MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 1, 1960.

Brownian motions on the 3-dimensional rotation group

By

H. P. MCKEAN, JR.

(Received January 4, 1960)

(Communicated by Prof. K. Itô)

1. INTRODUCTION

K. Itô [1950]* and K. Yosida [1952] defined and constructed all the Brownian motions on Lie groups. The purpose of the present paper is to give a new method for constructing the Brownian sample paths on the 3-dimensional rotation group SO(3). The idea is to inject the differentials $\mathfrak{z}(dt)$ of a (skew) Brownian motion on the Lie algebra into SO(3) via the exponential map eand to piece the resulting infinitessimal rotations $e[\mathfrak{z}(dt)]$ into a continuous path (product integral):

1.1

$$g_{\infty}(t) = \bigcap_{s \leq t} e[\mathfrak{z}(ds)] = \lim_{n \to \infty} e[\mathfrak{z}(0, 2^{-n})] \cdots e[\mathfrak{z}(2^{-n}[2^{n}t], t)] \qquad t \geq 0.$$

The same trick gives the Brownian motions on all the classical (non-exceptional) simple Lie groups of É. Cartan's list.

F. Perrin [1928] computed the counterparts of the Gauss and Poisson laws on SO(3); for a sketch of Perrin's results, see P. Lévy [1948: 194-203].

I divide the paper into 8 sections: 2 deals with SO(3), its Lie algebra, and its differential operators; 3 with its Brownian motions. 4 states the program of injection. 5 is devoted to sums $g = \sum_{n \ge 0} j_n$ of stochastic integrals

^{*} K. Itô [1950] means K. Itô's 1950 publication listed at the end of this paper; K. Itô [1950: 6-8] would mean pages 6-8 of that work.

H. P. McKean, Jr.

1.2
$$j_0 = e$$
, $j_n = \int_0^t j_{n-1} j(ds)$ $j(ds) = z(ds) + \frac{1}{2} z(ds)^2$.

6 contains the identification of g with $g_{\infty} = \bigcap_{s \le t} e[\mathfrak{z}(ds)]$. 7 identifies $g = g_{\infty}$ with a Brownian motion on SO(3). 8 contains an example which C. D. Gorman [1958] has also treated*. I will suppose, for the purposes of 5, 6, and 7, that the reader is familiar with stochastic integrals as presented, for example, in K. Itô [1951].

I wish to thank H. Trotter who suggested the problem of 8 which was the starting point of this paper. I must also thank K. Itô for helpful talks and for a trick used in 5.

2. ROTATION GROUP

 R^3 is the (real) 3-dimensional euclidean space of points $x = (x_1, x_2, x_3)$, etc.; $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$; $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$; × is the outer product for R^3 ($e_1 \times e_2 = e_3$, $e_2 \times e_3 = e_1$, $e_3 \times e_1 = e_2$); small German letters f, etc. stand for (real) 3×3 matrices; *f is the transpose of f; f⁻¹ its inverse; |f| its norm; SO(3) is the (multiplicative) group of 3×3 orthogonal matrices g (g*g=e= the unit) of determinant +1.

Bringing in the infinitessimal rotations

2.1
$$e_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and the product

2.2
$$[f_1, f_2] = f_1 f_2 - f_2 f_1$$
,

a short computation justifies

2.3
$$[e_1, e_2] = e_3, [e_2, e_3] = e_1, [e_3, e_1] = e_2,$$

which shows that the vector space A of matrices

2.4
$$\mathfrak{a} = \alpha_1 \mathfrak{e}_1 + \alpha_2 \mathfrak{e}_2 + \alpha_3 \mathfrak{e}_3$$
 $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$

under the product 2.2 is isomorphic to R^3 under the outer product. A is the so-called Lie algebra of SO (3).

A is connected to SO(3) via the exponential map

2.5
$$e(\mathfrak{f}) = \sum_{n \ge 0} \mathfrak{f}^n / n !$$

^{*} Note added in proof: for a complete account, see C. D. Gorman, Brownian motion of rotation. Trans. Amer. Math. Soc. 94 (1960), 103-117.

and the logarithm

2.6
$$l(\mathfrak{f}) = \sum_{n \ge 1} (\mathfrak{f} - \mathfrak{e})^n / n \qquad |\mathfrak{f} - \mathfrak{e}| < 1:$$

in fact, l maps the neighborhood |g-e| < 1 of SO(3) onto a neighborhood of the 0 element of A and e maps the neighborhood |a| < lg 2 of A onto a neighborhood of e in SO(3); both maps are 1:1; in the first case, the inverse map is e; in the second, it is l.

