MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

On the harmonic boundary of an open Riemann surface, II

By

Yukio KUSUNOKI and Shin'ichi MORI

(Received May 18, 1960)

Introduction

The present paper contains some generalizations and supplements of our previous results [6]. Furthermore the relation between harmonic boundary points and the minimal functions (in \underline{HD}) will be studied.

We shall denote by R an open Riemann surface and by R^* the Royden compactification of R. In §1 the structure of R^* and some definitions are stated. §2 is concerned with the harmonic measure with respect to any compact subset of harmonic boundary Δ of R. In particular, the harmonic measure with respect to a single point becomes a minimal function in class <u>HD</u> studied by Constantinescu-Cornea [1] and one-to-one correspondence between minimal functions (in <u>HD</u>) and some points in Δ will be established. These results are the contents of §3. Finally in §4 from our point of view we shall study the properties of non-compact subregions G on R, by which some theorems in previous paper [6] will be made more clear and complete. Particularly, Theorem 6 (or 6') gives the characterization of $G \notin SO_{HD}$, which has some remarkable applications.

§1. Structure of R^*

1. Let R denotes an arbitrary open Riemann surface. For the sake of definiteness and convenience we shall state briefly the structure of the compactification R^* of R (for some proofs see Gelfand-Silov [2] and Royden [11]. cf. Nakai [10] for another approach). Let BD denotes the class of bounded continuous functions which are piecewise smooth on R and have finite Dirichlet integrals. The class of BD-functions with compact carriers forms an ideal K in the ring BD. By \overline{K} we denote the closure of K in BD-topology¹⁾. Introducing the BD a norm given by

(1)
$$||f|| = \sup_{R} |f| + \sqrt{D_{R}(f)},$$

where $D_R(f) = \iint_R |\operatorname{grad} f|^2 dx dy$, we get a normed ring A. K, \overline{K} are ideals still in A. Let \mathfrak{M} be the set of all maximal ideals in A. Now the topology of \mathfrak{M} is defined as follows: a maximal ideal M is called a limit point of a subset $\mathfrak{A} \subset \mathfrak{M}$, if M contains an ideal $\bigwedge_{x \in \mathfrak{N}} N$. The totality of limit points of \mathfrak{A} constitutes the closure \mathfrak{A} . For any two sets \mathfrak{A} and \mathfrak{B} we have

(2)
$$\overline{\mathfrak{A}} \cup \overline{\mathfrak{B}} = (\overline{\mathfrak{A} \cup \mathfrak{B}}).$$

It is proved that \mathfrak{M} with the topology induced by this closure operation becomes a compact Hausdorff space, which will be written as R^* . For every point $a \in R$ the set

$$M_a = \{x ; x \in A, x(a) = 0\}$$

makes obviously a maximal ideal. With each $x \in A$ a real number $x(M_a)$ is associated (A/M_a) is isomorphic to the real number field). Then it is proved that $x(M_a) = x(a)$ and the mapping $a \to M_a$ gives a homeomorphism of R into R^* . Since $\bigcap_{a \in R} M_a$ consists of a function $x \equiv 0$, every point of R^* is a limit point of $\bigcup_{a \in R} M_a$, i.e. the image of R is a subset dense in R^* , which will be denoted again by R. Every function in A becomes continuous on R^* .

2. We call a non dense closed set

$$\Gamma = R^* - R$$
, $R = \bigcup_{a \in R} M_a$

the ideal boundary of R. It is easily seen that every point $M_a \in R$ does not include an ideal K, while every point M (maximal ideal) of Γ necessarily contains K. Now a point M in the ideal boundary Γ is called a *harmonic boundary point* of R, if maximal ideal Mcontains not only K, but also an ideal \overline{K} . The set of harmonic boundary points of R constitutes a closed set Δ , the harmonic boundary of R, which plays an important role in our studies.

¹⁾ $f_n \to 0$ in *BD*-topology if $|f_n|$ are uniformly bounded, $f_n \to 0$ uniformly on every compact set of *R* and $D_R(f_n) \to 0$.

In the sequel, we shall assume that Riemann surface R does not belong to O_{HD} , unless otherwise stated.

§2. Harmonic measures with respect to harmonic boundary points.

3. LEMMA 1. Let u be a non-constant BD-function which is subharmonic (resp. superharmonic) on R, then u attains its maximum (resp. minimum) on Δ .

Proof. Let

$$(3) u = U + \varphi, U \in HBD, \ \varphi \in \overline{K}$$

be the orthogonal decomposition on R. Take an exhaustion $\{R_n\}$ of R and consider a sequence of harmonic functions $u_n (n=1, 2, \cdots)$ which have, on ∂R_n , the same boundary values as u. Then u_n (subsequence) converge uniformly to U on every compact set in R. Since $u_n \ge u$ on R_n , we have for $n \to \infty$ $U \ge u$ on R, therefore by means of maximum principle (Mori-Ôta [9])

$$\sup_{R} u \leq \sup_{R} U = U(q^*), \qquad q^* \in \Delta$$

While $\varphi(q^*)=0$, hence we have $\sup u=u(q^*)$, q.e.d.

