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It is well known [1, p. 200], [4, p. 188] that, if a hypersurface
of an euclidean space is of type more than two, then the second
fundamental form (II) is uniquely determined by its first funda-
mental form (I). On the other hand, in 1945, T.Y. THoMas [5]
shaw that the form (II) of a surface is determined in general by
its form (I) and the mean curvature M. Therefore the imbedding
of a 2-dimensional Riemannian space, which is assumed to be of
type two, is uniquely determined by giving the mean curvature
M, within rigid motions.

These results lead us to consider the imbedding of an #(">2)-
dimensional Riemannian space of type two by giving the mean
curvature M. Thus our problem is to find the expression of the
Jorm (II) in terms of the form (I), the scalar M, and their derivatives.
The methods, by means of which Thomas deduced the expression
of the form (II) of a surface, are not applicable to a hypersurface
of general dimensional number, because he did not use the process
of tensor-calculus, and further the simple equations (1.1) giving
the curvature tensor of a surface do not hold good for a hyper-
surface, except when the hypersurface is of constant curvature.

In the first part of this paper the problem of Thomas [5] is
treated by the process of tensor-calculus. We shall show that the
determination of the form (II) will be done by solving a system
of linear equations (1.13).

The second part of this paper is devoted to generalize the
problem to the case of dimensions #_>2. The expressions of the
covariant derivatives of the second fundamental tensor H;; are
also obtained, but, in this time, their symmetry leads us to some
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equations, which are linear with respect to H;;. We shall show
that, in virtue of a system of those equations, H;; shall be already
determined in general, and we need not the conditions of inte-
grability. Consequently, we see that the problem of possibility of
imbedding an #n-dimensional Riemannian space in an euclidean
(n+1)-space rests in general upon the existence of a single scalar
(the mean curvature M), which must satisfy a certain system of
differential equations.

I. On the case of surfaces in an ordinary space.
§1. The covariant derivatives of the second fundamental tensor.

We consider a non-developable surface S of an euclidean
3-space and denote by

(1) gijx)dxidx?, (II) H;(x)dxidx’, (,j=1,2),

the first and second fundamental forms of S respectively. The
curvature tensor R,;;, of S is written in the form

(1.1) Ryije = K (84;8in— 8n &i5) »

where the scalar K(x) is called the Gaussian total curvature of S,
which does not vanish on S identically by our hypothesis. The
scalar g°®H,, is called the mean curvature of S and we denote it
by M. It is well known that the components H;; satisfy the
equations of Gauss and Codazzi as follows.

Rhijk = Hh\jHikE*v Hi[j.k] = 0.
We shall deduce some equations, which will be used in the

following discussions. It follows from (1.1) and the Gauss equa-
tion that

(1. 2) Kgy ;8w = Hy;Hy .
On contracting (1.2) by g"/, we have
(1-3) Kgik: MHik_H?Hak'

where we put H{=g**H,;. Multiply (1.3) by H;,, interchange the
indices &, /, and subtract; using (1.2), we obtain
(1. 4) giwHr = —H; 1 gjr+Mg; 1 g .

* The symbols [zk] and (i) are used to express, for instance,
Hyc;Hiyyy = HyjHyy— Hyp Hij
H(i Hars,o = Hi Har,;+Hy Hai, ;-
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Mext, we take a skew-symmetric tensor S;; arbitrarily. Contrac-
tion of (1.4) by gi*g/*S,, gives us easily

(1. 5) S[kaH(ll] = Msk1 .

Now, it follows from the Codazzi equation that g<°H,,;
=g**H,, ,=M;, in which, for simplicity, we have omitted the
“comma” denoting covariant differentiation of the mean curvature
M. Differentiating (1. 3) covariantly by x’, we obtain

K,giw = MH;, +MH,, ,— Hi H, ./,

where K, is the covariant derivative of the total curvature K. It
follows from the above equations that

(1.6) Kignvr—Kp8i = MH;,,—2H}H,;,
+MyHy,— M, H,; .
Multiply (1.6) by Hj;, and subtract from it the equation obtained
by interchange of the indices k, m. Then, in virtue of (1.2), we
have
(Kugor— K1 &1i)Hjpw — KM 8151 8
—(MH; ,,—H,M\)H,,.—2Kg; ,H,;;, = 0.

We contract the above equation by g’* and change the indices.
The resulting equation is written in the form

MHH,; ,+2K—M*H,, ;+(MM,—M,H})H;,
—KyH;  +(MK;— KM;) g1y, +(K,Hy—MK,)g:; = 0.

