On the homotopy-commutativity of groups and loop spaces

By

Masahiro Sugawara

(Received August 20, 1960)

Introduction. It is well known that the loop space $\Omega(B)$ in B is homotopy-commutative if B is an H-space. Furthermore, it follows that the group G, which is also a CW-complex, is homotopy-commutative if its classifying space B_G is an H-space, because there is an H-homomorphism $f: G \to \Omega(B_G)$ which is also a weak homotopy equivalence (cf. [9], Theorem 1 and also [12], Theorem 2). It is our purpose of this paper to study about the inverses of these facts.

In the first part, the notion of the strong homotopy-commutativity is considered, and it is proved that the strong homotopy-commutativity of $\Omega(B)$ or G and being B or B_G an H-space are equivalent (Theorems 4.2 and 4.3).

In the second part, an exact sequence of the sets of homotopy classes for a fibre space with certain conditions are considered (Theorem 6.5), and the image of the map $\pi(X, Y) \rightarrow \pi(\Omega X, \Omega Y)$ is studied (Lemma 7.4). Finally, it is proved that only the homotopy-commutativity of $\Omega(B)$ or G is equivalent to being B or B_G an H-space for certain kinds of spaces, (Theorems 8.1 and 8.2).

Part I. Strong homotopy-commutativities

1. Commutative groups. Let G be a countable CW-group, and $p: E \rightarrow B$ an universal bundle with group G where a classifying space B is a countable CW-complex.¹⁾ If G is commutative, then the map

¹⁾ A group G is called a countable CW-group if G is a countable CW-complex such that the map $g \to g^{-1}$ of $G \to G$ and the multiplication $G \times G \to G$ are both cellular maps. Milnor, [3], Theorem 5.1.(1), proved that such a group has a countable CW-complex as a classifying space.

$$(1.1) \mu: G \times G \to G, \quad \mu(x, y) = xy,$$

of the product group $G \times G$ into G is a homomorphism. Therefore, it is easy to see that there are maps

$$\bar{\mu}: (E_{\infty}(G \times G), G \times G) \to (E_{\infty}(G), G), \quad \tilde{\mu}: X_{\infty}(G \times G) \to X_{\infty}(G)$$

such that $\overline{\mu}|G \times G = \mu$, $p(G) \circ \overline{\mu} = \widetilde{\mu} \circ p(G \times G)$, where $p(G) : E_{\infty}(G) \to X_{\infty}(G)$ is the universal bundle with group G, constructed by Milnor, [3], § 3. Because $p \times p : E \times E \to B \times B$ is also an universal bundle with group $G \times G$, we obtain maps

$$\overline{M}: (E \times E, G \times G) \rightarrow (E, G), M: B \times B \rightarrow B$$

such that $\overline{M} | G \times G = \mu$, $p \circ \overline{M} = M \circ (p \times p)$.

Define
$$\bar{L}_i: E \times E \rightarrow E \times E$$
, $L_i: B \times B \rightarrow B \times B$, $i=1, 2$, by

$$\bar{L}_i(u_1, u_2) = (\bar{M}(u_1, u_2), u_i), \quad L_i(v_1, v_2) = (M(v_1, v_2), v_i).$$

Then, $\overline{L}_i | G \times G = l_i : G \times G \to G \times G$ is given by $l_i(x_1, x_2) = (x_1x_2, x_i)$, which is a homotopy equivalence. Therefore $L_i : (B \times B, (*, *)) \to (B \times B, (*, *))$ (*=p(G)) is also a homotopy equivalence, for i=1, 2. On the other hand, we have

Lemma 1.2. If there is a map μ : $(F \times F, (e, e)) \rightarrow (F, e)$ for a CW-complex F containing a point e such that the map:

$$l_i: (F \times F, (e, e)) \to (F \times F, (e, e)), \quad l_i(x_1, x_2) = (\mu(x_1, x_2), x_i),$$

is a homotopy equivalence, for i=1, 2, then F is an H-space.

Proof. In the proofs of Theorem 4 of [11], the existence of an unit in the conditions of H-space is not used, and so we have the same conclusions for F of this lemma, i.e., there is a weak homotopy equivalence $p: (F*F, F) \rightarrow (\bar{S}F, *)$, where F*F is the join of two copies of F, $\bar{S}F$ the suspension of F and * its point. Therefore, F is an H-space by [11], Theorem 1, noticing that the product of CW-complexes has the same homotopy type of a CW-complex, ([4], Proposition 3).

By the above considerations, we have the following well known theorem:

Theorem 1.3. A classifying space, which is also a countable CW-complex, of a commutative countable CW-group is an H-space.

