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Introduction.

The main aim o f the present paper is to develop the theory
of Abelian integrals on an arbitrary open Riemann surface R .  For
this purpose we shall introduce in  sec. 5 the notion of canonical
potentials on R  which is a  generalization of the normalized poten-
tials. Roughly speaking, a normalized potential takes the constant
value zero on the ideal boundary of R , while a  canonical one is
characterized by the fact th at it takes respective re a l constant
value on each ideal boundary component, and canonical differentials
are defined a s  meromorphic differentials derived from canonical
potentials. However, the one that attracts our interest particularly
is the c lass a  of the semi-exact canonical differentials (or integrals
o f  these) which have, by definition, no periods along dividing
cyc les. Then we are able to establish theorems of Riemann-Roch
and Abel on R  in terms of elements of a which have the analogous
formulations as in classical theories. Further finding that the
functions o f a possess an  extremal property, we know that our
theory have close connections with canonical conformal mappings.
Now we show in the following the brief program of this paper.

§ I contains some notes on harmonic measures which are simple
fundamental canonical potentials. In § lithe definition of canonical
differentials is given along with some of their properties. Above
all, the uniqueness theorem (Lemma 5) will be powerful for later
u s e . Next, the existence of three kinds of elementary differentials
in  a is proved by using the theory of orthogonal decomposition
due to Nevanlinna-Virtanen. Another treatment of this existence
theorem will be given in  § IV.
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§ III concerns with the theorems of Riemann-Roch and Abel
on R .  The subspace St, of single-valued functions in  St has the
remarkable properties (sec. 11)

( i) If f  E St, is regular everywhere on R , f must be a constant.
(ii) L et the genus of R  be finite and q  be the number of

poles of f  E Se„ then f  is at most q-valent on R.
Thus S. on R  seems to play a role corresponding to the totality
of single-valued functions on compact surfaces. Further we made
clear the relation of these results to my previous ones [3], hence
to those in  classical theory.

§ IV contains some applications of our theory to conformal
mapping. For example, every open Riemann surface of finite genus
g  can be mapped conformally onto an at most (g+1)-time covered
plane (Theorem 12). We give a  classical parallel slit mapping of
a  domain of finite or infinite connectivity in explicit form . This is
a  different point from the extremal method, but it will be imme-
diately shown that the mapping function is identical with the one
obtained by the extremal method.

§ I. Prelim inaries

Throughout the present paper we shall denote by R  an arbi-
trary open Riemann surface (of finite or infinite genus), unless
otherwise stated.

1. Here we shall recall some properties of normalized poten-
tia ls". L e t G  b e  a non-compact domain o n  R  whose relative
boundary on R  consists o f  a  finite number o f  analytic Jordan
closed curves I .  L e t  u  be a normalized potential on G, which is
a  single-valued harmonic function o n  G=G satisfying the
"normalization condition"

u(P) =  u ( Q ) d w ( Q ,  P ) ,  P  E G
ro

where do) stands for the harmonic measure on G  with respect to
the arc element on 1'0 , then u  is also a  normalized potential on
any subregion G , of G  with analytic boundaries such that G— Go is
compact. Let d f=  du + i*du  be the analytic differential on U de-
rived from u  and ep= dU + i*dU  be any analytic differential on G
such that

1 ) N evan linna 5 ] p. 320-333.
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I <Pig  = JP A 99  < cx' •

Then by Green's formula we have

(1.2)( d f ,  f p ) ,  = df A (7,
2

= U <7)
G Po

where th e  line integral is taken in the positive direction with
respect to G .  Taking the real parts of (1. 2) it follows

(1. 3) D,(du, dU) du A *dU u*dU
G Po

2. For simplicity we shall call an analytic Jordan closed curve
(cycle) C  on R  a  div iding curv e (cycle) if C  divides R  into two
disjoint non-compact domains, and call a compact domain on R an
elem entary  dom ain if the boundary consists of a finite number of
dividing curves. Take a  dividing curve 7  which divides R  into
R, and R,. We consider the harmonic measures 6), and i;').„"  on R
with respect to  th e  ideal boundaries of R , and R, , which are
determined by the homology class of ry. These functions reduce
to identically constants (1 or 0) if and only if  at least one of the
harmonic measures on R,, R.  with respect to their ideal boundaries
vanishes. Except such cases we have

(1.4)w 7 + 6 3 ,  =  1  ,  d w ,  =  —d& ?

The 0), (resp. i 5 , )  is  a  normalized potential on R, (resp. R ,) and
have a finite Dirichlet integral over R:

DR (dco,) --= *do), . (by (1. 3), (1. 4))
7

Let yo= dU+ i*dU be any analytic differential on R with finite norm
IPHR then for cp,= d c o ,+  i* d o ) ,  we have by (1. 2), (1. 3) and (1.4)

(1.5) (P )R  =
Y

(1.6)D R ( d c o , ,  d U ) *dU .

In particular, for any two dividing curves 7 and 7'

1) Nevanlinna [5] p . 351.



238 Y ukio K u su n ok i

(1 .7 ) DR(d0).„, cloy) *clay = .
Y

3. Let 7 „ • • •  ,7 k be dividing cycles such that c 17 1 + ••• +cklik
is homologous to zero . Here we say temporally that ca i+  •••  + ch7h
( h < k )  are weakly homologous to zero ( - 0 )  if da) - =O ( i= h + 1 ,• • •  ,k ) .
Then we have

(1.8)6 1 c i c h o i +  • • •  +&„c„c/(0„ 0 ,

where and Ei =  ±1. Especially, if  7„ ••• ,7„ are the boun-
daries of an elementary domain B  and if we take as R ,, the non-
compact domains G. not containing B , then we have more precisely
w i + ••• -1-0)„ = - 1 .  These are seen, for instance, if it is noted that

(DAP) can be expressed as —1  d s  (
a
S  is the normal derivative

27z- Y t av
of a Green function g  on R )  or 1— d s ,  according as P E G.

y ,a p

or P E G i .

