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Introduction. It is well known that the loop space (B) in B
is homotopy-commutative if B is an H-space. Furthermore, it
follows that the group G, which is also a CW-complex, is homotopy-
commutative if its classifying space B is an H-space, because there
is an H-homomorphism f:G— Q(B;) which is also a weak homotopy
equivalence (cf. [9], Theorem 1 and also [12], Theorem 2). It is
our purpose of this paper to study about the inverses of these facts.

In the first part, the notion of the strong homotopy-commuta-
tivity is considered, and it is proved that the strong homotopy-
commutativity of Q(B) or G and being B or B; an H-space are
equivalent (Theorems 4.2 and 4. 3).

In the second part, an exact sequence of the sets of homotopy
classes for a fibre space with certain conditions are considered
(Theorem 6.5), and the image of the map #=(X, Y)—=(QX, QY)
is studied (Lemma 7.4). Finally, it is proved that only the
homotopy-commutativity of £(B) or G is equivalent to being B or
B; an H-space for certain kinds of spaces, (Theorems 8.1 and 8. 2).

Part I. Strong homotopy-commutativities

1. Commutative groups. Let G be a countable CW-group,
and p : E— B an universal bundle with group G where a classify-
ing space B is a countable CW-complex.” If G is commutative,
then the map

1) A group G is called a countable CW-group if G is a countable CW-complex
such that the map g—g~! of G— G and the multiplication GX G — G are both cel-
lular maps. Milnor, [3], Theorem 5.1.(1), proved that such a group has a countable
C W-complex as a classifying space.
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(1.1) M:GXG_)G’ /"(x:y):xy)

of the product group GXxG into G is a homomorphism. Therefore,
it is easy to see that there are maps

% 1 (E.(GXG), GXG) > (E(G), G), j: X.(GxGC)— X.(G)

such that w|GXG=pg, p(G)op=pop(GXG), where p(G): E_(G)—
X_(G) is the universal bundle with group G, constructed by Milnor,
[3], §3. Because pxXp: EXE—BXB is also an universal bundle
with group GXG, we obtain maps

M: (EXE,GxG)—(E,G), M: BxB—B
such that M|GXG=pu, poM=Mo(pX p).
Define L;: EXE—EXE, L;: BxB—>BxB, i=1, 2, by
Li(u,, u)) = (M(u,, u,), w;), Liv,,0,) = (M(,,v,), ;).

Then, L;|GxG=I;: GXG—->GXG is given by [li(x,, x,)=(x.x;, %;),
which is a homotopy equivalence. Therefore L;: (BX B, (x, *))—
(Bx B, (%, x)) (x=p(G)) is also a homotopy equivalence, for i=1, 2.
On the other ‘hand, we have
Lemma 1.2, If there is a map p: (FXF, (e, e))—(F, e) for a
CW-complex F containing a point e such that the map:

li: (FXF’ (e) e)) - (FXFv (e» e))’ li(xl, xz) = (ll'(xly xz): xi) ’

is a homotopy equivalence, for i=1, 2, then F is an H-space.

Proof. In the proofs of Theorem 4 of [11], the existence of
an unit in the conditions of H-space is not used, and so we have
the same conclusions for F of this lemma, i.e., there is a weak
homotopy equivalence p: (FxF, F)— (SF, x), where FxF is the join
of two copies of F, SF the suspension of F and * its point.
Therefore, F is an H-space by [117], Theorem 1, noticing that the
product of CW-complexes has the same homotopy type of a CW-
complex, ([4], Proposition 3). ged.

By the above considerations, we have the following well known
theorem :

Theorem 1.3. A classifying space, which is also a countable
CW-complex, of a commutative countable CW-group is an H-space.