2. Strongly homotopy-multiplicative maps. Let H, H' be topological monoids, i.e., associative H-spaces. If $f: H \rightarrow H'$ is a

homotopy-multiplicative map (or an H-homomorphism), then there is a map

$$M_1: H^2 \times I \to H'^{(2)}$$
 $M_1(x_0, x_1, 0) = f(x_0 x_1), M_1(x_0, x_1, 1) = f(x_0) f(x_1).$

In this paper, we shall say that f is strongly homotopy-multiplicative if there exist maps $M_n: H^{n+1} \times I^n \to H'$, $n=0, 1, \dots$, such that

$$M_{0}(x) = f(x),$$

$$M_{n}(x_{0}, \dots, x_{n}, t_{1}, \dots, t_{n})$$

$$= M_{n-1}(x_{0}, \dots, x_{i-1}x_{i}, \dots, x_{n}, t_{1}, \dots, \hat{t}_{i}, \dots, t_{n})^{3}$$

$$for t_{i} = 0,$$

$$= M_{i-1}(x_{0}, \dots, x_{i-1}, t_{1}, \dots, t_{i-1})M_{n-i}(x_{i}, \dots, x_{n}, t_{i+1}, \dots, t_{n}),$$

$$for t_{i} = 1.$$

Dold and Lashof, [2], §§ 2-3, constructed the universal principal quasifibration $\mathfrak{G}_H = (E_H, p_H, B_H, H)$ for any topological monoid H, as follows:

 $E_0=H$, $B_0=b_0$ a point, $p_0: E_0 \rightarrow B_0$ is the trivial map.

A point of E_n is described by y|t|x where $y \in E_{n-1}$, $x \in H$, $t \in I$ and $y|0|x=0|x=(n,x) \in n \times H$, $y|1|x=yx|1=yx \in E_{n-1}$. The product $E_n \times H \to E_n$ is $(y|t|x)x_1=y|t|xx_1$.

A point of B_n is described by $y \perp t$ where $y \in E_{n-1}$, $t \in I$ and $y \perp 0 = b_n$ (a point), $y \perp 1 = p_{n-1}(y) \in B_{n-1}$.

The projection $p_n: E_n \to B_n$, $p_n(y|t|x) = y \perp t$.

 $E_H = \bigcup E_n$, $B_H = \bigcup B_n$, $p_H | E_n = p_n$. (The topologies of these spaces are slightly stronger than the usual product, identification and limit topologies, but, for a countable CW-complexes, it may be taken the usual topologies.)

Lemma 2.2. Let H, H' be monoids and $f: H \rightarrow H'$ be a strongly homotopy-multiplicative map. Then, there exist maps:

$$\tilde{f}: (E_H, H) \rightarrow (E_{H'}, H'), \quad \tilde{f}: B_H \rightarrow B_{H'},$$

such that $\bar{f}|H=f$, $p_{H'}\circ\bar{f}=\tilde{f}\circ p_{H}$.

Proof. Denote by E'_n , B'_n , p'_n the spaces and the maps, constructed from H' instead of H in the above.

Set $\tilde{f}_0 = f$, $\tilde{f}_0(B_0) = B'_0$.

Assume inductively that \tilde{f}_{n-1} : $E_{n-1} \rightarrow E'_{n-1}$, \tilde{f}_{n-1} : $B_{n-1} \rightarrow B'_{n-1}$ are

²⁾ $H^n = H \times \cdots \times H$, *n*-times, and I = [0, 1].

³⁾ $\hat{t_i}$ means that t_i is removed.

defined and also there are maps M_m^{n-1} : $E_{n-1} \times H^m \times I^m \to E'_{n-1}$, $m=0,1,\cdots$, such that

$$\begin{split} p'_{n-1} \circ \bar{f}_{n-1} &= \tilde{f}_{n-1} \circ p_{n-1} \,, \\ M_0^{n-1}(y) &= \bar{f}_{n-1}(y) \,, \\ M_m^{n-1}(y, x_1, \cdots, x_m, t_1, \cdots, t_m) \\ &= M_{m-1}^{n-1}(yx_1, \cdots, x_m, t_2, \cdots, t_m) \,, \qquad \qquad \text{for } t_1 = 0 \,, \\ (2.3) &= M_{m-1}^{n-1}(y, \cdots, x_{i-1}x_i, \cdots, x_m, t_1, \cdots, \hat{t}_i, \cdots, t_m) \,, \\ &= M_{i-1}^{n-1}(y, \cdots, x_{i-1}, t_1, \cdots, t_{i-1}) M_{m-i}(x_i, \cdots, x_m, t_{i+1}, \cdots, t_m) \,, \\ &= M_{i-1}^{n-1}(y, \cdots, x_{i-1}, t_1, \cdots, t_{i-1}) M_{m-i}(x_i, \cdots, x_m, t_{i+1}, \cdots, t_m) \,, \\ &= for t_i = 1 \,, \\ p'_{n-1} \circ M_m^{n-1}(y, x_1, \cdots, x_m, t_1, \cdots, t_m) = p'_{n-1} \circ \bar{f}_{n-1}(y) \,, \end{split}$$

where M_k is the map of (2.1).

