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Introduction.

The main aim of the present paper is to develop the theory
of Abelian integrals on an arbitrary open Riemann surface R. For
this purpose we shall introduce in sec. 5 the notion of canonical
potentials on R which is a generalization of the normalized poten-
tials. Roughly speaking, a normalized potential takes the constant
value zero on the ideal boundary of R, while a canonical one is
characterized by the fact that it takes respective real constant
value on each ideal boundary component, and canonical differentials
are defined as meromorphic differentials derived from canonical
potentials. However, the one that attracts our interest particularly
is the class & of the semi-exact canonical differentials (or integrals
of these) which have, by definition, no periods along dividing
cycles. Then we are able to establish theorems of Riemann-Roch
and Abel on R in terms of elements of & which have the analogous
formulations as in classical theories. Further finding that the
functions of & possess an extremal property, we know that our
theory have close connections with canonical conformal mappings.
Now we show in the following the brief program of this paper.

81 contains some notes on harmonic measures which are simple
fundamental canonical potentials. In §II the definition of canonical
differentials is given along with some of their properties. Above
all, the uniqueness theorem (Lemma 5) will be powerful for later
use. Next, the existence of three kinds of elementary differentials
in & is proved by using the theory of orthogonal decomposition
due to Nevanlinna-Virtanen. Another treatment of this existence
theorem will be given in §IV.
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§ IIT concerns with the theorems of Riemann-Roch and Abel
on R. The subspace 8, of single-valued functions in & has the
remarkable properties (sec. 11):

(i) If fe &, is regular everywhere on R, f must be a constant.

(ii) Let the genus of R be finite and ¢ be the number of

poles of f€&,, then f is at most g-valent on R.
Thus &, on R seems to play a role corresponding to the totality
of single-valued functions on compact surfaces. Further we made
clear the relation of these results to my previous ones [3], hence
to those in classical theory.

§ IV contains some applications of our theory to conformal
mapping. For example, every open Riemann surface of finite genus
g can be mapped conformally onto an at most (g+1)-time covered
plane (Theorem 12). We give a classical parallel slit mapping of
a domain of finite or infinite connectivity in explicit form. This is
a different point from the extremal method, but it will be imme-
diately shown that the mapping function is identical with the one
obtained by the extremal method.

§ 1. Preliminaries

Throughout the present paper we shall denote by R an arbi-
trary open Riemann surface (of finite or infinite genus), unless
otherwise stated.

1. Here we shall recall some properties of normalized poten-
tials?. Let G be a non-compact domain on R whose relative
boundary on R consists of a finite number of analytic Jordan
closed curves I';. Let # be a normalized potential on G, which is
a single-valued harmonic function on G=G ul', satisfying the
“normalization condition”

(1.1) u(P) = SP wW(Q)dw(Q, P), PEG

where do stands for the harmonic measure on G with respect to
the arc element on 1',, then # is also a normalized potential on
any subregion G, of G with analytic boundaries such that G—G, is
compact. Let df=du-+i*du be the analytic differential on G de-
rived from # and @=dU+i*dU be any analytic differential on G
such that

1) Nevanlinna [5] p. 320-333.
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2
Then by Green’s formula we have
_ i =
1.2) df, ) = 5 Sgcdf/\fp zgpow/)

where the line integral is taken in the positive direction with
respect to G. Taking the real parts of (1.2) it follows

(1.3) Doldu, dU) = (| dun*dU - SF wrdU .
0

2. For simplicity we shall call an analytic Jordan closed curve
(cycle) C on R a dividing curve (cycle) if C divides R into two
disjoint non-compact domains, and call a compact domain on R an
elementary domain if the boundary consists of a finite number of
dividing curves. Take a dividing curve vy which divides R into
R, and F,. We consider the harmonic measures o, and &,” on R
with respect to the ideal boundaries of R, and R,, which are
determined by the homology class of v. These functions reduce
to identically constants (1 or 0) if and only if at least one of the
harmonic measures on R,, R, with respect to their ideal boundaries
vanishes. Except such cases we have

(1. 4) 0y, +dy, =1, doy= —dao,

The o, (resp. &,) is a normalized potential on R, (resp. R,) and
have a finite Dirichlet integral over R:

Di(dw,) = Sy*dw.,. (by (1.3), (1. 4))

Let p=dU+{*dU be any analytic differential on R with finite norm
llpllg, then for @y=dw,+i*do, we have by (1.2), (1.3) and (1.4)

(1.5) @y =i | P
(1. 6) Dy(dw,, dU) — S *dU .
Y
In particular, for any two dividing curves vy and o

1) Nevanlinna [5] p. 351.
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(1.7) Dg(do,, doy) — gy *dw, — SV, *do, .