L E M M A  1. Let dividing curves 7 i , ,  7 h  be h o m o lo g o u s l y  inde-
pendent. Suppose th at F  i s  an elementary domain containing the
7„ ••• , 7„ and that 1 '„ ••• , i l k are all boundaries o f F  h o m o lo g o u s ly
independent each other. Then h < k  and y i  can be expressed as

(1.9)7  i — a i  .1' i  =  1, • •• , h

w ith non-v anishing determ inant A =  I a  I M o r e o v e r ,  t h e n
••• are linearly  independent to 7„ ••• , 7 h .  This lemma

rem ains also true for the above weak homology.
Pro o f . Suppose k < h .  Since 7 „ •••  , 7,, F ,  th e  y i can be

written as (1. 9). Now for equations a 1 3 c 1 = 0  ( j= 1 ,  •• • , k ), the
,-1

space of solutions ( c„  • • •  , c , , )  is of dimension >h—  k > 1 .  While,

we have then c i 7 1 - 0  which implies c 1 = ••• =  c„= O. This is a
contradiction. We can analogously prove that at most h boundaries,
say r „  • • •  ,  r h , are the linear combinations of 7 „ •••  , 7 h  and finally
that for h < k  at least one determinant, say A , of rank h is different
from zero, q. e. d.

LEMMA 2. I f  div iding curves ' Y i p , 7 ,, be h o m o lo g o u s l y  inde-
pendent in the weak sense, then clo>„ •• • , d(0„ are linearly independent.
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P ro o f .  Take an elementary domain F  as in  Lemma 1. Then
it suffices to prove that the Lemma is valid for r „  • • •  ,  r k . In
fact, if it w ere  so, under Lemma 1  and (1. 8), (1. 9) (where the
coefficients &i i  =  ±1  of a i i dw r i  are determined by independen tly
to 7e , as 7 i a re  contained in F  (cf. the integral representation of
co ), hence we write , =  & ' )  the relation

c i dw i ( 1  &i c i a i i ) &or ;  =  0

h

implies that E 61c1a 1 i = 0  ( j=1 , • • •  ,  k > h ) , hence c ,= • • •  =c h = 0 on

account of 0, i.e. dw i ,  ••• , do), would be independent. Hence
we suppose from the beginning that r y „  • - •  ,  7 h  are the boundaries
o f an  elementary domain F  and c1 (01 + •••  +c h o)h --- - --c , where in G i

G a) F )  ( i=1 ,  • • • , h) the W
L / • • • , ( I l i ,  W i l l )  • • • ,  (oh are nor-

malized potentials. Hence for j  i

(1. 10) w3(P) w J (Q )dn i(Q  P), P  G G i

where dn, denotes the harmonic measure on G i  w ith  respect to the
arc element on y , . W h ile  for P E G i

i(P)  = l - 1(P) = 1 —  n i(P, y ) +1 ( Q ) c l f 2 1 ( Q , ,

therefore
h

C  = E c i+ (c— ci)2 i(P , 7 i ), P E  G 1 .
,=1

Since n i (P, 7 e ) const., we have inf f2 1(P, 7 e) =-- 0, hence there exists
PE 0,

a  sequence of points {Ph } on G i fo r which n i (P ,  i ) (n---> co).
We find therefore c =c i  ( i =  1, ••• , h). Now since 7„ ••• , 7, are
weakly independent, there is at least another boundary curve, 7h , ,
of F  for which 1   con st. Then in G ,  (1 .1 0 )  is valid
for j=1, ••• , h. Thus we have c=cf2„ +1 (P, 7h+ i) from which we
conclude c = 0, i.e . c 1 = -• • = ch  = 0, q .  e .  d.

Now we consider dividing curves 7„ ••• , 7, homologously in-
dependent in the weak sen se . Then for any real numbers x 1 , ••• , x k

not simultaneously zero, we have by Lemma 2  and (1. 7)

0  <  DR (x,dw, + +x k dw k ) = x i x .D(dw i , do> i )

E xi x *dco .
J j  Y i
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which shows that the last symmetric quadratic form is positive
definite. Hence it follows

( 1.  11) > 0 .= ••• 7 k )  =  d e t . *CIO)
j - i• • • k

4. Let H denotes the space consisting of analytic differentials
square integrable on R .  Then H  constitutes a H ilbert space by
the inner product

(T , 4r) = cp, E H.
2 R

Let H , be the subspace of H  composed of total differentials and
H , be the subspace of H  whose elements are orthogonal to H, and
have no periods along dividing cycles. T he H , and H , are also
Hilbert spaces. Then Nevanlinna-Virtanen's orthogonal decomposi-
tion theorem asserts

(1. 12) H  111 (DH2 E9H3 ,

where the H , and H „ the orthogonal complement of ri,e 112 have
respectively the following another interpretation. That is , le t {A„,
B„). (n=1,2 , • ••) be the canonical homology basis and {7 „ } (n=1,
2, •••) be the basis to dividing cycles on R , then the space H , is
spread by differentials

(1.13) c p „  =  dcon  + i*da)„, w „ = n = 1 , 2 ,

and the H , by the " normals" toward H, of elementary differentials
of the first kind

(1. 14) EPA,, = du A n + i*du A n , rp„n  =  du „n + i*du B ., n  = 1, 2, • • • ,

where UA ,, (resp. u„,,) is a  normalized potential outside of A n (resp.
B ,,) and has the only non-vanishing period 1 (resp. —1) along B„
(resp. A n ).