Define $\bar{f}_n: E_n \to E'_n$, $\tilde{f}_n: B_n \to B'_n$, $M^n_m: E_n \times H^m \times I^m \to E'_n$, $m=0,1,\cdots$, by

$$\begin{split} \bar{f}_n(y|t|x) &= \bar{f}_{n-1}(y)|2t|f(x)\,, & \text{for } 0 \leqslant t \leqslant 1/2\,, \\ &= M_1^{n-1}(y,\,x,\,2-2t)\,, & \text{for } 1/2 \leqslant t \leqslant 1\,, \\ \bar{f}_n(y \perp t) &= \bar{f}_{n-1}(y) \perp 2t\,, & \text{for } 0 \leqslant t \leqslant 1/2\,, \\ &= \tilde{f}_{n-1} \circ p_{n-1}(y), & \text{for } 1/2 \leqslant t \leqslant 1\,, \\ M_m^n(y|t|x,\,x_1,\,\cdots,\,x_m,\,t_1,\,\cdots,\,t_m) &= \bar{f}_{n-1}(y)|2t|M_m(x,\,x_1,\,\cdots,\,x_m,\,t_1,\,\cdots,\,t_m)\,, & \text{for } 0 \leqslant t \leqslant 1/2\,, \\ &= M_{m+1}^{n-1}(y,\,x,\,x_1,\,\cdots,\,x_m,\,2-2t,\,t_1,\,\cdots,\,t_m)\,, & \text{for } 1/2 \leqslant t \leqslant 1\,. \end{split}$$

Then, simple calculations show that these are extensions of \bar{f}_{n-1} , \tilde{f}_{n-1} , M_m^{n-1} , and satisfy the inductive assumptions (2.3). q.e.d.

3. Strong homotopy-commutativities. If G is a countable CW-group, then $\mathfrak{C}_G = (E_G, p_G, B_G)$ of § 2 and $(E_{\infty}(G), p(G), X_{\infty}(G))$ of § 1 are the same by [2], § 4. Therefore, the same proofs of § 1 are valid by Lemma 2.2, if $\mu: G \times G \to G$ of (1.1) is strongly homotopy-multiplicative.

We shall say that a monoid H with unit e is strongly homotopy-commutative if there exist maps $C_n: (H^{2n} \times I^n, e^{2n} \times I^n) \to (H, e),$ $n=1,2,\cdots$, such that

$$C_1(x, y, 0) = xy, C_1(x, y, 1) = yx,$$

 $C_n(x_1, \dots, x_n, y_1, \dots, y_n, t_1, \dots, t_n)$

$$(3.1) = x_{1}C_{n-1}(x_{2}, \dots, x_{n}, y_{1}y_{2}, \dots, y_{n}, t_{2}, \dots, t_{n}), \quad \text{for } t_{1} = 0,$$

$$= C_{n-1}(x_{1}, \dots, x_{i-1}x_{i}, \dots, x_{n}, y_{1}, \dots, y_{i}y_{i+1}, \dots, y_{n}, t_{1},$$

$$\dots, \hat{t}_{i}, \dots, t_{n}), \quad \text{for } t_{i} = 0, 1 < i < n,$$

$$= C_{n-1}(x_{1}, \dots, x_{n-1}x_{n}, y_{1}, \dots, y_{n-1}, t_{1}, \dots, t_{n-1})y_{n}, \quad \text{for } t_{n} = 0,$$

$$= C_{i-1}(x_{1}, \dots, x_{i-1}, y_{1}, \dots, y_{i-1}, t_{1}, \dots, t_{i-1})y_{i}x_{i}$$

$$C_{n-i}(x_{i+1}, \dots, x_{n}, y_{i+1}, \dots, y_{n}, t_{i+1}, \dots, t_{n}), \quad \text{for } t_{i} = 1.$$

If G is strongly homotopy-commutative, then the maps M_n : $(G^2)^{n+1} \times I^n \to G$, $n=0, 1, \dots$, defined by

$$M_0(x, y) = xy = \mu(x, y),$$

$$M_n((x_0, y_0), \dots, (x_n, y_n), t_1, \dots, t_n)$$

$$= x_0 C_n(x_1, \dots, x_n, y_0, \dots, y_{n-1}, t_1, \dots, t_n) y_n,$$

satisfy (2.1) and so μ is strongly homotopy-multiplicative. Therefore, by the above considerations, we have

Lemma 3.2. A classifying space, which is also a countable CW-complex, of a strongly homotopy-commutative countable CW-group G, is an H-space.