SO (3) is homeomorphic to the 3-dimensional projective space P^3 : in fact, P^3 , viewed as the spherical surface $S^3 \leq R^4$ with antipodal identifications, is homeomorphic to the solid 3-dimensional ball of diameter 2π with antipodal surface points identified, and the map taking α ($|\alpha| \leq \pi$) into the rotation g of total angle $|\alpha|$ about the axis α in the sense of the right-hand screw rule is a homeomorphism of the solid ball with surface identifications onto SO (3) (for small $\alpha, \alpha \rightarrow g$ is just the exponential map).

Consider the class $C^{2}[SO(3)]$ of functions $f=f(\mathfrak{g})$ defined on SO(3) such that, for $\mathfrak{g} \in SO(3)$, $h(\alpha)=f(\mathfrak{g}e[\alpha_{1}\mathfrak{e}_{1}+\alpha_{2}\mathfrak{e}_{2}+\alpha_{3}\mathfrak{e}_{3}])$ is of class C_{2} near $\alpha=0$ and define

2.7
$$(\mathfrak{G}_1 f)(\mathfrak{g}) = h_1(0), \quad (\mathfrak{G}_2 f)(\mathfrak{g}) = h_2(0), \quad (\mathfrak{G}_3 f)(\mathfrak{g}) = h_3(0),$$

where the subscripts stand for partials.

Writing out the power series for f at g=e up to terms of degree 2, it develops that, with the commutator product 2.2,

2.8
$$[\mathfrak{G}_1, \mathfrak{G}_2] = \mathfrak{G}_3, \ [\mathfrak{G}_2, \mathfrak{G}_3] = \mathfrak{G}_1, \ [\mathfrak{G}_3, \mathfrak{G}_1] = \mathfrak{G}_2,$$

so that the algebra of differential operators

2.9
$$\mathfrak{G} = \alpha_1 \mathfrak{G}_1 + \alpha_2 \mathfrak{G}_2 + \alpha_3 \mathfrak{G}_3 \qquad \alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$$

under the commutator product is isomorphic to the Lie algebra; under the usual product, \mathfrak{E}_1 , \mathfrak{E}_2 , \mathfrak{E}_3 generate the algebra of differential operators on SO(3) commuting with left translations.

Contracting \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 to the class of functions $f \in C^2[SO(3)]$ such that $f(\mathfrak{g}_1) = f(\mathfrak{g}_2)$ if $\mathfrak{g}_1 e_3 = \mathfrak{g}_2 e_3$ $(e_3 = (0, 0, 1))$ and viewing them as differential operators on the coset space SO(3)/SO(2)=S² of points $\mathfrak{g}e_3$, one gets the following 3 operators:

2.10
$$\sin\phi \frac{\partial}{\partial\psi} - \frac{\cos\psi\cos\phi}{\sin\psi} \frac{\partial}{\partial\phi}, \quad \cos\phi \frac{\partial}{\partial\psi} - \frac{\cos\psi\sin\phi}{\sin\psi} \frac{\partial}{\partial\phi}, \quad \frac{\partial}{\partial\phi},$$

where $0 \le \psi \le \pi$ is the colatitude and $0 \le \phi < 2\pi$ the longitude of $g\ell_3$.

The reader is referred to W. Maak [1950: 161–179, 209–210] and to I. Gelfand and Z. Ya. Sapiro [1956; 207–245] for proofs and more information.

3. BROWNIAN MOTIONS ON SO(3).

Consider the space of all continuous (sample) paths $w: t \in [0, +\infty) \rightarrow g(t) \in SO(3)$, let B_t be the smallest Borel algebra of subsets of the path space measuring the entries of g(s) for each $s \leq t$, let **B** be the smallest Borel algebra containing all of these, and take non-negative Borel measures P_g defined on **B** of total mass +1, one to each $g \in SO(3)$, such that $P_g[g(0)=g]=1$ for each $g \in SO(3)$ and $P_g(B)$ is Borel on SO(3) for each $B \in \mathbf{B}$.

 $[W, B, P_g: g \in SO(3)]$ is said to be a (left) Brownian motion on SO(3) if it is Markov:

3.1
$$P.[g(t+s) \in dg | B_s] = P_{\mathfrak{h}}[g(t) \in dg]|_{\mathfrak{h}=\mathfrak{g}(s)} \quad t, s \ge 0$$

and if it is also (left) group-invariant:

3.2
$$P_{\mathfrak{g}}(B) = P_{\mathfrak{g}}(\mathfrak{g}^{-1}B) \qquad \mathfrak{g} \in \mathrm{SO}(3), \ B \in \boldsymbol{B},$$

where $g^{-1}B$ is the set of sample paths such that the translated path $g^{-1}g(t): t \ge 0$ lies in B.