On eliminating the term H}H,;, from the above equation and
(1. 6), we then have

(1.7) OH;; , = CKM;—MK,)g;» +(MK,—2K,H}) g;;
+(2K(5*MMci)Hj)k+(2MaHZ_MMk)Hij ,

where the scalar 0=4K— M?*.

Consequently, if ¢ does not vanish, then the covariant deriva-
tives H,;, are expressed by (1.7) in terms of the metric tensor
g:;,» the mean curvature M, their derivatives, and H,;. We notice
here that the equations (1.7) are tensorial expressions of the
equations (2.2) and (2.3) of Thomas’s paper [5].

We can see easily that the right-hand member of (1.7) is
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symmetric with respect to the three indices. In order to verify
the symmetry with respect to the indices j, k, we obtain from (1. 7)

0
5 Higgm = (KM ;— MK ;) g4y i+ K ;H,y;

2
+K,H5gmi—M,HjHy; .

The last two terms are rewritten, in virtue of (1.2) and (1. 4), in
the forms
K,Hjgy; = —K;H,,;+MK;g:,
—M,H$H;; = —M ; g4 -

Therefore we establish H; ;, =0.

§2. The conditions of integrability of the equations (1.7).

We now deduce the conditions of integrability derivable from
the system (1.7). Using the formula of Ricci and (1.1), we find

Hij pr = —KggwHjy, -

Let us differentiate (1.7) covariantly by x*, subtract from it the
equation obtained by interchange of the indices k, /, and then
make use of the equation of Codazzi and the above. When the
substitution is made from (1.7), after considerable reduction, the
resulting equation becomes

(1.8) (MQir—2P ;) Hpy 1+ 2(8:; Py — H;; Q) HY,
62
- (ZKQ(i:k_ MP; ,— %gﬁ[k + 05(;(k> 8hn
—20S;,8:;;, =0,

where S;;=M;K;,, and symmetric tensors P;; and @;; are defined
by

Ko

p;; = GKij—‘lKin‘i‘MMin)*Tgij )

Qij = QMU"_ZMM,MJ_ZMQK

YPR]
these being the same essentially as the one used by Thomas
[5, p. 394].

It is desirable for the requirements of the following calcula-
tions to put the equation (1.8) into a more contracted form. To
do this, we contract (1.8) by g’/ and then obtain
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M@, H},—0Q;+(2P—-MQ)H,,
+2KQ—MP)g,,—2Q, HH! +2Q,, HiH} = 0,

where putting P=g**P,, and Q=g*Q,,. In virtue of (1.2) and
(1. 3), the last two terms are rewritten in the forms

QangH? = MQakH(il_Qik )

QuHH, = QH*H;,+KQ;,— KQg;, .
Thus the above contracted equation becomes
(L.9) MQ,H% = M*Q;,—MPg;+(2Q,,H**+2P—MQ)H;; .

Now, we introduce the quantities %/, which are the cofactors
of the elements H;; in the determinant |H,,| divided by g=|g,.!.
It follows from (1.2) that H; h7=K©&]. Contract (1.2) by Ah*:
we then have

ot Gin—8ai 8o = Hyy, .

Furthermore, on contracting by g'*, we find g,,#?°=M, and sc
the above equations give immediately

(1. 10) Hit = Mgt —hi*t,

We contract (1.9) by A%, and make use of those equations as
above obtained. It follows that @,,H**=M@—P. Hence the
equation (1.9) becomes

(1.11) Q.HYH—QH;, = MQ;,—Pg;,

provided that the mean curvature M does not vanish.

We remark lastly that the equation @,,H**=MQ — P becomes
Q,,h**=P, by means of (1.10). The latter equation was obtained
by Thomas [5, (3.4) or (5.1)] as the integrability conditions of
(1.7), and plaied a role in order to determine H;;. But we do
not use this equation in the following.

§3. Explicit determination of the second fundamental form.