Let u, v be any two harmonic functions on R, then the notations

$$u \wedge v$$
 and $u \vee v$

mean respectively the greatest harmonic minorant, and the least harmonic majorant of u and v. Now we have

LEMMA 2. Let u_1, u_2 be HBD-functions on R, then for $p^* \in \Delta$

(4)
$$(u_1 \lor u_2)(p^*) = \max [u_1(p^*), u_2(p^*)] (u_1 \land u_2)(p^*) = \min [u_1(p^*), u_2(p^*)]$$

Proof. Since the function

$$u(p) = \max \left[u_1(p), u_2(p) \right], \qquad p \in \mathbb{R}$$

belongs to the class BD, we have the orthogonal decomposition (3) of u. Since

$$(5)$$
 $u(q) = U(q)$ for $q \in \Delta$

and *u* is subharmonic, we have, by Lemma 1, $u(p) \leq U(p)$ on *R*, hence $u_1 \lor u_2 \leq U$. While, $u \leq u_1 \lor u_2$ and U(q) = u(q), therefore

 $U \leq u_1 \lor u_2$ by Lemma 1. Thus we have

$$(6) U = u_1 \vee u_2.$$

(5) and (6) show the first equality in (4). As for the second one, the proof is quite analogous.

4. After Constantinescu-Cornea [1] we consider a class <u>HD</u> of harmonic functions which are limits of monotone decreasing HD-functions. Evidently $HD \subset \underline{HD}$.

THEOREM 1. Let α be a compact subset $(\neq \phi)$ of Δ and β its complementary set $(\neq \phi)$ in Δ . Then there exists a function Ω_{α} defined on R^* such that

(i) Ω_{α} is upper semi-continuous on R^* and $\Omega_{\alpha} \in \underline{HD}$ in R

(ii) $\Omega_{\alpha} = 1$ on α , = 0 on β and $0 \leq \Omega_{\alpha} \leq 1$ on R^* .

We call Ω_{α} the harmonic measure with respect to α .

Proof. Consider the set of functions;

(7)
$$\mathfrak{F}_{\alpha} = \{v \in HBD; v = 1 \text{ on } \alpha \text{ and } \geq 0 \text{ on } R\}.$$

First we note that \mathfrak{F}_{α} is non empty, because \mathfrak{F}_{α} contains a nonnegative *HBD*-function $u_{\alpha,q}$ with the property

(8)
$$u_{\alpha,q} = 1$$
 on α and $= 0$ at a point $q \in \beta$

(cf. Lemma 2, [6]). Now the function

$$(9) \qquad \qquad \Omega_{\alpha}(p) = \inf_{v \in \mathfrak{F}_{\alpha}} v(p), \qquad p \in R^*$$

has the required properties. This is proved by the Perron's method for Dirichlet problem. Take any point p_0 on R and the sequence of functions $\{v_n\}$ such that $v_n(p_0) \to \Omega_{\alpha}(p_0)$ $(n \to \infty)$, $v_n \in \mathfrak{F}_{\alpha}$. Then we see that by Lemma 2 the functions

(10)
$$u_n = v_1 \wedge v_2 \wedge \cdots \wedge v_n$$

belong to \mathfrak{F}_{α} , moreover the monotone decreasing sequence $\{u_n\}$ converges to a harmonic function Ω and $\Omega(p_0) = \Omega_{\alpha}(p_0)$. Next take any point $p_1 (\neq p_0)$ on R, then we obtain analogously the monotone decreasing sequence $\{u_n'\}$, which converges to a harmonic function Ω' and $\Omega'(p_1) = \Omega_{\alpha}(p_1)$. Now the functions $w_n = u_n \wedge u_n'$ belong also to \mathfrak{F}_{α} and we find that the limit function $\Omega'' = \lim_{n \to \infty} w_n$ are majorized by Ω and Ω' , hence $\Omega \equiv \Omega' \equiv \Omega''$ by the minimum principle, because $\Omega''(p_0) = \Omega(p_0) = \Omega_{\alpha}(p_0), \ \Omega''(p_1) = \Omega'(p_1) = \Omega_{\alpha}(p_1)$. Since p_1 is arbitrary, it follows that

212

On the harmonic boundary of an open Riemann surface, II 213

(11)
$$\Omega_{\alpha} \equiv \Omega = \lim_{n \to \infty} u_n \in \underline{HD}, \qquad u_n \in \mathfrak{F}_{\alpha}$$

Since $u_n \in HBD$ are continuous on R^* and $u_{n+1} \leq u_n$ $(n=1, 2, \dots)$, we see that Ω_{α} is upper semi-continuous on R^* , and =1 on α . It suffices now to show that Ω_{α} vanishes on β . Indeed, for any point $q \in \beta$ we have by (8) and (9)

$$0 \leq \Omega_{\alpha}(q) \leq u_{\alpha,q}(q) = 0$$
,

which implies that $\Omega_{a}(q)=0$ and Ω_{a} is continuous at q, q.e.d.