Given such a Brownian motion, its generator (8) is defined as

3.3
$$(\textcircled{G}f)(\mathfrak{g}) = \lim_{t \neq 0} t^{-1} E_{\mathfrak{g}}[f(\mathfrak{g}(t)) - f(\mathfrak{g})]$$
$$\mathfrak{g} \in \mathrm{SO}(3), \ E_{\cdot}(f) = \int fP_{\cdot}(dw)$$

for the class $C(\mathfrak{G})$ of functions $f \in C[SO(3)]$ such that the limit exists (pointwise) and the resulting $\mathfrak{G}f$ lies again in C[SO(3)].

Because $C(\mathfrak{G})$ is a (left) ideal in C under the convolution

3.4
$$(f_1 \otimes f_2)(\mathfrak{h}) = \int f_1(\mathfrak{h}\mathfrak{g}^{-1}) f_2(\mathfrak{g}) d\mathfrak{g}$$

where $d\mathfrak{g}$ is Haar measure for SO (3), it is clear from the inclusion $C^2 \otimes C(\mathfrak{G}) \subset C^2$ that $C(\mathfrak{G}) \cap C^2$ is well-populated, and it is possible to conclude that \mathfrak{G} is an elliptic differential operator of degree 2 commuting with (left) translations:

Brownian motions on the 3-dimensional rotation group

3.5
$$\mathfrak{G} = \frac{1}{2} \sum_{i,j \leq 3} l_{ij} \mathfrak{G}_i \mathfrak{G}_j + \sum_{i \leq 3} m_i \mathfrak{G}_i,$$

where

3.6
$$I = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33} \end{pmatrix} = \lim_{t \neq 0} t^{-1} E_{\mathfrak{g}} [\mathfrak{g}(t) - \mathfrak{e}]^2$$

is symmetric (l = *l) and non-negative definite $(l \ge 0)$, and

3.7
$$\mathfrak{m} = m_1 \mathfrak{e}_1 + m_2 \mathfrak{e}_2 + m_3 \mathfrak{e}_2 = \lim_{t \neq 0} t^{-1} E_{\mathfrak{e}}[\mathfrak{g}(t) - \mathfrak{e}]$$

On the other hand, an elliptic differential operator such as 3.5 with $I = *I \ge 0$ generates a (left) Brownian motion; for the proofs, the reader is referred to the articles of K. Itô [1950] and K. Yosida [1952].

4. INJECTION

Consider, now, the standard Brownian motion on R^3 with generator $\frac{1}{2} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right)$ and sample paths $w: t \to x(t) \in R^3$, write P for the Wiener measure for paths starting at 0, let $E(f) = \int fP(dw)$, select an SO(3) Brownian generator (3) as in 3.5, introduce the (skew) R^3 Brownian motion

4.1
$$z(t) = l^{1/2}x(t) + mt$$
 $t \ge 0$,

where $l^{1/2}$ is the non-negative definite root of l and $m = (m_1, m_2, m_3)$, and, making the identification of R^3 and A $(e_1 \rightarrow e_1, e_2 \rightarrow e_2, e_3 \rightarrow e_3)$, think of 4.1 as a Brownian motion $\mathfrak{z} = z_1 e_1 + z_2 e_2 + z_3 e_3$ in the Lie algebra itself.

We inject $\frac{3}{2}$ into SO(3) via the exponental, thus:

4.2
$$g_n(t) = g(0) \in SO(3)$$
 $t = 0$
 $= g_n(j2^{-n})e[\mathfrak{z}(\Delta)]$ $t > 0$
 $\Delta = [j2^{-n}, t), \quad j = [2^nt], \quad \mathfrak{z}(\Delta) = \mathfrak{z}(t) - \mathfrak{z}(j2^{-n})$

and assert that g_n converges to a limit g_{∞} , that the convergence is uniform on compacts, and that g_{∞} is the Brownian motion on SO(3) with generator \mathfrak{G} .

With the help of P. Lévy's Hölder condition [1937: 168-172]

29

4.3
$$\lim_{\substack{t=t_2-t_1\neq 0\\ 0 \le t_1 \le t_2 \le 1}} \sup_{\substack{|x(t_2)-x(t_1)| \\ \sqrt{2t|||gt||}}} = 1$$

and the multiplication table

4.4
$$e_1^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $e_2^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $e_3^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $e_1e_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $e_2e_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $e_3e_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$,

it is clear that, up to terms involving $\mathfrak{z}(\Delta)^3$ (of magnitude $\langle 2^{-4n/3} \rangle$), 4.5 $\mathfrak{g}_n(t) - \mathfrak{g}_n(j2^{-n}) = \mathfrak{g}_n(j2^{-n})(\mathfrak{e}[\mathfrak{z}(\Delta)] - \mathfrak{e}) = \mathfrak{g}_n(j2^{-n})(\mathfrak{z}(\Delta) + \frac{1}{2}\mathfrak{z}(\Delta)^2)$, where

