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Introduction . It is well known that the loop space SI(B) in B
is  homotopy-commutative i f  B  is  an H-space. Furthermore, it
follows that the group G, which is also a CW-complex, is homotopy-
commutative if its classifying space BG is an H-space, because there
is an H-homomorphism f :G— >1 -2(BG ) which is also a weak homotopy
equivalence (cf. [9 ] ,  Theorem 1 and also [12 ], Theorem 2). It is
our purpose of this paper to study about the inverses of these facts.

In the first part, the notion of the strong homotopy-commuta-
tiv ity is considered, and it is proved that the strong homotopy-
commutativity o f f2(B) or G  and being B  or BG an H-space are
equivalent (Theorems 4. 2 and 4. 3).

In the second part, an exact sequence of the sets of homotopy
classes for a fibre space with certain conditions are considered
(Theorem 6. 5), and the image of the map 7 - ( X, Y ) -7((2X , 12Y)
is studied (Lemma 7. 4). Finally, it is proved that only the
homotopy-commutativity o f 12(B) or G  is equivalent to being B  or
BG an H-space for certain kinds of spaces, (Theorems 8. 1 and 8. 2).

P a r t  I. Strong homotopy -commutativities

1. Commutative grou ps. Let G  be a  countable C W-group,
and p  :  E.--43 an universal bundle with group G where a classify-
ing space B  is  a  countable CW-complex." I f  G  is  commutative,
then the map

1 )  A  group G is called a  countable CW-group i f  G is  a countable CW-complex
such that the map g - 1  o f  G--->G and the multiplication G x G - ,- G  are both cel-
lu lar m aps. Milnor, [3], Theorem 5.1.(1), proved that such a group has a  countable
CW-complex as a classifying space.
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(1. 1)p ,  :  G x G  —  -  >  G  ,  p ( x ,  y )  =  x y  ,

of the product group G x G  into G is a homomorphism. Therefore,
it is easy to see that there are maps

(E,,o (GxG), GxG)--> (E,,(G), G), : X c.a (GxG)-- X c.,(G)

such that T.61G x G=p, P(G)0 ITL=p,op(GxG), where P(G):
X (G ) is the universal bundle with group G, constructed by Milnor,
[ 3 ], § 3 . Because px p: E x E --->B x B  is also an universal bundle
with group G x G, we obtain maps

M :(E x E ,G x G )--->(E ,G ), M :B x B — >B

such that M  x  G=F., poilf--Mo(PxP).

Define L i : Ex E-->Ex E, BxB--->BxB, 1=1,2, by

L i (u„ 742 ) =  (113(u„ 112 ) , u 1 )  ,  Li(Y„ y2) = (M(Y,, Y2), yi) •

Then, L i IG x G= /i : GxG--->GxG i s  given by 11 (x„ x2)—(x1x2, xi),
which is a  homotopy equivalence. Therefore L 1 : (B x B, (4,  , *))
(B  x B , (*, *)) (* p(G)) is also a homotopy equivalence, for 1=1, 2.

On the other hand, we have
Lemma 1. 2. If  there is a  map (Fx F,(e,e))— .(F,e) f or a

CW -complex F containing a point e  such that the map:

(FxF, (e, e))— > (Fx F, (e, e)), x2) = (p(xi, x2), xi)

is  a homotopy equivalence, fo r  i=1 , 2, then F is an H-space.
Pro o f . In the proofs of Theorem 4 o f [11], the existence of

an unit in the conditions of H-space is not used, and so we have
the same conclusions for F  o f this lemma, i.e., there is a weak
homotopy equivalence p :  (F*F, * ) ,  where F*F is the join
o f  tw o copies of F, S F  the suspension of F  and *  its point.
Therefore, F  is an H-space by Da Theorem  1, noticing that the
product o f CW-complexes has the same homotopy type of a CW-
complex, ([4], Proposition 3). q . e . d .

By the above considerations, we have the following well known
theorem :

Theorem 1. 3. A  classify ing space, w hich is also a countable
C W-complex, of a commutative countable CW -group is an H-space.

2. Strongly homotopy - multiplicative m aps. L e t H , H ' be
topological monoids, i.e., associative H-spaces. If f :  H --.11 ' is a
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homotopy-multiplicative m ap (or an H-homomorphism), then there
is a map

M 1 : I I 2 x I , "  M i (x „ x „ 0) = f (x °x i ), M i ( x „ x „1 )  f  ( x o ) f (x,) .