Now the consideration in the preceding section shows that H,
consists of ( p associated with dividing curves y„ homologously
independent in the weak sense and those cp„ are linearly independ-
ent each other.

Finally we note that in this paper we shall deal with differen-
tials square integrable outside of a compact set E  containing the
possible singularities for which the sums of residues vanish, and
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so, as is well known, those have no periods along dividing cycles
E R—E for which c/w),= O.

§ I I .  Canonical differentials.

5. Now we shall slightly generalize the notion of normalized
potentials. Let K be an elementary domain on R, then a  harmonic
function on R  is called a  canonical potential associated with K, if
on each complementary domain of K  it is  a  normalized potential
except a possible real constant. (The constants may be distinct
for each domain). It may have in K  a  finite number of additive
periods and singularities. Let T = T o + T ,  be the real vector space
of canonical potentials associated with elementary domains, where
the subspace T o "  consists o f those single-valued, regular on R.
While, T o is  a t the same time a  subset of the Hilbert space con-
sisting o f single-valued harmonic functions u  with finite norms
HuH =D R (d u ). Let TO be the completion of T , by this metric and

= 1 . 0 + T 1 T J  T .  Now we shall call any element o f i"  a  canonical
potential (on R ) .  We note that for any u E T , D R ( d u ) < o 0  and there
exists a sequence {u„} (u„ e TO such that DR (dun —du)—)- O for C'D

and the convergence u„— .0  is uniform on every compact set on R.

The Abelian differentials p  such that R e  (f) are, except constants,
canonical potentials are called canonical differentials, provided that
the sums of residues vanish.

For our later purposes we prepare some lemmas related to
canonical potentials.

LEMMA 3 .  Let u E T  be a  canonical potential associated with
an elementary domain B bounded by dividing curves 71, •• • , 7 k . Let
dU+i*dU be any dif ferential square integrable over R—B such that

*dU =0 (i=1, •••, k), then w e have

DR _B (du, dU) = u * d U

Pro o f . Let G . be the non-compact domains adjacent B  along
7 i . Since u can be written as u,+c i  in Gi , where ui a re  normalized
potentials and ci  constants, we have by (1. 3)

1 )  Two elements o f To a re  identified if the difference is a constant.
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Lu*dU = eE  (ui + c d U  =  E  ui *dU
f y i y i

E DG i (dui , dU) = D R _B (du, dU) , q. e. d.

LEMMA 4. Let u E t be a  canonical potential on R and U be
a harm onic function such that dU is square integrable outside of a

compact set B a n d  *dU =0 for every dividing curve 7CR—B, then
y

fo r  any exhaustion {R „ } of R we have

lim u*dU = O.
aRa

Pro o f . We prove the case u E i . F o r  any element of T, it
is  more easily proved. Let be a  sequence of functions in
T, such that um  converge uniformly to u and DR (du,,,— du) —> 0 for
m--> 09. Let { B „ , }  b e  a  sequence o f  corresponding elementary
domains. We may assume that {B „,} is an exhaustion of R .  Other-
wise, take an  exhaustion {B.} of elementary domains such that
B,n C B L  then U r n would be also canonical potentials associated
with B L (cf. sec. 1). Now for sufficiently large m B„, R„ (for
fixed n) and we have by Lemm 3

(2. 1) DR _R n (du„„ dU) = DB „,_R n (du„„ dU)+D R _B „,(du„„ dU)

u,n *dU + u, n *dU =
R ,-1 aB„, Bit„

While by Schwarz's inequality

(2. 2) I DR- R n(du„„  dU)I 2 <  DR_ Rn (dU m ) DR_R n (d U )

<  D R (dU m )DR R n (dU ) <  (D R (dU )±  8 )DR_ Rn (d U ) .

Since DR _B (dU )< o o
,  w e  have therefore by (2. 1) an d  (2. 2) the

desired result for 00 successively, n—* o o
,q .  e .  d.

After Ahlfors we say that a  (meromorphic) differential on R
is semi-exact if it has no periods along every dividing cycle on R.
Then as corollary to Lemma 4 we get immediately the following

LEMMA 5 ( Uniqueness theorem ) Let cp= du + i*du  b e  a  semi-
exact canonical dif ferential such that u is single-valued, regular on
R, then (p is identically  zero.

LEMIVIA 6. Let df ;= du ;  + idv ; ( j= 1, 2) be any  tw o semi-exact
canonical differentials on R such that u. are single-valued and regular
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outside of  a com pact domain B , then f o r every  div iding curve CC
R— B we have

1 m  f 1 df 2 = O.

Pro o f . L et {Bn } b e  a  sequence of elementary domains which
exhaust a non-compact domain (1 )B ) adjacent to  C .  Then by
Riem ann's first period relation" under our assumptions we have

Im .S.  f e lf 2 = Im 1",df, = vidu2+uidv2
c r,,

where c-Fr n =aB n . Under our assumptions it is easily seen that

v i du 2  = — u2 dv , and Lemma 4  is also valid for such a  com-
rn co rn

p o n e n t V B „.  Hence we have
12= 1

u,dv2= O, q. e. d.
rn

6. To get the following fundamental Abelian differentials we
consider th e  space 113

2), and  construct a  complete orthonormal
system {c19,,} in H , by Schmidt's method ;

(2. 3) =  P1111P1 ! ,  (Pk = k  = 2, 3,

k -
where g k =  k —E (P h ,  (t)s g s .  Now (  k  is  a  linear combination of

• • •  'P k  with real coefficients. In fact, suppose that in the
expressions

(2.4) = +cssa),, (s =  1 ,  •  ,  k -1 )

all coefficients c l are real, then in

01, = ligkr i {9 9 a  ( cs P -)1k s = 1  . 1  j

the constants as become real, for by (1. 5)

as = Ê ei(Pk ,P ;) = E *cko., .