2. Strongly homotopy-multiplicative maps. Let H, H be
topological monoids, i.e., associative H-spaces. If f: H—>H' is a
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homotopy-multiplicative map (or an H-homomorphism), then there
is a map
M,: H*xI—>H"” M(x,,%,,0) = f(xx,), M(%,,x,,1) = f(x,) f(x,).
In this paper, we shall say that f is strongly homotopy-multiplicative
if there exist maps M,: H*"'xI*"—- H’, n=0, 1, --- , such that

Mo(x) = f(X) s

M”(xo’ h ) x”’ tl’ b b tﬂ)

= Mn—l(xm Ly XXy oty Xy, tly Tty fi) Tty tn):B)

2.1
( ) for t; = 0,
= i—l(xo’ ety Xioay tn Sty z‘:'—I)Mn—t’(xir *ty Xay tx'+1, Tt tn) ’
fOI‘ t" = 1 .

Dold and Lashof, [ 2], §§2-3, constructed the universal principal
quasifibration €,=(Ey, pu, By, H) for any topological monoid H,
as follows :

E,=H, B,=b, a point, p,: E,— B, is the trivial map.

A point of E, is described by y|¢|x where y€E,_,, x€H, tel
and y|0|x=0|x=(n,x)enx H,y|l|x=yx|1=yx €E,_,. The product
E,xH—E, is (y|t|x)x,=y|t|xx,.

A point of B, is described by y_| ¢t where y€E,_,, t€I and
y10=0b, (a point), y | 1=p,.,(y) €B,_,.

The projection p,: E,— B,, p.(y|t|x)=y_| ¢

E,=\JE,, By=\/B,, pulE,=p,. (The topologies of these
spaces are slightly stronger than the usual product, identification
and limit topologies, but, for a countable CW-complexes, it may
be taken the usual topologies.)

Lemma 2.2. Let H, H be monoids and f: H— H' be a strongly
homotopy-multiplicative map. Then, there exist maps:

f: (EH’H)_)(EleH,)) f: BH_)BH’»

such that fI\H=f, pyof=Ffopy.

Proof. Denote by E,, B, p, the spaces and the maps, con-
structed from H’ instead of H in the above.

Set fo:f» fo(Bo):B(/)- ) -

Assume inductively that f,_,: E,_,—~E,_,, f,.,: B,_.,—B}_, are

2) H"=HX---XH, n-times, and I=[0, 1].
3) tA, means that #; is removed.
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defined and also there are maps M%': E, . XxH”"XI"—E,_,, m=
0,1, .-, such that

Prla—1°f-n—1 = fn—1°pn—1 ,
M3z (y) = fai(9),
MYy, %y, -+ Xy byyoe o )
= My A(yx,, o, x,,, Ly 0, L), for ¢, =0,
(2.3) = My, o, XXy oor Xy, by e By oo 1)
for t; =0, i >1,
= My, o Xy by o B )M, (X, o Xy, iy 5 )
for t; =1,
Prao M (9, 20y 0y Xy by 0 1) = Praofaci(9),
where M, is the map of~ (2.1).
Define f,: E,—E,, f,: B,—B,, M*,: E,xH”xXI"—>E], m=
0,1, -, by

Fuplt|x) = Fai(9) |2t f (%), for 0<t<1/2,
— My, x,2—21), for 1/2<t<1
Fly Lt) = Fai(y) L2t, for 0 1< 1/2,
= fu-r2Dnr(9), for 1/2<t<1,
Mu(y|t|x, %, >, Xy By oor y B
= fo(DI2tIM, (%, x,, -+, %, 8y, o, 8,),  for 0L <L1/2,

= MAy x, %, -, %, 2—2t, tl,-- ,t,), for 1/2<t<1.

Then, simple calculations show that these are extensions of f,_,,
Fury M2, and satisfy the inductive assumptions (2.3). gq.e.d.

3. Strong homotopy-commutativities. If G is a countable
CW-group, then €;=(Eg, ps, Bs) of §2 and (E_(G), p(G), X_(G))
of 8§81 are the same by [2], §4. Therefore, the same proofs of
§1 are valid by Lemma 2.2, if x: GXG—G of (1.1) is strongly
homotopy-multiplicative.