In this section we shall restrict our discussions to a region
of the surface, where the mean curvature M does not vanish. Let
us deduce the equations from the Gauss equation and (1.11),
which will be used to determine H;;. Multiply (1.11) by Hj,,
interchange the indices k, /, and subtract; when we make use of
of (1.2), then the equation
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KQ:w&in+Q. v HiH;;;, = Q Kgir g&in+Ai Hjyy

is obtained, where by definition A;, is the right-hand member of
(1.11). By making use of (1.2), the second term of the left-hand
side of the above equation becomes

Q. HiH;;, = Q,  Hi H;; + KQ; . &1

Hence the equation as above shown is written as

(1.12) Q. HHHy;— A Hpn = K(Q gioi—2Qic) 810 -
We introduce so-called contravariant e-tensor e/ [2, p. 77],
components of which are e'=¢*=0, e”:—emz% (g=1g.s!).
g

Then, on contracting (1.12) by e¢* we find

2

1.13 MH;;———
( ) ij \/g

(AilHjZ_Aiijl) = ZKVij ’

in which we put
A= QaEkHtllJekl ’

Vii= %—(Qgi[k—zQiEk)gﬂlekl .

If we choose a system of codrdinates (x),, such that, at a point P,
we have g;;=9;;, then the components V;; are given in particular
by

Vu = 2Q12 ’ V12 = V21 = sz_Qu ’ sz = —2Q12
at the point P. Therefore V;; can be also defined by

ij
Vii= —(Qi8is+Qj.8i) €™ .

Hence this tensor V;; is essencially the same as the one used by
Thomas [5, p. 397]. '

Now, we solve the equations (1.13) with respect to H;;, by
Cramer’s rule. First, when we take i=j=1 and /=2, j=1 in
(1. 13), we then obtain

A 1
Hll 2 Vll+ W\/g (VIIAIZ V12A1l) ’

)’ V 1 ——(Vquz_ Vlelz) ’

1_112 = ——= Vet
2w WV g
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1

2K
i=j=2, we then have

where we put W= — <7&2+%””—|>. Next, taking i=1, j=2 and

A 1
le = V12 Ty /o V12 A12_ V22A11 ’
2w \/ ( :
A
sz = T AT V V12A22 VZZAIZ .
2w W\/ )

If we refer to the codrdinates (x), as above mentioned, then we
see that, at the point P, we have

V11A22_2V12A12+ V22A11 =0.

Hence the two equations giving H,, as thus found are written in
the single form
py 1
H,= Vi,+
BT2w P 2wV g
As a consequence of these equations expressing H;;, we have the

invariantive form of H;; as follows.

VllA VZZAII)

(1. 14) H,‘j - 2WV,J+

where the last term is defined by

WVIT ’

VE = LV Ap+ VA

We show that V;¥ are linear combinations of g;; and Q,;. In fact,
if we refer again to the coordinates (x),, then the components
V¥ are given, at the point P, by

Vi = PQ-2M|Q,,|+(MQ—-2P)Q,,,
Vit = +(MQ—-2P)Q,,,
Vi = PQ—2M|Q|+(MQ—2P)Q,, .

Thus the tensor is also expressible in the form
(1.15) V¥ = Rgi;+UQy;,
in which the coefficients R and U are defined by

R=pPQ-2M'%! — Uy_ Mo-2P.
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The scalars A and W in (1. 14) are unknown yet. To determine
these, we recall the definition of the mean curvature M. Then
we contract (1.14) by g/ and make use of g+*V,,=0 and (1. 15).
In virtue of the definitions of R and U, we obtain

W= @24 !Qul %b' . A= £VIOW-T7,

the latter being obtained from the defining equation of W.

Consequently, on substituting for A and W in (1.14) from the
expressions as above found, we establish the explicit determination
of the second fundamental tensor H;; by the first fundamental tensor
g:;» the mean curvature M, and their derivatives. We see from
(1. 15) that our expressions (1.14) are the same as the one obtained
by Thomas [5, (5.10)].

§4. On the case of the mean curvature being constant.

The equations (1.11) were obtained under the restriction, that
the mean curvature M does not vanish. And, if M is constant,
we then see that @;; vanish, and hence W=0, so that the expres-
sions (1.14) are of no avail.

Now we return to the equations (1.8) and suppose that the
mean curvature M is constant. Then (1.8) becomes

— P Hyyn+gi; P Hi- = 0.
On referring to the coordinates (x),, the above equations are
written in the simple form
MPlz—PHn:O: Pquz_PzzHu =0
at the point P. From the second equation it follows that
MP,—PH, =0, MP,,—PH,, = 0.
Then these equations can be combined into
(1.16) MP;; = PH;; .

First, we consider a minimal surface S, which is characterized
by M=0 identically. It follows from (1.16) that PH;;=0, and
hence we have P=0, because S is assumed to be non-developable.
Thus we prove

Theorem 1. The Gaussian total curvature K of a non-develop-
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able, minimal surface satisfies the differential equation
gab(KKab¥Ka Kb) = 4K°.