3. Let v,,-,v, be dividing cycles such that c¢y,4+ -+ +c.7,
is homologous to zero. Here we say temporally that c,y,+ -+ +¢,7,
(h<k) are weakly homologous to zero (~0) if do,,=0 (i=h+1, -, k).
Then we have

(1' 8) 8lcldm1 + e +5;,C;,dﬂ)h =0 s

where o;=w,, and &;=+1. Especially, if v, ---, v, are the boun-
daries of an elementary domain B and if we take as R,, the non-
compact domains G; not containing B, then we have more precisely

o,+ -+ +w,=1. These are seen, for instance, if it is noted that

o,(P) can be expressed as ZLS a-ga's <8£ is the normal derivative

7 JviOp Iy
of a Green function g on R) or 1—21“S %ds, according as PeG,;
7T JY; Oy
or PeG;.

LEMMA 1. Let dividing curves v, -+, v, be homologously inde-
pendent. Suppose that F is an elementary domain containing the
Ye, 5 Vs and that V', --- | L', are all boundaries of F homologously

independent each other. Then h<k and v; can be expressed as
1.9) ry'.~i aijl‘j) i=1 - ,h

with non-vanishing determinant A=|a;;|;; ..., Moreover, then
U, =, U, are linearly independent to w,, ---,v,. This lemma
remains also true for the above weak homology.

Proof. Suppose k< h. Since v,, -, v, F, the v; can be
written as (1.9). Now for equations ZZat-jc;:O (j=1, ---, k), the

space of solutions (c,, :-+, ¢;) is of dimension >h—k>1. While,
we have then $c¢7;~0 which implies ¢,= -+ =¢,=0. This is a

contradiction. We can analogously prove that at most % boundaries,
say 1, ---, I, are the linear combinations of v,, ---, v, and finally
that for <k at least one determinant, say A, of rank # is different
from zero, q.e.d.

LemMma 2. If dividing curves v,, -+, v, be homologously inde-
pendent in the weak sense, then do,, --- , dw, are linearly independent.
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Proof. Take an elementary domain F as in Lemma 1. Then
it suffices to prove that the Lemma is valid for I',, ---,',. In
fact, if it were so, under Lemma 1 and (1. 8), 1.9) (where the
coefficients &;;=+1 of g;;dor; are determined by I'; independently
to v;, as v; are contained in F (cf. the integral representation of
or;), hence we write &;;=¢/) the relation

h k h
;C«'d“’i = ,; 5/(1; &;ic;a;;)dor; = 0

h
implies that ge,.c,.a,.j=0 (j=1, ---, k>h), hence ¢,= --- =¢,=0 on

account of A==0, ie. dow,, ---, do, would be independent. Hence
we suppose from the beginning that «,, ---, v, are the boundaries
of an elementary domain F and c,+ -+ +c¢,0,=c, where in G;
(©G;=v;, G, DF) (i=1, ---, h) the ®,, *++, w;_,, &;, ®;,,, -+, ©, are Nor-
malized potentials. Hence for j:|=¢

(1.10) o P = | o@a2@ P, Peg,

where d2; denotes the harmonic measure on G; with respect to the
arc element on ;. While for PeG;

0/P) = 1=3,(P) = 1- (P, 1)+ | 0,@a2:4Q, P,
therefore

¢ = ,i]c,vw,- = c;+(c—c;)2P, v;), PeG;.

i=1
Since Q,(P, v;)==const., we have inf Q,(P, v,;)=0, hence there exists
PEG;

a sequence of points {P,} on G; for which Q,P,, v;,)—=0 (n— o0).
We find therefore c¢=c¢; (i=1, ---, ). Now since vw,, -+, v, are
weakly independent, there is at least another boundary curve, ¥4,
of F for which Q,, (P, v,..)== const. Then in G,,, (1.10) is valid
for j=1, ---, h. Thus we have c¢=c¢Q,. (P, v,,,) from which we
conclude ¢=0, i.e. ¢,= - =¢,=0, q.e.d.

Now we consider dividing curves v,, -+, v, homologously in-
dependent in the weak sense. Then for any real numbers x,, -+, x,
not simultaneously zero, we have by Lemma 2 and (1.7)

k

0< Dr(xdo,+ -+ +x,dw,) = lxiij(dwi» do ;)

iHi=

= X . * .
g‘_,jx,xjg do;

Yi
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which shows that the last symmetric quadratic form is positive
definite. Hence it follows

(1- 11) AIe = A(Vn Tt ryk) = det'

), e

“k>0.

ij=1-

4. Let H denotes the space consisting of analytic differentials
square integrable on R. Then H constitutes a Hilbert space by
the inner product

(P, ¥) = éSSR¢A$, P, veH.

Let H, be the subspace of H composed of total differentials and
H, be the subspace of H whose elements are orthogonal to H, and
have no periods along dividing cycles. The H, and H, are also
Hilbert spaces. Then Nevanlinna-Virtanen’s orthogonal decomposi-
tion theorem asserts

(1~ 12) H= HI@HZ@HS )

where the H, and H,, the orthogonal complement of H,6pH,, have
respectively the following another interpretation. That is, let {A,,
B,} (n=1,2,---) be the canonical homology basis and {vy,} (r=1,
2,.--) be the basis to dividing cycles on R, then the space H, is
spread by differentials

(1.13) Pn =Py, = do,+i*do,, o,= @y, n=1,2, -,

and the H, by the “normals” toward H, of elementary differentials
of the first kind

(1. 14) ¢An = duAn+i*duA”, ¢B" = du3”+i*du3n, n = 1, 2, A

where u,, (resp. #,) is a normalized potential outside of A, (resp.
B,) and has the only non-vanishing period 1 (resp. —1) along B,
(resp. A,).