In this paper, we shall say that f  is strongly homotopy-multiplicative
if there exist maps M „: H n ''x P n=0,1, .•. , such that

M o (x) f ( x )  ,
M„(x o , ••• , x„, t 1 , ••• ,t„)

(2. 1)
Mn

-
1(X 0, • • • X i

-
P r i  • • • x ,,, 7  •  •  •  )  

î
l  I • )  

t
11))

3)
 

for t i  =  O,
M i - 1(X 0 • • • xi - 1 ,  t 1 1  • • • , , • • • x n ,  t i + 1 ,  •  • • t n )

for t 1 =  1 .

Dold and Lashof, [2], §§2-3, constructed the universal principal
quasifibration ji--=(EH) PH, BH, H ) for any topological monoid H,
as follows

E 0 =H , B o =b o a point, po : E o ----›Bo is  the trivial map.
A point of E„ is described by y lt lx  where y G E „_ „ x E H , tE I

andy101x=01x=(n,x)EnxH,y11ix=yx11 =y x E E n , .  The product
E n x H ->E „ is (yl t x)xi-Y1 tl xxi•

A point of Bn  is described by y  _L t where y t E  /  and
y  0  =b n  (a point), y  1  =  p n _,(y) E B n _i .

The projection p„: E„-> Pn(y t.
EH =V  E „, BH =  V  Bn, PH 1En=  p,, . (The topologies o f these

spaces are slightly stronger than the usual product, identification
and limit topologies, but, for a countable CW-complexes, it may
be taken the usual topologies.)

L em m a 2. 2. Let H, H' be monoids and f : H -  H ' b e  a strongly
homotopy-multiplicative m a p . Then, there ex ist m aps:

t :H )  - > ( E H ', H') , B , ,

such that f 1H = f , pi e °  =  fo p H .

Pro o f . Denote by E „ B „ p  t h e  spaces and the maps, con-
structed from H ' instead o f H  in the above.

Set fo=f, f0(B0)=B.
Assume inductively that f „ , : are

2) H"=Hx•••xH, n-tim es, and /= [0 ,
3) îj means that t, is removed.
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defined and also there are maps M 1 :H m  x  —  - m =
0, 1, ••• , such that

=
I1/IT- 1 (Y ) = f ,,-,(Y ),
M z - - 1(y , x „ ••• , x ,,,, t„ ••• ,t)

m ',V i(y x „••• , x „„ t„ , t n ,) , for t, = 0,

(2. 3) = •-• , x i _i x i , ••• , x„„ t 1 , ••• , Î , , t , n ) ,
for t i  = 0 , i > 1 ,

= m7=1(y, •-• , xi _,, t1, •-• , ,t,,,) ,
for t i  = 1

K-1°1117.- 1 (Y, xi, , x n „ t„,) = g-i°/

where M k  is the map of (2. 1).
Define f ,,: E„-->E:„ f n : B,,--> BL, 111;n : E„x  Hm x m =

0, 1, ••• , by

f n (y ltlx ) = f „_ ,(y )12t1 f (x ), for 0  < t...< 1 /2  ,
M r 1 (y, x, 2 -2 0  , for 1/2 ( t <1  ,

f (Y = f .1.2t , for 0 ( r . . <  1/2 ,

= f.-1°X-1(y), for 1/2 t .< 1  ,

M :,(Y  t x, ••• , x„„ t„ ••• ,
= fn-1(Y)12t I M„,(x, x l , ••• , x„„ t„ , t » ,),f o r  0 .< t .< 1/2 ,

= x, x„ ••• ,x„„ 2-2t, t„ ••• , t » ,) ,f o r  1/2 t < 1 .

Then, simple calculations show that these are extensions of
fn-1, M1- 1 ,  and satisfy the inductive assumptions (2. 3). q.e.d.

3 .  Strong h o m o to p y -c o m m u ta tiv itie s . I f  G  is  a  countable
CW -group, then e G =(E G , PG, BG) o f  §  2  and (E(G), p(G), X-(G))
of § 1 are the same by [ 2 ] ,  §  4 .  Therefore, the same proofs of
§ 1 are  valid by Lemma 2.2, if ,a: GxG— >G of (1. 1) is strongly
homotopy-multiplicative.

