P}^{p^{r-1}} u)$. Then the kernel of δ^* is clarified by Proposition 1.6 and Proposition 1.7, and the following proposition is verified by the exactness of (2.11).

Proposition 2.8. There exists an element b_{r+1} of $H^{N+2p^{r+1}(p-1)-1}(W_{r+1}^N, Z_p)$ such that $i^*b_{r+1} = c \mathscr{P}^{p^r(p-1)}u_r$. $\sum_k H^k(W_{r+1}^N, Z_p)$, k < 2N-1, is an \mathscr{S}^* -module generated by b_{r+1} and elements of dimensions less than $N+2(2p^r+p^{r-1})$ (p-1) (less then N+4(p-1)+1 for r=0).

Now our main result is stated as follows.

Theorem 2.9. Suppose that the mod p Hopf homomorphism $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto for $t = p^r$. Then, for sufficiently large N, the element $\Delta b_{r+1} - \mathscr{P}^{p^{r+1}}u$ belongs to an \mathscr{S}^* -submodule $\sum \mathscr{S}^*H^*(W_{r+1}^N, Z_p), N \leq k \leq N+2(p^r+1) (p-1).$

By Corollary 2.3, our theorem is valuable for r=0, and the result is stated as follows.

Theorem 2.10. $H^{k}(W_{1}^{N}, Z_{p}), k < 2N-1, \text{ is an } \mathscr{S}^{*}-\text{module}$ generated by elements u, a and b_{1} of dimensions N, N+4(p-1) and N+2p(p-1)-1, respectively, such that $i^{*}a = R_{1}u_{0} = 2\mathscr{P}^{1}\Delta u_{0} - \Delta \mathscr{P}^{1}u_{0}$ and $i^{*}b_{1} = \mathscr{P}^{p-1}u_{0}$. There are relations $\Delta u = \mathscr{P}^{1}u = 0, R_{2}a = 0$ and $\Delta b_{1} = \mathscr{P}^{p}u + \mathscr{P}^{p-2}a$.

This follows from Proposition 1.6, the above Theorem 2.9, the exact sequence (2.11) and from the fact that $i^*\Delta b_1 = \Delta \mathscr{P}^{p-1} u_0 = \mathscr{P}^{p-2}R_1 u_0 = i^* \mathscr{P}^{p-2}a$. (See also the proof of Theorem 2.9.)

Suppose that $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto for $t = p^r$ and for $t = p^{r+1}$. By Lemma 2.1, there is a cell complex $K = S^m \cup e^{m+n}$, $n = 2p^{r+1}(p-1)$, such that $\mathscr{P}^{p^{t+1}}$ is not trivial. Let $f: S^m \longrightarrow W_{r+1}^m$ be a mapping representing a generator of $\pi_m(W_{r+1}^m) \approx Z$. Since $\pi_{m+n-1}(W_{r+1}^m) = 0$, we can extend the mapping f over whole of K. Consider the induced homomorphism:

$$f^*: \quad H^*(W^m_{r+1}, Z_p) \longrightarrow H^*(K, Z_p) .$$

By Theorem 2.9, $\mathscr{P}^{p^{r+1}u}$ is a sum of elements of $\mathscr{S}^*H^k(W^m_{r+1}, Z_p)$, $N < k < N + 2p^{r+1}(p-1)$. Since $f^*H^k(W^m_{r+1}, Z_p) = H^k(K, Z_p) = 0$, $f^*\mathscr{P}^{p^{r+1}u} = \mathscr{P}^{p^{r+1}}f^*u = 0$. Since $f^*u \neq 0$, this contradicts to the non-triviality of $\mathscr{P}^{p^{r+1}}$ in K. Therefore the following theorem is established.

Theorem 2.11. If $H_p: \pi_{2pt}(S^{2t+1}) \longrightarrow Z_p$ is onto for $t = p^r$, then H_p is trivial for $t = p^{r+1}$.

By Corollary 2.3,

Corollary 2.12. $H_p: \pi_{2p^2}(S^{2p+1}) \longrightarrow Z_p$ is trivial.

By Proposition 2.5,

Corollary 2.13. If $[\iota_{2t}, [\iota_{2t}, \iota_{2t}]] = 0$, then $[\iota_{2pt}, [\iota_{2pt}, \iota_{2pt}]] = 0$. In particular $[\iota_6, [\iota_6, \iota_6]] = 0$.

