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Let jg be a Jacobian variety of a complete non-singular curve
F, p  b e  a canonical mapping o f r into J  and let e be a canonical
divisor corresponding to p(r). It is known, in the classical case,
that Oui  ••• Oug _i is numerically equivalent to (g -1 )!  p (r )  and the
self-intersection number o f 0  is g ! .  Originally these are due to
Poincaré and later Castelnuovo gave an algebro-geometric proof for
the first (cf. Castelnuovo [1]). Castelnuovo's idea is very simple
but the proof depends upon a rather difficult result, the irreduci-
bility of the variety of moduli of curves of the given genus. First,
we shall prove them by using the theorem of Riemann-Roch and
an equivalence criterion for numerical equivalence we shall discuss.
Later in the Appendix, we shall prove them using Weil's idea,
which was communicated to the writer by h im . Next let A  be
an Abelian variety of dimension n, X  be an irreducible subvariety
of dimension n - 1  on A  such that the self-intersection number of
X  is n !  and that Xu i • •• X,,,,  numerically equivalent to (n-1)! C,
where C  is  a positive l-cycle on A .  Then we shall show that C
is irreducible, non-singular, A  is the Jacobian variety o f  C , C  is
canonically embedded into A  and that X  is  a  canonical divisor
corresponding to C .  Therefore, we can say that the two numerical
relations, together with the irreducibility of the divisor, charact-
erizes a canonically polarized Jacobian variety completely. In §1,
we define an endomorphism a(X , Y) relative to a pair (X , Y ) o f

1) This research was partly supported by National Science Foundation.
2) W e shall follow the terminology and conventions of Weil [6 ], [8 ].
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cycles of complementary dimensions on an Abelian A .  We shall
see that it is bilinear and depends only on classes of cycles modulo
numerical equivalence. Mappings X -->a(X , Y), Y.-.a(X, Y), when
Y  is kept fixed in the former case and X  is kept fixed in the
latter case, define homomorphisms o f groups of classes of cycles,
modulo numerical equivalence, into the ring 1X of endomorphisms
of A .  When Y (resp. X) is either a positive non-degenerate divisor
or a complete intersection of positive non-degenerate divisor, the
former (resp. latter) will be shown to be an isomorphism.

§ 1. Endomorphisms attached to cycles

The writer assumes that the reader is familiar with the theory
of Picard varieties. Those results which will be needed in  this
paper could be found in writer's another paper (cf. Matsusaka [2])
with references. Let Gr (A ) be the additive group of r-cycles on A
and let Gnr (A) be the set of r-cycles X  on A such that deg (X- Y " ) = 0
for a l l  Y "  on A, whenever X. Y is defined. Gy ,r  (A) forms a subgroup
o f Gr (A ), and any r-cycle X  in G ( A )  is said to be numerically
equivalent to O. When X  and X ' are two r-cycles such that X— X'
is numerically equivalent to 0, we say that X  and X ' are num-
erically equivalent to each other. When X— X' E G;", (A ), we write
X— mod Gnr (A ) .  We shall omit r, when there is no danger
of confusion.

W e are going to define three types of homomorphisms at-
tached to cycles. Let Z  be a cycle on a product A x B o f two
Abelian varieties such that dim Z = dim A .  Z  defines a homo-
morphism a of A into B  by S (Z (u)), a(u)+ c, where c is a constant
(c f. W eil [8 ], Th . 1 , Th . 9 ). In particular, when U and V are
A-cycles of complementary dimensions, there is a cycle Z  of the
same dimension as A  on A x A  such that

u  x  U• Vu =  Z • (u x A) .

Then the endomorphism a  o f A  defined by this Z  is such that
S( U• VE,) =a(u)-A -c. We shall denote this a  by a((J, V).

L e t W  be a  divisor on A x  B  and be the canonical homo-
morphism of the group G (B ) (of B-divisors algebraically equivalent
to 0) onto P(B), the Picard variety o f B .  Then W defines a homo-
morphism 7  o f A  into P(B) such that

'Au) = A W (u)—  W (u 0 ))+ c ,
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where uo i s  a  fixed point such that W (u 0 )  is defined and c  is a
constant. Let us consider a special case when A =B  and let X  be
a positive non-degenerate divisor on A .  L e t T  be the transform
of Z x X  on A x  A x  A  by the automorphism (x, y, z)—).(x, y, y—z).
When we put W =p r„T , we have

pr i (Z • (A  x X ))x u = W • (A  x u) ;
W. (w x A ) = w x  m X 1 ,

where Z.(w x w x Em i (v i ), and X -  i s  the transform o f X  by
the automorphism —8 of A  (cf. Weil [ 8

] ,
 Th. 4, Prop. 2). Let 7 be

the homomorphism of A  into P(A ) determined by W, then we shall
denote it by 7(Z ; X). I f  Z  is  the cycle on A x  A  such that
ux U. V  = Z(u x A), where U and V are complementary dimensional
A-cycles, then we shall denote 7  by 7(U, V ; X ).

Finally, since X  is non-degenerate, X -  is also non-degenerate ;
therefore the homomorphism 3 x - o f  A  into P(A ), defined by
Sx - (u)= /3(X -  „— X - ), is surjective.

L em m a 1. L e t U  an d  V  be tw o A -cy cles of  complementary
dim ensions on A  and let X  be a positiv e non-degenerate A -divisor.
Then we have

7( U, V ;  X )  = I-3x - • o( U, V ).

P roo f. Let Z  be the transform of Ux V by the automorphism
(x, y) of A  x A  and T  be the transform of Zx X  by the
automorphism (x, y, z)—).(x, y, y— z) o f A x A  x A .  I f  we put W =
pr „T , we have

pr ,(Z  (A  x X ,))x u = W • (A  x u) ,

with W .(w x A ) ,  w x , Z. (w x A) = w x Em i (v )=w x  U •V w ,
whenever every intersection-product involved is defined. Then we
have

ce( U , V )(w) ---= S (U  w )+ c S(Z(w))+ c ,

where c  is  a constant. Putting a( U, V)=-- a ,  d = deg (Z(w))=-
deg (U. Vo,), we have

(cf. Weil [8], Cor. 2, Th. 30).