We shall say that a monoid H with unit e is strongly  homotopy-
com m utative i f  there exist maps C„ :  (I1 2" x  I" ,  e2 " x e ) ,
n=1, 2, •• • , such that

C,(x, y, 0) xy , C,(x , y , 1) = yx ,
C „(x„, , x t l , ••• •••
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(3. 1)

-  x1C._1(x2, •  •  •  ,  x . ,  Y 1 y 2  7  •  •  •  7  y t 2  •  •  •  7  
t

71) 7 for t, = 0
Cn _ i ( x i , • • •  7  xn, y 1 ,  • • •  , • • •  ,  y . ,  

t
l

• • • , i i , • • • , t,,) ,f o r  t i  = 0, 1 < i <  n,
• • •  , y,, 1 , t i ,  •  •  • for t„ = O,

— ••• , x i_i, y i, ••• y i- i, t i, • ••

••• , ••• y n ,  1.1+17 tn ) for t i  = 1»
I f  G  is  strong ly  homotopy-commutative, then th e  maps Mn :

(G2 )"' x  I n  —> G ,  n=0,1, ••• , defined by

Mo(x, =  xY  = p(x, y)
M n ( ( X (:) ,  y 0 ),  • • •  , ( x n  y t 2 ) )  

t
1 •  •  •  7  

t n)

—  X 0 C ,A X 1 , • • •  x n , y O ) • • •  y n - 17  tl, •••  , t , )Y n ,

satisfy (2. 1) and so p  is strongly homotopy-multiplicative. There-
fore, by the above considerations, we have

Lemma 3. 2. A  classif y ing space, w hich is also a  countable
C W - com plex , of a strongly homotopy-commutative countable CW-group
G, is  an H-space.

Now, we shall prove
Lemma 3. 3. Let H, H' be monoids, H  be also a countable CW -

complex, and f :  H '  be a strongly-multiplictive weak homotopy
equivalence. I f  H ' is strongly  homotopy-commutative, then so is H.

Pro o f . D enote by C  the maps of (3. 1) for H'.
Define C0 : H 2 x H  b y  C,(x, y, 0) = xy, C,(x, y, 1) = y r ,  and

C1 : 11 2 x ( i x I v I x 1 ) - - , H  by

Ci (x, y, t„ t) M i (x, y, t) , for t, — O,
= M i (y, x, t) , for t, = 1
= Cç(f(x), f (Y ), t 1),f o r  t = 1 ,

where M , i s  th e  m ap o f (2. 1). Extend C„ C, to C 1 : H 2 x /--> H,
C1 : x I 2 H '  so  th a t foC, = C,1112 x I x O . Such  extensions are
possible, because f  is  a  weak homotopy equivalence and H 2 x I 2 is
a  CW-complex.

Define inductively C„ : H 'x  in —  >II b y  (3. 1), an d  e n : 112 "x
(1" x x 1) H ' a s  follows :

C,,I11 2 n X  i n  X 0  =  f O C  „  C.111' x I" x1=Cio f * ,

4 )  The existence of C1 show s the usual homotopy-commutativity of H.
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and C,,11-1 2  x in xi by C i , i <n—  1, and M i , i <2n—  1, of (2.1), where
f * ( x i , • • •  , ti, •  •  ,t,,)=(f  (xi), • • • , f (Y n), t1, • • • ,1„); and extend these
to C„ : H 'x i " - - > H  and e n : H ' x i - - > H '  so that f oC„--C ,,IH 2 "
x I"  x O. q . e . d .

4 .  Loop spaces of classifying spaces. Let n' (B) be the loop
space in B  in the sense of Moore, [5], § 2

(2/ (B )  = 1(1, r)Ir > 0 ,  1: [0 , r] B , 1 (0) = l(r) = base point}

which is a monoid and has the same homotopy type as the usual
loop space f2(B).

Lemma 4 . 1 .  Let B  be a classifying space of a group G, then
there is a strongly hom otopy-m ultiplicative map f : G ---.1 -2'(B ), which
is also a weak homotopy equivalence.

Pro o f . Let p :  E— >13 be an universal bundle with group G,
and let k s : E--->E be a contraction of E  into e , the unit of G .  It
is proved that the map f: G---> fr(B), defined by

f (x)(s ) pok s (x) , 0 < s <  1 ,

is a  weak homotopy equivalence and homotopy-multiplicative, in
[9 ], Theorem I.