Proof of Theorem 2.9.

From the definition of H_p , it follows that there is a cell complex $K = S^m \cup e^{m+n}$, $n = 2p^r(p-1)$, such that $\mathscr{P}^{p^r}e_1 = e_2 \pmod{p}$. Here we may suppose that, taking suspensions if it is necessary, K is a suspension SB and m is even and sufficiently large. According to the previous §, we construct the iterated reduced join $K^{(p)}$, the mapping $\kappa : K^{(p)} \longrightarrow S^{m+n}K^{(p-1)}$ and its mapping cylinder L_p .

Put N = pm, and consider spaces $W_r^N \subset X$ such as in the biginning of this §. Since $\pi_i(W_r^N) = 0$ for $i \ge pm + n - 1 > N + 2p^{r-1}$ (p-1)-1, there exists a mapping

$$g_0: K^{(p)} \longrightarrow W_r^N \subset X$$

such that $g_0^* u = e_1^{pm}$ for $g_0^* : H^N(W_r^N, Z_p) \longrightarrow H^N(K^{(p)}, Z_p)$. Also there exists a mapping

$$g_1: S^{m+n}K^{(p-1)} \longrightarrow X$$

such that $g_1^*u' = -\tilde{e}_1^{pm+n}$ where u' is a fundamental clase of $H^{pm+n}(X, Z_p)$ such that $i^*u' = \mathscr{P}^{pr}u$. Consider the composition $g_1 \circ \kappa$, then we have the equality $(g_1 \circ \kappa)^* u' = g_0^* u'$. Since X is an Eilenberg-MacLane space, the mapping $g_1 \circ \kappa$ and g_0 are homotopic to each other. Let $g'_t \colon K^{(p)} \longrightarrow X$ be a homotopy such that $g'_0 = g_0$ and $g'_1 = g_1 \circ \kappa$. Then the formula $g(x, t) = g'_t(x), x \in K^{(p)}$, defines a mapping

 $g: (L_p, K^{(p)}) \longrightarrow (X, W_r^N)$

such that $g | K^{(p)} = g_0$ and $g | S^{m+n} K^{(p-1)} = g_1$. Now it will be proved (2.12). $g \mid h_{\sigma} \simeq g \colon (L_p, K^{(p)}) \longrightarrow (X, W_r^N)$.

We shall construct a homotopy $G: (L_p \times I, K^{(p)} \times I) \longrightarrow (X, W_r^N)$ as follows. Put $G(x, 0) = g(x), G(x, 1) = g(\bar{h}_{\sigma}(x)), x \in L_p$. Since $\bar{h}_{\sigma} | S^{m+n} K^{(p-1)}$ is the identity, we can put G(x, t) = g(x) for $x \in S^{m+n} K^{(p-1)}$. Since h_{σ} preserve the orientations, G is extended

over $(x_0 \cup e_1^{pm}) \times I$ into W_r^N . Since $\pi_i(W_r^N) = 0$ for $i \ge pm + n/p$, G is extended over $K^{(p)} \times I$ such that $G(K^{(p)} \times I) \subset W_r^N$. By the natural cell decomposition of $L_p \times I$, there are no cells of the dimension $pm + n + 1 = N + 2p^r(p-1) + 1$ in $L_p \times I - (L_p \times I \cup (K^{(p)} \cup S^{m+n}K^{(p-1)}) \times I)$. Therefore G may be extended the whole of $L_p \times I$ into X. This completes the proof of (2.12).

Consider the following commutative diagram.

$$\begin{array}{cccc} H^{k}(W_{r+1}^{N},Z_{p}) & \stackrel{i^{*}}{\longrightarrow} & H^{k}(F_{r},Z_{p}) \\ & & & & \downarrow S & S \downarrow & & \\ & & & \uparrow^{r} & \downarrow S & S \downarrow & & \\ & & & \downarrow^{r} & \stackrel{\delta^{*}}{\longrightarrow} & H^{k+1}(X,W_{r}^{N},Z_{p}) & \stackrel{j^{*}}{\longrightarrow} & H^{k+1}(X,Z_{p}) & \stackrel{i^{*}}{\longrightarrow} & H^{k+1}(W,Z_{p}) \\ & & & \downarrow g^{*} & & \downarrow g^{*} & & \downarrow g^{*} & & \downarrow g^{*} \\ & & & H^{k}(K^{(p)},Z_{p}) & \stackrel{\delta^{*}}{\longrightarrow} & H^{k+1}(L_{p},K^{(p)},Z_{p}) & \stackrel{j^{*}}{\longrightarrow} & H^{k+1}(L_{p},Z_{p}) & \stackrel{i^{*}}{\longrightarrow} & H^{k+1}(K^{(p)},Z_{p}) \end{array}$$