On the other hand, the homomorphism 7 V; X )  of A  into
P(A ) determined by W  is such that 7(w) = ,e(W(w)— W(t))+ c'
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3(X - 0c.)+, - X - ) - 3(X - 0(t)+, - X - )+ c ', where t, c, c', are constants.
Hence 7(w)= Bx - .a (w )+c" with a constant c". Our lemma is
thereby proved.

Lemma 2 .  L et W an d  W' be two divisors on a product of  two
Abelian varieties A  and  B s .  L e t  be the canonical homomorphism
of  (B) on the Picard variety P(B) o f  B . L e t 7 (resp. 7') be the
homomorphism o f  A  into P(B ) determined by W (resp. W'). I f  W
an d  W' are numerically equivalent to each other on A x B, we have
7 = 7 '.

Proof. We shall show that we may assume W and W' to be
both non-degenerate and algebraically equivalent on A x B .  There
is  a positive integer m  such that m (W - W')-7-=0  mod G a (A x B)
(cf. Matsusaka [3]) ; it is easy to see that mITT and mW' define
my and my' respectively. If my = m'y', then we have 7  =  .  There-
fore, we may assume that W and W' are algebraically equivalent
to each other. It is also easy to see that there is a positive divisor
T  such that W+ T  and W'+ T  are non-degenerate. Let 7* be the
homomorphism of A  into P(B) determined by T .  W +  T and W'+ T
determine ' y  + ' y *  and 7' +7* respectively. Hence we may assume
that W and W' are non-degenerate.

There is a point t = (u , v) on A x B such that W '— W ,. We
have (w x B) • Wi =wx W t (w)— w x W'(w) on  w x B  b y  W e il [6],
VIII, Cor. 1, Th. 4. On the other hand, we have W,(w) .=-- W(w- u ).
Hence

W(w) -  W7 (w0 )— W(w -  u), -  W(wv - u)„--- W(w -  u) -  1/17(w0-  u) ,
since IP(w)- WW 0 )=-=-0 in the sense of W eil (cf. W eil [8], Cor.
1, Prop. 3), where wo i s  a constant. Thus we have 7'(w)+c.-=--
7(w) - 7(w0)+c'. Since u, c, c' are constants, our lemma is proved.

Theorem  1. L e t  U, V, U', V ' be f o u r c y c le s  o n  an  Abelian
variety A  such that dim U+ dim V= dim A, U  U' mod G „(A),
V -= V' mod G „(A). Then we have

a(U, V) = a(U' , V') .

Proof. L e t  X  be a positive non-degenerate A-divisor. By
lemma 1, w e  have 7(U, V ;  X )=  ce( U, V ), 7(U/ , V ';  X ) ,

•a(U' , V'). By our assumption, we have Ux U' x V'
mod G n (A x A ) . Let Z and Z' be the transforms of Ux V and U' x V'
by the automorphism of Ax A  defined by (x, y ) - (y -x ,  y ) .  Then
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mod Gn (A x  A ) and consequently Z x x X  mod G„(A x A
x A ) .  Thus, the transforms T , T ' of Z x  X , Z ' x  X  by the automor-
phism of A x A x  A  determined by (x, y, z)--, .(x, y, y — z ) are such
that T ' mod Gn (A x  A x A ) .  By lemma 2, we have y( U, V ;  X ) =
7( IT, ;  X), since W =Pr i ,T--- --P r i ,T '=  W' mod G (A x  A ) .  Since X
is non-degenerate, ,ax - is  an isogeny, j. e . a surjective homomor-
phism with a finite kernel. Our theorem is thereby proved.

C orollary. L et B  and B ' be two Abelian subvarieties of A  such
that B' mod G ( A ) .  Then B = B' .

Proo f. Let X  be a positive A-cycle such that B -X  and B i•X
are both defined. Then since B  and B ' are numerically equivalent
to each other, we have deg (B •X )= deg (B' • X ) .  a ( B , X )  is  an
endomorphism of A , mapping A  onto B ; a(B ' , X )  is  a lso  an
endomorphism of A , mapping A  onto B ' (cf. Weil [8], Prop. 25).
Since we have a(B , X )=a(B ' , X ) by our theorem, it follows that
B =B '.

Thus we have seen that a(X r, Yn - r) is a  bilinear mapping of
Gr(A )xGn - r(A ) into the ring 9t o f endomorphisms of  A , and it is  0
on G(A )x Gn - r(A ) a s  well as on  G r( A ) x G r( A ) . We shall prove
a  few  formulas for ce(X , Y )  which we shall need later (these
formulas are not new and are originally due to Morikawa, cf.
Morikawa [4]).

Proposition 1. ( i )  L e t  X  an d  Y  be two A -cy cles o f  com-
plem entray  dimensions • o n  A ,  then we hav e a(X, Y)+ a( Y, X )=
I(X , Y )-8, where I(X , Y ) denotes the intersection number o f  X  and
Y .  (ii) L et T , Z „ ••• , Z r  be r+ 1  cycles on A  such that T  • • •  Zr
is defined on A  and is a zero-cycle, then we have

a(T , Z ,••• Z r ) =  E , a(T -Z ,••• Z i _i •Z i ,••• Z r, Z ) .

(iii) L et X „ ••• , X r  be r  cycles on A  such that X , ••• X r  is defined
and is a zero-cycle, then we have

E i c f(x , ... xr) (r — 1) I(X „ •••, X r )-8 ,

where I(X „ •••  X r )  denotes the intersection number o f  our r  cycles.
(iv) L et X „ ••• , X „ be divisors on A  such that X, ••• X „ is defined
and that X i -=-  X, mod G„(A) fo r a ll i ,  then we have

a(X , •• • X r ,  X , , X„) ((n— r)in) I(X „ • , X ,,)•8



6 Teruhisa Matsusaka

Proof. To see the first formula, first w e replace Y b y  a
translation of it such that the intersection-product X . Y  is defined
(cf. W eil [8 ], T h . 3 ). T h en  a (X , Y )(t)= S (X •( Yt —  Y ))=S (X• Yr)
—S(X. Y)-=-S((X• Y )-r ) - 1-/(X, Y)•t—S(X• 17 ) and our formula (i) is
an immediate consequence o f this.