Therefore by induction we find that ( I)  k (k =1, 2 ,  • • )  are  linear

1) C f. Kusunoki [2].
2) W e suppose H , is not empty : 1134 0 .
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combinations of p „  • • •  ,  p h  with real coefficients, and so Re / ,  are
canonical potentials associated with an elementary domain contain-
ing the cycles r y „  • • •  ,  7k.

Now we take any one cycle, say A , of the basis {A„,
Let OA and OA  denote respectively the normal and projection of
p i t  (c f. (1. 14)) to the space H,:

PA = qJ A + (iJ A

then OA E 1-13 can be written as

(PA =  E %O,,

where the coefficients bn become real, because by (1. 2) and (2. 4)
with real cs, (s=1, 2, •••)

b„ (OA, (1.) (RA, 45.) W A, (Pi ) A *dco i
i=1

-
It follows therefore that (15 A =p A —E b

ts
(15 is a  canonical differential,

moreover semi-exact on account of iPA  E H , and Re -(1)A — R e  PA

for any cycle c. Thus we have
THEOREM 1. Let {A„, B n }  be the canonical homology basis on R.

Then there exist semi-exact canonical differentials A n , A n  (n=1,
2, •••) of the first kind such that Re (pIn , Re AL have only non-vanish-
ing periods +1  and — 1 along B „ and A n  respectively.

P ro o f. In case of çb, p In =  -1)A n  , g i t n = 4—)Bn  satisfy the re-
quired conditions. If i . e. d w ,  0  fo r th e  basis 17J of
dividing cycles it is enough to take A n = qi A n , A n = q )„ ,,, for by a
remark in  sec. 4 those become semi-exact.

COROLLARY. In the decomposition H= H,eru91-1, the space H.
is composed of semi-exact canonical differentials A n , (pt, (n=1, 2, • • •).
P ro o f. Since R e  (fpI n —ipA n ), Re ( p t n -43, n ) are single-valued and
regular on R , it follows OA' P A n ,  pl,n —FP„n b y  th e  uniqueness
theorem (Lemma 5).

7. To obtain other kinds of fundamental differentials we need
another complete orthonormal system in  11, which is constructed
by the normalization of periods along dividing cycles. Let Ifr„,'  be
a  linear combination of (p„ •• • , p„ with real coefficients such that
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(2.5) =  a7<p1 + • •• +a:1(p„.

Here we choose these constants so that the conditions

qr", = 0 for j  = 1, ••• , n - 1
(2. 6)

=
"Yn

that is,

j i . a'1 . y r i *clw i  =  0 ,  n - 1f o r  j=1, ••• 

1 ±' all * d w i  = 1
1=1 7,,

are fulfilled. This is possible, indeed, by (1. 11) we have

(2.7)a 3  =  L V I  A „ ( j  =  1 ,  • • •  ,  n - 1 ) ,  4  =  A n _i /An

where A,i, denote the cofactors o f (n, j)-elements in A n  . Note that
ei:: is positive. Now it is seen that for m qrn

Jr,') — O.

Indeed, by (1.5) and (2 .6 ) w e have for j < m  (y i , * ) =  i Ifr:„= O.
Hence in case of m >n Yi

OK , J r )  =  Ê  al (Pp '\KO = 0 •
J __I

In the case m < n  w e have also ( J r ,  4 , ) - - - ( q „  1/PD= O. Next, for
m =n  we have

I = 3(p i , =
j

which shows again  a7, >  O . T h u s , th e  system Ilir n } w h ere
Nf d - -;ii constitutes a  complete orthonormal system in the

space 113 .

THEOREM 2. L et y  be any  dif ferential of  the space H and

= c „, n  = 1, 2, •  ,

then the series
II

L I  I ,  / )
i = i  v  ( . 4 , „

is  convergent, where a".,' are  given by  (2. 7).

(2. 8)
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Proof. B y  the orthogonal decomposition theorem q ) can be
written as

+  q + 9 3 :  q)? E ( i  = 1, 2, 3)

Since p t  and q4 have no period along any 7„, we have

99 =  4  =  en .
7n • 7n

Using the above constructed orthonormal system

= E an*.
P1= 1

where a „= ( q 4 ,* „)  and the Bessel inequality

EIcen1 2 _1194112 ‹
holds. W hile, we have

"=  v„, 4 ) = —  ,  4 ) = —   f j *
3=1\'s/ a, j  3

q. e. d.
Conversely, we have the following

THEOREM 3. L et { c„}  be a  sequence of  given complex numbers
such that the series (2. 8) is convergent. Then there exists a differ-
ential p E H K H )  such that

=  c „ ,  n 1, 2, •• •

P ro o f. By Riesz-Fischer's theorem the differential

99*( _ i d iici ,b n

i=1

represents an element of H , such that

(P* ,

Let q)*=c„' , then we have
7n

Ê a'jc Ê a3 c ;
i=1 an „ j=1 a „"

n  =1 ,  2, •-•

Therefore we have successively ci =c", ( j= 1, 2, • • • ), q. e. d.
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THEOREM . 4  L et f o r a dif ferential (p E H

= a n +ib„v„

w ith real a n an d  b„, then there ex ist dif f erentials 43 , E  113 ( c H)
such that

(J)  =a,an , N if  = ib„, n = 1, 2, •••
.4,

Pro o f . Under our assumption the series
2 -

a n d  E ÷ 1.  ̀ a 3  b .