Now the consideration in the preceding section shows that H,
consists of ¢,=@,, associated with dividing curves v, homologously
independent in the weak sense and those ¢, are linearly independ-
ent each other.

Finally we note that in this paper we shall deal with differen-
tials square integrable outside of a compact set E containing the
possible singularities for which the sums of residues vanish, and
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so, as is well known, those have no periods along dividing cycles
v € R—FE for which dw,=0.

§II. Canonical differentials.

5. Now we shall slightly generalize the notion of normalized
potentials. Let K be an elementary domain on R, then a harmonic
function on R is called a canonical potential associated with K, if
on each complementary domain of K it is a normalized potential
except a possible real constant. (The constants may be distinct
for each domain). It may have in K a finite number of additive
periods and singularities. Let T=7T,+ T, be the real vector space
of canonical potentials associated with elementary domains, where
the subspace T, consists of those single-valued, regular on R.
While, T, is at the same time a subset of the Hilbert space con-
sisting of single-valued harmonic functions # with finite norms

||lue|| = Dgr(du). Let T, be the completion of 7T, by this metric and
T=T,+T,>T. Now we shall call any element of T a canonical
potential (on R). We note that for any u € T, Dr(du)< o and there

exists a sequence {u,} (u, € T,) such that Dg(du,—du) —0 for n— oo
and the convergence u,—u is uniform on every compact set on R.

The Abelian differentials ¢ such that Re S @ are, except constants,
canonical potentials are called canonical differentials, provided that
the sums of residues vanish.

For our later purposes we prepare some lemmas related to
canonical potentials.

LEMMA 3. Let ueT be a canonical potential associated with
an elementary domain B bounded by dividing curves v,, -+, v,. Let
dU+i*dU be any differential square integrable over R— B such that

S *dU=0 (i=1, ---, k), then we have
¥

Dy_p(du, dU) = SaBu*dU.

Proof. Let G; be the non-compact domains adjacent B along
v;. Since u can be written as #;+c¢; in G;, where #; are normalized
potentials and c¢; constants, we have by (1. 3)

1) Two elements of T, are identified if the difference is a constant.
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Sasu*dU = tZ_kl Syi(ui+ci)*dU =2 gwui*dU

i

= Z Dci(du,', dU) = DR_B(du, dU) ) q. €. d.

LEMMA 4. Let u€T be a canonical potential on R and U be
a harmonic function such that dU is square integrable outside of a

compact set B and S *dU=0 for every dividing curve v R— B, then
Y

for any exhaustion {R,} of R we have

lim | wtdU=0.
13> JORy,

Proof. We prove the case ueT,. For any element of T, it
is more easily proved. Let {,} be a sequence of functions in
T, such that u,, converge uniformly to # and Dg(du,,—du)—0 for
m—oco, Let {B,} be a sequence of corresponding elementary
domains. We may assume that {B,} is an exhaustion of R. Other-
wise, take an exhaustion {B,} of elementary domains such that
B,,CB.,,, then u,, would be also canonical potentials associated
with B, (cf. sec. 1). Now for sufficiently large m B, DR, (for
fixed #) and we have by Lemm 3

2.1) DR—R,,(dum7 dU) = DBm—R,,(dum) dU)+DR—Bm(dum) dU)
- S %MU+S%WU=S%MU.

OR,+0B,, 9B, AR,
While by Schwarz’s inequality

(2.2) |DR—Rn(dum: av)|® S DR—R,,(dum)DR-R,,(dU)
< Dg(du,,)Dg_g,(AU) < (Dg(du)+E)Dg_g,(dU) .

Since Dy_z(dU)< oo, we have therefore by (2.1) and (2.2) the
desired result for m — oo successively, #— oo, q.e.d.

After Ahlfors we say that a (meromorphic) differential on R
is semi-exact if it has no periods along every dividing cycle on R.
Then as corollary to Lemma 4 we get immediately the following

LEmMMA 5 (Uniqueness theorem) Let p=du+i*du be a semi-
exact canonical differential such that u is single-valued, regular on
R, then @ is identically zero.

LEMMA 6. Let df;,=du;+idv; (j=1,2) be any two semi-exact
canonical differentials on R such that u; are single-valued and regular
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outside of a compact domain B, then for every dividing curve C
R—B we have

Im Sc fdf,=0.

Proof. Let {B,} be a sequence of elementary domains which
exhaust a non-compact domain (P B) adjacent to C. Then by
Riemann’s first period relation” under our assumptions we have

Im gcf,df2 = Im S fdf, = S v, du,+u,dv,
I'n T'n
where C+1',=9B,. Under our assumptions it is easily seen that
S vdu, = — S u,dv, and Lemma 4 is also valid for such a com-
Tn o T'n
ponent \ /B,. Hence we have
n=1

limg vdu, = limS udv, = 0, qe.d.
T'n T'n

Hepoo Hopoo

6. To get the following fundamental Abelian differentials we
consider the space H,?, and construct a complete orthonormal
system {¢,} in H, by Schmidt’s method ;

(2.3) b= @/llPll, b= glllgell, k=23,

k-1
where gk:¢k~;(¢k, ¢.)p,. Now ¢, is a linear combination of

@, -, P, with real coefficients. In fact, suppose that in the
expressions
(2.4) by = AP+ - P, (=1, k1)

all coefficients ¢} are real, then in

b= gl (-2 a3 )}

the constants a, become real, for by (1.5)

a= 365 (Pu ) = e | *do,.
j=1 i=

Yk

Therefore by induction we find that ¢, (k=1,2, --.) are linear

1) Cf. Kusunoki [2].
2) We suppose H; is not empty: Hy=F¢.
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combinations of ®,, --- , @, with real coefficients, and so Reg ¢, are
canonical potentials associated with an elementary domain contain-
ing the cycles «,, -+, v,.