To prove our (ii), we proceed as follows. L e t  T, X , Y  be
three A-cycles such that T -X • Y  is defined and is a zero-cycle.
a (T , X  • Y )(u )=  S (T  • (X ‘ • X„— X - Y)) = S (T • (X„ • Y„— X„ • Y) +
T.(X„•Y — X- Y))= a( T• Y)(u)+ a (T . Y , X )(u ) by Theorem 1.
Hence a(T, X . Y)--= a(T• X , Y )+ a (T •Y , X) and our case follows from
this by induction.

When r = 2, (iii) coincides with (i). Hence we assume that
(iii) is true for r - 1  A -cycles. Putting Y = X r _,•X,., we then get

E'; - 2 ce(x i, X 1x,-_,.x ,,, xr_2 Y )+ a (Y , X , ••• Xr_2)
—2)I(X 1 , ••• , Xr) 8

Using (ii), we have

a( Y, X , ••• Xr _2 ) I (X „  •••  X r )•8—a(X, ••• X r _„ X r _,•X,.)
I(X„ ••• , X r )•8—a(X, • •• Xr_ 2 •Xr_ i , X ) — aa, •• • Xr_2• X r  X r  -

-A X „ • • • , X r ) .8 + a(Xr , X, Xr_,)+a (Xr_i,  X 1X r _ 2 • X r ) .

(iii) is thereby proved. (iv) is  an immediate consequence of (iii)
and Theorem 1.

§ 2 .  A  c r i t e r io n  fo r  n u m e ric a l e q u iv a le n c e .

In this section, we limit our discussions to the case of divisors
and l-cycles on A .  We say that a curve C  on A  is a generating
curve o f A , when any point of A  can be written as a sum o f n
points on C .  In other words, let c  be a point on C, then C  is a
generating curve o f A  if and only i f  A  is the smallest Abelian
subvariety o f A  containing C. L e t  X  be a divisor on A  and C
be a generating curve o f A, then we shall show that X is numer-
ically equivalent to 0 if and only i f  a(C, X )= 0  o r  a(X, C)=0.
Thus we get a  faithful repersentation o f Gn- J(A)1G;; - 1 (A )  in the
ring I  b y  X--->a(C, X ) or by X---.ce(X, C). Next, let X be a positive
non-degenerate divisor on A  and Z  be a l-cycle on A .  We shall
show that a(X , Z ).=  0 or a (Z , X )= 0  if and only if Z  is numerically
equivalent to O. Hence we h ave  a  faithful representation of
C(A)I G„l(A) in to the ring 2 I  of endomorphisms of A , b y  the
correspondence Z—>a(X, Z) or by Z , a(Z, X).
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W e are going to introduce some conventions and notations,
which will be kept fixed throughout this section. Let C „  ,
be rn curves on A ; let the J i be the Jacobian varieties of the Ci ,
the f i be birational correspondences between the complete non-
singular models CI' of C i  and the Ci ,  the p i  be canonical map-
pings of the CI' into the J i and finally let the Pi b e  the graphs
of the f i .  f i can be extended to a homomorphism g i o f J i into A
such that

R i • P i + c i

where ci is  a constant (cf. Weil [8], Th. 21). Put B =-J, x •-• xJ,„
and C =E ra i Ci ,  where the coefficients a i a re  either +1 or —1.
Then we can define a homomorphism g  of B  into A  by 13(x1 , •-• , x„,)
= E ra i ii i (x i ). W e fix also a  common field k  o f  definition for
A, and for Ci ,  C ,  f 1 , q ,  J i  ( 1 < i  < m ) .  Then the S i and also g
are defined over k  (cf. W eil [8], Th. 3).

Let now X  be a divisor on A  and K  be a field containing k
over which X  is rational. Put

x , = SPPi(Pro(r, • (CI' x X.)))] •

The point (x„ ••• , x m )  is rational over K(u) (cf. W eil [8], Th. 1),
and hence there is a homomorphism ',ex  o f A  into B  such that

t iex(u) =  (xi, • • • , xm )+c ,

where c  is a constant (cf. Weil [8], Th. 9).
Lemma 3. We have ce•i3x =cr(C, X ).
Proo f. Let K  be a field containing k, over which X  is rational,

and u  be a  generic point of A  over K .  It is easy to see that
every component of 1 1 -(0, x xu)  is a generic point of r i o v e r  K
(cf. Weil [8], Th. 3). Hence

r i • (or x xu ) --= x ci-xu)) c l x c ,

by Weil [6], Chap. VII, Th. 18. From this and from our defini-
tions, our lemma follows immediately.

Weil defined the symbol do, , x) by d(181 , X )= deg (r, • (ct x xu))
(c f .  W e il [8 ],  n o . 4 4 ).  Using a  similar remark to the one
in the preceding proof, we see also that

d(131 , X ) = I(C ,, X )= (1/2)• Tr(cf(Ci , X )),
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by W eil [8 ], Th. 31. and Cor. 1 to Th. 36. From this we see
that /(C, (1/2)• Tr(a(C, X )), and hence we have the following

C oro lla ry . T r(a(C, X ))=2•I(C , X)
and Tr(a(X , C))-= (2n—  2)•/(C, X).

The latter half o f our Corollary follows from (i), Prop. 1.
Proposition 2. Let (p be the canonical homomorphism of (A)

onto the Picard variety  P(A ) of  A  and cpx  be  the homomorphism of
A  into P(A ) defined by cp(X„—X) -= - P x (u), in  term s of  a  div isor X
o n  A .  T hen there is a  homomorphism X ,, of  P(A ) into B  such that
t 4x-- -=', Lx - cPx. W hen X  is non-degenerate, the  im age of  A  by  t Ox
contains the im age of  e0 y , f o r any  A -div isor Y.