`71-4 'Vag

  

are convergent, q . e . d.
8. Let P be a point given on R .  Then there exists an Abelian

differential pp th a t p p  has a  given singularity S p of the

second k in d  a t P  and R e (pp is single-valued and satisfies the

normalization condition on R— Up (Up is a neighborhood of P ) .  Let
qlp denotes the corresponding differential with the singularity — iSp,
then 4) p= ig ip  has the same singularity as pp and Inz ("pp is single-
valued. Then

=  (PP —  OP

has no singularity and hence belongs to the space H .  Let

= n = 1, 2, •••
'Yn

then by Theorem 4  there exists a differential E H, such that

=

Here we note that since all coefficients in the expression

(2.9) N If a316-'),K, = ,:*' , ( i
7t 1

a /a ;
18,,3  = (pp

n=1 j =1 a:: Yfr:

are real, NY is a canonical differential. Finally i f  w e set

(2. 10) 43 ,  =  p p  - 1 ,

1) N evanlinna [5] p. 332.
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we find that (1), is also canonical and semi-exact, moreover, Re .f
is single-valued on R .  Therefore we have the following theorem,
whose remaining part can be proved analogously.

THEOREM 5. L et P  and Q  be given points on R , then there exist
the semi-exact canonical differentials q r7 * ,;f ir* "  of the second kind
whose integrals have single-valued real parts, and singularities such
as  11 z  and  i I z "  ( t i>1 )  at  P(z ) respectively . A lso there ex ist the
semi-exact canonical differentials (j4 Q , (T)PQ  o f  the third k ind whose
integrals have single-valued real parts except an arc PQ , and loga-
rithm ic singularities at P  and Q  w ith residues — 1, — i (at P) and
+ 1 ,  + i  (at Q) respectively.

§ I I I .  Riemann - Roch's theorem a n d  Abel's theorem.

9. W e shall denote by A  the class of semi-exact canonical
differentials (or integrals of these) on R .  Then with differentials
and integrals (functions) of A we shall establish Riemann-Roch's
and Abel's theorems on an arbitrary open Riemann surface R, which
h ave th e  analogous formulations as in the compact case. The
fundamental tool in  proof is the following bilinear relation.

THEOREM 6. L et df -2  (1st or 2 n d  k ind) and cp be any two dif-
ferentials o f  St which, outside of an  elementary domain B , have only
pure im aginary  periods and no singularities, then w e have

(3. 1) 1m [27ri E Res. (pm  I n i [ E (1.) (In — cp j
= 1  A i Bi B i A i

where p  denotes the genus of B.
This is im m ediately derived under the use of Lemma 6 (cf.

Kusunoki [2]).
10. L e t W  b e  a  fixed elementary domain of genus p on R

and 8 be a  given finite divisor on W such that

8 p>,,,p742... r s(3. 2) 8  _   ( P )  _ p
1 2 •G

8(Q) CA.QP • Q.:, j _ ,

W ith  W  and 8  we associate the following four vector spaces in
the real field ;

1 )  I f  H3 =,h, it is sufficient to take etc. etc.
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E :  The vector space consisting o f differentials p= du + idv e
which are multiples of 1/8(Q ) and u are single-valued on
R— W.

D :  The vector space o f differentials E E  which are multiples
o f 8.

M :  The vector space o f  functions (2 E which are multiples
o f  1/8 ( p) and R e  f l are single-valued on R .  In case of
8( 0 ) * 1  we normalize so that f2(Q)=O.

S :  The vector space o f functions E M which are multiples of
1/8 and single-valued on W.

Obviously D E , S c T J M .  It is seen by the uniqueness theorem that
the E is composed of differentials A n , A n (Theorem 1 )  E A (n=1,

E f  ( = 2, • • • , n„, v=1, ••• , s) and (Pt? 
1
(22 Q 2  ,

• • q ) Z i ( : ) , E  a (Theorem 5 )  and the M  consists of constants

and integrals 'ti-PA)* E (//,— 1, • • • , m,, = 1 , • • ,  r) 1). Hence

/ 2(E n i + p -1 ) 2 E  m i

dim E dim M =
2p if 8 is integral. I 2( m +1)Tn, +1) if 8 is integral.

Thus by the same reasoning as before (cf. [ 3 ] )  we can prove the
following theorems.

THEOREM 7•
2 ) L e t  W  be an  elementary domain o f  genus p on R

and E, D, M  and S be the spaces associated with W and divisor (3. 2)
of  total order G, then the orthogonal space of  D  (resp. S) in the dual
space E* (resp. M*) is identical w ith the quotient space M IS  (resp.

El D), in  other words, MIS and El D are mutually d u a l .  Thus we have

(3.3) A  = B+2(G— p+1)

where B (resp. A ) denotes the dim ension of  D (resp. S).
THEOREM 8  (Riemann-Roch's theorem on R ) L et 8 be a  divisor

p T i . • • p 7 r
 (m =E m i < 0 0 ) given on R  an d  {R ,}  be an  exhaustion of

QP Q 2 2  • • • i=1

elem entary  dom ains. L e t 8n = 8  R n  b e  the restrictions of  8 in R n

whose total orders are icn, then f o r sufficiently large n ( ›N )

(3.4)A  =  Bn  + 2(m — K„—p„+1)

1) If 6(0 ) + 1 ,  w e norm alize so that these integrals vanish at Q 1 , hence in  this
case M  consists o f these integrals only.