We shall say that a monoid H with unit e is strongly homotopy-
commutative if there exist maps C,: (H*” x I, ¢ xI")—(H, o),
n=1,2, ---, such that

C(x,90)=xy, Cix,91)=yx,
Cn(xl"")xnyyl’”'yyn: l". ’ n)
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= 2,C (X, s Xy Vi ¥y =t s Vs Loy o 5 L) s for £, =0,
SO\ € TWIILING PR FILLIN: JN AL 75 ZSCWLLINL ST
by b)), for t;, =0, 1<i<m,
= Cors(Xy, s XposX, Y1y 00y Ynens Biy ooy by) Yy for £, =0,
= Ci_l(x“ Xy Viy s Vicy by e, ti_l)y,-x,-
CouciEisis s Xy Yigrs 0 s Yus bivrs 5 8a) for ¢; = 1.

(3.1)

If G is strongly homotopy-commutative, then the maps M, :
GY""'xI*"—>G, n=0, 1, --- , defined by

Mo(x’ y) =Xy = ll’(x) y) ’
Mn((xor yo)) Tty (xn, yn)’ tl, ,tn)
= xocn(xly 5 Xy Yoy s V-1 tl, Tty tn)yn ’

satisfy (2.1) and so g is strongly homotopy-multiplicative. There-
fore, by the above considerations, we have

Lemma 3.2. A classifying space, which is also a countable
CW-complex, of a strongly homotopy-commutative countable CW-group
G, is an H-space.

Now, we shall prove

Lemma 3.3. Let H H' be monoids, H be also a countable CW-
complex, and f: H—H' be a strongly-multiplictive weak homotopy
equivalence. If H' is strongly homotopy-commutative, then so is H.

Proof. Denote by C] the maps of (3.1) for H”.

Define C,: H*xI—H by C,(x, 0)=xy, C(x, y 1)=yx, and
C,: H*x(IxIuIx1)—H’ by

Ci(x, 3, t, ) = My(x, 3, 1), for t, =0,
= M1(J’, xy t) ) f0r tl = 1 ,
= C{(f(,ﬁf), f(y), ), for t =1,

where M, is the map of (2.1). Extend C,, C, to C,: H*xI—H,
C,: H*xI’*>H’ so that foC,=C,|H*xIx0. Such extensions are
possible, because f is a weak homotopy equivalence and H*x I? is
a CW-complex.

Define inductively C,: H”x["—>H by (3.1), and C,: H*"x
(I*xIuI"x1)— H’ as follows :

CAH™xI"%0 = foC,, C,|H”XI"X1=Clof*,

4) The existence of C, shows the usual homotopy-commutativity of H.
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and C|JH*”xI"xIby C;,i<n—1, and M;, i<2n—1, of (2.1), where
SRy, Yy by o B =(F(x0), -+, f(), E1, -+, £,); and extend these
to C,: H"xI"—>H and C,: H"xI""—H’ so that foC,=C,|H"
xI"x0. q.e.d.

4. Loop spaces of classifying spaces. Let Q'(B) be the loop
space in B in the sense of Moore, [5], §2:

Q(B)={{U,r)|r >0, [:[0,r]— B, /(0) = [(r) = base point},

which is a monoid and has the same homotopy type as the usual
loop space (B).

Lemma 4.1. Let B be a classifying space of a group G, then
there is a strongly homotopy-multiplicative map f: G—'(B), which
is also a weak homotopy equivalence.

Proof. Let p: E—~B be an universal bundle with group G,
and let k&, : E—~FE be a contraction of E into e, the unit of G. It
is proved that the map f: G—Q'(B), defined by

f@)(s) = pok(x), 0<s<1,

is a weak homotopy equivalence and homotopy-multiplicative, in
[9], Theorem I.