4.6
$$\mathfrak{z}(\Delta) = \mathbf{z}_1(\Delta)\mathbf{e}_1 + \mathbf{z}_2(\Delta)\mathbf{e}_2 + \mathbf{z}_3(\Delta)\mathbf{e}_3 = \begin{pmatrix} 0 & -\mathbf{z}_3(\Delta) & \mathbf{z}_2(\Delta) \\ \mathbf{z}_3(\Delta) & 0 & -\mathbf{z}_1(\Delta) \\ -\mathbf{z}_2(\Delta) & \mathbf{z}_1(\Delta) & 0 \end{pmatrix}$$

and

$$\begin{array}{rl} 4.7 & \displaystyle \frac{1}{2} \, {}_{\mathfrak{Z}}(\Delta)^2 \\ & & = \displaystyle \frac{1}{2} \begin{pmatrix} -\left[z_2(\Delta)^2 + z_3(\Delta)^2\right] & z_1(\Delta)z_2(\Delta) & z_1(\Delta)z_3(\Delta) \\ & z_2(\Delta)z_1(\Delta) & -\left[z_3(\Delta)^2 + z_1(\Delta)^2\right] & z_2(\Delta)z_3(\Delta) \\ & z_3(\Delta)z_1(\Delta) & z_3(\Delta)z_2(\Delta) & -\left[z_1(\Delta)^2 + z_2(\Delta)^2\right] \end{pmatrix},\end{array}$$

and the reader who knows stochastic integrals will at once conjecture that $g_{\infty} = \lim_{n \neq \infty} g_n$ is the solution of

4.8
$$g(t) = g(0) + \int_0^t g(s) j(ds) \qquad t \ge 0$$
,

where

.

$$\begin{split} \mathfrak{j}(ds) &= \mathfrak{z}(ds) + \frac{1}{2} \mathfrak{k} \, ds \\ \mathfrak{k} &= \frac{1}{2} \begin{pmatrix} - [l_{22} + l_{33}] & l_{12} & l_{13} \\ l_{21} & - [l_{33} + l_{11}] & l_{23} \\ l_{31} & l_{32} & - [l_{11} + l_{22}] \end{pmatrix}; \end{split}$$

t is computed from 4.7 using the multiplication table

30

1	10	
4.	τυ	

	dt	$x_1(dt)$	$x_2(dt)$	$x_{3}(dt)$
dt	0	0	0	0
$x_1(dt)$	0	dt	0	0
$x_2(dt)$	0	0	dt	0
$x_{3}(ds)$	0	0	0	dt

and the resulting

4.11

		dt	$z_1(dt)$	$z_2(dt)$	$z_{3}(dt)$	
	dt	0	0	0	0	
-	$z_1(dt)$	0	$l_{11}dt$	$l_{12}dt$	$l_{13}dt$;
	$z_2(dt)$	0	$l_{21}dt$	$l_{\scriptscriptstyle 22}dt$	$l_{23}dt$	
	$z_{3}(dt)$	0	$l_{31}dt$	$l_{32}dt$	$l_{33}dt$	

and $\int g dj$ means perform the matrix multiplication g dj and compute the 9 resulting stochastic integrals.

The program is to solve 4.8 for g and to compare g and g_n : the result will be that $\lim_{n \to \infty} g_n = g$, permitting the identification of the product integral $\bigwedge_{s \leq t} e[\mathfrak{z}(ds)]$ with g and, at the same time, proving its existence.

5. SOLVING THE INTEGRAL EQUATION

Given (constant) $g(0) \in SO(3)$, consider the continuous SO(3) solutions g=g(t) of 4.8 such that, for each $t \ge 0$, g(t) depends upon $\mathfrak{z}(s): s \le t$ alone.

Given 2 such solutions g_1 and $g_2,$ their difference $g\!=\!g_2\!-\!g_1$ satisfies

5.1
$$g(t) = \int_0^t g(s) j(ds) \qquad t \ge 0$$

and, using a formula of K. Itô [1951: 60], it develops that

H. P. McKean, Jr.

5.2

a(t)*a(t)

$$= \int_0^t gdj^*g + \int_0^t g^*dj^*g + \int_0^t gdj^*dj^*g$$
$$= \int_0^t g(dj^*dj^*dj^*dj^*dj^*g)$$

But, according to the multiplication table 4.11,

5.3
$$d\mathbf{j} + \mathbf{k}d\mathbf{j} = \mathbf{f}ds$$
, $d\mathbf{j} \mathbf{k}d\mathbf{j} = d\mathbf{z}\mathbf{k}d\mathbf{z} = -\mathbf{f}ds$,

and therefore $g^*g=0$, which is impossible unless $g_2=g_1$. Consider, next, the presumptive solution

5.4
$$g = \sum_{n \ge 0} \dot{j}_n$$

 $\dot{j}_n(t) = \int_0^t \dot{j}_{n-1} dj \qquad n \ge 1$, $\dot{j}_0 = g(0)$

and let us check that the sum is convergent using the following trick of K. Itô.