Now we take any one cycle, say A, of the basis {A4,, B,}.
Let ¢, and ¢, denote respectively the normal and projection of
@4 (cf. (1.14)) to the space H,:

Pa = PatPa,

then ¢, € H, can be written as
¢A = E bn¢n

where the coefficients b, become real, because by (1.2) and (2. 4)
with real ¢ (s=1,2, --)

bn = (¢A’ ¢n) = (¢A, qbn) = gC?(SDA) ?;) = JZ:;CSL gA*dwj‘

It follows therefore that @,=@ A—i b,b, is a canonical differential,
n=1

moreover semi-exact on account of ¢, € H, and Reg ‘7’A=R€S Pa
[0} (o}
for any cycle ¢. Thus we have

THEOREM 1. Let {A,, B,} be the canonical homology basis on R.
Then there exist semi-exact canonical differentials @3 , %, (n=1,
2, ---) of the first kind such that Re ¥ , Re %, have only non-vanish-
ing periods +1 and —1 along B, and A, respectively.

Proof. In case of Hy=-¢, p% =P,4,, 9§,=Pp, satisfy the re-
quired conditions. If H,=¢ i.e. do,=0 for the basis {y;} of
dividing cycles it is enough to take @¥ =@, 9%, =ps,, for by a
remark in sec. 4 those become semi-exact.

COROLLARY. In the decomposition H=H ,PH,DH, the space H,
is composed of semi-exact canonical differentials 9% , % (n=1,2,--).

Proof. Since Re S (Ph.—Pa,)s Re ( (p%,—Ps,) are single-valued and

regular on R, it follows @% =@, , % =%, by the uniqueness
theorem (Lemma 5).

7. To obtain other kinds of fundamental differentials we need
another complete orthonormal system in H, which is constructed
by the normalization of periods along dividing cycles. Let 4, be
a linear combination of ¢,, ---, ¢, with real coefficients such that
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(2.5) Vo= ayp,+ - +arp, .

Here we choose these constants so that the conditions

S ,l!rl,'b:O fOI' j:l,-..’n___l
(2.6) Yi
S =1
Yn
that is,
Z"ll?S *dw;, = 0 for j=1, - ,n—1
i=1 -yj
Y‘Za’;g *d(ot. =1
i=1 Yn

are fulfilled. This is possible, indeed, by (1.11) we have
(2- 7) a? = Aﬂl/An (j = 17 Sty n_l)’ a:: = An—l/An

where A] denote the cofactors of (u, j)-elements in A,. Note that
ar is positive. Now it is seen that for m=-n

(Y, ) = 0.
Indeed, by (1.5) and (2.6) we have for j<m (p;, «,b,',.)=z'5 Y, =0.
'Y.
Hence in case of m >n ’
(4, ) = 2 a3, ¥i) = 0.

In the case m< n we have also (Y}, ¥.)= (., ¥,)=0. Next, for
m=mn we have

Wil = 23 a5 (@, ) = a,
=

which shows again @ >0. Thus, the system {y,} where
=/ \/a; constitutes a complete orthonormal system in the
space H,.

THEOREM 2. Let ¢ be any differential of the space H and

S ®=c, n=12"--,
Tn
then the series

(2. 8) Z i ’21 va ‘

is convergent, wheve a; are given by (2.7).
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Proof. By the orthogonal decomposition theorem ¢ can be
written as

P =pf+of+of, pfeH; (i =1,2,3)

Since @¥ and @F have no period along any v,, we have

S P = [ PF=c,.
Tn v Y

Using the above constructed orthonormal system

where «,=(o¥, vJr,) and the Bessel inequality

oo

23 la, P < [lpf|[F < oo

n=1

holds. While, we have

% SRS % & a4y % & A5Cy
@ = ( S P e - *:S R N1
n \!,n! P3 ;Z=1 \/a: (pJ’ ¢3) 1221 \/ :: v P3 = \/a;,: ’
q.e.d.

Conversely, we have the following

THEOREM 3. Let {c,} be a sequence of given complex numbers
such that the series (2.8) is convergent. Then there exists a differ-
ential ¢ € H(C H) such that

g p=c, n=12-.-
In

Proof. By Riesz-Fischer’s theorem the differential

xS s @iC
P _"El(_ j=1v(l;;’:>l\1,"

represents an element of H, such that

. Oy e "
— i D22 = (p .
= \/ag ( ) "1";!)