2) T h is has a  sim ilar form  to Kathe's duality theorem  on R which holds, roughly
speaking, between single-valued analytic functions on W  and differentials on R— W.
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where p n  deno te  the genus o f  R„ and  B , the number o f  linearly
independent (in the real sense) differentials p G St which are multiples
o f  8, an d  R e  p  are single-valued on R— R,, and A  the number of
linearly  independent functions E Se which are single-valued on R and
m ultiples of  1/6.

In particular, i f  the genus p  o f  R  is f inite, then f o r a  divisor
(3. 2) on R  we have the relation (3. 3) and, here, B  is  the number of
linearly independent (in the real sense) dif ferentials which are mul-
tiples o f  8 and A  the number of linearly independent functions E
which are single-valued on R  and multiples o f  118.

11 . To illustrate the analogies to the classical theory we take
up a  subcalass S .  o f  ST consisting of single-valued meromorphic
functions on R .  The functions of Sto have the following remarkable
properties :

(i) I f  f  Ef t, is regular ev ery w here on R , then f  m ust b e  a
constant.

(ii) L et the genus of  R  be f inite and q be the number (counted
w ith m ultiplicities) o f  poles of  f  E S , then f  is at m ost
q-valent on R').

( i )  is a direct consequence of Lemma 5. ( i i )  will be proved in  § IV.
Any single-valued function o n  a  closed Riemann surface takes
every complex value (included 00) the same times and also have
the property (i ). On general R  these are not valid even if the
functions belong to an important restricted class D " .  W hile Sto

considered in  Theorem 8 seems to play a role corresponding to the
totality of single-valued functions on a compact surface.

Further, the connections to my previous results [3 ], hence to
those in  classical theory, are as follows. Let 0 „  be the class of
Riemann surfaces introduced by Sario. That is , on  an y  surface
E  0 „  th ere  is  no single-valued non-constant harmonic function
with a  finite Dirichlet integral, whose conjugate has no periods
along dividing cyc les . Obviously 0 „ , „ < 0 „ .  It is known (Sario
[6 ]) that OKD=So, where SQ  is  the class of Riemann surfaces with
vanishing Q-span, moreover fo r  p lanar surface SQ =O A D = 0 „ .
We note here that every single-valued meromorphic function f  E

1) I  conjecture further that f  may map R  conformally onto a g-times covered
plane with slits parallel to the imaginary axis.

2) Kusunoki [3].
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defined on RE 0„ becomes canonical. Indeed, since the sum of
residues of d f  vanishes, we can construct a semi-exact differential

p E S with the same singularities a s  d f .  Now Re ( f  — ( p )  is a
single-valued function with a  finite Dirichlet integral, moreover
df—qi is  semi-exact, hence dfl--=- p. Thus we have

THEOREM 9. Let R  be an open Riemann surface E OKD ( 0 HD),
then we have the formula (3. 4), where the A l2  denotes the number
of single-valued meromorphic functions G D on R  which are multiples
o f 118 and linearly independent in the complex sense, and B „ (n>N ),
i. e. the dimensions of D(R„) becom e even. Further i f  R E  HD, 4 = 1
i. e. we have Theorem 2. 1 in  [3].

12 . Abel's theorem. As an extension of Abel's theorem to an
open Riemann surface R  it is known (Behnke-Stein) that for any
two sequences {P„} and {Q„}, clustering nowhere on R , there exists
a  single-valued meromorphic function on R  with just prescribed
zeros P„ and poles Q. B u t  from our point of view we can state
here an analogous extension of the classical Abel's theorem. Let
.4 be a  class of single-valued meromorphic functions on R  which

can be written as e x p . p , E  a.

THEOREM 10." The necessary and sufficient condition for the
existence of a single-valued meromorphic function f  E it on R  posses-
sing a f inite num ber o f zeros P„ and poles Q  (v =1, -•• , n) is that
the conditions

(3.5)R e {(13,4 ,(P„)—(13A (Q„)}  = 0  (mod. 1) tt = 1, 2, • ••
B p,

hold fo r th e  integrals q)A , = 5 P , (1).11,=cpt„, E o f  the f irst kind.

Pro o f . If such a function f  exists, then d log f  = E

is  a n  Abelian differential o f th e  third kind such that

d arg f  =0, cp*= 0 (mod. 27-ti) and Res. p* = m ,, Res. p*= — n ,
Ay, Bp, Pv Qv

where m , and n , denote the multiplicities of p * at P.„, Q„ respec-
tively. Hence (3. 5) is obtained from the period relation (3. 1) be-

tween p* and c/(13
A ,(or d(1)B p ,) E R . Conversely, let k = R e ( q )A ,(P)—

1 )  Cf. W e y l [9 ]  p. 123.
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( DA (Q,,)), 1,,.= Re Ê ((1),(P,)—  (1),(Q,)) be integers, then by (3. 1) for
d(DA ,  (or d(1)„,) and 01,(20 E f t  w e have immediately f (p 0

. AV,

= 9)0= 1„ (11= 1, 2, •••). Since po i s  semi-exact,

f =  exp. 1 (po  E  si is a single-valued function on R with the prescribed

zeros P ,  and poles Q , q .  e .  d.

§ IV. Applications to conformal mappings.

13. First of all we state an extremal property of functions in
S .  Let R  be an arbitrary open Riemann surface and {Q } be the
class of analytic functions f = u + iv  on R  with the properties

( )  J E {Q }  possesses the given singularities at P i (z) ( i=1 ,
, r < 0 0 ) such that

(4. 1) f  =  E Th  +E kk z k  at P iz-1 k=0

where au  a re  given.