Set r +1 =  {(t„ *"  t n , S)I (t, tn) E i n , 0 < s < 1  + t i + + t„}
i n  X [0, n+ 1], and define inductively M „: G "' x  j" ' — >E , n=0 ,

1, ••• , by
M o(x, s) = k s (x)

„(x ,, ••• , x „, t„ ••• ,t,,, s)
= 2 i„„(x 0 ,••• ,x i „x i ,••• , x „, t„ ••• ,i i ,••• ,t„,  ) , for t i  =  0

i— 11711-1(x0 • •• 
x

i - 1  
t

l )  • • •  )  ti-i, s)x  ••• x„,

for t i  1 ,  0  < s < l + t 1 + ••• +t i _„
••• , t,,, ••• —t i , ) ,—

for t i  = 1 , 1 + t 1 + •••  +t 1 „ < s < 1 + t 1 + •••  +t„,

x , ••• x„, for s  = 0 ,
= e ,f o r  s =  1 + t 1 + ••• +t„,

and extend it to M u : G " " x J" -"-->E  by the contraction k s  o f  E.
Define M „: G" -" x  — .1 '( B )  by

M„(x o , ••• , x ,„ t„ ••• , t„)(s) = pola n (x o , ••• , x„, t„ ••• s) ,
for s  e [0, 1+ t 1 + •••  +t,,].
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It is easy to see that these satisfy (2. 1). q.e.d.
Theorem  4 . 2 . The loop space 12(B) in  a countable CW-complex

B is strongly homotopy-commutative if , and  only if , B is an H-space.
Pro o f . By [3], Theorem 5. 2.(3), B  is  a  classifying space of

some countable CW-group G .  If S2(B) is strongly homotopy-com-
mutative, then (1'(B) and hence G are also so by Lemmas 3. 3 and
4. 1. Therefore, B  is an H-space by Lemma 3. 2.

Conversely, suppose B  is  an H-space with an unit e, which
is the base point. A map C1 : ((1(B))2 x n ( B )  of (3.1) is defined
b y  the homotopy 1/1 ./ 2 =(l 1 oe)•(eol 2 )--(eol,)•(1 2 0e)=l 2 ol 1 } ,  where e
means the constant loop,  o  i s  the loop- and • the induced mul-
tiplication o f that o f B , (showed in the first figure below). The
existence of C , of (3. 1) is easily seen from the following rough
figures, and so on. q . e . d .

By the sufficiency o f this theorem and Lemmas 3. 3 and 4. 1
and also Lemma 3. 2, it follows immediately

Theorem 4. 3 .  A  classify ing space, w hich is also a  countable
CW -complex, o f  a  countable CW -group G  i s  a n  H-space i f ,  an d
only if , G  is strongly homotopy-commutative.

Part H . Sequences of the sets of homotopy classes

5. The sequence o f P u p p e . For any spaces X  and Y with
base point, denote by n - (X, Y) the set of homotopy classes of maps
with base point of X  into Y, and by 0 E z (X , Y) the class repre-
sented by the constant map.

For any map f: X  Y ,  let

f  P f  Q f S f
X —  Y

be the sequence o f  maps defined as follows : C1  is the mapping
cone of f ,  i.e., the identification space of X x iv  Y  by X x 1 9 (X , 1)
= f (x )  E Y and Xx 0 u* x I= f  (*). S X  is  the reduced suspension
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of X, i.e., the identification space X x p x x iu * x L  P f  is the injec-
tion, Q f the projection, and S f  the suspension of f .

P uppe , [8 ], Satz 6 ,  proved that the above sequence induces
the exact sequence of the sets of homotopy classes :

(Q f) *T7. f * ( 1 7 (P f)*7z-(X , V) 7 rk  , V)7 - e ( C 1 ,  V )
(Sf)*

z (SX , V) 7r(S Y , V) <— • • •

for any space V.

6 .  Sequences for fibre spaces. Let p : E — >B  be a fibre space
in the sense of Serre such that B  is m -connected, m >1, the fibre
F= p - 1 (* ) is n-connected, and the spaces considered are of the same
homotopy types of CW-complexes.

Then, by [1O], p. 469 and [13], Lemma 5. 2, the induced homo-
m orphism  p *  o f th e  cohomology groups with coefficient in an
abelian group G is an isomorphism

(6.1) p *  : H  k  (B  ; G) Hk(E, F ; G) , for k < m + n + 1 ,

and a monomorphism for k = m+ n + 2.
Let C  be the mapping cone of the inclusion map i :

then we have isomorphisms :

Hk(E,F ; G) 4-- H  k(E  I F ; G) H k(C ; G)

for any k, because E  is  a  CW-complex and F  is its subcomplex,
up to a homotopy typ e . Therefore, combining with (6. 1), the map :