Now, we shall prove

Lemma 3.3. Let H, H' be monoids, H be also a countable CW-complex, and $f: H \rightarrow H'$ be a strongly-multiplictive weak homotopy equivalence. If H' is strongly homotopy-commutative, then so is H.

Proof. Denote by C'_n the maps of (3.1) for H'.

Define $C_1: H^2 \times \mathring{I} \to H$ by $C_1(x, y, 0) = xy$, $C_1(x, y, 1) = yx$, and $\widetilde{C}_1: H^2 \times (\mathring{I} \times I \cup I \times 1) \to H'$ by

$$ilde{C}_1(x,\,y,\,t_1,\,t) = M_1(x,\,y,\,t)\,, \qquad \qquad ext{for } t_1 = 0\,, \ = M_1(\,y,\,x,\,t)\,, \qquad \qquad ext{for } t_1 = 1\,, \ = C_1'(\,f(x),\,f(y),\,t_1)\,, \qquad \qquad ext{for } t = 1\,, \$$

where M_1 is the map of (2.1). Extend C_1 , \tilde{C}_1 to C_1 : $H^2 \times I \rightarrow H$, \tilde{C}_1 : $H^2 \times I^2 \rightarrow H'$ so that $f \circ C_1 = \tilde{C}_1 | H^2 \times I \times 0$. Such extensions are possible, because f is a weak homotopy equivalence and $H^2 \times I^2$ is a CW-complex.

Define inductively $C_n: H^{2n} \times \mathring{I}^n \to H$ by (3.1), and $\widetilde{C}_n: H^{2n} \times (\mathring{I}^n \times I \cup I^n \times 1) \to H'$ as follows:

$$\tilde{C}_n | H^{2n} \times \dot{I}^n \times 0 = f \circ C_n$$
, $\tilde{C}_n | H^{2n} \times I^n \times 1 = C'_n \circ f^*$,

⁴⁾ The existence of C_1 shows the usual homotopy-commutativity of H.

and $C_n|H^{2n}\times I^n\times I$ by C_i , $i\leqslant n-1$, and M_i , $i\leqslant 2n-1$, of (2.1), where $f^*(x_1,\dots,y_n,\,t_1,\dots,t_n)=(f(x_1),\dots,f(y_n),\,t_1,\dots,t_n)$; and extend these to $C_n\colon H^{2n}\times I^n\to H$ and $\tilde{C}_n\colon H^{2n}\times I^{n+1}\to H'$ so that $f\circ C_n=\tilde{C}_n|H^{2n}\times I^n\times 0$.

4. Loop spaces of classifying spaces. Let $\Omega'(B)$ be the loop space in B in the sense of Moore, [5], §2:

$$\Omega'(B) = \{(l, r) | r \geqslant 0, l : [0, r] \rightarrow B, l(0) = l(r) = \text{base point} \},$$

which is a monoid and has the same homotopy type as the usual loop space $\Omega(B)$.

Lemma 4.1. Let B be a classifying space of a group G, then there is a strongly homotopy-multiplicative map $f: G \to \Omega'(B)$, which is also a weak homotopy equivalence.

Proof. Let $p: E \to B$ be an universal bundle with group G, and let $k_s: E \to E$ be a contraction of E into e, the unit of G. It is proved that the map $f: G \to \Omega'(B)$, defined by

$$f(x)(s) = p \circ k_s(x), \qquad 0 \leqslant s \leqslant 1,$$

is a weak homotopy equivalence and homotopy-multiplicative, in [9], Theorem I.

Set $J^{n+1} = \{(t_1, \dots, t_n, s) | (t_1, \dots, t_n) \in I^n, 0 \le s \le 1 + t_1 + \dots + t_n\}$ $\subset I^n \times [0, n+1]$, and define inductively $\overline{M}_n : G^{n+1} \times \mathring{J}^{n+1} \to E, n=0, 1, \dots$, by

and extend it to $\overline{M}_n: G^{n+1} \times J^{n+1} \to E$ by the contraction k_s of E. Define $M_n: G^{n+1} \times I^n \to \Omega'(B)$ by

$$M_n(x_0, \dots, x_n, t_1, \dots, t_n)(s) = p \circ \overline{M}_n(x_0, \dots, x_n, t_1, \dots, t_n, s),$$

for $s \in [0, 1 + t_1 + \dots + t_n].$

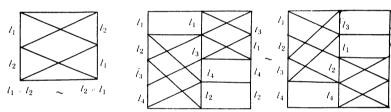
It is easy to see that these satisfy (2.1).

q.e.d.