Set J™'= {(t,, =, tn, S)I(t, o, t) €, O s<1+1E,+ -+ +1,}
CI"x[0, n+17], and define inductively M, : G J""' - E, n=0,
1, e, by

Myx, s) = k(x),
Mn(xo’ tty Xny tl) Tt tnr S)

A

= M, (%, XiXiy oy Xy by oee s Ly ooe By S), for t; =0,
= M; (%X,, ) Xiory by ooy biy S)X; oo Xy,
for t; =1, 0<]s<{1+4+ -+ +1¢;_,,
=M, (x;, o Xy biggy o by S—1—H— o —1;),
for t; =1, 1+t 4+ - +t; s 1+t + -+ +1,,
=x - x,, for s =0,
=e, for s =144+ -+ +1¢,,

and extend it to M,: G*'x J""'—E by the contraction k, of E.
Define M,: G*"' xI*"—Q/(B) by

Mn(x(); Xy, tlr ot ,tn)(s) = P"Mn(xo» Xy tl, R tny S) )
for se€ [0, 1+¢+ - +1¢,].
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It is easy to see that these satisfy (2.1). q.e.d.

Theorem 4.2. The loop space X(B) in a countable CW-complex
B is strongly homotopy-commutative if, and only if, B is an H-space.

Proof. By [3], Theorem 5.2.(3), B is a classifying space of
some countable CW-group G. If (B) is strongly homotopy-com-
mutative, then Q’(B) and hence G are also so by Lemmas 3.3 and
4.1. Therefore, B is an H-space by Lemma 3. 2.

Conversely, suppose B is an H-space with an unit ¢, which
is the base point. A map C,: ((B))’xI—Q(B) of (3.1) is defined
by the homotopy {/,ol,=(l0e)+(eol,)~(eol,)*(l,0e)=1[,0l;}, where e
means the constant loop, o is the loop- and - the induced mul-
tiplication of that of B, (showed in the first figure below). The
existence of C, of (3.1) is easily seen from the following rough
figures, and so on. q.e.d.

/ / /) )
4 Iy ! 1 /s I3 I3

1y Iy Ll I /

12

Iy ly 1y s /,

Lol ~ et
102 200 /, ly L /y T

By the sufficiency of this theorem and Lemmas 3.3 and 4.1
and also Lemma 3.2, it follows immediately

Theorem 4.3. A classifying space, which is also a countable
CW-complex, of a countable CW-group G is an H-space if, and
only if, G is strongly homotopy-commutative.

Part II. Sequences of the sets of homotopy classes

5. The sequence of Puppe. For any spaces X and Y with
base point, denote by #(X, Y) the set of homotopy classes of maps
with base point of X into Y, and by 0€=(X, Y) the class repre-
sented by the constant map.

For any map f: X—Y, let

P Q S
X s Y fo fSX f,SY
be the sequence of maps defined as follows: C, is the mapping
cone of £, i.e., the identification space of XxIuY by Xx13(x, 1)
=f(x)eY and XxO0uxxI=f(x). SX is the reduced suspension
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of X, i.e., the identification space X x I/ X x TuxxI. Pf is the injec-
tion, @f the projection, and Sf the suspension of f.
Puppe, [8], Satz 6, proved that the above sequence induces
the exact sequence of the sets of homotopy classes :
* (Pf)* (@f)*
=X, V)L (v, V) <2 e, vy LT

SF)*

6.1) (SF)
7(SX, V) «——— z(SY, V) « -

for any space V.

6. Sequences for fibre spaces. Let p: E— B be a fibre space
in the sense of Serre such that B is m-connected, m_>1, the fibre
F=p"'(x) is n-connected, and the spaces considered are of the same
homotopy types of CW-complexes.

Then, by [10], p. 469 and [13], Lemma 5. 2, the induced homo-
morphism p* of the cohomology groups with coefficient in an
abelian group G is an isomorphism

=~

(6.1) p*: H¥B; G)—> HXE, F; G), for k<m+n+1,

and a monomorphism for k=m+n+2.
Let C be the mapping cone of the inclusion map i: F—E,
then we have isomorphisms :