(ii) u  is single-valued on R and Ç dv = 0 for dividing curves 7.

(iii) udv <0 where the integral means the limit of increas-
ing boundary integrals, and -̀3' the ideal boundary of R.

Obviously D R _L.,(du) < 0 0  where U . denotes the union of p-neigh-
bourhoods of P i (1=1, ••• , r). Now let J o b e  the function o f St
with the given singularities such that

r  m j

(4.2)f o = uo+ ivo = E E t(Re ,1,(4)*+ aii) j •

Since uo dvo =0 (Lemma 4), we find immediately f  E {Q} . Next

we have also by Lemma 4

(4. 3) DR _up (du o )  = uodvo, DR -Up(duo, d (u — uo)) = uod(v — Vo)a UP a CP

D R _  u p(du) = u dv u u dv .
a UP . Up

By direct calculation we have

(4. 4) uodv, =
a Up

r " ' i  kE E -  la1k12 + 0 (0
k
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a Upj = 1  1 , 1  p

where b ? ,  are the coefficients of f 0 corresponding to b i ,  in  (4. 1).
By (4. 3) and (4. 4) we have
(4. 5) 0  G  DR_u p (du — du„) =  DR- U0(dU0) 2D R _ up(du, du 0 ) +1),_ u p (du)

< 27r Re E E kaik(bik — b%)+0(0 2 )

hence for p—>0 the following theorem.
THEOREM 11. f 0  E St given by (4. 2) is a unique minimizing func-

tion of the expression Re {E E ka i „b i „} am ong the c lass  {Q}.
i=1 k=i

The uniqueness follows from (4 . 5 ). This shows that our method
is a converse approach to the ex trem al method due to R . de Posse!
etc. (cf. S ar io  [6 ]) .

1 4 .  A nother characteriz ation of  dif f erentials o f St. Let {R„}
be an exhaustion of elementary domains. Since each R „ on R  is
an open Riemann surface with analytic boundaries, there exist the
semi-exact canonical differentials (on R „) ( p c ,  ( p ,  l iY * n  etc., the
real parts of whose integrals take actually constants on aRn  .  In
the following we drop the asterisk for simplicity. Now it holds that

(4.6)q „ pA k  , 'q/P —> (n
B

k
B

k

For the proof write cp:li k +  i d v .  By bilinear relation on R„
we have

(4. 7) DRn(du) cle ; (11,, R„)
Ah

and also for m > n

(4. 8) 0  G  DR n (duT — du ;) D ( d u )  — 2 D  R „(clz4 , duT)+ DR„(dur)

de,: +2 d v ' + dVT
Ah Ah Ah

Akde0 ,
Ak  

because of

(4.9)d v T — DR,n _ Rn (dU n  < O.
a R,

u o d(v—vo)= —  7T Re E E kai k (b i k — + 0(p 2 )a Up -1 0 1

d V  =  E E - -laik1 2 +0(P 2 ) •2k
r  " ' l  k
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This shows that the quantities in (4. 7) are monoton decreasing for
0.0 and uniformly bounded. Hence suitable subsequence, say

again Itek'l , converges to a  harmonic function u ; on R, where the
convergence is uniform on every compact set. It remains to prove
th a t the semi-exact differential p'A k = de, is identical with
PA k  d u k + dv k  L e t t in g  7n ,  00 in  (4. 8), (4.9) we find that

— u'k— d v+Ç  d v ',
BRn Ak JAk

which tend to zero for n—> 00 . Since

uTdvkaRt z

DR,n -R n (dU nk' , dUk) < (d U n D R ,n -R n ( dUk)

let m  0 0 , successively n  0 0 , then we find u'kdvk O. T h u s ,
we have under the use of Lemma 4

D R . ( d u l
k — dUk) — (1 4  Uk) d (v'k v k ) for n 00

j. e. p A k •  Analogously we have T
o
Bk

- -
> (PBk •

proof of the latter in (4. 6) is  as follows. Let

dun + i dvn  = bk n z k  at P (C  R n ), n = 1, 2, • • •
2 k- -0

By Theorem 11 we have immediately

Re b„,„ <  Re b,n , <  •  < R e b ,;,'

where kJ is  the coefficient of z  in the expansion of the extremal

function f 0 =  A pP  on R .  Hence lim Re 13 „  exists, and by (4. 5) we
71 00

have for any compact K

O <  DK (du,,,— dun ) <  D R .(du,— dun )
< 27-t Re p(b„, — b,„), m >  n  (>  N )

from which we see that a  suitable subsequence, say again {u},
converges uniformly to u ' harmonic on R— P and DR _ u p (du') <00.
Finally we have du' -_-= -.duo . Indeed, for m > n

DR n (dU o —  dU ,„) < — Lu n z d v o +  a R n ti0d(V0- 1),71)

Next, the brief

L m ø = DRm _Rn (Chi m , dU 0) < .VDR„,_v,,(du,„)DR_R„(duo).
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Since DR _ u p (du„,)--> u' dv' (m co), letting m  0 0  successively
a Up

n—> C<D we get the conclusion.
15 . In this section we confine R to an arbitrary open Riemann

surface of finite genus p .  Let 8  be an integral divisor of order
in ( p + 1 < m <  co), then by Theorem 8 the number A > 4 .  Hence
we have the following theorem under the property (ii) in sec. 11.