Let S @p*=c}, then we have
Yn
n 7

égﬁ;(;}i: n 761]0] n= 1’2,.__

SVaer SVa

Therefore we have successively ¢;=c} (j=1,2, ---), q.e.d.
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THEOREM .4 Let for a differential p€ H
S P = a,+ib,
Tn

with real a, and b,, then there exist differentials ®, v € H(C H)
such that

S (I)=an’ S \Pzib”, n:1,2,"‘
Yn Tn
Proof. Under our assumption the series

oo n a’; ‘2
2 _qa.
P g\/a; 7l

n=1| j

2

n
1\/a" b;

are convergent, q.e.d.
8. Let P be a point given on K. Then there exists an Abelian
differential @p” such that @, has a given singularity S, of the

second kind at P and Reg(pp is single-valued and satisfies the

normalization condition on R— U, (Up is a neighborhood of P). Let
@’» denotes the corresponding differential with the singularity —iSp,

then ¢p=i9% has the same singularity as ¢, and ImS @p is single-
valued. Then

b= Pp—Pp
has no singularity and hence belongs to the space H. Let

[ 6=a+ig, n=12"-
Yn

then by Theorem 4 there exists a differential ¥ € H, such that

quf = iR,

Here we note that since all coefficients in the expression

@9 v=3(39)vi = (7% %an), 8= i »

n=1 n=1 \j=

are real, ¥ is a canonical differential. Finally if we set

(2.10) Cp = pp—V

1) Nevanlinna [5] p. 332.
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we find that ®, is also canonical and semi-exact, moreover, Reg b,

is single-valued on R. Therefore we have the following theorem,
whose remaining part can be proved analogously.

THEOREM 5. Let P and @ be given points on R, then there exist
the semi-exact canonical differentials \i*, %" of the second kind
whose integrals have single-valued real parts, and singularities such
as 1/2" and i/z* (1 >1) at P(2) respectively. Also there exist the
semi-exact canonical differentials %, 43,";@ of the third kind whose
integrals have single-valued real parts except an arc PQ, and loga-
rithmic singularities at P and Q with residues —1, —1i (at P) and
+1, +7 (at Q) respectively.

§ III. Riemann-Roch’s theorem and Abel’s theorem.

9. We shall denote by & the class of semi-exact canonical
differentials (or integrals of these) on K. Then with differentials
and integrals (functions) of & we shall establish Riemann-Roch’s
and Abel’s theorems on an arbitrary open Riemann surface R, which
have the analogous formulations as in the compact case. The
fundamental tool in proof is the following bilinear relation.

THEOREM 6. Let dQ (Ist or 2nd kind) and ¢ be any two dif-
ferentials of & which, outside of an elementary domain B, have only
pure imaginary periods and no singularities, then we have

3.1)  Im[27i S Res. pQ] = Im [z SAirpSBidQ— L,-q’ j AidQ]

i=1

where p denotes the genus of B.
This is immediately derived under the use of Lemma 6 (cf.
Kusunoki [2]).
10. Let W be a fixed elementary domain of genus p on R
and 6 be a given finite divisor on W such that
B 71L1P1271,2“_Pm’ r 3
(3.2) 8= B ="21"2 ~ 1 G=3\m—21n;.
S Q@52 Qs =1 =
With W and 8 we associate the following four vector spaces in
the real field ;

1) If H;=¢, it is sufficient to take npg@*:ng‘) cte.
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E: The vector space consisting of differentials p=du+idve &
which are multiples of 1/6,, and « are single-valued on
R-W.

D: The vector space of differentials € E which are multiples
of &.

M: The vector space of functions Q € & which are multiples
of 1/8;p, and Re 2 are single-valued on R. In case of
8»+1 we normalize so that Q(Q)=0.

S: The vector space of functions € M which are multiples of
1/6 and single-valued on W.

Obviously DCE, SC M. It is seen by the uniqueness theorem that
the E is composed of differentials ¢% , ¢%, (Theorem 1) €& (n=1,

"ty p)) 1}"8‘«,—1)*’ ~2)LV_1)* ER (/1':2) Sty nu’ y:17 Tty S) and (Iblez, ()bngzy
v, b 00 PS50, €R (Theorem 5) and the M consists of constants

and integrals S«If‘}:j*, S «P}é‘v’* eER (=1, ,m,, v=1,---,7)". Hence

23V m;
23 m;+1) if & is integral.

2 n;+p—-1)

dim E = { 2T P
2p if 8 is integral.

mM = {
Thus by the same reasoning as before (cf. [3]) we can prove the
following theorems.

THEOREM 7.2 Let W be an elementary domain of genus p on R
and E, D, M and S be the spaces associated with W and divisor (3. 2)
of total order G, then the orthogonal space of D (resp. S) in the dual
space E* (resp. M*) is identical with the quotient space M|S (resp.

E/D), in other words, M|S and E|D are mutually dual. Thus we have
(3.3) A= B+2(G—p+1)
where B (resp. A) denotes the dimension of D (rvesp. S).

THEOREM 8 (Riemann-Rock’s theorem on R) Let & be a divisor
%ﬂl '('9'77P’—"(m=2m,'< o) given on R and {R,} be an exhaustion of

11 22 “ee i=1
elementary domains. Let 8,=8N R, be the restrictions of 8 in R,
whose total orders are m—r«,, then for sufficiently large n(_>N)

(3. 4—) A= Bn+2(m—/‘:n_pn+1)

1) If 8@y==1, we normalize so that these integrals vanish at @;, hence in this
case M consists of these integrals only.