HXE, F; G)«— HXE|F; G)— H¥C; G)
for any k, because E is a CW-complex and F is its subcomplex,
up to a homotopy type. Therefore, combining with (6. 1), the map:
(6.2) p: C—B, PIE=p, PFXI)=x,

induces an isomorphism

P%: H¥B: G)— HXC:; G), for k< m+n+1,

and a monomorphism for k=m+n+2. Denote by K(G, k) the
Eilenberg-MacLane space, and identify H*(X ; G) with #(X, K(G, k)),
and we have an isomorphism

6.3) p*: 7(B, K(G, k) — =(C, K(G, k),  for k<m+n+1,
and a monomorphism for k=m-+n+2.
Lemma 6.4. If V is a CW-complex such that = (V)=0 for
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i >m+n+1, then the induced map p*: =(B, V)—=(C, V) is onto;
and, if 7(V)=0 for i >m+n+2, then Ker p*=0.

Proof. We shall prove by the induction on j where #,(V)=0
for i >j<m+n+1.

For j=1: Since B is simply connected, we can assume that
B'=x, the base point, and so any map B— V is homotopic to the
constant map because 7;(V)=0 for i >2; and samely for C.

Induction, j—1—j for j<{m+n+1: Using the Postnikov sys-
tem, we can represent V as a principal fibre space, [7], with fibre
K=K(z V), j) and base W where

7 (W) ==,(V) for i<j—1, =,(W)=0 for i _>j.

Therefore, we have the following commutative diagram

) . y
(B, OW) %5 (B, K) %5 (B, V)25 (B, W) % =(B, X(K)
a b . c d e

2C W) X (C K LE 2(C V) L5 1 C W) (€K

where X(K)=K(= V), j+1) and each low is the exact sequence of
[6], Lemma 2.1, and q, :-+, e are p*.

c is onto: Let ae=(C, V). By the inductive assumptions, d
is onto, and we have B¢&z(B, W) such that d(B)=g4(«). Since e
is 1-1 by (6.3), X4(B)=0, and so there is ye€=(B, V) such that
gx(v) =B. Since gs(c(v)) =gx(@), there is 8€=(C, K) such that
(8, c(v))=a where px is

(X, K)x=(X, V) = =(X, Kx V)% =(X, V),
by [7], Lemma 4.1. By (6.3), there is é€=(B, K) such that
b(&)=3.
(€, 7)) = pxlb(E), c(7)) = px(8, (7)) =
shows that ¢ is onto.

Kerc=0: We can prove this by the same proofs of the Five
Lemma, and this is valid for j=m+n+2. q.e.d.
In the commutative diagram

AN _
(Pi)* P*
- =(C, V),
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* (Pi)* .
the sequence «—— <«—— of (56.1) for 7: F—E is exact, and so

the horizontal sequence is exact if p* is onto. Therefore, by
Lemma 6.4, we have

Theorem 6.5. Let p: E—~B be a fibve space in the sence of
Serre such that B is m-connected, m_>1, the fibve F=p '(x) is n-
connected, and the spaces considered are of the same homotopy types
of CW-complexes. If V is a CW-complex such that =, (V)=0 for
i >m+n+1, then the sequence of the sets of homotopy classes

K K
w(F, V) — (B, V) L =B, V)
is exact, where i : F—E is the injection.

If, in addition, =(B, V) and =(C, V) have group structures with
unit 0 and p*: =(B, V)—>=(C, V) is a homomorphism where C is the
mapping cone of i and pis the map of (6.2), then there is an exact
sequence

B, VYo (B, V)L mp, vy E 2O

7 (SF, V) 7z(SE V).

7. The map Q: =(B, V)—>=(Q(B), 2(V)). Let B be a CW-
complex and

P = k

(7.1) QB)*B) — SQB)— B
be the sequence such that Q(B)*{(B) is the join of two copies of
Q(B), SQ(B) the suspension of 2(B) and p, k are given by

p, U t)y=(Wl'; 8y, kU;t)=1IF), for l,l'e(B), tel.

By [1], I, § 3, there are a fibre space E'— B’ with fibre F’
and a following diagram

aBwaB) 2> s08) - B
R
F/ —— E/ ‘——‘)Bl

such that the squares are commutative, up to a homotopy, and the
vertical maps are homotopy equivalences.