Given \mathfrak{f} , if $\gamma_1(=|\mathfrak{f}|^2) \ge \gamma_2 \ge \gamma_3$ are the eigenvalues of $\mathfrak{f}^*\mathfrak{f}$, if \mathfrak{p}_1 , \mathfrak{p}_2 , \mathfrak{p}_3 are the corresponding projections $(\gamma_1\mathfrak{p}_1+\gamma_2\mathfrak{p}_2+\gamma_3\mathfrak{p}_3=\mathfrak{f}^*\mathfrak{f})$, and if $\int_{S^2} do$ is the arithmetical average over the spherical surface S^2 , then

5.5
$$\int_{S^2} |\mathfrak{p}_1 o|^2 do = \int_{S^2} |\mathfrak{p}_2 o|^2 do = \int_{S^2} |\mathfrak{p}_3 o|^2 do = \frac{1}{3}$$

and

5.6
$$\int_{S^2} o\mathfrak{f}^*\mathfrak{f} o \, do \geq \gamma_1 \int_{S^2} |\mathfrak{p}_1 o|^2 \, do = \frac{1}{3} |\mathfrak{f}|^2 \, ,$$

where of^*fo is the inner product of $o \in S^2$ and $f^*fo \in R^3$.

Viewing $l^{1/2}x(t):t \ge 0$ as a Brownian motion \mathfrak{y} in the Lie algebra,

5.7
$$j_n(t) = \int_0^t j_{n-1} i \, ds + \int_0^t j_{n-1} \mathfrak{y}(ds) \qquad i = \frac{1}{2} i t + m ,$$

and using 5.6 to check

5.8
$$E \left| \int_{0}^{t} \mathbf{j}_{n-1} \mathbf{y}(ds) \right|^{2} \leq 3E \int_{S^{2}} o \left[\int_{0}^{t} \mathbf{j}_{n-1} \mathbf{y}(ds)^{*} \int_{0}^{t} \mathbf{j}_{n-1} \mathbf{y}(ds) \right] o \, do$$
$$= 3E \int_{S^{2}} o \left[\int_{0}^{t} \mathbf{j}_{n-1} \mathbf{y}(ds)^{*} \mathbf{y}(ds)^{*} \mathbf{j}_{n-1} \right] o \, do$$
$$= -3E \int_{S^{2}} o \left[\int_{0}^{t} \mathbf{j}_{n-1} \mathbf{t}^{*} \mathbf{j}_{n-1} ds \right] o \, do \leq 3 |\mathbf{t}| E \int_{0}^{t} |\mathbf{j}_{n-1}| \, ds \, ,$$

it is seen that

5.9
$$(E|\mathbf{j}_{n}(t)|^{2})^{1/2} \leq \left(E\left|\int_{0}^{t}\mathbf{j}_{n-1}\mathbf{i}\,ds\right|^{2}\right)^{1/2} + \left(E\left|\int_{0}^{t}\mathbf{j}_{n-1}\mathbf{i}(ds)\right|^{2}\right)^{1/2} \\ \leq (|\mathbf{i}|t^{1/2} + (3|\mathbf{f}|)^{1/2})\left(E\int_{0}^{t}|\mathbf{j}_{n-1}|^{2}\,ds\right)^{1/2}.$$

As to $\sum_{n\geq 0} \mathfrak{j}_n$, since $\mathfrak{h}_n = \mathfrak{j}_n - E(\mathfrak{j}_n)$ is a martingale, $|\mathfrak{h}_n|$ is a semimartingale, so that, using a result of Doob [1953: 314-315] in conjunction with 5.9,

5. 10

$$P(\max_{s \le t} |\mathfrak{h}_{n}(s)| \ge 2^{-n})$$

$$\le 2^{2n} E |\mathfrak{h}_{n}|^{2}$$

$$\le 3 2^{2n} E \int_{S^{2}} o\mathfrak{h}_{n}^{*} \mathfrak{h}_{n} o \, do$$

$$\le 3 2^{2n} E \int_{S^{2}} o[\mathfrak{j}_{n}^{*}\mathfrak{j}_{n} - E(\mathfrak{j}_{n})^{*} E(\mathfrak{j}_{n})] o \, do$$

$$\le 3 2^{2n} E \int_{S^{2}} o\mathfrak{j}_{n}^{*} \mathfrak{j}_{n} o \, do$$

$$\le 3 2^{2n} E |\mathfrak{j}_{n}|^{2}$$

is the general term of a convergent sum, and now the Borel-Cantelli lemma implies that the convergence of

5. 11
$$\sum_{n \ge 0} \mathfrak{j}_n = \sum_{n \ge 0} \mathfrak{h}_n + \sum_{n \ge 0} E(\mathfrak{j}_n) = \sum_{n \ge 0} \mathfrak{h}_n + e(\mathfrak{i}t)$$

is uniform on compacts.

g is therefore well-defined and continuous; that it solves 4.8 is clear; and that it lies in SO(3) follows from

5. 12
$$g(t)*g(t)$$
$$= g(0)*g(0) + \int_0^t g[d\mathbf{i} + d\mathbf{j} + d\mathbf{j} + d\mathbf{j}]*g$$
$$= \mathbf{e} \qquad t \ge 0$$

and from the fact that det (g) $(=\pm 1)$ is continuous and =+1 at t=0.