Next, we treate a surface, such that the mean curvature M
is constant 5=0. If the scalar P does not vanish, we then have

H,-=%P,-J-. Besides, if P=0, then we see P;;=0. Consequently

tJ

we have

Theorem 2. Let S be a non-developable, -minimal surface, such
that the mean curvature M is constant. If

P = g(0K,,—4K,K,)— K60,

then the second fundamental tensor H; is proportional to
P, =0K;,—4AK;K;,——5—g:; .
If P=0, then the tensor P;; vanishs.

II. On the case of hypersurfaces of general dimensions.
8§ 5. The covariant derivatives of the second fundamental tensor.

In the first place, we shall generalize the equations (1.7) to
the case of a hypersurface S” (#=3) of an euclidean (#+1)-space.
We denote also by g;i(x) and H;(x) the first and second fund-
amental tensors of S respectively. The components H;; satisfy the
equations of Gauss and Codazzi as follows,

Rhijk = Hhthik: ’ Hi(j.k] =0.

The scalar g¢*H,, is called the mean curvature of S and is denoted
by M.

Contraction of the Gauss equation by g* gives
(2' 1) R:'k = MHik_H?Hak )

where R;,=g?*R,;, is called the Ricci tensor of S. Differentiate
(2.1) covariantly by x’; we then have

(2- 2) Rik.l: MzHik“‘MHik,l_Hai.lHZ*Hak.lH?-
We introduce the tensor S;;,, components of which are defined by
Siie = Rijp+Rip;j— R -

We remark that the tensor S;;, is symmetric with respect to the
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last two indices. When the substitution is made from (2.2) in
the right-hand members of the above, the equation

(2. 3) ZH?Haj.k = AlH;j'k+Hi(ij)—ijMiMSijk

is obtained. Multiply (2.3) by H,,, interchange the indices i, /,
and subtract; when use is made of the Gauss equation, we then
obtain

(2.4) 2RiH, ;. = MHy Hpy j o+ Mo Ry i
—H;M;H,,—H, Si . .

First, we contract (2.4) by g* and substitute from (2. 3). Then
the resulting equation is written in the form

@5 2RtHy =" Hyur MUHH, M0,
+Mka)i+H?Sajk— ];I'Sijk-

Next, we contract (2.4) by g”*/, and substitute from (2. 1) and (2. 3).
Then, after change of the indices, we have

M2

(2. 6) 2R:%;Hg, = 7Hij.k+MaHZHi.i"'Q"MiHJ’H
+H;R, +M Ry i+ M, RSy,
_HgSjka_ ]gsijk,

where R,, is the covariant derivative of the scalar curvature
R=g**R,, of S.

We shall use some equations, which will be deduced from the
equation of Gauss directly. Those equations have been used by
Thomas [4, (8.2)] in the theory of Riemannian spaces of class
one. That is, multiply the Gauss equation by H,,, interchange
the indices m, k, and subtract; when use is made of the Gauss
equation, we then obtain

HlﬁmRk‘jih_HjihRiTlmk =0.

* We use the symbol (ijk), which means, for example,
M:;Hjpy = M Hyy+M; Hyi+M H; ;.
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On contracting by gi” g, we have
R,mH(;—RHkI—FMRM—}-R/;?MH(I; =0.

Differentiate this equation covariantly by x’ and change the
indices ; the resulting equation is

R?Haj,k+Ril-lbeZ.k+MkRij_R)k ij
+Rai,kH_(;+Ri”-'bj,kHZ"{_MRij,I;_RHij,Ig = 0.

We substitute from (2.5) and (2.6) for the first two terms of the
above equation, and then establish the final equation

(2- 7) GHij,k = 2MﬂH?ij_szjaH?—‘"zRai,kH;
+2Ri?bj,kHZ_MM(iij)_R,k H,'j
+MSjk,'+2M(ij);,

where we put R,;,,=R, ;. and 6=2R—M? Consequently, if the
scalar ¢ does not vanish, then the covariant derivatives of the
second fundamental tensor H;; are expressed by (2.7) in terms of
the first fundamental tensor g;;, the mean curvature M, their
derivatives, and H;;.