If B is n-connected, then Q(B) is (n—1)-connected, and so
OQ(B)x(B) is 2n-connected, by [3], Lemma 2.3. Therefore, by
Theorem 6.5, we have the exact sequence :

p* *
(7.3) (B WQ(B), V) «<— =(SQB), V) & =(B, V)



On the homotopy-commutativity of groups and loop spaces 267

if #(V)=0 for i >3n+1, since these spaces have the same homo-
topy types of CW-complexes according to [4].

Lemma 7.4. Let Q: =(B, V)— z((B), &(V)) be the map de-
fined by

Qe))(t) = p(), for p: B—V, [€(B), tel.
If B is a n-connected CW-complex and V is a CW-complex
such that =,(V)=0 for i >3n+1, then
Im Q = #/((B), AV)),
where 7' (UB), QV)) is the set of all the homotopy classes of homo-
topy-multiplicative maps.”

Proof. Im QC#'((B), &(V)) is clear.
In the commutative diagram

Pp* _ A
(B *XB), V) «—=(SQ(B), V) «—=(B, V)
\ /
L

=(E(B), (V)

where (\@)(/; t)=@(l)(?), the horizontal sequence is exact by (7. 3),
and A is 1-1 and onto as well known. Therefore, it is only neces-
sary to prove p¥o\(z'(Q(B), &(V)))=0.

Let @: (2(B), x)—(£2(V), *) be a homotopy-multiplicative map,
ie., the two maps, of Q(B)xQ(B) into (V):

1) = plely, (1) — pl)opl),
are homotopic. Then, for the maps ®: Q(B*Q(B)—Q(V)x(V),
#: SQ(B)—SQV) defined by
P15 t) = (), ') ; 8), PU; ) =(pl); 1),

t_he two maps p’o® and Pop are homotopic, where p’: Q(V)xQ2(V)—
SQ(V) is the map of (7.1) for V instead of B. Hence, we have
the commutative diagram :

z(V, V)
k;/ \5\{l
/* _ k’
AV Q(V), V)z—ﬂ(SQ(V), V) «—=((V), V)
Pp* . P* Pk

7(B)*X(B), V) *p—”(S—Q(B), V)*L”(Q(B ), (V)

5) Cf.§2.
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where £’ is the map of (7.1) for V. Since the diagram (7.2) for
V shows that k’0p’ is homotopic to the constant map, p*or{p}=
P*op*ok’* {1} =0, where 1 is the identity map. q.e.d.

8. Applications for homotopy-commutativities.
Theorem 8.1. Let B be a CW-complex such that
7(B)=0, fori<m,i >3n+1.
Then, (B) is homotopy-commutative if, and only if, B is an H-space.
Proof. Let p: Q(Bx B)=Q(B) x Q(B)— Q(B) be the map defined
by
wl) = Qp,(1)eQp,(l),

where p;: Bx B— B is the projection onto the i-th factor.

Suppose that ©(B) is homotopy-commutative, then p is homo-
topy-multiplicative. Therefore, we have a map M: (BX B, (x, *)) —
(B, %) such that QM is homotopic to u, by Lemma 7.4. It is easily
seen that M satisfies the assumptions of Lemma 1.2, since x does,
and so B is an H-space. q.e.d.

If B is a classifying space of a countable CW-group, the map
f: G—>Q(B) of Lemma 4.1 is a weak homotopy equivalence. Since
Q(B) is the same homotopy type of a CW-complex, it is also a
homotopy equivalence. Therefore, the homotopy-commutativities of
Q(B) and G are equivalent, and we have

Theorem 8.2. Let G be a countable CW-group such that
7(G) =0, for i<mn,i >3n+3.

Then, G is homotopy-commutative if, and only if, its classifying
space, being a countable CW-complex, is an H-space.

Corollary 8.3. Under the conditions of Theorems 8.1 and 8.2,
the homotopy-commutativity of G or Q(B) implies the strong one.
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