Proof. Let K  be a field containing k  over which X  is rational.
Let u  and y be independent generic points of A  over K  and put
mi (u) =-pre(1 1 ,•(C',' x X u )), then we have

t Ox(u) (SW i (rn i (u+ v) — i (v))), • • • , S(cpru (tri,u (u + v)— nt,u (v)))) .

We can find a rational divisor Z  in Ga (A ) over K (p x (u)) such that
(P(Z )=P(X u —X) -- - T x (u). L e t T  be a  non-degenerate A-divisor,
then Z — T ,— T  for some s  on A , and consequently Z ,— Z  for any
t  on A  (cf. Weil [8], Cor. 2, Th. 30). Therefore we can find a
point t  on A  such that n i  -=pro(P i •(CT x Z i ) )  is defined and that

t Rx (u) = (... , S(Pi(ni)), ...)

by W eil [8 ], Th. 3, Th. 19, Th. 21 and Cor. 2 to Th. 30. Taking
K  to be algebraically closed, i f  necessary, we may assume that t
is rational over K .  Then since every n i is rational over K(T x (u)),
it follows that  t ,9 (u )  is rational over the same field (cf. Weil [8],
Th. 1). Thus the first part of our assertion is proved.

N ow  let us assume that X  is non-degenerate and Y  is  an
arbitrary A-divisor. For any given point u  on A , there is a point
y on A  such that

Yu— Y--X,— X  .

This implies ti3 y (u) = ti3,(y) and the second assertion is proved.
T h e o re m  2 .  L et X  be a  div isor an d  C  be  a  1-cycle on A .

( i)  When X  is positive and non-degenerate, a(C, X )  0 or a(X , C )
is  a necessary and sufficient condition that C is numerically equivalent
to 0. ( i i )  W hen C  i s  a  generating curv e o f  A ,  a(C , X )=-0  or
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a(X, C)-= 0 is  a necessary and sufficient condition that X  is numer-
ically  equivalent to 0.

Proof. First, let us observe that a(C,X)=0 and ce(X,C)=0 imply
each other. If a(C, X )= 0, then Tr(a(C, X))=0 and /(C, X)=0 by our
Corollary to Lemma 3. Hence a(C, X)+a(X, X) •8 implies
a(X, C)==0. Conversely, if ce(X, C)=. 0, then Tr(a(X, C))=-(2n-2)•
1(C, X )= 0  (cf. Cor. to Lemma 3) implies /(C, X )= 0  and we have
a(C, X).= 0 by the same reason.

Therefore, let us assume that a(C, X )= 0 , assuming that X  is
a positive non-degenerate divisor on A .  Let C=Era i C, be the
reduced expression for C, with a, =  ±  1 and let us use the same
notations and conventions explained in the beginning o f this §.
L e t D  b e  the im age o f A  b y  t3x

• S in c e  a(C ,X )=0-e3 x  by
Lemma 3, it follows that D  is contained in the kernel o f 3 .  Let
Y  be an arbitrary divisor on A, then the image of A b y  y  is con-
tained in  D  b y  Proposition 2. Since a(C, Y )= 3 - '3 ,  again by
Lemma 3, w e  have a(C, Y), 0. Thu s w e have shown that
a(C, X )= 0  implies ce(C, Y)-= a( Y, C )= 0 fo r  any A-divisor Y and
hence Tr(a(C, Y))=21(C, Y) = 0 for any Y , which proves C O
mod O A ). O ur first assertion follows from  this and from
Theorem 1.

Let P(A) be the Picard variety of A and cp be the canonical
rational homomorphism of (A ) onto P (A ). Let us assume now
that C is a generating curve o f A ; from the universal mapping
property of p ,  w e have

S(pr j (r • (C* x Z))) = 7 -q)(Z), Z E 0,; - ' (A),

where 7  is a homomorphism o f P(A ) into J = J i (putting C =C „
Ct = C *, r i = r ) .  Therefore, we have

t3x =  *P x

and 7 is independent of X .  a(C, X) =0 implies 0- ti3x = 0 and we
are going to show that tOx = 0 in such a case.

Assume, for a moment, that there is a positive non-degenerate
A-divisor T  such that a(C, T) is a surjective endomorphism of A.
Then from the relation a(C, T) ,  re• tier  and the fact p r  is  an
isogeny, it follows that y is an isogeny and 3  induces on 7(P(A))
an isogeny. Therefore 3-',6x = 0  implies t / 3 0  and (ii) follows
from Theorem 1 and from Weil [8], Th. 30. As to the existence
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of a positive non-degenerate T such that a(C, T) is surjective, it is
easy to see that the subvariety o f A  of dimension n -1 ,  consist-
ing o f sums o f n -1  points on C, has the required property.

C oro lla ry . L e t  C  b e  a positiv e  1-cycle o n  A ,  w hich  is  a
complete intersection of  positive non-degenerate div isors. Then a
divisor X  on A  is numerically equivalent to 0 if  and only i f  ce(C, X)
= 0  or a(X, C)= 0.

This is an easy consequence o f our Theorem 2 and Weil [9].

§ 3. A  Characterization of a Jacobian variety.

Proposition 3. L et Jg be the Jacobian v ariety  of  a  complete
non-singular curve r, p  be the canonical mapping o f  r into J, and
0  be the corresponding canonical divisor on J. T h e n  w e  have

deg(0. 1 • • • Oug ) -=  g! ,
@ug-i (g -1 ) !  p(r) mod G(J) .( jui•'• —

Proof. The first equality is an  immediate consequence of
the theorem of Riemann-Roch (cf. Nishi [5] and 1(0)=1 (cf. Weil
[10], Th. 1). By Weil [8], Th. 20, we have (-OOP), -,--- 8 ; on the
other hand, we have ce(0,41 ••• Ou g _i , e)_-= (g -1 )!8  by (iv), Proposition
1. Our second relation follows then from Theorem 2.