THEOREM 2. $\Omega_{\alpha} \in HBD$ if and only if $\alpha \cap \overline{\beta}$ is empty.

Proof. If $\alpha \cap \overline{\beta} = \phi$, β becomes compact and $\alpha \cup \beta = \Delta$. Hence we can construct a non-negative function $u_{\alpha,\beta} \in HBD$ such that $u_{\alpha,\beta}=1$ on α and =0 on β (cf. Lemma 3, [6]). Since $u_{\alpha,\beta} \in \mathfrak{F}_{\alpha}$

$$\Omega_{\alpha} \leq u_{lpha,eta}$$
 .

While, for any $v \in \mathfrak{F}_{a}$ we have $u_{\alpha,\beta} \leq v$ by the maximum principle, hence

Thus $\Omega_{\alpha} \equiv u_{\alpha,\beta} \in HBD$. Next assume that $\Omega_{\alpha} \in HBD$, but $\alpha \cap \overline{\beta} \neq \phi$. Take a point $M \in \alpha \cap \overline{\beta}$, then M contains an ideal $\bigcap_{N \in \beta} N$. Since HBD-function Ω_{α} vanishes at every point N of β , $\Omega_{\alpha} \in N$, hence $\Omega_{\alpha} \in \bigcap_{N \in \beta} N \subset M$, which shows that $\Omega_{\alpha}(M) = 0$. While, $M \in \alpha$ therefore $\Omega_{\alpha}(M) = 1$ by (ii). This is a contradiction.

5. A compact subset e of $\Delta(R)$ is said to be of harmonic measure zero if $\Omega_e \equiv 0$ in R. We state here some properties on sets of harmonic measure zero, but not prove as they are not used in the sequel.

THEOREM 3. 1°. If $\Omega_e = 0$, then $e \subset \overline{\Delta - e}$, moreover $\Omega_{e'} = 0$ for every compact subset $e' \subset e$.

2°. If $\Omega_{e_i}=0$ for $i=1, \dots, n$ ($<\infty$), then $\Omega_{\bigcup e_i}=0$.

3°. (Generalized maximum principle). If f is a BD-function which is subharmonic on R and $\sup_{d=e} f \leq m$, where $\Omega_e = 0$, then $f \leq m$ throughout R.

§ 3. Minimal functions in \underline{HD} .

6. A non-negative function $u(\equiv 0)$ is said to be minimal in certain class L of real-valued functions if for any $\omega \in L$ satisfying

 $0 \le \omega \le u$ we have $u = \text{const} \cdot \omega$. (cf. Martin [7], Kjellberg [4], Heins [3], Kuramochi [5] and Constantinescu-Cornea [1]).

THEOREM 4. Let Ω_q be the harmonic measure with respect to a single point $q \in \Delta$, then Ω_q is minimal in the class <u>HD</u>, provided that $\Omega_q \equiv 0$ in R.

Proof. From the assumption

(12)
$$0 \leq \omega \leq \Omega_q \leq 1, \quad \omega \in \underline{HD}$$

we shall prove that $\Omega_q = \text{const} \cdot \omega$. Since $\omega \in \underline{HD}$, there exists a sequence $\{\omega_n\}$ such that $\omega_n \downarrow \omega$, $\omega_n \in HD$ (\downarrow means monotone decreasing). We may assume that ω_n are bounded ≤ 1 (since $\omega_n \land 1 \downarrow \omega$). Let $c_n = \omega_n(q)$, then $c_n \downarrow c$ (≥ 0). Suppose c > 0. Since $\omega_n/c_n \in \mathfrak{F}_q$, it follows that $\omega_n \geq c_n \Omega_q$ ($n=1, 2, \cdots$), hence $\omega \geq c \Omega_q$ for $n \to \infty$. Then it is proved that the equality holds in R. Suppose the contrary:

$$\omega(p_0) - c \Omega_q(p_0) = \delta_0 > 0$$

at $p_0 \in R$. We recall that $u_n \downarrow \Omega_q$, $u_n \in \mathfrak{F}_q$ (cf. (11)) and u_n are bounded (since $1 \land u_n \downarrow \Omega_q$). Therefore $\omega(p_0) - cu_n(p_0) \ge \delta_0/2$ for $n \ge n_0$. We fix a number $n (\ge n_0)$ and consider the set

(13)
$$G = \{ p \in R ; \omega(p) - cu_n(p) \ge \delta_0/4 \}.$$

G is non-compact, moreover the double \hat{G} of *G* with respect to ∂G is of hyperbolic type, because the anti-symmetric extension of harmonic function $\omega - cu_n - \delta_0/4$ is a non-constant *HB*-function on \hat{G} . Therefore \bar{G} contains some harmonic boundary points by Proposition 1, [6], but this is impossible by the following reasons. First, suppose $q \in \bar{G}$. Take a positive number $\varepsilon < \delta_0/2(1+c)$. Since ω is upper semi-continuous and u_n is continuous on R^* , we can find a neighborhood V_q (of q) such that for $p \in V_q$

$$\omega(p) < c + \varepsilon/2$$
, $|u_n(p) - u_n(q)| < \varepsilon/2$.

