MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYoTO, SERIES A
Vol. XXXIII, Mathematics No. 2, 1960.

Existence of a bounded solution and existence
of a periodic solution of the differential
equation of the second order

By
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1. Introduction. We consider a differential equation of the second
order

(1) 2" =F{t, x 2),

where F(¢, x, ') is periodic of f. Massera has proved that if all
the solutions exist in the future and if one of them is bounded
in the future, then a periodic solution exists [1]. Therefore, even
if all the solutions are not bounded, when we see the existence
of a bounded solution, we can prove the existence of a periodic
solution in some cases.

In this paper we discuss the existence of a bounded solution
and we apply it to the existence of a periodic solution.

Now we assume that F(¢, x, x’) is continuous in IxX RLx R},
where I is the interval 0<f{<{c and R” is the #n-dimensional
Euclidean space. For Theorem 1, the periodicity of F(¢, x, x') is
not necessary.

2. Existence of a bounded solution. We shall obtain an existence
theorem of a bounded solution by considering the boundary value
problem.

Theorem 1. Suppose that two functions @(t) and «(t) are
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defined on I, twice differentiable and bounded on I with their
derivatives and that they satisfy the following inequalities ;

o(t) < o(f)
&"(t) < F(t, o), @'(t))
o’(t) 2 F(¢, o), (1)) .

Let D be the domain such that 0<t<co, o(f)<x<a(t). And we
represent two domains (¢, x)eD, y=K and (t,x)€D, y<—K by
D, and D, respectively, where K is a positive number and may be
sufficiently large.

We assume that there exist two positive continuous functions
Vi, x, y) defined in D, and V,t, x,y) defined in D, satisfying the
following conditions ;

1° Vit x, »)=<a(lyl) (=1, 2), where a(r) is a positive con-

tinuous function,

2° V., x, ) tend to infinity uniformly as |y|— oo,

3° Vi, x, y»)€Cyx, y) (cf. [2]) and we have in the interiors

of D, and D,

Vi, x, y) = lim % (Vi +h, x+hy, y+hF(, x, y)— V¢, x, )} =0

h>+0

it x, ) = Tm L AVA+ I, 24Dy, y+hEC, 2, 9) = Vit 5, 3)} 0.
h> 7]

Then the equation (1) has a bounded solution, where a bounded
solution means a solution x(¢f) such that x(t)’+x'(t)> is bounded
for all t=t,.

Proof. Let » be an arbitrary integer and let D, be the
domain such that

0st=sn, o) <x=o(), |yl<loo.
First of all, we show that there is a solution x,(¢) of (1) such that
x2,00) = @0), =x,(n) = o(n)
and that for 0<<¢#<n we have

o(t) < x,(t) = a(¢)
and

| 2n(t) | <M,

where M is a positive number independent of .
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By the assumptions for ®(¢#) and (f), we can assume that
|&’(#)|< K and |«'(#)|< K, because K may be sufficiently large.
We can choose K independent of #. By the condition 1°, we have

Vl(t> X, K)ga(K)’ Vz(t) X, —K)ga(K)°

Since V(¢ x,y) tend to infinity uniformly as |y|— oo, we can
choose a positive number M such that for (¢, x) € D,

a(K)<V1(t» X, M)’ d(K)<V2(t, X, —M)

And this M is independent of .
Then considering the function H(Z, x, y) such that

F(t, x, M) (y>M)
F(t)x) _M) (J’<'M)7

we define the function F*(¢, x, y) as follows;

H, o), 9+ 2000 (> o0(0)
H, o), )= 2020w <o)

This function F*(¢, x, y) is defined, continuous and bounded on
0t<n, |x|< oo, |y|<oo. Therefore the equation

(2) x" = F*(t, x, ')

has at least a solution x,(¢) such that x,00)=(0), x,(n)=aw(n).
From the assumption for @(¢f) and «(¢#), we can see that we have
o) Zx () <a(t) for 0t <n.

Now we show that |x/(f)|<M. Since we have o(f)<x,(f)
=a(t), we have — K< x/(0). Suppose that at some ¢, say ¢,, we
have x,({)< —M. Then there exist #, and #, such that #,<t,,
x(t)=—K, x,(t;)=—M and that for #,<¢t<t,,

—M<x(H) < —K.

Now we consider the function V,(¢, x,(¢), x.(¢)). This function is
non-increasing along the solution by the condition 3°. Hence
there arises a contradiction. Therefore we have
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xn(t) > —M.

By considering the function V.(¢, x,(¢), x.(¢)), we can see that we
have x}(t)<M.