The covariant derivatives H;;, are symmetric with respect to
the three indices, by means of the Codazzi equation. In this case
of general dimensions, contrary to the remark at the end of the
first section, the right-hand member is not symmetric automatic-
ally. First, the symmetry with respect to the indices 7, j is given
by the equation

(2- 8) H_?Sj, ka — —MaRk'-"ij—MiRjik—MRkij ’

where we made use of the Gauss equation. Next, the symmetry
with respect to the indices j, k is given by the equation

ResHi+ Ry s Hi + Rigps Hi— 3 Ry Hey = MRy

The latter equation can be written in the simpler form, making
use of the equation (2.8). That is, adding to (2.8) similar equa-
tions obtained from (2.8) by cyclic permutation on the indices
i, j, k, we obtain R,;;H},=0. Hence the above equation is written
in the form
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2.9) Rau-,kH'}]JrRk‘f,-,-,,,H,’:—% R Hy. = MRy,

We shall see that the former equations (2.8) will play a rdle in
the following, to determine H;;.

§6. The conditions of integrability of the equations (2. 7).

Let us rewrite (2.7) in the form, which is symmetric with
respect to the indices 7,j. To do this, we sum (2.7) and the
equation obtained from it by interchange of the indices ¢, j.
Making use of the Gauss equation, the resulting equation is

(2.10) OH;; = 2M,H H;;+ S, H},—R, v H;;
+2R %, e Ho— MM H 1>+ Tije

where T,;, do not involve explicitly the components H;; of the
second fundamental tensor, such that

Tijp = —M,Rije+MR; ;. +2M; Ry, .
The process by means of which from (1.7) we obtained the con-
ditions of integrability (1.8) is also applied to (2.10), but the

resulting equations are rather complicated. In order to write these
equations, we now introduce the following quantities.

Bhijk = ‘9Shi[j.k)—shi:j‘9k1+gabSai(jShka—9thijk .
th‘jklm = thjkt.tz.m)—thki,u9m1+2chfjb,:1Rh’5fa. m
+Shat Reiryivm +Sacir RiniSeyiomy »
Ghijr = 0Ty 5.0+ Thi(BMMy, — R, 1)
—28% Rylib,i; T car+ 8% Sacnc; Tistio e
+2MM, MRyl
these being skew-symmetric with respect to the last two indices,
and furthermore
A;;=0M;—M.0,, D;; = MM R, ;,
Cij= —OMM,;;—2(R+M*)M;M;+ MM;R, ;
‘ +MgabMaSbij:
Ehz'jk = 2M, R(i‘-’j)h.k_th Tifk“ MShk(iMj) .

Then the conditions of integrability are written in the forms

(2.11) 2A,HY H;;— Boien Hy, 4 Coi Hyy o
~4Dy H;;— Euije H3-—2F 13500 H**— G54, = 0.
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§7. The equations determining the second fundamental tensor.

We have the three systems of equations (2. 8), (2. 9) and (2. 11),
which must be satisfied by the components H;; of the second
fundamental tensor and will be useful to determine H;;. In this
paper, we shall treate the first system (2.8) and denote by U,;;
the right-hand side of (2.8), namely

Uri; = — MRy ;— MR :; — R; 85+ Ry 87) .

. ij
First we shall deduce from (2. 8) the system, which is more useful
to determine H;; explicitly. Multiply (2.8) by H,, and take the
sum of this and the two similar equations obtained from it by

cyclic permutation of the indices i, j, /; when we make use of the
Gauss equation, the equation

(2.12) UeiiHiyn = Thrsis

is obtained, where T,,,;; are the components of the tensor, which
is determined by the first fundamental tensor g;;, such that

Thklij = Rh{?(fjsl)ka .

Next, multiply (2.12) by H,., subtract from it the equation
obtained by interchange of the indices %, m, and substitute from
the Gauss equation. We then have

(2.13) Hix Tr jope = Queijave »
where by definition
Qirijave = — UjasRoyins = MRy R i
+ MR 0y — Rj((zsg +R;, 0 R > ins -

Throughout the remainder af this paper, capital indices A, B, C, -+,
are used, for brevity, to show the permutations of four Latin

indices, such that Tu;;=Tha, Qurijase=Qirin, *-+. By using these
capital indices, the equation (2.13) can be written in the form
(2- 13/) Hik TIA_HH TkA. = QlkiA .

On multiplying (2.13') by T, the left hand member of the
resulting equation becomes, in virtue of (2.13),

HuT;pTi1a—H;yT;pTra
= (H;; Tip+Qirin) Tia—H;; T15+Q1i5) Thoa -
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Hence we obtain
(2 14) (TIA TkB— TIB TkA)Hij = jBQlkiA_ T(kAQl]jiB .