Since $u_n(q) = 1$, we have in V_q (hence $V_q \cap G$)

$$\omega(p) - c u_n(p) < \varepsilon(1+c)/2 < \delta_0/4$$

which contradicts with (13). Next suppose that \overline{G} contains a harmonic boundary point q' distinct from q. Since Ω_q is upper semi-continuous on R^* , we have for $p \in V_{q'} \cap G$

$$\omega(p) \leq \Omega_q(p) \leq \Omega_q(q') + \varepsilon/2 = \varepsilon/2 \quad (\text{see } (12))$$

On the harmonic boundary of an open Riemann surface, II 215

whence

$$\omega(p) - cu_n(p) \leq \omega(p) \leq \varepsilon/2 < \delta_0/4$$

which is also absurd. In case of c=0 we would have more easily $\omega \equiv c\Omega_q = 0$.

7. Now we call temporally a harmonic boundary point q a *HD-singular point*, if $\Omega_q \equiv 0$ in R, i.e. the harmonic measure of q is positive, and split Δ into two parts

(14)
$$\Delta = \Delta_0 + \widetilde{\Delta}_0$$

where Δ_0 denotes the set of all *HD*-singular points. As an example of *HD*-singular point, every isolated point q in Δ belongs to Δ_0 , because $\Omega_q \equiv u_{\alpha,\beta} \equiv 0$ by Theorem 2. A criterion for *HD*-singular points will be given later. As the converse of Theorem 4 we shall prove now the following

THEOREM 5. For any minimal function ω (sup $\omega = 1$) in <u>HD</u> there exists a HD-singular point $P_{\omega} \in \Delta_0$ such that the harmonic measure $\Omega_{P_{\omega}}$ is identical with ω . Moreover the mapping $\omega \leftrightarrow P_{\omega}$ between minimal functions (in <u>HD</u>) and points of Δ_0 is one-to-one.

Proof. According to [1], to every minimal function ω (sup $\omega = 1$) in <u>HD</u> there corresponds a maximal HD-indivisible set M on |z|=1 and ω is equal to the harmonic measure with respect to M, where $\{|z| < 1\}$ is the conformal image of the universal covering surface of R. Moreover, let

(15)
$$\tilde{\mathfrak{F}} = \{ v \in HBD \text{ on } R ; \lim_{r \to 1} v(re^{i\theta}) = 1 \text{, a.e. on } M \text{ and } v \geq 0 \}$$

then we have (pp. 213-215, [1])

(16)
$$\omega(p) = \inf_{\substack{v \in \widetilde{\mathfrak{N}} \\ v \in \widetilde{\mathfrak{N}}}} v(p), \qquad p \in \mathbb{R}$$

Now consider the sets

$$E_n = \{ p \in R; \omega(p) > 1 - 1/n \}$$
 $(n = 2, 3, \cdots)$

then E_n are non-compact and $E_n \supset E_{n+1}$. Let \overline{E}_n be closures (in R^*) of E_n and

$$\Delta_n = ar{E_n} \cap \Delta$$
 ,

then Δ_n are non empty by Proposition 1, [6], because the doubles \hat{E}_n are of hyperbolic type. Furthermore, Δ_n are compact in the compact Hausdorff space R^* and $\Delta_n \supset \Delta_{n+1}$ for every *n*, hence by a well-known theorem

Yukio Kusunoki and Shin'ichi Mori

$$\Delta' = \bigwedge_{{\tt n}=2}^\infty \Delta_{{\tt n}}$$

is not void. Now we show that Δ' consists of a single point. To see this it suffices to prove that any $v \in HBD$ has a constant value on Δ' . Since v is bounded, we may assume that v is positive. From the Poisson integral formula we have

(17)
$$v(z) = \frac{1}{2\pi} \int_{M^c} v(e^{i\theta}) Re \frac{e^{i\theta} + z}{e^{i\theta} - z} d\theta + \gamma \omega(z)$$

where M^c is the complementary set of M and γ the radial limit of v on M. From (17) we get $\gamma \omega \leq v \leq K(1-\omega) + \gamma \omega$, $(K = \sup v)$, hence for $z \in E_n$

$$\gamma(1-1/n) \leq v(z) \leq \gamma + K/n$$
.

These inequalities $(n=2, 3, \cdots)$ are also valid on Δ' , hence we have (18) $v = \gamma$ on Δ' .