Since in the region 0<¢<n, o)< x<a(?), |y|<M, F*(t, x, y)
is equal to F(¢, x, y), the solution x,(¢) of (2) becomes the desired
solution of (1).

Now we consider the sequence of functions {£,(#)} such that

) 0=t<n
o(?) (n <t <o0).
Since this sequence of functions is uniformly bounded and equi-
continuous, we can choose a uniformly convergent subsequence
and let x(#) be its limiting function. It is clear that we have
o) <x@t)=a@) 0=t<co),
X' =M

FOR

and that x(¢) is a solution of (1).
When we have «(0)=a(0), in place of the condition 3°, it is
sufficient that we have Vi(t, x, ) <0, Vi, x, y) <O.

3. Existence of a periodic solution. For the continuability of
solutions, we have the following theorem. More generally, we
consider a system

(3) x =F(, x),

where x is an #-dimensional vector and F(¢, x) is a continuous
vector field defined on Ix R".

Theorem 2. If corresponding to each T there exists a posi-
tive continuous function W(t, x) satisfying the following conditions
in the domain

0t T, |Ixll =R, (R, may be sufficiently large);

1° W(t, x) tends to infinity uniformly as ||x||— oo,
2° W, x) € Cyx) and

W'(t, x) = lim % (W(t+h, x+hF({t, x)— W, 2} =0,
h>+0

then every solution of (3) exists in the future.
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In some cases, the following theorem is more convenient.
Namely we consider a system
x' = F(, x, )
(4) {*,
Y =G x,9),
where x is an n-dimensional vector, y is an m-dimensional vector
and F(¢, x, y), G(¢, x, y) are continuous on IX R:x R}.

Theorem 3. We assume that corresponding to each T there
exists a positive continuous function W.(¢, x,y) satisfying the
following conditions in the domain

0t T, |IxIP+1IyP=R: (R, may be sufficiently large);
1° W@, x, y) tends to infinity uniformly as ||y||— oo,
2° Wit x,y) €Cyx, y) and
Wilt, %, 3)

— Tim LWt +h, x+hF, x, ), y+hG{E, %, 9)— Wi, 2, 3)} <0.

>+0

Moreover we assume that corrvesponding to each K and each
T there exists a positive continuous function W,(t, x, y) satisfying
the following conditions in the domain

0=t<T7, lxll=R, IDI<K (R, may be sufficiently large);
1° W, x, ) tends to infinity uniformly as ||x||— oo,
2° W, x, ) €Cy(x, ¥) and Wit, x, y) <0.
Then all the solutions of (4) exist in the future.

Proof. We show that for any « >R, and any T >0, all the
solutions starting from the domain D,[0<¢< T, |1z + |y’ < a?]
are continuable to #=7. Now let W,(¢ ,r,y) be the one corre-
sponding to 7. We put

M(a) = max W(¢, x,5).
0o<t<T
Hxii2+11 311 2=a?

Since W, (¢, x, ) tends to infinity uniformly as ||y||— o, we can
choose a positive number 23 such that 8>« and
m(B) = inf Wit x, y) > M(«).
0<t<T

liyil=B
Hxll<eo

Now we suppose that at some ¢, say £,, we have ||y(¢,)||=/83, where
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x=x(t), y=y(t) is a solution of (4) starting from D,. Then there
exist £, and #, such that

2@ +1yEI = & Iyl = B

and that for #,<t<¢,, we have [|x(#)||’+||y(#)|’>>a®. Considering
the function W, (¢, x(¢), »(¢)), we have

M(a) = Wi(t,, (L), ¥(t.) = Wit,, x(t,), y(t)) =m(B).

This contradicts m(8)>M(x). Therefore we have ||y(?)||< B for
t<T.

Next let W,(¢, x, ) be the one corresponding to T and B.
We can assume that ¢ >R,. We put

M(a, B) = max. Wyt %, 9).
lxll=a
liyll<B

We can choose a positive number y(>>«) such that

m(')’) B) :DLntisnT Wz(t» X, y) >M(((, B) .

lxll=Y
Iyll<p

In the same way as the above, considering the function W.,(¢, x(¢),
y()), if we suppose that we have ||x(¢)||=+ at some £, there arises
a contradiction. Therefore we can see that |[x(¢)||<vy for t< 7.

From the above-mentioned, we have ||x(¢)||< v, ||y®)]|< B for
t<T. Hence this solution is continuable to ¢=7. Since T is
arbitrary, we can see that this solution exists in the future.