Furthermore, we shall deduce another equations from (2.13"),
which will be used to determine H;;. Multiply (2.13) by H,, and
take the sum of this and two equations obtained from it by cyclic
permutation of the indices /, k, m. When the substitution is made
from the Gauss equation, we then obtain

Hh(m Qlk) iA — Rih(ml Tk)A .

Multiply (2.13) again by H,,, interchange the indices k, m, and
subtract. By means of the equation of Gauss, (2.13) and the
equation as above found, we then have

(2- 15) HIikahA_th kaiA = TIARihkm .

The process by means of which from (2.13') we obtained (2.14)
is applied to (2.15), and then the following equation is easily
established.

(2.16) (T15Qkmna— TrpQrmia) H;;
= TiaT;gRiprm+ Qrrmina®nijs -

Now, we obtained the systems (2. 14) and (2. 16) as the equa-
tions determining the second fundamental tensor H;; explicitly.
It is natural that, according as the coefficients of H;; in these
equations are to be equal to zero or not, the hypersurfaces under
consideration are divided into the following four cases.

The case A: The tensor T;;ap3=T;4aT;5—T;37T;s does not
vanish.

The case B: The tensor T;, does not vanish, but the above
tensor T;;453=0. And the tensor 7;4Q;us— T;4Q;riz does not
vanish.

The case C: The tensor T, does not vanish also, but T;;ap
and TiAijlB_ TlAijiB are equal~t0 zZero.

The case D: The tensor T;, is equal to zero.

In the remainder of this paper, we shall treate these four cases
separately. We shall see that hypersurfaces of type two shall
play a role in the following discussions,
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§8. On the case A.

In this general case, there exists at least one component
T1ap-0, and hence all of the components H;; of the second
fundamental tensor are completely determined by the equations
(2.14) in terms of the first fundamental tensor g;;, the mean cur-
vature M and their derivatives. The mean curvature M has to
satisfy the differential equations

(2.17) T12as(T ;pQapic— TipcQq jin)
- quCD(TjB QlkiA_ T[kA Ql] jia) = O,

because these equations mean the fact that (2.14) can admit the
solutions H;;. Then, by means of the definitions of 7;, and
Q;:jra, the components H;; are expressible in the form

(2 18) H,'j = MLij+MaL;'lj )

where L;; and L§; are components of the intrinsic tensors of S,
namely, these are defined by the first fundamental tensor of S and
their derivatives. The condition that H;; as thus determined are
symmetric is given by

(2- 19) TLiAlej]Bb— T(kBQijle =0 ’

in which we have used the properties Qj,,a=0 and @, .=0.
Consequently we obtain

Theorem 3. [n the case A, the second fundamental tensor H;;
of the hypersurface S is determined by the equations (2.14). The
mean curvature M of S satisfies the differential equations (2.17)
and (2.19). Then H;; are expressible in the form (2.18), where L;;
and L%, are components of the intrinsic tensors of S.

We are solely interested here in determining the expressions
of H;;. It should be remarked moreover that we have the equa-
tions of Gauss and Codazzi, and the equation M=g®H,,. These
are now looked upon as the differential equations, which have to
be satisfied by the mean curvature M, after substitution in these
equations from (2.18). It is easy to write these equations
explicitly, using (2.14). In fact, if we denote by Q%,, 45 the right-
hand member of (2.14), then the equations of Gauss are written
in the form
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Rhijk TPQAB TrsCD = QiquAB Qiﬂ;e: 7sCD *

The equations of Codazzi become

% %
TMAB.:k Qijj rsCD — TrsCD Qi[quAB,k: ’

Finally the equation defining the mean curvature M is

MT;;up = 8°°Qbijan -

§9. On the case B.

Since T;jup=T;aT;s—T;sT;a=0 in this case, we see clearly
that the components of the tensor T;4 are decomposable to the form
(2. 20) Tia=Njoa.

In the following discussion, it is convenient to take an unit vector
A; satisfying (2.20), and we then show easily that such a vector
A; is uniquely determined to within algebraic sign.

It follows from (2. 14)

(2- 21) TjBQlkiA_ TQkAQlfjiB =0.

Multiply (2.21) by T,¢, interchange the indices A, C, and subtract;
when use is made of (2.20), we then have wuQ;4,=0. Hence,
Q;;ra are also decomposed to the form

(2.22) Qijra = Qijrtta-

from which it follows that (2.21) becomes

(2.23) AiQimi = 0.