Theorem 4.2. The loop space $\Omega(B)$ in a countable CW-complex B is strongly homotopy-commutative if, and only if, B is an H-space.

Proof. By [3], Theorem 5.2.(3), B is a classifying space of some countable CW-group G. If $\Omega(B)$ is strongly homotopy-commutative, then $\Omega'(B)$ and hence G are also so by Lemmas 3.3 and 4.1. Therefore, B is an H-space by Lemma 3.2.

Conversely, suppose B is an H-space with an unit e, which is the base point. A map $C_1: (\Omega(B))^2 \times I \to \Omega(B)$ of (3.1) is defined by the homotopy $\{l_1 \circ l_2 = (l_1 \circ e) \cdot (e \circ l_2) \sim (e \circ l_1) \cdot (l_2 \circ e) = l_2 \circ l_1\}$, where emeans the constant loop, o is the loop- and · the induced multiplication of that of B, (showed in the first figure below). The existence of C_2 of (3.1) is easily seen from the following rough figures, and so on.



By the sufficiency of this theorem and Lemmas 3.3 and 4.1 and also Lemma 3.2, it follows immediately

Theorem 4.3. A classifying space, which is also a countable CW-complex, of a countable CW-group G is an H-space if, and only if, G is strongly homotopy-commutative.

Part II. Sequences of the sets of homotopy classes

5. The sequence of Puppe. For any spaces X and Y with base point, denote by $\pi(X, Y)$ the set of homotopy classes of maps with base point of X into Y, and by $0 \in \pi(X, Y)$ the class represented by the constant map.

For any map $f: X \rightarrow Y$, let

$$X \xrightarrow{f} Y \xrightarrow{Pf} C_f \xrightarrow{Qf} SX \xrightarrow{Sf} SY \longrightarrow \cdots$$

be the sequence of maps defined as follows: C_f is the mapping cone of f, i.e., the identification space of $X \times I \cup Y$ by $X \times 1 \ni (x, 1)$ $= f(x) \in Y$ and $X \times 0 \cup * \times I = f(*)$. SX is the reduced suspension of X, i.e., the identification space $X \times I/X \times I \cup * \times I$. Pf is the injection, Qf the projection, and Sf the suspension of f.

Puppe, [8], Satz 6, proved that the above sequence induces the *exact* sequence of the sets of homotopy classes:

(5. 1)
$$\pi(X, V) \xleftarrow{f^*} \pi(Y, V) \xleftarrow{(Pf)^*} \pi(C_f, V) \xleftarrow{(Qf)^*} \pi(SX, V) \xleftarrow{(Sf)^*} \pi(SY, V) \leftarrow \cdots$$

for any space V.

6. Sequences for fibre spaces. Let $p: E \rightarrow B$ be a fibre space in the sense of Serre such that B is m-connected, $m \geqslant 1$, the fibre $F = p^{-1}(*)$ is n-connected, and the spaces considered are of the same homotopy types of CW-complexes.

Then, by [10], p. 469 and [13], Lemma 5.2, the induced homomorphism p^* of the cohomology groups with coefficient in an abelian group G is an isomorphism

(6.1)
$$p^*: H^k(B; G) \xrightarrow{\approx} H^k(E, F; G)$$
, for $k \leq m+n+1$, and a monomorphism for $k=m+n+2$.

Let C be the mapping cone of the inclusion map $i: F \rightarrow E$, then we have isomorphisms:

$$H^{k}(E, F; G) \stackrel{\approx}{\longleftarrow} H^{k}(E/F; G) \stackrel{\approx}{\longrightarrow} H^{k}(C; G)$$

for any k, because E is a CW-complex and F is its subcomplex, up to a homotopy type. Therefore, combining with (6.1), the map:

$$\bar{p}: C \to B, \quad \bar{p}|E = p, \quad \bar{p}(F \times I) = *,$$

induces an isomorphism

$$\bar{p}^*: H^k(B; G) \xrightarrow{\approx} H^k(C; G), \quad \text{for } k \leq m+n+1,$$

and a monomorphism for k=m+n+2. Denote by K(G,k) the Eilenberg-MacLane space, and identify $H^k(X;G)$ with $\pi(X,K(G,k))$, and we have an isomorphism

(6.3)
$$p^*: \pi(B, K(G, k)) \xrightarrow{\approx} \pi(C, K(G, k)), \quad \text{for } k \leq m+n+1,$$

and a monomorphism for $k=m+n+2$.