Thus we know that Δ' consists of a single point, P_{ω} say. Now let u be any element of $\mathfrak{F}_{P_{\omega}}$, then u has a constant radial limit γ (a.e.) on HD-indivisible set M, moreover we know that $\gamma = 1$ from above. Therefore $\mathfrak{F}_{P_{\omega}} \subset \mathfrak{F}$. While, $\mathfrak{F} \subset \mathfrak{F}_{P_{\omega}}$ (see (18)), hence we have $\mathfrak{F}_{P_{\omega}} = \mathfrak{F}$, i.e.

$$\Omega_{P_{\omega}} \equiv \omega \equiv 0 .$$

Finally, the mapping $\omega \leftrightarrow P_{\omega}$ is one-to-one. Let P_1 , P_2 be two distinct points in Δ_0 , and $\omega_1 = \Omega_{P_1}$, $\omega_2 = \Omega_{P_2}$ be corresponding minimal functions, then $\omega_1 \neq \omega_2$, because ω_1 , ω_2 have respectively radial limits 1 and 0 (a.e.) on the indivisible set for ω_1 , q.e.d.

COROLLARY 1. If a minimal function ω (sup $\omega = 1$) in <u>HD</u> belongs to the HBD, then ω is identical with the harmonic measure Ω_{q^*} of an isolated point q^* in Δ .

Proof. By Theorem 5 we know that $\omega = \Omega_{q^*}$ for some point $q^* \in \Delta_0$. Since $\Omega_{q^*} = \omega \in HBD$, q^* must be an isolated point by Theorem 2.

COROLLARY 2 (Proposition 3.2, [6]). $R \in O_{HD_n} - O_{HD_{n-1}}$ if and only if $\sigma(R) = n$.

Proof. Here we shall give a direct proof for the equivalence $(i) \leftrightarrow (ii)$ in Proposition 3.2, [6]. Suppose $R \in O_{HD_n} - O_{HD_{n-1}}$, then by Theorem 5 there are *n* HD-singular points $q_i \in \Delta_0$. Hence it suffices to show that $\tilde{\Delta}_0 = \phi$. Since any $v \in HBD$ can be expressible as

216

On the harmonic boundary of an open Riemann surface, II 217

$$v = \sum_{i=1}^{n} \gamma_i \omega_i(z, M_i) = \sum_{i=1}^{n} \gamma_i \Omega_{q_i}(p) \qquad (\gamma_i = v(q_i)),$$

where M_i are maximal HD-indivisible sets, hence if $\tilde{\Delta}_0 \neq \phi$, v(q)=0at $q \in \tilde{\Delta}_0$ which is absurd, because there exists a $v \in HBD$ with $v(q) \neq 0$ (cf. Lemma 2, [6]). Conversely if $\sigma(R)=n$, these points q_i $(i=1, \dots, n)$ are isolated in Δ , hence $q_i \in \Delta_0$, which implies $R \in O_{HDn} - O_{HDn-1}$ by Theorem 5.

REMARK. From the above proof we see also that if R has an infinite number of maximal HD-indivisible sets, $\sigma(R) = \infty$. But the converse is not true. For example, the harmonic boundary of the unit circle $R = \{|z| < 1\}$ contains an uncountable number of harmonic boundary points, but there is no HD-indivisible set. We note that this example shows also the non-validity of Proposition 4, [6] in case of $\sigma(R) = \infty$.

§4. Non-compact subregions.

8. SO_{HD} and O_{HD_n} .

By a non-compact subregion G we mean a non-compact domain on R whose boundary ∂G consists of an at most countable number of disjoint analytic Jordan curves not clustering to any point of R.

THEOREM 6. Let G be a non-compact subregion on R, then $G \notin SO_{HD}$ if and only if $\overline{G} - \overline{\partial G}$ contains harmonic boundary points, i.e. $(\overline{G} - \overline{\partial G}) \wedge \Delta \pm \phi$.

Proof. If $G \notin SO_{HD}$, then $(\overline{G} - \overline{\partial G}) \land \Delta = \phi$ by Proposition 2, [6]. To prove the converse, take a point $q^* \in (\overline{G} - \overline{\partial G}) \land \Delta$. Since q^* is disjoint with $\overline{\partial G}(R^*)$, there is a *BD*-function f such that $f \in \bigwedge_{N \in \overline{\partial G}} N$, but $f \notin q^*$, that is, $f(q^*) \neq 0$ and f=0 on $\overline{\partial G}$. Let f^* be a *BD*-function defined so that $f^*=f$ on G and =0 on R-G, then we have

(19)
$$f^*(q^*) = f(q^*) \neq 0$$
.