where S are suspension isomorphisms of contractible fibre spaces, and we choose S and δ^* of (2.11) such that the above diagram is commutative. Then $Su_r = u'$. Put $S\tilde{b}_{r+1} = b \in H^{p(m+n)}(X, W_r^N, Z_p)$, then $j^*\tilde{b} = c \mathscr{P}^{(p-1)p^r}u'$.

Remark that the case r=1 does not occur, since the assumption of the theorem fails for r=1 by Corollary 2.12.

Consider $j^*(\Delta \tilde{b}) = \Delta c \mathscr{P}^{(p-1)p^r} u' = -c (\mathscr{P}^{(p-1)p^r} \Delta) u'$. By (1.3)', $\mathscr{P}((p-1)p^r, \Delta) = \mathscr{P}(1, \Delta, (p-1)p^r-1) + \mathscr{P}(\Delta, (p-1)p^r)$ for $r \ge 2$ and $\mathscr{P}(p-1, \Delta) = R(1) \mathscr{P}(p-2)$. Then by (1.7) and (1.8),

$$j^*(\Delta \tilde{b}) = \begin{cases} \alpha_1 \Delta u' + \alpha_2 \Delta \mathscr{P}^1 u' & \text{if } r \ge 2\\ \alpha_0 R_1 u' & \text{if } r = 0 \end{cases}$$

for some $\alpha_1, \alpha_2, \alpha_0 \in \mathscr{S}^*$. By Propositions 1.5 and 1.7, $i^* \Delta \mathscr{P}^1 u' = i^* \Delta u' = i^* R_1 u' = 0$. Then there are elements $w_1 \in H^{pm+n+1}(X, W_r^N, Z_p)$, $w_2 \in H^{pm+n+2(p-1)+1}(X, W_r^N, Z_p)$, $r \ge 2$, and $w_0 \in H^{pm+2n+1}(X, W_r^N, Z_p)$ such that $j^* w_1 = \Delta u', j^* w_2 = \Delta \mathscr{P}^1 u'$ and $j' w_0 = R_1 u'$. It follows from $j^* (\Delta \tilde{b} - \alpha_1 w_1 - \alpha_2 w_2) = 0$, $r \ge 2$ and $j^* (\Delta \tilde{b} - \alpha_0 w_0) = 0$ that

$$\Delta ilde{b} = \left\{egin{array}{cc} lpha_1 w_1 + lpha_2 w_2 + \delta^* x \,, & r \geq 2 \,, \ lpha_0 w_0 + \delta^* x \,, & r = 0 \end{array}
ight.$$

for some $x \in H^{p(m+n)}(W_r^N, Z_p)$. By Proposition 2.8, $x = \beta u + \sum \beta_i y_i$ for some β , $\beta_i \in \mathscr{S}^*$ and $y_i \in H^{pm+k_i}(W_r^N, Z_p)$, $0 < k_i < n = 2p^r(p-1)$.

Obviously $\beta_i = 0$ if r = 0. In $\delta^* H^*(W_r^N, Z_p)$, there is a relation $M_{r+1}\delta^* u = 0$. It follows from Lemma 1.3 and (1.9), i) that $\delta^* \beta u = \beta \delta^* u = d\mathcal{P}^{p^{r+1}}\delta^* u$ for some integer d. Then we have

(2.13).
$$\Delta \tilde{b} - d\mathscr{P}^{p^{r+1}\delta^*} u = \begin{cases} \alpha_1 w_1 + \alpha_2 w_2 + \sum \beta_i \delta^* y_i, & r \ge 2, \\ \alpha_0 w_0, & r = 0. \end{cases}$$

By operating S^{-1} , it follows that $\Delta b_{r+1} - d\mathscr{P}^{p^{r+1}} \delta^* u \in \sum_k \mathscr{S}^* H^k$ (W_{r+1}^N, Z_p) for $N = pm < k \le pm + n + 2(p-1) = N + 2(p^r+1)(p-1)$. Then it is sufficient to determine the coefficient d such as $d \equiv 1$ mod p.