Then we see that (2.16) is written in the form
(2. 24) Qemin My Hi; =2 A j Ripypn + Qremin @iy i -

Because of the hypothesis that @,,.,A, does not vanish, then H;
are uniquely determined by the above equations, but it seems to
be impossible that H;; are expressed in the simple form similar
to (2.18). The conditions that (2.24) admits the solutions H;; are
that

(20 25/) ka[h A‘l:()\‘ix‘jRabcd—F QrdLb Qa] ji)

— Qs >“a‘(;\‘i7\'jR1hkm+kaLthjji) =0,
and further the symmetry of H;; is given by

(2. 26) ka;thiU =0 *
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Now, we show that the equations (2.23') are written in the
form

(2. 23) Qir = xj@kz_xkéjl .

In fact, contracting (2.23’) with A{, we have the above equations,

where we putted Q,,=\°Q,,,. Conversely we can easily see that
(2.23) is a consequence of (2.23). Next, contracting (2.26) with

N\ we have Q,,,Q;; =0, so that the matrix (@,-]-) is of rank one,

We see immediately that the condition of the matrix (@;j) is
equivalent to (2.26). Make use of (2.23); then the equations
(2. 25’) are written in the form

(2 25) A‘i(ka[h )\‘l] Rab/‘zz' - chLbk’aj thkm) = ka‘\h Ql][ai deb] .

Thus we conclude that

Theorem 4. For the hypersurface S of the case B, the tensors
T:a and Q;;.a are decomposable to the forms (2.20) and (2.22)
respectively, and Q;;, is written in the form (2.23), where the rank
of the matrix ((;)ij) is one. The second fundamental tensor H;; is
uniquely determined by the equations (2.24), and the mean curvature
M satisfies the differential equations (2. 25).

It should be remarked lastly that we have further differential
equations satisfied by the mean curvature M, as mentioned at the
end of the last section. But we are not interested now in writting
these equations.

§10. On the case C.

We have, in this case also, the equations (2. 20), (2.22) and
(2.23). Since the assumption 7;4Q;us—T:4aQjriz=0 1is then
written in the form X\;@;.,;=0, the tensor @, is moreover
decomposed to the form Q;,,=@Q;.A,. Thus we have

(2.27) Qz‘jkA = Qijk/"A ’ Qijk = Qijxk ,
and the equation (2.23’) becomes
(2. 28) A; Qi =0.

The coefficients of H;; in (2.24) vanish as a consequence of the
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hypothesis of the case C, from which it follows that the right-hand
side of (2.24) is equal to zero. Therefore, with the aid of (2.27)
and (2. 28), we obtain

(2- 29) thkm = ¥th ka .

Consequently we see that the hypersurface under consideration is
of separated curvature [3]. Itis known [3] that the skew-symmetric
tensor Q;; is uniquely determined by the intrinsic quantities of S,
and the matrix (Q;;) is of rank two.

Now, the equations (2.13) and (2. 15) are written as

(2- 30) Hikkl_HH)\'k = _‘)“ileo

Contract (2.30) by AM=g’),; if we put H;=H;,\“ and Q;=@Q;,\°,
we then have

Hx‘k = Hi)“k_A’iQk ’

because we choosed A, A“=1. In virtue of the symmetry of H,,,
we obtain Hy;A,y=2A; @, from the above. Next, we contract (2. 30)
by A and we have H A, = —Q,,. Therefore we obtain

(2.31) Qe —MQ = — Q.
By applying the equation (2.30) we show that

Hijxkkl = (Hik)'j_xink)xl
= (Hkl>“i_>“inl)>"j_7\‘ink>"l .

If we contract this by g* and recall the definition of the mean
curvature, we then have

(2. 32) H;; = MMM — Qi ;— QN .

Gathering the foregoing results together, we have

Theorem 5. The hypersurface S of the case C is necessarily
of separated curvature. The tensors T,y and Q;j s of S are de-
composable to the form (2.20) and (2.27) respectively, where Q,-]- is
the intrinsic tensor of S, which is defined by (2.29). Then the second
Sfundamental tensor H;; is completely determined by the equation
(2. 32), where Q;=Q;,\°.

It should be remarked that the components H;; are given by
the linear equations (2.32), which do not involve the derivatives

of the mean curvature M.
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It is easy to verify that H;; as thus determined by (2.32)
satisfy the Gauss equation automatically, with the aid of (2.31),
and furthermore the equation M=g**H,, by means of Q,\°
=@ *A=0. On the other hand, the Codazzi equation will be
looked upon as the differential equations, which have to be satisfied
by M. These can be written explicitly by using the equations
(2. 32).

§11. On the case D.