Let \hat{f}^* be the anti-symmetric extension of f^* onto the double \hat{G} of G (with respect to ∂G), then $\hat{f}^* \in BD(\hat{G})$, hence we have the orthogonal decomposition

$$\hat{f}^* = \hat{u} + \hat{\phi}, \qquad \hat{u} \in HBD(\hat{G}), \quad \hat{\phi} \in \overline{K}(\hat{G}).$$

From the construction it is easily verified that \hat{u} and $\hat{\phi}$ are antisymmetric with respect to ∂G , hence the conclusion follows if we could show that $\hat{u} \equiv 0$. Assume the contrary, then $\hat{f}^* = \hat{\phi} \in \overline{K}(\hat{G})$ is a limit (in *BD*-topology) of functions $\hat{\phi}_n \in K(\hat{G})$. Here $\hat{\phi}_n$ may be considered as anti-symmetric. Indeed, if we decompose $\hat{\phi}_n$ into anti-symmetric parts $\hat{\phi}_n^{(+)}$:

(20)
$$\begin{aligned} \hat{\phi}_{n} &= \hat{\phi}_{n}^{(-)} + \hat{\phi}_{n}^{(+)} \\ \hat{\phi}_{n}^{(-)} &= (\hat{\phi}_{n}(p) - \hat{\phi}_{n}(\tilde{p}))/2 , \quad \hat{\phi}_{n}^{(+)} = (\hat{\phi}_{n}(p) + \hat{\phi}_{n}(\tilde{p}))/2 \end{aligned}$$

where \tilde{p} denotes the symmetric point of p, then

$$4D_{\hat{G}}(\hat{\phi}_{n}^{(-)} - \hat{f}^{*}) = D_{\hat{G}}[(\hat{\phi}_{n}(p) - \hat{f}^{*}(p)) - (\hat{\phi}_{n}(\tilde{p}) - \hat{f}^{*}(\tilde{p}))]$$

$$\leq 4D_{\hat{G}}[\hat{\phi}_{n}(p) - \hat{f}^{*}(p)] \to 0 \quad (n \to \infty).$$

Now we define functions ψ_n on R which are $=\phi_n$ on G and =0 on R-G, then $\psi_n \in K(R)$ and $\psi_n \to f^*$ in *BD*-topology on R. Hence $f^* \in \overline{K}(R)$, that is, $f^*(q^*)=0$, which contradicts with (19), q.e.d.

REMARK. From above proof we see that if $(\overline{G} - \overline{\partial G}) \cap \Delta \neq \phi$, then $G \notin SO_{HB}$ (without use of the general inclusion relation: $SO_{HB} \subset SO_{HD}$), because \hat{u} is bounded. The character of a domain $G \notin SO_{HD}$ will be made more clear by the following theorem.

THEOREM 6'. Let G be a non-compact subregion on R and $G^c = R - (G \cup \partial G)$. Then $G \notin SO_{HD}$ if and only if $(\overline{G} - \overline{G}^c) \cap \Delta = \phi$, that is, \overline{G} contains a point $\in \Delta$ not belonging to the closure of G^c . Furthermore $(\overline{G} - \overline{\partial G}) \cap \overline{G}^c$ does not contain any points $\in \Delta$, provided $G \notin SO_{HD}$.

Proof. Suppose $G \notin SO_{HD}$ and $(\overline{G} - \overline{G}^c) \cap \Delta = \phi$. Then according to Theorem 6, there is a point $q \in \Delta$ which belongs to $\overline{G} \cap \overline{G}^c$ but not to $\overline{\partial G} = \overline{\partial G^c}$. Let $\{E_j\}$ $(j=1,2,\cdots)$ be the components of G^c , then $q \in \bigcup_j \overline{E_j}$. We note here that q must belong to some $\overline{E_j}$. Indeed, if

$$q \notin ar{E}_i \qquad (j=1,\,2,\,\cdots)\,,$$

then any neighborhood U(q) of q must contain two points belonging respectively to distinct domains E_i , E_j , that is, U(q) contains a point $\in \partial E_i \subset \partial G$. Hence $q \in \overline{\partial G}$, which is absurd. Now let $q \in \overline{E}_j$ $(q \notin \overline{\partial E}_j)$. We construct as above a *BD*-function u on G(resp. u' on E_j) such that u=u'=0 on ∂G resp. ∂E_j and u(q)=1(resp. u'(q)=1/2). Let u^* be a *BD* function on R such that $u^*=u$ on $G \cup \partial G$, =u' on E_j and =0 elsewhere. Then u^* should be continuous on R^* , while $u^*(p) \rightarrow 1$ for $p \rightarrow q$ $(p \in G)$ and $u^*(p') \rightarrow 1/2$ for $p' \rightarrow q$ $(p' \in E_j)$. This is a contradiction. The converse is concluded by Theorem 6.

COROLLARY 1. Let G_0 be a compact set such that $G-G_0$ is a non-compact subregion on R, then $G \notin SO_{HD}$ if and only if $G-G_0 \notin SO_{HD}$.

By Theorem 6' and Proposition 1, [6] we get the following result which contains a criterion due to Matsumoto [8].