Theorem  3. L et A " be an  A belian variety  and  X  be  a n  ir-
reducible divisor on A  such that X u , • X u n _1 -=-- (n -1 )!  C  mod G (A ),
C >0, and deg(X„, • Xu n ) n!, then C is irreducible, A  is the Jacobian
v ariety  o f  C, C is canonically  em bedded into A  an d  X  i s  a  cor-
responding canonical divisor on A .

Proof. From (iv), Proposition 1, we have a(C, x),a . We have
also /(C, X ) ,  n. Hence, in the reduced expression for C, every
component has the coefficient 1. Let C =E TC i b e  the reduced
expression for C, the J .  th e  Jacobian varieties of the Ci , the
C t be non-singular models of the C 1 , th e  f i b e  birational trans-
formations o f the C t onto the Ci ,  the p i be canonical mappings
of the CP into the J i and the f6i be linear extensions of the f i

(cf. Weil [8 ], Th. 21). Put B =J ,x•-•xJ„, and define R, ',ex  as
we did in  § 2. By lemma 2, w e have R• 1/3x -=a (C , X )=8 , and
so 'S x  is  an injective isomorphism o f A  to  B  and 3  induces a
surjective isomorphism on '13,(A ). We are going to show that '13x

is actually surjective. In order to do so, it is sufficient to show
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that 'A x is surjective for 1 <i<m , since we have ti9x ----(f3 1x ,•-•,t0 ).
Let K  be a common field of definition for A and for all subvarieties
o f A, varieties and mappings we have introduced in the proof.
L e t u  be a  generic point of A  over K , then from a(C, x),a,
I(C , X )=n, dim A = n  and from Weil [8 ] , Th. 1 , it follows that
C, •X ,, consists o f  independent generic points of Ci over K , each
being counted once. The relation

fT 1 ((X .,„ —  X u — X D - 1-  X) .C1) — 0

determines, on the symmetric product of Ci o f  order /(C i , X), a
law of composition which makes it birationally equivalent to an
Abelian variety (cf. W eil [ 8 ] ,  Th. 16, Cor. 2 , Th. 30). Since J.
is the Albanese variety o f C , (cf. Weil [8 ], Th. 21), it follows that
/(C 1 , X ) > genus (C1 ) ,  dim J .  H en ce  'R i x  is  surjective and con-
sequently ti3x  is  surjective.

Let us put r, 0, x ••• 0, _ , x P,(Cflx  0,, ,x  ••• x  0 „ „  where the
0 , are neutral elements of the Ji ,  and also put 1?, =1 ,x  • • - x  J,
)<®,x1,,,x • •• x J„,, where O i  is a canonical divisor on J, correspond-
ing to (1 (0,4%  Since /3(x 1 , • • • , x . )= E r 0 i (x , ) ,  w e have /3(r 1 )=- -- Ci

mod O A ) .  By Proposition 3 , we have a(p 1 ( C ? ) ,( ,) = 8 ,,  where 8,
is  the identity automorphism of J .  Therefore we have a ( E r r „
E re i)  8/3 . When Z  is a 1-cycle and T is a divisor on A, we have
a(13 - 1 (Z), 13 - 1 (7))=13 - 1 -a(Z, T)- R. Hence a(13 - '(C), 3 - '(X))----=8 e =
ce(E rr „ 0 - '(X )) by Theorem 1. From this we see that 0 - i( x ) ,
E'Ì R, mod 0 ' ( B ) .  Since ErR, is positive and non-degenerate on
B , there is a point b on B  such that R - '(X )— (ETR,)b, which can
be proved in the following w a y . L e t (u„ ••• , um ) be a set of in-
dependent generic points of J,, • •• , 1m  over K  and put V, -= ui • • •
x u,_, x J i  x x  •  •  •  X U„,. Denoting by p r,  the operation o f alge-
braic projection on the i - th  factor J, of B , we have pr 1(0 '(X )• V,)
--=.pr1((ETR 1)•171) mod G„(4). Hence there is a  po in t b ,  on  J,
such that Pr1 (3'(X )• V i) —  Pr i((ErRi)b,• Vi ) by Weil [8], Th. 32, Cor.
2 .  Putting b = (b„ •-• , b„,), we see that pr,(19 - '(X )•V ,)— Pr((ETR,)b•
V ,) for any choice o f i ,  which proves our assertion (cf. Weil [6],
Chap. VIII, Th. 4 , Cor. 1  and Chap. VII, th. 12 (ii)). Since /3- 1 (X)
and E r R i  are positive, and since /(/3'(X ))= /(ETR ; ) =  1 , it follows
that /3 - 1 (X )= (E T R ,)b . This is possible if and only if  m = 1 .  Our
theorem is thereby proved.
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APPENDIX

Let j g  be the Jacobian variety o f  a  complete non-singular
curve F. W e may assume, without loss o f  generality, that a
canonical mapping o f 17 into J  is the injection (cf. Weil [8 ], Prop.
16, Prop. 18). Let TV  b e  the subvariety of J, consisting of points

Çx1 , where the x ,  are points on r, then Wg - '  is  a  canonical
divisor H  on J .  We shall denote by W  the variety Wg - 2 . Let f
be a  canonical divisor on r, then the mapping u—>S(f)—u is an
automorphism of the underlying variety o f our Abelian variety J.
When U is a cycle on J, we shall denote by U * the transform of
U by the automorphism mentioned above. In this Appendix, we
are going to show that

0,, i • • • (g— r)! TV mod G7r,( J) ,

deg (€-),, i • • • Oug ) =  g !,

where Cu19 • 9 (jug are g translations of e  on J  such that O„, •• • Bu g

is defined. The idea o f our proof is based upon that of Weil,
which was communicated to the writer by h im . Originally, what
we needed was Sul *•' ®ug-i i l  mod G (J ), and as we have
seen , it is  an  easy consequence o f our criterion fo r  numerical
equivalence. But since the general formula is sometimes usuful,
and since there is no existing proof for it except for the classical
case, we are going to include it here.