Lemma 6.4. If V is a CW-complex such that $\pi_i(V) = 0$ for

i > m+n+1, then the induced map $\overline{p}^* : \pi(B, V) \to \pi(C, V)$ is onto; and, if $\pi_i(V) = 0$ for i > m+n+2, then $\operatorname{Ker} \overline{p}^* = 0$.

Proof. We shall prove by the induction on j where $\pi_i(V) = 0$ for $i > j \le m+n+1$.

For j=1: Since B is simply connected, we can assume that $B^{i}=*$, the base point, and so any map $B\to V$ is homotopic to the constant map because $\pi_{i}(V)=0$ for $i\geqslant 2$; and samely for C.

Induction, $j-1 \rightarrow j$ for $j \leq m+n+1$: Using the Postnikov system, we can represent V as a principal fibre space, [7], with fibre $K = K(\pi_j(V), j)$ and base W where

$$\pi_i(W) = \pi_i(V) \text{ for } i \leqslant j-1, \quad \pi_i(W) = 0 \text{ for } i \geqslant j.$$

Therefore, we have the following commutative diagram

$$\pi(B, \Omega W) \xrightarrow{\bar{\chi}_*} \pi(B, K) \xrightarrow{j_*} \pi(B, V) \xrightarrow{q_*} \pi(B, W) \xrightarrow{\chi_*} \pi(B, \chi(K))$$

$$\downarrow a \qquad \qquad \downarrow b \qquad \qquad \downarrow c \qquad \qquad \downarrow d \qquad \qquad \downarrow e$$

$$\pi(C, \Omega W) \xrightarrow{\bar{\chi}_*} \pi(C, K) \xrightarrow{j_*} \pi(C, V) \xrightarrow{q_*} \pi(C, W) \xrightarrow{\chi_*} \pi(C, \chi(K))$$

where $\chi(K) = K(\pi_j(V), j+1)$ and each low is the exact sequence of [6], Lemma 2.1, and a, \dots, e are \bar{p}^* .

c is onto: Let $\alpha \in \pi(C, V)$. By the inductive assumptions, d is onto, and we have $\beta \in \pi(B, W)$ such that $d(\beta) = q_*(\alpha)$. Since e is 1-1 by (6.3), $\chi_*(\beta) = 0$, and so there is $\gamma \in \pi(B, V)$ such that $q_*(\gamma) = \beta$. Since $q_*(c(\gamma)) = q_*(\alpha)$, there is $\delta \in \pi(C, K)$ such that $\mu_*(\delta, c(\gamma)) = \alpha$ where μ_* is

$$\pi(X, K) \times \pi(X, V) = \pi(X, K \times V) \xrightarrow{\mu_*} \pi(X, V)$$

by [7], Lemma 4.1. By (6.3), there is $\varepsilon \in \pi(B, K)$ such that $b(\varepsilon) = \delta$.

$$c(\mu_*(\mathcal{E}, \gamma)) = \mu_*(b(\mathcal{E}), c(\gamma)) = \mu_*(\delta, c(\gamma)) = \alpha$$

shows that c is onto.

Ker c=0: We can prove this by the same proofs of the Five Lemma, and this is valid for j=m+n+2. q.e.d.

In the commutative diagram

$$\pi(F, V) \stackrel{i^*}{\longleftarrow} \pi(E, V) \stackrel{p^*}{\longleftarrow} \pi(B, V)$$

$$(Pi)^* \qquad \qquad \downarrow \bar{p}^*$$

$$\pi(C, V),$$

the sequence $\stackrel{i^*}{\longleftarrow} \stackrel{(Pi)^*}{\longleftarrow}$ of (5.1) for $i: F \rightarrow E$ is exact, and so the horizontal sequence is exact if \bar{p}^* is onto. Therefore, by Lemma 6.4, we have

Theorem 6.5. Let $p: E \rightarrow B$ be a fibre space in the sence of Serre such that B is m-connected, $m \geqslant 1$, the fibre $F = p^{-1}(*)$ is n-connected, and the spaces considered are of the same homotopy types of CW-complexes. If V is a CW-complex such that $\pi_i(V) = 0$ for i > m+n+1, then the sequence of the sets of homotopy classes

$$\pi(F, V) \stackrel{i^*}{\longleftarrow} \pi(E, V) \stackrel{p^*}{\longleftarrow} \pi(B, V)$$

is exact, where $i: F \rightarrow E$ is the injection.