(6.2) p :  p 1 E = p ,  f i ( F x / )  * ,

induces an isomorphism

H k(B ; G) Hk(C ; G) , for k < m + n + 1 ,

and  a  monomorphism fo r  k = m + n + 2 . Denote by K(G , k ) the
Eilenberg-MacLane space, and identify Hk(X ; G) with n-(X, K(G, k)),
and we have an isomorphism

(6.3) p *  : 7 r (B , K (G , 7r(C, K(G, k)) , for k < m + n +1 ,

and a m onom orph ism  fo r k = m + n+ 2.
Lem m a 6.4. I f  V  is  a C W -com plex  such that ir 1( V )= 0 for

(5.1)
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i>m + n +1 , then the induced map fi* : n(B, V )— . n(C, V ) is onto ;
and, if n i (V ) =0 fo r i >m + n +2 , then Ker7i*=0.

Proof. We shall prove by the induction on j  where iri (V )= 0
for i > j< m +n +1 .

For j=1 : Since B  is simply connected, we can assume that
B 1 =* , the base point, and so any map B  V  is homotopic to the
constant map because 7r(V )= O for i>2  ; and samely for C.

Induction, j - 1 - - j  for j< m + n + 1 : Using the Postnikov sys-
tem, we can represent V as a principal fibre space, [7 ], with fibre
K = K(n J (V  ), j) and base W where

z i (W ) = Tri (V ) for i < j-1 , 7z - 1(W )=0 for i > j .

Therefore, we have the following commutative diagram

X* i* q* X*
z(B, f/W) n-(B, K) n(B , V) W) 7(B, X (K))

X*X*
la

l q*
Id_

n(C, n(C, K) n(C, V) n(C n(C, X(K))

where X(K)=K(7r1 (V), j+1 ) and  each low is the exact sequence of
[6 ], Lemma 2. 1, and a, • •• , e are fi*.

c is onto : Let a E 7r(C, V ) .  By the inductive assumptions, d
is onto, and we have E 7r(B, W) such that 48)—  q * ( a ) .  Since e
is  1-1 by (6. 3), X * (i3)= 0, and so there is y E z (B , V ) such that
q* ey) = 3 .  Since q* (c(y)) = q * (a) , there is 8 G n.(C , K ) such that

c(7))= a where is

n-(X , K )x n -(X , V) = n(X , K x  V )  n ( X ,  V) ,

b y  [7 ], Lemma 4. 1. B y  (6. 3), there is E n-(B , K ) such that
b(8)=

c( (8, 7)) = P(b(E), c(7)) = a * (, =
shows that c  is onto.

Ker c = 0  : We can prove this by the same proofs of the Five
Lemma, and this is valid for j=m + n+ 2. q.e.d.

In the commutative diagram

i* P*n(F, V) n(E, V) 4 - -  7 r(B, V)

IP *(Pi)*
n (C  V),



266 Masahiro Sugawara

i* (Pi)*
the sequence of (5. 1) for i: F--->E is exact, and so
the horizontal sequence is exac t if  f i *  is  onto . Therefore, by
Lemma 6. 4, we have

Theorem 6.5. L e t  p : E -÷ B  be a fibre space in the sence of
Serre such that B is m -connected, m >1, the fibre F = p - 1(*) is  n-
connected, and the spaces considered are of the same homotopy types
of CW -complexes. I f  V  is a  CW -complex such that 7- ri (V )=0  for
i>m +n +1 , then the sequence of the sets of homotopy classes

i* P* T  )\7 r ( F ,

, \

V) — ( E ,  v v

is exact, where i: F-->E is the injection.
If, in addition, n- (B, V) and 7(C, V) have group structures with

unit 0 and fi* : 7(B, V )-> 7r(C, V ) is a homomorphism where C is the
mapping cone o f i  and - -p  is the map of (6. 2), then there is an exact
sequence

i* P* p*--10(Qi)* (Si)*
7r(F, 7r(SF, V)4- 7 r ( S E ,  V ).

7. The map (2: m (B , m(11(B), f l ( V ) ) .  Let B  be a  C W-
complex and

(7.1) 12(B)*12(B) S,(2(B) B
be the sequence such that (1(B)*f2(B) is the join of two copies of
r2(B), gf2(B) the suspension of 12(B) and p , k  are given by

p(i, ; (1.1' ; , k(1 ; t) 1(t) , for 1, l' E E 2 (B ) , t E l.

By [1 ], I, § 3, there are a fib re space E'--).13' with fibre F'
and a following diagram

-(2(B)*S2(B) 
P
 S n m B

I
F' E ' B '

such that the squares are commutative, up to a  homotopy, and the
vertical maps are homotopy equivalences.