2) This has a similar form to Kéthe’s duality theorem on R which holds, roughly
speaking, between single-valued analytic functions on W and differentials on R—W.



250 Yukio Kusunoki

where p, denote the genus of R, and B, the number of linearly
independent (in the real sense) differentials p € & which are multiples

of 8, and Re g @ are single-valued on R—R,, and A the number of

linearly independent functions €8 which are single-valued on R and
multiples of 1/8.

In particular, if the genus p of R is finite, then for a divisor
(3.2) on R we have the relation (3.3) and, here, B is the number of
linearly independent (in the real sense) differentials which are mul-
tiples of 8 and A the number of linearly independent functions € &
which are single-valued on R and multiples of 1/6.

11. To illustrate the analogies to the classical theory we take
up a subcalass £, of £ consisting of single-valued meromorphic
functions on R. The functions of &, have the following remarkable
properties :

(i) If feR, is regular everywhere on R, then f must be a

constant.

(ii) Let the genus of R be finite and q be the number (counted
with multiplicities) of poles of feR,, then f is at most
q-valent on RV.

(i) is a direct consequence of Lemma 5. (ii) will be proved in §1IV.
Any single-valued function on a closed Riemann surface takes
every complex value (included o) the same times and also have
the property (i). On general R these are not valid even if the
functions belong to an important restricted class 2®. While &,
considered in Theorem 8 seems to play a role corresponding to the
totality of single-valued functions on a compact surface.

Further, the connections to my previous results [3], hence to
those in classical theory, are as follows. Let Og, be the class of
Riemann surfaces introduced by Sario. That is, on any surface
€Ogkp there is no single-valued non-constant harmonic function
with a finite Dirichlet integral, whose conjugate has no periods
along dividing cycles. Obviously O, Ogkp. It is known (Sario
[6]) that Oxp,=Sg, where Sy is the class of Riemann surfaces with
vanishing @-span, moreover for planar surface So=0,,=20up.
We note here that every single-valued meromorphic function f€ 2D

1) I conjecture further that f may map R conformally onto a g-times covered
plane with slits parallel to the imaginary axis.
2) Kusunoki [3].
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defined on R €0k, becomes canonical. Indeed, since the sum of
residues of df vanishes, we can construct a semi-exact differential

@€ ® with the same singularities as df. Now Re ( f— S (p) is a

single-valued function with a finite Dirichlet integral, moreover
df— is semi-exact, hence df=¢. Thus we have

THEOREM 9. Let R be an open Riemann surface € Ogp (=20pp),
then we have the formula (3.4), where the A]2 denotes the number
of single-valued meromorphic functions €D on R which are multiples
of 1/8 and linearly independent in the complex sense, and B, (n_>N),
1. e. the dimensions of D(R,) become even. Further if R€Oy,, =D
i.e. we have Theorem 2.1 in [3].

12. Abel’s theorem. As an extension of Abel’'s theorem to an
open Riemann surface R it is known (Behnke-Stein) that for any
two sequences {P,} and {Q,}, clustering nowhere on R, there exists
a single-valued meromorphic function on R with just prescribed
zeros P, and poles @,. But from our point of view we can state
here an analogous extension of the classical Abel's theorem. Let

® be a class of single-valued meromorphic functions on K which

can be written as exp. S @, p EK.

THEOREM 10.° The necessary and sufficient condition for the

existence of a single-valued meromorphic function f E.IK\? on R posses-
sing a finite number of zeros P, and poles Q, (v=1, ---, n) is that
the conditions

(3.5) Re ; (@, (P) ~ P, (@)} =0 (mod. 1) p=1,2, -

hold for the integrals (DA":S(Z)R” qﬁB“:Sq)E“ € R of the first kind.

Proof. 1If such a function f exists, then dlog f= ;j;dzz(p* eR
is an Abelian differential of the third kind such that g p*=

Ap

Z'S darg =0, S @*=0 (mod. 277) and Res P*=m,, Res P¥=—n

where m, and n, denote the multlphcmes of p* at PV, Q, respec-
tively. Hence (3.5) is obtained from the period relation (3.1) be-

tween @* and d®,,(or d®p,) € & Conversely, let k,L=Re‘Z‘_,(<I>AF(P,,)—

/’

1) Cf. Weyl [9] p. 123.
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D,4,.(Q)), L ReZ((I)BM(P)—(DB,L(Q )) be integers, then by (3.1) for
d®,, (or dPpg,) and cpo——E ¢F,0,€R we have immediately g <po

:—Z”kaS Po=—27il, (p=1,2,---). Since @, is semi- exact,
Bu

f=exp. S @, € Risa single-valued function on R with the prescribed
zeros P, and poles @,, g.e.d.

§IV. Applications to conformal mappings.