THEOREM 12 . Any open Riemann surface R of f inite genus p  can
be mapped conformally onto an  at m ost (p + 1 )-t im es  covered plane»

Let P , be a point of R .  Since there does not exist a non-
constant function E g o of a multiple of P, under the consideration
of (ii) in sec. 11, the number B =B (P 1)  for the divisor P, is equal
to 2(p-1) b y  Riemann-Roch's theorem. I f p > 1 , there are at least
two linearly independent differentials cp„ 9) 2 w hich vanish at P,.
Then we can take a point P, such that

Re 4)1 (P2 ) Re 0 2 (P2 )
I- 0

Im 0 1(P2) Im (1)2(P2)
where we write in general cp(P)=4)(z)dz (z is  a local parameter at
P ) .  Indeed, otherwise we would have (»,14)2 =-(1 4 ) ,)  in an open
set, which implies that analytic function  q 1/ 'p2 reduces to a real
constant. This is absurd. Thus any differential ep=c 1p 1 +c 2p 2 with
real constants c 1 , c ,  i s  a multiple of P „ but not of P ,P , .  While
B (P,P,)> 2(p — 2 ), hence w e have immediately B(P1P2 )= 2(p — 2).
Repeating this argument p  times we find that there exist p  distinct
points on R  such that B (8)=0 for 8=P1P2 ••• Pp  and consequently
A (118)=2. That is, we have a t once

THEOREM 13 . L et R , be an  open R iem ann surface of  genus p
whose boundary consists o f  a finite number of  Jordan curves. T hen
it is possible to find p  Points P,, ••• , P p  on R o such that there does not
ex ist any  parallel slit m apping of  R , with possible poles P„ •-• ,P p .

Next, consider the divisor 8 = P,P, • • • Pr  for simplicity, where P
are mutually distinct. Then we note that any non-constant function
f  EST, of a multiple of 1/8 can be written by uniqueness theorem
that

(4. 10)
r

f  = E a i ) * (11,?+ biS+ (.11„))

1 )  If the conjecture in footnote 1) p. 250 would be valid, th is w ill g ive a parallel
slit m apping o f R.
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where a i and bi  real numbers which satisfy by (3. 1) 2 p  linear equa-
tions

(4.11)Ê  la i  Re 0,4,(zi)—bi OA k (z i )}  = O, k  =  1, 2, • • •,=, Bk

where z i are local parameters at P i . Conversely we see that every
single-valued function E n o of a multiple of 1/8 is constructed by
this w a y . Now we shall prove

THEOREM 1 4 ."  Let P , be a given point on the same surface R,
as above. Then fo r  suitable choices of p  Points P,, P ••• , Pp „  on
R , there ex ists a function F, (resp. F,) w hich m aps R , conform ally
onto an at m ost (p+1)-tim es covered plane w ith slits parallel to
the im aginary  (resp. real) axis, and have their poles at P, and some
o f P,, ••• , Pp + , w here Res. F,— Res. F2 =1.

P , P1

First w e recall that R e  A k ( P , )  an d  Re 4 - ) B k ( P 1 )  (o r  Im  A
k (Pi)

and /m O B k ( P M  (k =1,••• , p )  do not vanish simultaneously. Next,
we take p  distinct points P,, P 3 1  • "  1  P i r l ,  on R o such that A(1/P2P3
• • • P + ,) =2 and consequently the deteriminant of coefficients to a i ,
bi  ( i= 2, 3, ••• , r=p  + 1) in (4. 11) is different from zero. Then we
see that the function F , (resp . iF2)  (4. 10) determined by (4. 11)
( r= p + i )  after the choice a 1 = 1 , b, = 0 (resp. 0. 1 =0, 1) 1 =1 )  i s  the
required, q. e. d.

1 6 .  Proof  o f (ii) in sec. 1 1 .  We shall consider for simplicity
the case of integral divisor 8 =P 1 P 2  • • •  P r . T hen  any non-constant
function f  E R , of a multiple of 1/8 can be written as (4. 10) with
a1 , b. satisfying (4. 11). Take an elementary domain R ,„ so large
that R— R,„ becomes planar character and does not contain any
pole of f .  Then the functions (with suitable constants)

„, +b m >  no ,

are single-valued on R„,—R,„ and converge to f (m °O) on every
compact set on R — R ,„. Now by the argument principle we have
for any complex number ce

n(f ,a,R „)— n(f , 0 0 , R 1d f„) = ( n >  n , )
27ria i ,),, f  —a

where n (f , 0 0 , R „) =q <r and w e m ay assume f = a  on aR n . If

1 )  C f. the  corresponding theorem in  Nehari's paper [4], sec. 6.



Theory of  A belian integrals and its applications 257

m  (>n >n o)  are sufficiently large, the integral (integer) on the right
hand side is equal to

1d f „ ,  _  1 d arg (f a)— n (f , a, R,,— Rn)

which is negative, because the integral along aRn, vanishes. Hence
n( f , ce, R „)< q for an y n> n o and we have n(f , a, R )< q for n—). co,
which completes the proof.

1 7 .  Finally we consider any Riemann surface R  of genus zero
(p lanar character). F irst w e note th a t  S = S  and every function
f  E a on R  is  the uniform limit of above parallel slit mappings f„,
of R „,. That the limit function f  gives also a parallel slit mapping
of R  can be proved by the usual method. (e. g. Nevanlinna [5],
pp. 295-297). Therefore the in te g ra l (13p E St of (2. 10) shows the
explicit form of a canonical slit m apping. For example, any plane
domain G can be mapped onto a vertical slit domain by the function

( 4 .  1 2 ) F ( z ,
aP(z  n + a f  dp (z , 

whose residue at a simple pole z=- -  is 1 w here p=g+i*g , (g  is  a
Green function of G) D-,---(0,+i*0), and A's ( =1, areare
given by (1. 11) and (2. 7).

Department of Mathematics
Kyoto University
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