Throughout this Appendix, we shall fix a common field k of
definition for J  and r, and all fields shall be assumed to contain
k. We shall fix also a positive rational canonical divisor on F .

1. Let x„ •-• , x g _r  be g— r independent generic points of it
over k. Put m  ET - r(x i ),  which is a positive il-divisor of degree
g—r, and also put t . Let 7 be the 17-differential of the
first kind such that (7) = r. Let T1 be the module of the 17-dif-
ferentials 7 ' of the first kind such that (7 ') >m , then dim sn = r
and we can find a  basis 7 1 , •• 7 r  O f T I  such that the 7 i  are
defined over k(x,,••• ,x g _,.) (cf. Weil [7 ], §11, no. 8). Let 3/1 , •-• , y r

be r  independent generic points of r over k(x„••• , x g _r ) and let
F  be the function on the product U o f r  curves equal to i l  such
that

F(y, , ••• , y r ) = det (f i (y ; )), 1 < i ,  j < r ,

where f i = 7 i 1 7 . Since (f,.) > — r+ m , it follows that
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(F) , T  - O,

w here A „  i s  the locus of 
( Y 1 ,  y1, y 3 ,  • • •  y r )  over k ,  Ai ;  i s  the

transform of A „  b y  the permutation of factors of U, which inter-
changes the i-th  factor w ith the first factor and the j - th  factor
with the second factor ; m )  denotes the divisor on  U  which
w e obtain  by rep lacing the i-th  factor of U  b y  f —  (cf. Weil
[ 7 ], § I, § II of Première Partie and § I ,  nos. 12-13 of Deuxième
Partie). W e shall point out here two properties o f  T ; ( i )  T  is
symmetric, i.e. T  is  invariant under any permutation of factors of
U, and (ii) every component o f  T  has the coefficient 1 in the reduced
e x p re ss io n  f o r it . In fact, permutations of factors of U  either
leave F  invariant or change it s  s ign . Hence ( F )  i s  invariant by
any permutation of factors of U .  Next, put u =E ;: - 1 y , .  We see
th at T(Yi, ••• Yr- 1)+  ( y i )  m - - - f  b y  Weil [6 ] , Chap. VIII, Th.
4, Cor. 1. Since T  is symmetric, if w e show that every component
o f T (Y I  " •  Y r-1) has the coefficient 1  in the reduced expression
for it, the same follows for every component of T  (cf. [6 ], Chap. VI,
Th. 12). We have S(T(y 1 ,•-•,y 1 ))=S(f)— u— t and deg ( T(Y ,,•••,.Y ))
= g — 1. S in c e  C I*  0 ,  S(f)—  u—  t i s  a  g en e r ic  p o in t  o f  Co
over k  (cf. Weil [8 ],  Prop. 19). Then every component o f T(Y i,
• • • , .Yr-i) has the coefficient 1 in the reduced expression for i t  (cf.
Weil [8 ], Prop. 16). Our assertions are thereby proved.

2. Let L r b e  the graph  of the mapping (y 1 , • , Yr) — *Ei.Y,
which m aps U  into J. The projection of L  on U is everywhere
defined (cf. Weil [8 ],  Th. 6), and L  is non-singular (cf. Weil [6],
Chap. IV, Th. 15 ). Let x  be a generic point of over k(x i , ••• , x g „).
W e claim  that the intersection-product

L • (U x 0 x _t )

is defined on  Ux J. I f  W r is contained in Ox _i ,  then  HTÇ„ is
contained in ® ;  since W r,_ contains a generic point of J  over k,
it cannot be contained in  0 .  This im p lies that L • ( Ux O x _ ,) is
defined. W e  d e f in e  Z  to  b e  the L-divisor such that p r i Z =0 ,
L • ( U x 0 ) — Z > 0  and that every component of L -(U x 0 x _1 )—Z
has a non-zero algebraic projection on J.

Lem m a 1. Let D ( x )  be the subvariety  o f  U , which we get by
replacing the i-th  factor by x. Then we have

1Pri(1, •( Ux 0 x_t) — Z ) I C I T I +  EiDi(x) I Prj ( L  Ux Ox_d) I .
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A ny  Point (2.1 , ••• , Z r )  o n  1 T I  is  s u c h  th a t  (z„ ••• , zr, Eizi)
LAUX Ox _„ fo r  all x  on P.

Proof. Put K=k(x„••• , X8 ,., x). Assume first that (z 1 , •, z r , v)
is  a  generic p o in t  o f a  component o f  L n U x  e x _ over the
algebraic closure of K, such that v + t  is not a point of W *. Then
v+ t— x is a point of E  if and only if  x is a component of EÇ(z1)
(cf. W eil P i  P r o p .  16). Therefore (z„ ••• , Zr ) i s  a point of a
component o f E i D i (x). Conversely, le t (z„ ,  z r ) be a  generic
point of U 1 (x )  over K .  Then v = o z i i s  a  po in t o f e x _t and
(z 1 ,..., Z r , v) is contained in the intersection of L  and Ux 0 .-t•

Let (z„ ••• , z r )  be a generic point of a component o f  T  over
the algebraic closure o f K .  Without loss o f generality, we may
assume that dim,(z„ ••• , z,.,) , r — 1. Then we have

T(z„ ••• , , zr  E T(z„ , z r _i ) .