13. First of all we state an extremal property of functions in
f. Let R be an arbitrary open Riemann surface and {Q} be the
class of analytic functions f=#-+iv on R with the properties
(i) fe{Q} possesses the given singularities at Py(z) (=1,
, ¥<_oo) such that

m

(4.1) f=3% 43 b,2 at P,
=1z =0

where a;; are given.
(ii) u is single-valued on R and g dv=0 for dividing curves 1.
Jy

(iii) Sq”d”—<—0 where the integral means the limit of increas-

ir;g boundary integrals, and & the ideal boundary of R.
Obviously Dy_,(du)< oo where U, denotes the union of p-neigh-
bourhoods of P; (=1, ---,7). Now let f, be the function of &
with the given singularities such that

(4.2)  fo=u+iv, = Z 2 {(Re a:;) S Y* 4+ (Im a;;) S ' m*}

Since g u,dv,=0 (Lemma 4), we find immediately f,€ {@}. Next
we have also by Lemma 4

(4 3) DR—Up(duo) = j uodvo; DR-Up (duo, d(u_uo)) = S uod(v“vo)
alp alp

Dg_yo(du) = Swpudv+gﬁudvgs udv .

aUp

By direct calculation we have

@[ e = w25 (a0

il k=
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Sa Ud(V— )= —7 Re SV S kasy(bin— 1) +O0(p)

i=1 p—1

&uw—ni§-4Mwm@
Up 1

i=1 p=

where b9, are the coefficients of f, corresponding to b;, in (4.1).
By (4.3) and (4.4) we have

4.5) 0 _<_ Dy _y(du— du,) = Dp_ Up(duo) —2Dp_ L'p(du» dug) + Dy Up(du)
< 27 Re 3V S bt y(bs— b2) + 007

i=1 p=1

hence for p—0 the following theorem.
THEOREM 11. f, €& given by (4. 2) is a unique minimizing func-

tion of the expression Re {ZZka,, ) among the class {Q}.

i=1 k=1

The uniqueness follows from (4.5). This shows that our method
is a converse approach to the extremal method due to R. de Possel
etc. (cf. Sario [6]).

14. Another characterization of differentials of . Let {R,}
be an exhaustion of elementary domains. Since each R, on R is
an open Riemann surface with analytic boundaries, there exist the
semi-exact canonical differentials (on R,) @¥, ¢%,, ¥§’*" etc, the
real parts of whose integrals take actually constants on 9R,. In
the following we drop the asterisk for simplicity. Now it holds that

(4. 6) Pap = Pag, Ve~ —VE (n-—> o)

Bk Bk
For the proof write @), =du;+idv;. By bilinear relation on R,
we have

4.7 Defduy = — | ani (AZR)
Ap
and also for m _>n
(4.8)  0< Dg (du? —du}) = Dg(duy)—2Dg (du}, dui) + Dg (du}y)
= — S dvﬁ—i—ZS dvy — S dvy + S urdoy
Ap Ap Ap ARy
é - SAkdvk— <—jAkdvk> ’

because of

4.9) SM WP do? = — Dy (dul) < 0,
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This shows that the quantities in (4.7) are monoton decreasing for
n— oo and uniformly bounded. Hence suitable subsequence, say
again {«;}, converges to a harmonic function #; on R, where the
convergence is uniform on every compact set. It remains to prove
that the semi-exact differential ¢}, =du,+idv, is identical with
Pa,=du,+idv,. Letting m—co in (4.8), (4.9) we find that

o< | wan<-|

v+ S vl
9Rp k

Ap A

which tend to zero for m— o, Since

= ’ DRm—R,,(duT, duy)

SaR quvk é VIDRm—Rn(duT)DRm—Rn(duk) ’

let m — oo, successively n#— oo, then we find S u,dv,—0. Thus,
ARy,
we have under the use of Lemma 4

Dy (dui—du,) = Sak (uy—u)d@w,—v,) >0 for n—

n

i.e. @, =p,4,. Analogously we have ¢y —@p . Next, the brief
proof of the latter in (4. 6) is as follows. Let

S«]r}'z"” = Sa’u,,+idv,, = %4-;17“2" at P(CR,), n=1,2, -

By Theorem 11 we have immediately

Re by, < Re by, < - < Rebp
where b is the coefficient of 2* in the expansion of the extremal
function fozywﬁ" on R. Hence lim Re b,, exists, and by (4.5) we

N-po0

have for any compact K
0 < Dy(du,,— du,) < Dy, (du,,—du,)
< 27 Re p(bypp—by,), m>n (>N)

from which we see that a suitable subsequence, say again {u,},
converges uniformly to #' harmonic on R—P and Dg_y,(du’) < oo.
Finally we have du’'=du,. Indeed, for m_>n

Dy, (du,—du,,) < —SBR u,,dv, + SaR ud(w,—v,,),

}—s Uy, | = IDRm_R,,(dum, du,)
Ry

< \/DRm—Up(dum)DR—R,,(duo) .
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Since Dg,,- UP(dum)—>g v w'dv (m— o0), letting m — oo successively
JoUp
n— oo, we get the conclusion.

15. In this section we confine R to an arbitrary open Riemann
surface of finite genus p. Let & be an integral divisor of order
m (p+1<m< oo), then by Theorem 8 the number A>>4. Hence
we have the following theorem under the property (ii) in sec. 11.

THEOREM 12. Any open Riemann surface R of finite genus p can
be mapped conformally onto an at most (p+1)-times covered plane.”