Therefore by Theorem 1 with Theorem 2 or Theorem 3, we
can prove the existence of a periodic solution of the equation (1).
For example we consider the equation

(5) x+f(x, x)+&(¢, x) = p(t),

where f(x,y) and g(¢, x) are continuous and locally Lipschitzian
with respect to x and y, p(#) and g(¢, x) are periodic in ¢ and p(¢)
is continuous. We assume that f(x, y) y=0 and — o < G(¢, x) for

all (¢, x), where G(¢, x):ng(t, s)ds and that T/C(Itc_#f

and C is a constant such that

bounded, where G,:ia(tvi)
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G(¢, x)+C>0. Moreover we assume that there exist two constants
a, b such that a<b and

(0= f(a, 0)+g(t, @)— p(?)

(6) L0 = 7(b, 0)+g(t, b)—p(t)

and that there exists a positive continuous function @(u) for
—oo<u<_+oo such that |[f(x, y)|=@(y) and

Sm u—du:S‘“' U __du= +oo,
p(u)+c Pu)+c

where | g(t, x)| + [ p()|<c for 0<t< o0, ax <D,
For an arbitrary T >0, in the domain 0<¢t<T, |x|<leo,
| y|< e, we consider a system

(7) x=y, y=—f(x9—8&¢ x)+p)

|G|

which is equivalent to the equation (5). Since ——X _—— is
1 d ©) VG, 11C

bounded, there is a positive constant 2 such that

Gl
V2(G(t, x)+C) —

In the domain 0<<¢t< T, x*+3»*=RZ, we put

Wilt, 2,9) = exp {V2GCE D+ 0145~ 1p0) dt—kt}
Then we have

/ _ G+ g(t, X)y—f(x, 9)y— 8, x)y+ @)y
Wl(ty x? J’) - Wl(ta x3 y){ \/§(C(t, X)+C)+y2

—15(t)| k|

__IG/| 1pte)]—
= Wit 5 9| e e 101 - 1601 1)
=0.

Therefore W.(t, x, y) is non-increasing along the solution of (7).
The function W.(¢, x, y) is the one in Theorem 3. In the system
(7), the boundedness of |y(¢)| implies the boundedness of |[x(#)],
because of x=y. Namely both |x(¢)] and |y(¢)| are bounded on
0<¢< T and hence all the solutions of (7) are continuable to = T.
Since T is arbitrary, all the solutions exist in the future.
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Now if we put @(f)=0 and ©(f)=a, these satisfy the conditions
for @(¢) and «(f) by (6). In the domains D,[0<¢< oo, a<<x <D,
y=K] and D,[0<t< o0, a<x<b, y< — K], we define V(¢ x, y)
and V,(¢, x, y) respectively as follows ;

y

V.t x, y) = exp {x+SK rp(ul;+c u} ’

y

V.(¢, x, y) = exp {x+S_K rp(uz;+c u} '

Then we have

’ _ J — —
Vil %, 9) = Vilt 5 9| 3o S (- f ) att, 0+ 00|

= Vit 59|y A )+
=0

and in the same way, we have Vi(¢, x, ) <0. Since V,(¢, x, ) and
V.(¢, x, y) satisfy the conditions in Theorem 1, we can see that
there exists a bounded solution. Therefore, by Massera’s theorem,
we can see that there exists a periodic solution.

For example, the equation X-+ksinx=p() (k>>0) has a
periodic solution if p(¢) is periodic and |p(¢)| <k.

When we assume that in place of — o< G(¢, x), we have
G(t, x)< oo and |g(t, x)|< o, we can also see that the equation
(5) has a periodic solution.

Since the equation ¥+ f(x)x+g(x)=p(¢) is a special case of the
above-mentioned, we can see the existence of a periodic solution
under the condition

(8)

{ 0 < gla)—p(t)
0=gd)—pt).

But Seifert showed the author that in this case he can prove the
existence of a periodic solution only under the condition (8) with-
out the condition such that —oo<G(x) and f(x)=0 by seeing the
index of the bounding curve of a simply-connected region relative
to a vector field induced by the mapping.

RIAS in Baltimore

BIBLIOGRAPHY

[17 J. L. Massera, “The existence of periodic solutions of systems of differential
equations”, Duke Math. Journal, Vol. 17 (1950), 457-475.

[2] T. Yoshizawa, “On the necessary and sufficient condition for the uniform bounded-
ness of solutions of ¥ =F(¢, x)”, Mem. College of Sci., Univ. of Kyoto, Ser. A,
Vol. 30 (1957), 217-226.