Hence Eri (z i )+ —  w h ere  is  a positive ['-divisor o f  degree
g - 2 .  We have 12,71..z1

 =-S(f)— S () —t E for any point y on
I', since W <  O. Conversely, let (z„ ••• , Z r , v) be a generic point
of a component of L •(U x  O r . „ )— Z  over the algebraic closure o f K,
such that (z„ ••• , Zr ) is not contained in }E i D i (x )1 .  Then v+ t  is
a point of W * . We claim that none of the z i can be algebraic
over k. I f  z „  for instance, is algebraic over k , the locus of v
over the algebraic closure of K  is  W ' .  Since v + t  is a point of
W *, w e have W *, which implies  ® TJ W *. Therefore
none of the z i can be algebraic over k  and can be a  component
o f  f. There is a positive r-divisor o f degree g - 2  such that
E',*(z1)+ m -1 4 - f .  Let 7' be the r-differential of the first kind
such that (7') ----- EÇ(z i ) + m + and put f  = 7 '1 7 .  There is a set of
constants (c„  ••• , cr ), not all zero, such that f '= E ; : c i f i . Since
f ( z 3 )---=-- 0 for all j  and since f i is defined at z i  fo r  any pair (i, j)
of indices, it follows that F(z„ ••• , Zr ) is defined and vanishes.
I f  (z„ ••• , Z r ) i s  a point, hence a  generic point over K , of A i 1 ,

then z i = z i  ; but .x „ •••  , X g r, together w ith  r-1  points from
(z„ ,  z r ), form a set of g -1  independent generic points of F over
k and hence E l. (z i )+ in +  is a generic divisor of the complete linear
system 2(f) determined by f, which cannot have a multiple point.
Thus (z„ ••• , Zr ) cannot be contained in A i ;  and this proves that
it is a point of T .  O u r  lemma is thereby proved.

L em m a 2. Every component of 1,-(U x(H) x _ f )—Z has the coefficient
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1  in  the  reduced ex pression for it.
Proo f. Let VT - 1  be  a component of L •(U x  Or _t )—Z, then the

projection V' of V on J  has the dimension r —1 by our definition
of Z .  Let (z„ ••• , v )  be a generic point of V  over the algebraic
closure R  o f K .  In order to prove our lemma, we are going to
show that L  and U x Ox _, are transversal to each other at (z„ • • • , z r , v)
on U x J .  The point is  simple on L. W e have to  show that
the point is also simple on Ux e x _r .

Assume first that v +t  is not a point of W *. Since v+ t— x E 0,
one of the z i , say z „  must coincide with x  (cf. Weil [8 ], Prop. 16)
and (z 2 ,••• , Z,., X 1 ,  ,  x g , )  is  a set of g - 1  independent generic
points of r over k ( x ) .  Hence v+ t— x  is a generic point of e over
k ,  and v  is a simple point o f  e x _ t . Next assume that v+ t  is a
point of W * . There is a positive r-divisor of degree g - 2  such
that f'--=-E1. (z1)+  +  The points x „•••  , x g _r ,  together with
suitably chosen r - 1 points from (z „•••  , Zr ), fo rm  a  set o f g - 1
independent generic points of r over k ( x ) .  Since l(f) , g ,  it fol-
lows then that r is a generic divisor of the complete linear system
2 (f) over k(x). Let us assume, for the sake o f simplicity, that
dim k(x)(z2, • • • , x „ ••• , x g , ) - = - g - 1 .  Then E Z t  is a generic
point of (--) over k (x ) and hence S()— z 1 —S(S) is also over k ( x ) .  This
implies (z,,) +  is  a positive r-divisor o f degree g - 1 ,  consisting
o f independent generic points over k (x ) (cf. Weil [8 ], Th. 20), and

is a positive r-divisor of degree g - 2 ,  consisting of g - 2  indep-
endent generic points of 17 over k(x). From this, it follows that
v+ t  is a  generic point of W * over k (x ) and v+ t— x  is also such
over k. Thus v is a simple point on

Let us assume, for simplicity, that z „••• , z r _ , are r-1 indep-
endent generic points of r over K .  Put C =L •( ( z „• • •  ,  z r ) x r) ,
then C  is a simple curve on L ,  and (z „ ••• , z r ,  v )  is  a simple
point of C (cf. Weil [6] Chap. IV, Th. 15). Putting z 1 +•••+z r _i = u ,
F u  i s  the projection of C  on J  and v is a point of r u . By Weil
[6], Chap. IV, Prop. 24 and Chap. VI, Th. 6, in  order to prove
that L  and Ux C  transversal to each other at (z „••• , z r , v)
o n  U x  J ,  it is  su ffic ien t to  show that C  an d  Ux Or _t a re
transversal to each other at the point on Ux  J. Since z 1 , ••• , zr _„
X1 , x g_r are g - 1  independent generic points of 17 over k(x),
u +x — t is a generic point of J  over k ;  therefore r u is not con-
tained in  ex -t • On the other hand, the projection from C  to Fa
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is an isomorphism. Thus C. ( U x 0,_,) and r a .ex _, are defined on
U x J  a n d  J  respectively, an d  i(r u • ® , y ;  J ) = 1 implies
i(C• ( Ux 0 ) ,  (z„ • • •, v ) ;  U x  J ) = 1  (cf. Weil [6 ], Chap. VIII, Th. 16).
Since x—t—u is a generic point of J  over k , " i ( r u •10 , „  ; =  1 "

follows from Weil [8 ] , Th. 20 and Prop. 16.
3.
Lemma 3. L et a be  a surjective homomorphism of  an Abelian

variety  A " to an  A belian variety  B . L e t  X  be a  subvariety of  A ,
G  be the graph o f  a and  G ' be the graph of  the rational mapping
of  X  into B, w hich is induced by  a on X , and Y  be the projection
o f  G ' o n  B . Then we have

ce - 1 ( Y) (1)(ce)/[G' : Y])• X mod G a (A) .

Proof. It is easy to see that the point set I a - 1 (Y )1 is V  X. I
with ce(a) = 0 . W e have a -  1 ( Y ), p r A (G • (A x Y)). L e t  X ' be a
subvariety of G having the projection X  on A .  Then X ' is deter-
mined uniquely and the coefficient of X  in the reduced expression
for ce- '( Y ) is the same as the coefficient of X ' in the reduced ex-
pression for G • (A X Y) (cf. W eil [6 ], Chap. V II, Th. 17, Cor. 3).
On the other hand, G is invariant by translations T a w  correspond-
ing to the points a on A  with a(a) =  O. Therefore every component
o f G•(Ax Y ) is  o f the form X ' ( a , o )  and  has the same coefficient
as X ' in the reduced expression for G • (A x Y). L e t  g  be  the
group of points a  on A  such that a (a ), 0  and g' be the subgroup
of g, consisting of those points a' such that X a i =  X . Then G. (A x Y)
=m •E X ' ( a ,„ ) , where the summation is extended over a set of
complete representatives of g m odu lo g '. Since Pr B (G • (A x Y )) =
v(a)• Y (cf. Weil En 'Chap. VII, Th. 16), it follows that mEg
[G ': Y ]  =  v(a). From a '(  Y )= m •E X a ,, we see that a i ( Y )
m•Eg g l• X mod Ga (A ) and our lemma is thereby proved.