6. CONVERGENCE PROOF

Coming to the proof that $\lim_{n \to \infty} g_n = g$ $(=\sum_{n \ge 0} i_n)$, take $t \le 1$, $j = [2^n t]$,

and let us estimate

6.1

$$g_{n}(t) - g(0) - \int_{0}^{t} g_{n}(s) j(ds)$$

$$= f_{n}(t) - \int_{0}^{t} f_{n}(s) j(ds)$$

$$+ g_{n}(j2^{-n}) - g(0) - \sum_{i \leq j} g_{n}((i-1)2^{-n}) j(\Delta_{i}),$$

where

4

6.2
$$f_n(s) = g_n(s) - g_n((i-1)2^{-n}) \qquad s \in \Delta_i$$
$$\Delta_i = [(i-1)2^{-n}, i2^{-n}) \qquad i \le 2^n.$$

P. Lévy's 4.3 implies that

6.3
$$\max_{t\leq 1}|f_n(t)| < \sqrt{3} \, 2^{-n} \, lg \, 2^n \qquad n \uparrow \infty$$

and that, up to terms of magnitude $2^{n} \left[\sqrt{32^{-n} lg 2^{n}}\right]^{3} < 2^{-n/3}$,

6.4
$$g_n(j2^{-n}) - g(0) - \sum_{i \le j} g_n((i-1)2^{-n}) j(\Delta_i) = \sum_{i \le j} g_n((i-1)2^{-n}) (e[\mathfrak{z}(\Delta_i)] - e - j(\Delta_i)) = \sum_{i \le j} g_n((i-1)2^{-n}) \mathfrak{w}_i \mathfrak{w}_i = \frac{1}{2} [\mathfrak{z}(\Delta_i)^2 - \mathfrak{k} 2^{-n}] \qquad i \le 2^n.$$

Itô's trick (5.6) and the semi-martingale method of 5.11 give

6.5
$$P[\max_{j \leq 2^{n}} |\sum_{i \leq j} g_{n}((i-1)2^{-n})\mathfrak{w}_{i}| \geq 2^{-n/3}]$$

$$\leq 2^{2n/3} E |\sum_{j \leq 2^{n}} g_{n}((i-1)2^{-n})\mathfrak{w}_{i}|^{2}$$

$$\leq 3 2^{2n/3} E \int_{S^{2}} o[\sum_{i \leq 2^{n}} g_{n}\mathfrak{w}_{i} *\sum_{i \leq 2^{n}} g_{n}\mathfrak{w}_{i}] o \ do$$

$$= 3 2^{2n/3} E \int_{S^{2}} o[\sum_{i \leq 2^{n}} g_{n}\mathfrak{w}_{i} *\mathfrak{w}_{i} *g_{n}] o \ do$$

$$= 3 2^{2n/3} E \int_{S^{2}} o[\sum_{i \leq 2^{n}} g_{n}(i_{2}2^{-2n} + i_{3}2^{-3n} + i_{4}2^{-4n}) *g_{n}] o \ do$$

$$\leq 3(|i_{2}| + |i_{3}| + |i_{4}|) 2^{-n/3}$$

with constant $\dot{i}_{_2},~\dot{i}_{_3},~\dot{i}_{_4},$ so that, thanks to the Borel-Cantelli lemma,

6.6
$$|g_n(j2^{-n}) - g(0) - \sum_{i \leq j} g_n((i-1)2^{-n}) j(\Delta_i)| < 2^{-n/3} \qquad n \uparrow \infty.$$

As to $\int_{0}^{t} f_{n} dj$, if $\varepsilon_{n} = \varepsilon_{n}(t)$ is the indicator of the sphere $|f_{n}(t)| < 2^{-n/3}$, then, as is clear from 6.3,