COROLLARY 2. If there exist (n+1) non-compact subregions G_0, G_1, \dots, G_n on R such that $G_i \notin SO_{HD}$ $(i=1, \dots, n)$ and the double \hat{G}_0 (of $G_0) \notin O_G$, then $R \notin O_{HDn}$. The converse is also true.

COROLLARY 3 (Proposition 5, [6]). $R \notin O_{HD_n}$ if and only if there exist (n+1) non-compact subregions G_i such that $G_i \notin SO_{HD}$.

9. Symmetric harmonic boundary points. NO_{HD} and O_{HD} .

Let G be a non-compact subregion on R and \hat{G}^* be the compactification of the double \hat{G} obtained from G. It is assumed $\hat{G} \notin O_G$. Among harmonic boundary points of \hat{G}^* we consider any point $q \notin \bar{G} \cap \bar{G}$ ($\tilde{G} = \hat{G} - (G \cup \partial G)$) and bar means the closure taken on \hat{G}^*). Let $\{V_{\alpha}\}_{\alpha}$ be the neighborhoods of q, then obviously $q = \bigwedge_{\alpha} \bar{V}_{\alpha}$. Denoting by \tilde{V}_{α} the symmetric sets of V_{α}' (restriction of V_{α} to \hat{G}) with respect to ∂G , it is proved that $\bigwedge_{\alpha} \bar{V}_{\alpha}$ determines a harmonic boundary point of \hat{G}^* , \tilde{q} say, which will be called the symmetric harmonic boundary point of q. To prove this, take any $\varphi \in \bar{K}(\hat{G})$, then two functions $\varphi^{(-)}$, $\varphi^{(+)}$ (cf. (20)) belong to $\bar{K}(\hat{G})$, hence, vanish at q and

$$\inf M(\bar{V}_{\alpha})=0$$

where $M(\bar{V}_{a}) = \max(\sup |\varphi^{(-)}(p)|, \sup |\varphi^{(+)}(p)|)$ (sup is taken on \bar{V}_{a}). Since $\varphi^{(-)}(\tilde{p}) = -\varphi^{(-)}(p), \varphi^{(+)}(\tilde{p}) = \varphi^{(+)}(p)$ we find that

$$\inf_{\sigma} M(\tilde{V}_{\sigma}) = 0$$
,

and thus, $\bigwedge \tilde{V}_{\alpha} = e$ consists of points $\in \Delta(\hat{G}^*)$. That *e* consists of a single point, is seen from the fact that any $u \in HBD(\hat{G})$ takes on *e* a constant value. The symmetric point of \tilde{q} returns *q* itself.

Under these considerations we say that harmonic boundary points of G appear symmetrically and q, \tilde{q} are mutually symmetric.

THEOREM 7. Let G be a non-compact subregion on R, then the harmonic boundary of the double \hat{G} of G consists of symmetric two

points if and only if $G \notin SO_{HD}$ and $G \in NO_{HD}$.¹⁾

Proof. From the proof to Proposition 6, [6] we know that the condition is sufficient. Next, let u be any HBD-function on G whose normal derivative vanishes on ∂G , then the symmetric extension \tilde{u} becomes an HBD-function on \hat{G} and we find $\tilde{u}(p_0) =$ $\tilde{u}(\tilde{p}_0) = c$, where p_0 and \tilde{p}_0 are mutually symmetric two points $\in \Delta(\hat{G}^*)$, hence $\tilde{u}(p) \equiv c$ by maximum principle, i.e. $G \in NO_{HD}$. Evidently $G \notin SO_{HD}$ by Theorem 6', q.e.d.

THEOREM 8. If G is a non-compact subregion on R such that $G \notin NO_{HD}$ and SO_{HD} , the closure \overline{G} contains at least two harmonic boundary points of R.

COROLLARY. $R \notin O_{HD}$ if and only if there exists a non-compact subregion G such that $G \notin NO_{HD}$ and SO_{HD} . In particular, if the boundary ∂G is compact, the condition $G \notin SO_{HD}$ is unnecessary.

Indeed, if $R \notin O_{HD}$ it suffices to take as G the complementary domain of a compact set. because \hat{G}^* would contain at least two pairs of symmetric points (cf. Theorem 6'), hence $G \notin NO_{HD}$ by Theorem 7.

The proof of Theorem 8 is contained in Theorem 7 and the following Lemma 3. We say that a non-compact subregion G is HD-singular if the closure \overline{G} contains only one point of $\Delta(R)$. For instance, for a minimal function ω (sup $\omega = 1$) every domain $G = \{p; \omega(p) > \lambda, 0 < \lambda < 1\}$ is HD-singular, provided $\omega \in HBD(R)$. In fact, ω would become identical with the harmonic measure $\Omega_{P_{\omega}}$ of an isolated point of Δ and $P_{\omega} \in \overline{G}$ (Corollary to Theorem 5).