Lemma 4 .  Let C be a  curve on an A belian v ariety  A . L et m
be a positive integer and let G  be the graph of the rational mapping
o f  C into A  induced by  m ==a. Denote by  C ' the im age of  C by a,
then we have

EG neC mod GRA) .

Proof. It is easy to see that cri(X• Y)=._ ce - 1 (X )-cr 1 (Y ) when-
ever X  and Y are positive A-cycles such that X . Y  is defined (cf.
W eil [6 ], Chap. V II, Th. 18, Cor.). L e t  now X  be any positive
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A-divisor such that X -C ' is defined. W e  have cci(X -C 1 ) =
ce- '(X)•ce - '(C'). We have also cc '(X )--=:m 2 X  mod (A ) by Weil
[8 ]  Prop. 31 and ce- i(C')=- (m 2 I[G: C'])• C mod G(A ) by lemma 3 and
by Weil [8 ] , Th. 33, Cor. 1. Therefore deg (a - 1 (X- C')) =  m 'd eg (X .C ')
= (nen+ 2 /[G : C'])- deg (X -C ). Consequently deg (X .[G : C l•C ') =
deg (X -m 2 C) and our lemma is thereby proved.

L em m a 5 .  L et J g  be the Jacobian variety  o f  a complete non-
singular curve 1 and  we assum e that l' is embedded canonically into
J. L e t  y„ ••• , Y r - m ,  Y  be r — m +1 independent generic points o f  I'
over a  common field k  of  definition for J  and 1'. L et V  be the locus
of  EÇ - myi + my over k  an d  le t  G  be the graph of  the mapping of
F in to  J ,  which is induced by  m 8 .  W hen 1" is  the im age o f  1' by
m 8, we have

EG : 1" - 1• V m 2 (r— T4T'"i+1 mod (J)

provided l ( m y ) =1 , g >r>m .
Proo f. 1 "  is  the projection of G  into J ,  or the locus of my

o v e r  k ,  which satisfies [G:  1"]• mod G,`,(J) by lemma 4.
/ r - 1 \

Let U=1.' x ••• x x J  and let 3 be a rational mapping o f  U into J
defined by (z 1 ,•••, z r _„ u)— >E z ,+u. Let T  be the graph o f 3 and
denote by p r *  the operation o f algebraic projection to J  on Ux J.
Then we have

pr*((l' x  x  x n e •  ' x J)• T) (r —  m 1) ! m 2 • .

O n the other hand, since l(my).= 1 ,  w e  have /((y1)-4-- • • •
(y)) =  1 and

p r* ((1 ' x •-x r x  [ G  Iv]. I" xi') • T) = (r — m)![G : I"] • V  . 3 )

3 )  T h is can be seen a s  follows. (F x  • • • x  T x  F ' x  J ) .T  is irreducible a n d  is
defined over k. Let ( y 1 , '• ,  y r _„,, m y , v )  be a  generic p o in t o f it over k. Then
v = 1 . - m y,d-my. Let us assum e, for the sake of simplicity, that 0 is on I" and that k
is large enough so that we can find a  rational r-divisor of degree zero over k (v )  such
that its class with respect to linear equivalence is v. Since th e  class o f  .1-',ç- ' ( y 1 )
+ m ( y ) -  r (0 ) w ith respect to linear equivalence is v, and since 1(5 -' 1' — ' ( y , ) d -m (  y ) )= 1 ,
it follows that Y_;'i - - "(y , )  + m (  y )  itself is rational over k ( v )  (cf. W eil [6], Chap. VIII,
Th. 10). Hence k(y i ,••• , y, _ „„ m y )  is a  separable algebraic extension of k ( v ) ,  and
since m y  is not a point of I" (because of 1 (m ( y )= 1 ), it follows that m y  m ust be rational
over k ( v ) .  Our formula follows from this easily.
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Since l x ••• x F x x J  and l' x ••• x F x [G: [ '] •  x J  are numeri-
cally equivalent, we see that

m 2(r—m + 1)• W r '  [ G :  1"]• V mod Gn(J) •

Our lemma is thereby proved.

4. Proof  of the main theorem.
T heorem . W e hav e

( g — r ) !W r  mod G (J )  .

Proof. We have p r j (L • ( Ux (uJx _t )) = r- W r  x _ t  by Weil [6 ], Chap.
VII, Th. 1 6 . By lemma 1 and lemma 2, we have also the follow-
ing relations :

p r j (L- ( Ux O x _t ) —Z) = J) =  pr j (L• (U x 0 x_t))

By a  result in no. 1, we know that T xEA, i —E,D,(f — m). Hence

r ! W r• e x _,-- -- p r i (L•((E ,D ,(x)+E,D,(f — tit) — EA, i ) x J )  mod G„(J) .

We have

p r j (L • E i Di (x) xJ)) r !  HP" mod G„(J) ,
p r j (L • ( D1 ( — m)  J) r !  (g.4- r— 2) • TV' mod G ( J ) ,

p r j (L•(E i ,; ( , , » Ai i x f ) = ( 1
2

- )•(r— 2) ! [G: r ' ] •  V,

where V  consists of points Er1 - 2y 1 + 2y  w ith  the y  o n  L', and
where G is  the graph of the rational mapping of F into J ,  which
is induced by 2 8 . By our lemma 5, we have

[G : 1 1 ]• V 2 2(r —1) • W ' mod G (J )  .
Hence

Ox _,• W r  --- --=-- (g— r4-1)•W r - ' mod G„(J) ,

and our theorem follows from this immediately.
Northwestern University
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