We consider the exceptional case D. By means of the as-
sumption 7,;,=0, we have @;;,,=0 from (2.13’), and

(2. 33) Uwi;Hpy = 0,

in virtue of (2.12). Multiply (2.33) by H,., interchange the
indices /, m, and subtract; when use is made of the Gauss equa-
tion and (2. 33), we then obtain Upi; Rimnp= Urim Rijnp. If the tensor
U;;» does not vanish, we then can choose a vector A/, such that
the tensor A* U,;;=U;; does not vanish. Then we have Uj; Ry
= UimRijnp, from which it follows that R,;;,=pU,;U;,, where p
is a scalar. Therefore we see that the hypersurface under con-
sideration is of separated curvature, and so the curvature tensor
is written in the form

(2. 34) Ryije = Qi Qi (e= =£1).

The tensor U;; is proportional to @;;, and there exists a vector
m, such that

(2. 35) Uiij = 1eQij

Consequently we have

Theorem 6. For the hypersurface S of the case D, the mean
curvature M satisfies the differential equations Q;;,a=0. If M does
not satisfy the differential equations U,;,=0, S is of separated cur-
vature, and U,;, is decomposable to the form (2.35), where Q;; is
defined by (2. 34).

It is to be noted that a hypersurface of the case D is not
always to be of separated curvature. To show this fact, we con-
sider a hypersurface S of constant curvature K. Then we have

Ry = Kguj&ir » Riyy=m-1)Kg;.
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It follows that the Ricci tensor R;, is covariant constant, and hence
we obtain S;;,=0. Thus we see that T,;,=0. It is well known
that, for the hypersurface S of constant curvature, the second
fundamental tensor H;; is proportional to the metric tensor g;;,
such that H;;=+/K g;;, and hence the mean curvature M is
constant. Therefore we obtain U;;,=0. Thus the hypersurface S
belongs to the case D. Besides, S is of type n=3, and so is #ot
of separated curvature.

In this case D, we have further equations (2.9), (2.11) and
(2.8). By means of these three systems of equations, H;; may
be determined. But such discussion will be rather complicated.

§12. On symmetric hypersurfaces.

In the final section we consider a hypersurface, which is
symmetric in the sense of E. Cartan. That is characterized by
the property, that the curvature tensor R,;;. is covariant constant.
For the symmetric hypersurface S, the equation (2.9) is satisfied
identically, and we see that (2. 8) becomes

(2. 36) MaRk(.l,‘j = Rk;Mj—Rij; .
Now, we have only one system (2.11), which involves H;;, and
we shall study how to determine H;; by means of this system.
It is clear that the tensors D;; and F};j,, which appear in
the equations (2.11), are equal to zero, and further A;;, B,;;, and
E,;;» become respectively
Bhijk = _nghijk )
Ehijk = “2MhTijk .
The equations (2.11) are now written in the form
24, HHHyj+ 0 Ry H + Ca Hjy iy
+2Ma Tij[kHl;]—GijkI == 0 .
Making use of the Gauss equation and (2.1), the second term is
rewritten in the form
Rkla(iH;'l) = Ha[kH(}Hf)IJ
= (MHEkfj_RCkCJ')Hi)IJ = _R(iEkHJ')lJ .

Therefore we obtain
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(2.37) 24, H H;;+C*,  Hjy
+2M, T ;0 HY,—Gijer = 0,

where we put C%=C,,—6*R;,. Multiply (2.37) by H,, and take
the sum of it and the similar two equations obtained from it by
cyclic interchange of the indices k, /, m; where use is made of
the Gauss equation, we then obtain

% %
2Aa(IR[f|h|mk)Hij+ C i(lRmk)jh + cj a Rmk) ih
+2T ;;a R s Mo —Gijers Hoy, = 0 .

It follows from (2.36) that M,R,';;M,,=0, and further M, R .%;;
=0, in virtue of R, ,=0. Hence the coefficients of H,; in the
above equations vanish, and we have

(2° 38) Gij(lem)h = C >li'(lRmk)jh + C >'.;'(l-Rmk) ih
+2T ;4 R s M,

We observe that the equation (2.38) is clearly to be the similar
form with the equation (2.12), and hence, the process by means
of which from (2.12) we deduced (2.13), (2.14), (2.15) and (2.16)
successively, is applied equally well to the equation (2.38). Thus
it is not difficult to obtain the similar equations, which are useful
in general to determine the second fundamental tensor of S
explicitly. We will have no occasion to study the detail of those
theories.
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