6.7
$$\int_{0}^{t} f_{n} dj = \int_{0}^{t} f_{n} \mathcal{E}_{n} dj \qquad t \leq 1, \ n \uparrow \infty,$$

and now

6.8
$$\int_0^t \mathfrak{f}_n d\mathfrak{j} = \int_0^t \mathfrak{f}_n \mathfrak{i} \, ds + \int_0^t \mathfrak{f}_n \mathfrak{y}(ds)$$

in conjunction with

6.9

$$\begin{aligned} & \left| \int_{0}^{t} \mathfrak{f}_{n} \mathfrak{i} \, ds \right| \leq |\mathfrak{i}| 2^{-n/3} \qquad t \leq 1, \ n \uparrow \infty, \\ 6.10 \qquad P\left[\max_{t \leq 1} \left| \int_{0}^{t} \mathfrak{f}_{n} \mathcal{E}_{n} \mathfrak{y}(ds) \right| \geq 2^{-n/4} \right] \\ & \leq 3 \, 2^{n/2} E \int_{S^{2}} o \left[\int_{0}^{1} \mathfrak{f}_{n} \mathcal{E}_{n} \mathfrak{y}(ds)^{*} \int_{0}^{1} \mathfrak{f}_{n} \mathcal{E}_{n} \mathfrak{y}(ds) \right] o \, do \\ & = -3 \, 2^{n/2} E \int_{S^{2}} o \int_{0}^{1} \mathcal{E}_{n} \mathfrak{f}_{n} \mathfrak{t}^{*} \mathfrak{f}_{n} \, ds \right] o \, do \\ & \leq 3 \, 2^{n/2} |\mathfrak{t}| 2^{-2n/3} = 3 |\mathfrak{t}| 2^{-n/6}, \end{aligned}$$

and the Borel-Cantelli lemma, justifies

6.11 $\max_{t\leq 1} \left| \int_0^t \mathfrak{f}_n d\mathfrak{j} \right| < 2^{-n/4} \qquad n \uparrow \infty .$

Collecting all this, if $o_n = g_n - g(0) - \int_0^t g_n dj$, then

6.12
$$\max_{t\leq 1} |\mathfrak{o}_n(t)| < 3 \cdot 2^{-n/4} \qquad n \uparrow \infty,$$

and using K. Itô's method of stochastic differential in conjunction with dj + dj + dj + dj = 0 to check

6.13
$$g_n * g = o_n * g + e - \int_0^t o_n * dj * g$$

and estimating $\int_{0}^{t} \mathfrak{o}_{n}^{*} d\mathbf{j}^{*} \mathfrak{g}$ as we estimated $\int_{0}^{t} \mathfrak{f}_{n} d\mathbf{j}$ justifies 6.14 $\max_{t \leq 1} |\mathfrak{g} - \mathfrak{g}_{n}| = \max_{t \leq 1} |\mathfrak{g}_{n}^{*}\mathfrak{g} - e| < 2^{-n/5}$ $n \uparrow \infty$,

completing the proof.

7. COMPUTING THE GENERATOR

$$\mathfrak{g}_{\infty} = \mathfrak{g} = \sum_{n \ge 0} \mathfrak{j}_n$$
 is a Brownian motion on SO(3): in fact, it is con-

tinuous and its Markovian and (left) group-invariant character is clear from the product integral

7.1
$$\mathfrak{g}_{\infty}(t_2) = \mathfrak{g}_{\infty}(t_1) \bigcap_{t_1 \leq t < t_2} e[\mathfrak{z}(ds)] \qquad t_2 \geq t_1.$$

Coming to its generator, we adapt the stochastic differential of K. Itô [1951; 59-65] to the present setting and find that for $f \in C^{2}[SO(3)]$,

7.2
$$f(g(t))$$

$$= f(g(0)) + \int_{0}^{t} [z(ds) \cdot grad]f(g)$$

$$+ \int_{0}^{t} \frac{1}{2} [z(ds) \cdot grad]^{2} f(g)$$

$$= f(g(0)) + \int_{0}^{t} [I^{1/2}x(ds) \cdot grad]f(g)$$

$$+ \int_{0}^{t} (\mathfrak{G}f)(g) ds,$$

where grad is short for $(\mathfrak{G}_1, \mathfrak{G}_2, \mathfrak{G}_3)$.

But now it is clear that

7.3

$$\lim_{t \neq 0} t^{-1}E[f(g(t)) - f(\mathfrak{h})]$$

$$= \lim_{t \neq 0} t^{-1}E\int_{0}^{t} (\mathfrak{G}f)(\mathfrak{g})ds]$$

$$= (\mathfrak{G}f)(\mathfrak{h}) \qquad \mathfrak{h} = \mathfrak{g}(0)$$

and this completes the identification of $g_{\infty} = g = \sum_{n \ge 0} j_n$ as the SO(3) BROWNian motion with generator \mathfrak{G} .

8. ROLLING WITHOUT SLIPPING

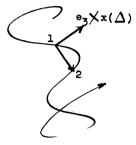
Consider the standard Brownian motion on the plane $R^2 \times 0 \subset R^3$ with generator $\frac{1}{2} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right)$ and sample path $w: t \to x(t) = (x_1(t), x_2(t), 0)$ and let a sphere of diameter 2 roll without slipping on the plane $R^2 \times -1 \subset R^3$ while its center traces out the polygonal line joining the points $x(j2^{-n}): j \geq 0$ of the plane $R^2 \times 0$.