If, in addition, $\pi(B, V)$ and $\pi(C, V)$ have group structures with unit 0 and $\bar{p}^*: \pi(B, V) \rightarrow \pi(C, V)$ is a homomorphism where C is the mapping cone of i and \bar{p} is the map of (6.2), then there is an exact sequence

$$\pi(F, V) \stackrel{i^*}{\longleftarrow} \pi(E, V) \stackrel{p^*}{\longleftarrow} \pi(B, V) \stackrel{\bar{p}^{*-1} \circ (Qi)^*}{\longleftarrow} \pi(SF, V) \stackrel{(Si)^*}{\longleftarrow} \pi(SE, V) .$$

7. The map $\Omega: \pi(B, V) \to \pi(\Omega(B), \Omega(V))$. Let B be a CW-complex and

(7.1)
$$\Omega(B)*\Omega(B) \xrightarrow{p} \bar{S}\Omega(B) \xrightarrow{k} B$$

be the sequence such that $\Omega(B)*\Omega(B)$ is the join of two copies of $\Omega(B)$, $\bar{S}\Omega(B)$ the suspension of $\Omega(B)$ and p, k are given by

$$p(l, l'; t) = (l \circ l'; t), \quad k(l; t) = l(t), \quad \text{for } l, l' \in \Omega(B), \quad t \in I.$$

By [1], I, § 3, there are a fibre space $E' \rightarrow B'$ with fibre F' and a following diagram

$$(7.2) \qquad \Omega(B)*\Omega(B) \xrightarrow{p} \bar{S}\Omega(B) \xrightarrow{k} B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F' \qquad \stackrel{\longleftarrow}{\hookrightarrow} \stackrel{F'}{F'} \xrightarrow{B'} \stackrel{B'}{\longrightarrow} B'$$

such that the squares are commutative, up to a homotopy, and the vertical maps are homotopy equivalences.

If B is n-connected, then $\Omega(B)$ is (n-1)-connected, and so $\Omega(B)*\Omega(B)$ is 2n-connected, by [3], Lemma 2.3. Therefore, by Theorem 6.5, we have the exact sequence:

(7.3)
$$\pi(\Omega(B)*\Omega(B), V) \stackrel{p^*}{\longleftarrow} \pi(\bar{S}\Omega(B), V) \stackrel{k^*}{\longleftarrow} \pi(B, V)$$

if $\pi_i(V)=0$ for i>3n+1, since these spaces have the same homotopy types of CW-complexes according to [4].

Lemma 7.4. Let $\Omega: \pi(B, V) \rightarrow \pi(\Omega(B), \Omega(V))$ be the map defined by

$$(\Omega \varphi)(l)(t) = \varphi(l(t)), \quad \text{for } \varphi: B \to V, \quad l \in \Omega(B), \ t \in I.$$

If B is a n-connected CW-complex and V is a CW-complex such that $\pi_i(V)=0$ for i>3n+1, then

Im
$$\Omega = \pi'(\Omega(B), \Omega(V))$$
,

where $\pi'(\Omega(B), \Omega(V))$ is the set of all the homotopy classes of homotopy-multiplicative maps.⁵⁾

Proof. Im $\Omega \subset \pi'(\Omega(B), \Omega(V))$ is clear. In the commutative diagram

$$\pi(\Omega(B)*\Omega(B),\ V) \xleftarrow{p^*} \pi(\bar{S}\Omega(B),\ V) \xleftarrow{k^*} \pi(B,\ V)$$

$$\uparrow^{\lambda} \qquad \qquad \downarrow^{\Omega}$$

$$\pi(\Omega(B),\ \Omega(V))$$

where $(\lambda \varphi)(l;t) = \varphi(l)(t)$, the horizontal sequence is exact by (7.3), and λ is 1-1 and onto as well known. Therefore, it is only necessary to prove $p^* \circ \lambda(\pi'(\Omega(B), \Omega(V))) = 0$.

Let $\varphi: (\Omega(B), *) \to (\Omega(V), *)$ be a homotopy-multiplicative map, i.e., the two maps, of $\Omega(B) \times \Omega(B)$ into $\Omega(V)$:

$$(l,\,l') \rightarrow \varphi(l \circ l') \;, \quad (l,\,l') \rightarrow \varphi(l) \circ \varphi(l') \;, \label{eq:poisson}$$

are homotopic. Then, for the maps $\bar{\varphi}: \Omega(B)*\Omega(B) \to \Omega(V)*\Omega(V)$, $\bar{\varphi}: \bar{S}\Omega(B) \to \bar{S}\Omega(V)$ defined by

$$\bar{\varphi}(l, l'; t) = (\varphi(l), \varphi(l'); t), \quad \tilde{\varphi}(l; t) = (\varphi(l); t),$$