I f  B  is n-connected, then (2(B) is (n-1)-connected, and  so
f2(B)*S2(B) is 2n-connected, by [3], Lemma 2. 3. Therefore, by
Theorem 6. 5, we have the exact sequence:

k*
(7.(7. 3) 71-(1-2(B)*1-2(B), V) 4- -  n - (gn(B), V) 4- -  z(B, V)

(7. 2)
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i f  1( V )=0 fo r  i >3n+1 , since these spaces have the same homo-
topy types of CW-complexes according to [4 ].

Lemma 7.4. L e t  2 :  7(B, V)—>n- (12(B), 12( V )) be the map de-
fined by

(f2p)(/)(t) q,(1(t)) , fo r  (p: B---> V, l E &2(B), t E I.

I f  B  i s  a  n-connected CW-complex and V  i s  a  CW-complex
such that n (V )= O  fo r  i >3n+1 , then

im zi(1-2(B), f2( v)) ,
where 7r/ 02(B), 11( V )) is  the set of all the homotopy classes of homo-
topy-multiplicative maps."

Pro o f . lin E2 C 7 r ip (B ) , 2( V)) is clear.
In the commutative diagram

p* _ k*
7r(S-2(B)*12(B), V) 7r(S1(B), V) 7r(B, V)

ÎX /12
7r02(B), 2(v))

where (Xp)(/ ; t)=p(1)(t), the horizontal sequence is exact by (7. 3),
and X is 1-1 and onto as well known. Therefore, it is only neces-
sary to prove p*.x(7-ti (f2(B), (2,(V ))) O.

Let p :  (n(B ), (a( v ) , * )  be a homotopy-multiplicative map,
i.e., the two maps, of s-2(B) x S2(B) into 12( V) :

(/, /') p(1.11) , (1, 1') ----> (p(1).p(1')

a re  homotopic. Then, for the maps ep :  1- 2(B)*E2(B) ,  12( V)*,(2(V),
7: S f 2(B ) S 12( V) defined by

7(l,; t) = (p(1), (p(1 ') ; t) , ep(1 ; t) ((Xi) ; t)

the two maps p'o(p and 0. p are homotopic, where p' : 2 (V)*1-2(V)
g1-2( V ) is the map o f (7. 1) for V instead of B .  Hence, we have
the commutative diagram :

7 (V , V)
k'* / \S2,

7r(f2( V)*(( V), V) TC(Sf2( )(), V) - (f2 V), Sr2( V))

frj * I P *
7-r(1-2(B)*1-2(B), V) 7r(S(2(B), V) 4  )±-. TC(12(B  1 2 ( V))

5 )  Cf. §2.
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where k ' is  the map of (7. 1) for V. Since the diagram (7. 2) for
V shows that k' o p ' is  homotopic to the constant map, p*oX{p} =
ep*opoki*111 =0, where 1 is the identity map. q . e . d .

8 .  Applications for homotopy - commutativities.

Theorem 8. 1. Let B  be a CW-complex such that

71- ,(B ) = 0  , f o r  i< n  ,  i> 3 n + 1 .
Then, n(B ) is homotopy-commutative if, and only i f ,  B  is  an H-space.

Proo f . Let p: 11(B x B )=r2(B )xn(B )--. 11(B) be the map defined
by

= 12P1(/)°12P2(/)
where p i : B x B --.13 is  the projection onto the i-th factor.

Suppose that 11(B ) is  homotopy-commutative, then p  is  homo-
topy-multiplicative. Therefore, we have a map M: (B x B, (* , *))
(B ,*) such that SIM is homotopic to p ,  by Lemma 7. 4. It is easily
seen that M satisfies the assumptions o f Lemma 1. 2, since p  does,
and so B  is  an H-space. q.e.d.

I f  B  is  a classifying space of a countable CW-group, the map
f :  a ( B )  of Lemma 4. 1 is a weak homotopy equivalence. Since
n(B ) is  the same homotopy type of a CW-complex, it is a lso  a
homotopy equivalence. Therefore, the homotopy-commutativities of
12(B) and G  are equivalent, and we have

Theorem 8. 2. Let G be a countable CW -group such that

n i (G) = 0 , fo r  i <n , i > 3n  + 3 .

Then, G is homotopy-commutative if, and  only  i f ,  its classify ing
space, being a countable CW -complex, is an H-space.

Corollary 8. 3. Under the conditions of Theorems 8.1 and 8. 2,
the homotopy-commutativity o f  G or 11(B ) im plies the strong one.
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