Concentrating on times $t \leq 1$, select m = m(w) such that

8.1
$$|x(t_2)-x(t_1)| < (t_2-t_1)^{1/3}$$
 $0 \le t_1 \le t_2 \le 1, t_2-t_1 < 2^{-m}$

and $2^{-m/3} \le lg 2$, so that, for $|\alpha| \le 2^{-m/3}$, $e[\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3]$ is the

counterclockwise rotation of angle $|\alpha|$ about the axis α .



Given $n \ge m$ and $i \le 2^n$, it is clear from the DIAGRAM that as t grows from $t_1 = (i-1)2^{-n}$ to $t_2 \le i2^{-n}$ the sphere suffers a rotation

8.2
$$e[-x_2(\Delta)\mathbf{e}_1+x_1(\Delta)\mathbf{e}_2] \quad \Delta = [t_1, t_2]$$

of angle $|x(\Delta)| < 2^{-n/3}$ counterclockwise about the axis e_3 cross $x(\Delta)$.

One sees at once that the total rotation up to time t is identical in law to the $g_n(t)$ of 4 computed for

8.3
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad m_1 = m_2 = m_3 = 0, \quad g(0) = e,$$

and one concludes that $\lim_{n \to \infty} g_n = g_\infty$ is the SO(3) Brownian motion with generator $\mathfrak{G} = \frac{1}{2}(\mathfrak{G}_1^2 + \mathfrak{G}_2^2)$, permitting the identification of that motion with the total rotation up to time t of a sphere of diameter 2 rolling without slipping on the plane $R^2 \times -1$ as its center performs a standard Brownian motion on the plane $R^2 \times 0$. C. D. Gorman [1958] also got a proof that $\lim_{n \to \infty} g_n$ exists in the present case.

Consider, now, the path $g_{\omega}e_3$ of the north pole $e_3 = (0, 0, 1)$: this motion is Markov; its generator \mathfrak{G}_3 is $\frac{1}{2}(\mathfrak{G}_1^2 + \mathfrak{G}_2^2)$ cut down to the coset space SO(3)/SO(2)=S²:

8.4
$$\mathfrak{G}_{3} = \frac{1}{2} \left(\frac{1}{\sin\psi} \frac{\partial}{\partial\psi} \sin\psi \frac{\partial}{\partial\psi} + \cot^{2}\psi \frac{\partial^{2}}{\partial\phi^{2}} \right),$$

where ψ is colatitude and ϕ is longitude on S^2 (see 2.10).

 \mathfrak{G}_3 splits into the Legendre operator $(2 \sin \psi)^{-1} \frac{\partial}{\partial \psi} \sin \psi \frac{\partial}{\partial \psi}$ plus $\frac{1}{2} \cot^2 \psi \frac{\partial^2}{\partial \phi^2}$, and this splitting is reflected in the sample path; in fact, *colat* ($\mathfrak{g}_{\infty} e_3$) is the process attached to the Legendre operator on $[0, \pi]$ and *longitude* ($\mathfrak{g}_{\infty} e_3$) is a standard circular Brownian motion independent of *colat* ($\mathfrak{g}_{\infty} e_3$) run with the clock

$$\int_0^t \cot^2 \left[\operatorname{colat}(\mathfrak{g}_{\infty} e_3) \right] ds \,.$$

REFERENCES

- J. L. Doob, Stochastic Processes. J. Wiley and Sons. New York 1953.
- I. Gelfand and Z. Ya. Šapiro, Representations of the group of rotations in 3-dimensional space and their applications. Uspehi Mat. Nauk 7 (1952), 3-117; Amer. Math. Soc. Translations 2 (1956), 207-316.
- C. D. Gorman, Brownian motion of rotation. Notices Amer. Math. Soc. 5 (1958) 196, abstract 553-22.
- K. Itô, Brownian motions in a Lie group. Proc. Japan Acad. 26 (1950), 4-10. On a formula concerning stochastic differentials. Nagoya Math. J. 3 (1951), 55-65.
- P. Lévy, Théorie de l'addition des variables aléatoires. Gauthier-Villars. Paris 1937. Processus stochastiques et mouvement brownien. Gauthier-Villars. Paris 1948.
- W. Maak, Fastperiodische Funktionen. Springer Verlag. Berlin 1950.
- F. Perrin, Étude mathématique du mouvement brownien de rotation. Ann. École Norm. Sup. 45 (1928), 1-51.
- K. Yosida, Brownian motion in a homogeneous Riemannian space. Pacific J. 2 (1952), 263-96.