Consider the image of each term of (2. 13) under the homomorphism g^* . Since $0 < k_i < n$, $g^*\delta^*y_i = \delta^*g^*y_i \in \delta^*H^{N+k_i}(K^{(p)}, Z_p) = 0$. Since 1 < 2(p-1) + 1 < n for $r \ge 2$, $g^*w_2 \in H^{pm+n+2(p-1)+1}(L_p, K^{(p)}, Z_p) = 0$. Since $j^*g^*w_1 \in H^{pm+n+1}(L_p, Z_p) = 0$ and $j^*g^*w_0 \in H^{pm+2n+1}(L_p, Z_p) = 0$, the elements g^*w_1 and g^*w_0 are the image of δ^* . By (2. 12), $h^*_{\sigma}(g^*w_1) = g^*w_1$ and $h^*_{\sigma}(g^*w_0) = g^*w_0$ for all σ . Then it follows from iii) of Lemma 2.7 that $g^*w_1 = g^*w_0 = 0$. Next $j^*g^*\tilde{b} = g^*j^*\tilde{b} = g^*c \mathscr{P}^{(p-1)p^r}u' = c \mathscr{P}^{(p-1)p^r}g^*u' = c \mathscr{P}^{(p-1)p^r}r^*\tilde{e}_1^{m+n}$, and then $g^*\tilde{b} = j^{*-1}c \mathscr{P}^{(p-1)p^t}r^*\tilde{e}_1^{pm+n}$. Consequently the following relation is obtained from (2. 13) :

$$\Delta(i^{*-1}c\mathscr{P}^{(p-1)p^{r}}r^{*}\tilde{e}_{1}^{p^{m+n}}) = g^{*}\Delta\tilde{b} = g^{*}d\mathscr{P}^{p^{r+1}}\delta^{*}u = d\delta^{*}\mathscr{P}^{p^{r+1}}e_{1}^{p^{m}}.$$

Compairing this to the relation $\Delta(j^{*-1}\mathscr{P}^{(p-1)p^{r}}r^{*}\tilde{e}_{1}^{pm+n}) = \delta^{*p^{r+1}}e_{1}^{pm}$ of Lemma 2.7, ii), it follows from the following (2.14) the required equality

 $d \equiv 1 \mod p$,

and this proves the theorem.

(2.14). Suppose that $n = 2p^t(p-1)$ and that $H^{N+k}(Y, Z_p) = 0$ for $k \equiv 0 \mod n$. Then $\mathscr{P}^{r_p t} \alpha = (-1)^r c \mathscr{P}^{r_p t} \alpha$ for $\alpha \in H^N(Y, Z_p)$ and for $0 \leq r \leq p-1$.

This is obvious for r=0. By (1.3), for $0 \leq i < p$,

$$\mathcal{P}(ip^{t})\mathcal{P}(jp^{t})\alpha = \sum_{k=0}^{ip^{t-1}} * \mathcal{P}((i+j)p^{t}-k)\mathcal{P}(k)\alpha$$
$$= (-1)^{i} \binom{jp^{t}(p-1)-1}{ip^{t}} \mathcal{P}((i+j)p^{t})\alpha = \binom{i+j}{i} \mathcal{P}((i+j)p^{t})\alpha.$$

Suppose that (2.14) is true for $r \le s \le p-1$. Then by (1.7),

$$0 = \sum_{i=0}^{sp^{t}} \mathscr{P}(sp^{t}-i)c\mathscr{P}(i)\alpha = \sum_{j=0}^{s} \mathscr{P}((s-j)p^{t})c\mathscr{P}(jp^{t})\alpha$$
$$= \sum_{j=0}^{s} (-1)^{j} \mathscr{P}((s-j)p^{t})\mathscr{P}(jp^{t})\alpha - (-1)^{s} \mathscr{P}^{sp^{t}}\alpha + c \mathscr{P}^{sp^{t}}\alpha.$$

Thus $(-1)^s \mathscr{P}^{s_p t} \alpha - c \mathscr{P}^{s_p t} \alpha = \sum_{j=0}^s (-1)^j {s \choose j} \mathscr{P}^{s_p t} \alpha = 0$. By the induction, (2.14) is proved, and then the proof of the theorem is accomplished. q. e. d.

§ The case p=2.