Let P, be a point of R. Since there does not exist a non-
constant function € &, of a multiple of P, under the consideration
of (ii) in sec. 11, the number B=B(P,) for the divisor P, is equal
to 2(p—1) by Riemann-Roch’s theorem. If p>1, there are at least
two linearly independent differentials ¢,, @, which vanish at P,.
Then we can take a point P, such that

Re ¢,(P,) Re ¢,(P,)
Im é)l(Pz) Im é)z(Pz)

where we write in general ¢(P)=@(2)dz (z is a local parameter at

P). Indeed, otherwise we would have ¢,/¢p,=(®,/®,) in an open
set, which implies that analytic function ¢,/p, reduces to a real
constant. This is absurd. Thus any differential @ =c,p, +c,p, with
real constants ¢, ¢, is a multiple of P,, but not of P.P,. While
B(P,P,)>2(p—2), hence we have immediately B(P,P,)=2(p—2).
Repeating this argument p times we find that there exist p distinct
points on R such that B(8)=0 for §=P,P,--- P, and consequently
A(1/8)=2. That is, we have at once

THEOREM 13. Let R, be an open Riemann surface of genus p
whose boundary consists of a finite number of Jordan curves. Then
it is possible to find p points P,, -+, P, on R, such that there does not
exist any parallel slit mapping of R, with possible poles P, -, P,.

Next, consider the divisor 6= P,P, --- P, for simplicity, where P;
are mutually distinct. Then we note that any non-constant function

fe®, of a multiple of 1/8 can be written by uniqueness theorem
that

(4.10) f:é(a,-g %’+b,~s~(1},-)>

1) If the conjecture in footnote 1) p. 250 would be valid, this will give a parallel
slit mapping of R.
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where a; and b; real numbers which satisfy by (3.1) 2p linear equa-
tions

(4. 11) 'Z {a; Re ¢gk(2i)_bi Im (;v)gk(Zi)} = O; k = 1;2y e )p
i=1 £ /2

where z; are local parameters at P;. Conversely we see that every
single-valued function €&, of a multiple of 1/6 is constructed by
this way. Now we shall prove

THEOREM 14.° Let P, be a given point on the same surface R,
as above. Then for suitable choices of p points P,, P,, ---, P,,, on
R, there exists a function F, (resp. F,) which maps R, conformally
onto an at most (p+1)-times covered plane with slits parallel to
the imaginary (rvesp. real) axis, and have their poles at P, and some
of P, -, P,., where RPes. Fllegs. F,=1.

First we recall that Re,,(P) and Re ¢y, (P,) (or Im 4, (P,)
and Im ¢p(P,)) (k=1,---,p) do not vanish simultaneously. Next,
we take p distinct points P,, P,, ---, P,,, on R, such that A(1/P,P,
-+ P,.,)=2 and consequently the deteriminant of coefficients to a;,
b; (=2,3,--,r=p+1) in (4.11) is different from zero. Then we
see that the function F, (resp. iF,) (4.10) determined by (4.11)
(r=p+1) after the choice a,=1, b,=0 (resp. a,=0, b,=1) is the
required, g.e.d.

16. Proof of (ii) in sec. 11. We shall consider for simplicity
the case of integral divisor 6=P,P, --- P,. Then any non-constant
function f€ &, of a multiple of 1/6 can be written as (4.10) with
a;, b; satisfying (4.11). Take an elementary domain R, so large
that R— R, becomes planar character and does not contain any
pole of f. Then the functions (with suitable constants)

fu=S(af o F9m) m>n,
are single-valued on R,,—R,, and converge to f(m— o) on every
compact set on R—R,,. Now by the argument principle we have

for any complex number «
1

ol F oo _ 1 (. df
n(f, &, R,)—n(f, o, R,) 27”.“5 Fa (n > ny,)

where n(f, o, R,)=¢<r and we may assume f-F« on OR,. If

1) Cf. the corresponding theorem in Nehari’s paper [4], sec. 6.
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m (—>n_>n,) are sufficiently large, the integral (integer) on the right
hand side is equal to

1 df, _ 1 P _
27[13}& fm;a - 27{ S darg (fm a) n(fm) a} Rm Rn)

Ry

which is negative, because the integral along 9R,, vanishes. Hence
n(f, o, R,)<q for any n_>n, and we have n(f, ¢, R)<gq for n— oo,
which completes the proof.

17. Finally we consider any Riemann surface R of genus zero
(planar character). First we note that =8, and every function
f€8 on R is the uniform limit of above parallel slit mappings f,,
of R,. That the limit function f gives also a parallel slit mapping
of R can be proved by the usual method. (e.g. Nevanlinna [5],

pp. 295-297). Therefore the integral S ®,e & of (2.10) shows the

explicit form of a canonical slit mapping. For example, any plane
domain G can be mapped onto a vertical slit domain by the function

4.12) Fz o= PE0 L5 8 20 g i Piom),
of = J=1A, 08 )y, A,

& =E&+iy

whose residue at a simple pole z=¢ is 1 where p=g+i*g, (g is a
Green function of G) Q,=w,+i*w, and A’s (A,=1, Ar=A, ) are
given by (1.11) and (2.7). .

Department of Mathematics
Kyoto University
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