the two maps $p' \circ \overline{p}$ and $\widetilde{p} \circ p$ are homotopic, where $p' : \Omega(V) * \Omega(V) \to \overline{S}\Omega(V)$ is the map of (7.1) for V instead of B. Hence, we have the commutative diagram:

$$\pi(\Omega(V)*\Omega(V),\ V) \overset{p'*}{\longleftarrow} \pi(\bar{S}\Omega(V),\ V) \overset{\lambda}{\longleftarrow} \pi(\Omega(V),\ \Omega(V))$$

$$\downarrow \bar{\varphi}^* \qquad \qquad \downarrow \bar{\varphi}^* \qquad \qquad \downarrow \varphi^*$$

$$\pi(\Omega(B)*\Omega(B),\ V) \overset{p^*}{\longleftarrow} \pi(\bar{S}\Omega(B),\ V) \overset{\lambda}{\longleftarrow} \pi(\Omega(B),\ \Omega(V))$$

⁵⁾ Cf. § 2.

where k' is the map of (7.1) for V. Since the diagram (7.2) for V shows that $k' \circ p'$ is homotopic to the constant map, $p^* \circ \lambda \{\varphi\} = \overline{\varphi}^* \circ p'^* \circ k'^* \{1\} = 0$, where 1 is the identity map. q.e.d.

8. Applications for homotopy-commutativities.

Theorem 8.1. Let B be a CW-complex such that

$$\pi_i(B) = 0$$
, for $i \leq n$, $i > 3n+1$.

Then, $\Omega(B)$ is homotopy-commutative if, and only if, B is an H-space.

Proof. Let $\mu: \Omega(B \times B) = \Omega(B) \times \Omega(B) \to \Omega(B)$ be the map defined by

$$\mu(l) = \Omega p_1(l) \circ \Omega p_2(l)$$
,

where $p_i: B \times B \rightarrow B$ is the projection onto the *i*-th factor.

Suppose that $\Omega(B)$ is homotopy-commutative, then μ is homotopy-multiplicative. Therefore, we have a map $M: (B \times B, (*, *)) \rightarrow (B, *)$ such that ΩM is homotopic to μ , by Lemma 7.4. It is easily seen that M satisfies the assumptions of Lemma 1.2, since μ does, and so B is an H-space. q.e.d.

If B is a classifying space of a countable CW-group, the map $f: G \rightarrow \Omega(B)$ of Lemma 4.1 is a weak homotopy equivalence. Since $\Omega(B)$ is the same homotopy type of a CW-complex, it is also a homotopy equivalence. Therefore, the homotopy-commutativities of $\Omega(B)$ and G are equivalent, and we have

Theorem 8.2. Let G be a countable CW-group such that

$$\pi_i(G) = 0$$
, for $i \leq n$, $i > 3n+3$.

Then, G is homotopy-commutative if, and only if, its classifying space, being a countable CW-complex, is an H-space.

Corollary 8.3. Under the conditions of Theorems 8.1 and 8.2, the homotopy-commutativity of G or $\Omega(B)$ implies the strong one.

REFERENCES

- [1] W. D. Barcus and J.-P. Meyer: The suspension of a loop space, Amer. J. Math., 80 (1958), 895-920.
- [2] A. Dold and R. Lashof: Principal quasifibrations and fibre homotopy equivalences of bundles, Illinois J. Math., 3 (1959), 285-305.
- [3] J. Milnor: Constructions of universal bundles. II, Ann. of Math., 63 (1956), 430-436.
- [4] ——: On spaces having the homotopy type of a CW-complex, Trans Amer. Math. Soc., 90 (1959), 272-280.
- [5] J. C. Moore: The double suspensions and p-primary components of the homotopy groups of spheres, Bol. Soc. Mat. Mexicana, 1 (1956), 28-37.

- [6] F. P. Peterson: Functional cohomology operations, Trans. Amer. Math. Soc., 86 (1957), 197-211.
- [7] ———— and E. Thomas: A note on non-stable cohomological operations, Bol. Soc. Mat. Mexicana, 3 (1958), 13-18.
- [8] D. Puppe: Homotopiemengen und ihre induzierten Abbildungen. I, Math. Zeit., 69 (1958), 299-344.
- [9] H. Samelson: Groups and spaces of loops, Comment. Math. Helv., 28 (1954), 278-287.
- [10] J.-P. Serre: Homologie singulière des espaces fibrés. Applications, Ann. of Math., 54 (1951), 425-505.
- [11] M. Sugawara: On a condition that a space is an H-space, Math. J. Okayama Univ., 6 (1956-57), 109-128.
- [12] . Note on H-spaces, Proc. Japan Acad., to appear.
- [13] G. W. Whitehead: On the homology suspension, Ann. of Math., 62 (1955), 254-268.