The mod 2 Hopf homomorphism

 $H_2: \quad \pi_{m+n-1}(S^m) \longrightarrow Z_2, \qquad n = 2t ,$

is also defined similarly by using Sq^{2t} in place of \mathscr{P}^{t} .

Meny properties of H_p are established for H_2 replacing \mathscr{P}^t by Sq^{2t} . The exceptions are the followings. ii) of Lemma 2.1 has to be rewritten such as

ii). $H_2: \pi_{m+n-1}(S^m) \longrightarrow Z_2$ is trivial for $m \le n$. For $m \ge n$ H_2 is onto if and only if it is onto for $m = n(: \pi_{2n-1}(S^n) \longrightarrow Z_2)$.

Instead of Proposition 2.5, we have

(2.16). $H_2: \pi_{2n-1}(S^n) \longrightarrow Z_2$ is onto if and only if $[\iota_{n-1}, \iota_{n-1}] = 0$.

 W_r^N is defined also for p=2. Then

Proposition 2.8'. There exists an element b_{r+1} of $H^{N+2^{r+2-1}}(W_r^N, Z_2)$ such that $i^*b_{r+1} = Sq^{2^{r+1}}u_r$. $\sum_k H^k(W_{r+1}^N, Z_2)$, k < 2N-1, is an A^* -module generated by b_{r+1} and elements of dimensions less than $N+2^{r+1}+2^{r-1}$.

Regarding the proof of Theorem 2.9, for the case p=2, it is seen that the only difficulty is to use Proposition 1.9 in place of Proposition 1.7. Then, in the proof, we take the relation $Sq^{2^{r+1}}Sq^1 = Sq^2Sq^{2^{r+1}-1} + Sq^1Sq^{2^{r+1}}$ in place of $\mathscr{P}^{(p-1)p^r}\Delta = \cdots$. To be contained Sq^2 and Sq^1 in the kernel of $(Sq^{2^{r+1}})^* : A^* \longrightarrow A^*/M_{r+1}^*$, it is necessary to hold $r \ge 2$. Then the modification of Theorem 2.9 is stated as follows.

Thorem 2.14. Suppose that $H_2: \pi_{4t-1}(S^{2t}) \longrightarrow Z_2$ is onto for $t = 2^r$ and $r \ge 2$. Then for sufficiently large N, the element $Sq^1\tilde{b}_{r+1} - Sq^{2^{r+2}}u$ belongs to an A*-submodule $\sum_{k} A^*H^k(W_{r+1}^N, Z_2), N \leq k \leq N+2^{r+1}+4.$

It follows from this the following

Theorem 2.15. (Adames [1]). If $H_2: \pi_{4t-1}(S^{2t}) \longrightarrow Z_2$ is onto for $t \ge 4$, then $H_2: \pi_{8t-1}(S^{4t}) \longrightarrow Z_2$ is trivial.

Finally, as is seen in [7], $H_2: \pi_{4t-1}(S^{2t}) \longrightarrow Z_2$ is onto if and only if the usual Hopf homomorphism $H: \pi_{4t-1}(S^{2t}) \longrightarrow Z$ is onto.

REFERENCES

- J. F. Adames, Une relation entre groupes d'homotopie et groupes de cohomologie. Comptes Rendus, 245 (1957), 24-25.
- [2] H. Cartan, Algébres d'Eilenberg-MacLane et homotopie. Seminaire de E. N. S. Paris (1955).
- [3] I. M. James, On the suspension sequence. Ann. of Math., 65 (1957), 74-107.
- [4] J. C. Moore, Some applications of homology theory to homotopy problems. Ann. of Math., 58 (1953) 325-350.
- [5] M. Nakaoka and H. Toda, On Jacobi identity for Whitehead products. J. of Osaka City Univ., 5 (1954) 1-13.
- [6] J. P. Serre, Groupes d'homotopie et classe groupes abélien. Ann. of Math., 58 (1953) 258-294.
- [7] N. E. Steenrod, Cohomology invariants of mappings. Ann. of Math., 50 (1949) 954-988.
- [8] H. Toda, On the double suspension E². J. of Osaka City Univ. 7 (1956) 103-145.
- [9] H. Toda, *p*-components of Homotopy groups, I Exact sequences in Steenrod algebra. This memoir, 31 (1958), 131-144.
- [10] G. W. Whitehead, On products in homotopy groups. Ann. of Math., 47 (1946) 460-475.