LEMMA 3. Let G be a non-compact subregion $\notin SO_{HD}$ and be HD-singular, then $\Delta(\hat{G})$ consists of two symmetric points.

Proof. Since $G \notin SO_{HD}$ it follows that $\hat{G} \notin O_{HD}$ and $\Delta(\hat{G})$ contains at least two symmetric points. Now suppose that $\Delta(\hat{G})$ contains at least two pairs of symmetric points (p_i, \tilde{p}_i) (i=1, 2), which do not belong to $\bar{G} \cap \overline{\tilde{G}}$. Then we can construct two *HBD*-functions U_i on \hat{G} such that

 $U_i(p_j) = \delta_{ij}$ (Kronecker) and $U_i = 0$ on ∂G .

For example, construct $u_1 \in HBD(\hat{G})$ such that $u_1(p_1) = 1$ and = 0 at three other points, then $U_1 = 2u_1^{(-)}$ fulfils the condition. Now for

¹⁾ $G \in NO_{HD}$ means that there does not exist non-constant HD-functions on G whose normal derivatives vanishes on ∂G . It is known that $NO_{HD} = NO_{HBD}$.

suitable constants λ_i $(0 < \lambda_i < 1)$ two sets $E_i = \{p ; U_i(p) > \lambda_i\}$ are disjoint with $\overline{\partial G}$ and $E_1 \cap E_2 = \phi$. Then the images (some components) of E_i on R are two non-compact subregions (in G) such that $E_i \notin SO_{HD}$, hence G must contain at least two points of $\Delta(R)$, which is absurd. Thus we know that $\Delta(\hat{G})$ contains at most two symmetric points (p_1, \tilde{p}_1) . Next suppose that $\Delta(\hat{G})$ contains further a point $q \in \bar{G} \cap \bar{G}$, then it would also lead us to a contradiction as follows.

By Theorem 6' it remains to consider the case where $q \in \partial \overline{G}(\hat{G}^*)$. Let q^* be a point $\in \overline{G} \cap \Delta(R)$. There is an *HBD*-function v such that $v(q^*)=1$ and v=0 on ∂G . Then a suitable neighborhood $U=\{v>\lambda, 0<\lambda<1\}$ of q^* is disjoint with $\overline{\partial G}$. Write $F=(\overline{G-U})\cap \Gamma(R^*)$, then we can find a function $\varphi \in \overline{K}(R)$ such that $\varphi>0$ on R and $\inf_F \varphi>0$ (cf. proof to Proposition 1, [6]). Let $\tilde{\varphi}$ be the symmetric extension onto \hat{G} of the restriction of φ to G, then $\tilde{\varphi} \in \overline{K}(\hat{G})$ and $\inf_{\varphi} \tilde{\varphi}>0$ on $\overline{\partial G}(\hat{G}^*)$, i.e. $\tilde{\varphi}(q)>0$. This is a contradiction.

10. SO_{HB} and O_{HDn} .

THEOREM 9. Let $\{\omega_n\}_{n=1,\dots,N}$ $(2 \le N \le \infty)$ be all minimal functions ($\sup \omega_n = 1$) on $R \in O_{HD_{\infty}}$ and

(21)
$$G_n = \{ p ; p \in R, \omega_n(p) > \lambda, 0 < \lambda < 1 \},$$

then any non-compact subregion G (on R) outside $\bigcup_{n} G_{n}$ belongs to SO_{HB} .

Proof. According to [1] (pp. 195–196), for the inextremisation I_G (to G) of the harmonic measure for a set M of ideal boundary points of R

(22)
$$I_G \omega(\boldsymbol{z}, \boldsymbol{M}, \boldsymbol{R}) = \omega(\boldsymbol{z}, \boldsymbol{I}^*\boldsymbol{M}, \boldsymbol{G})$$

We insist here that

$$I_G \omega_n(z, M_n, R) = 0$$

where M_n are maximal HD-indivisible sets corresponding to ω_n . Otherwise we would have $\sup_{G} I_G \omega_n = 1$ by (22). While, G lies outside $\bigcup_{G} G_n$, hence

$$I_G \omega_n \leq \omega_n \leq \lambda < 1$$
 on G

which is absurd. Now since $\sum_{n} \omega_n \equiv 1$, we have

$$I_G \cdot 1 = I_G \left(\sum_n \omega_n \right) = \sum_n I_G(\omega_n) = 0,$$

which shows that $G \in SO_{HB}$, q.e.d.

Two *HD*-singular subregions are called disjoint if they determine two distinct points of Δ . With this terminology we shall give another characterisation of O_{HDn} .

THEOREM 10. $R \in O_{HD_n}$ $(1 \le n \le \infty)$ if and only if there exist at most *n* mutually disjoint HD-singular subregions G_i , and any subregion G outside $\bigcup G_i$ belongs to SO_{HB} .

Proof. In case of $R \in O_{HDn}$ $(2 \le n < \infty)$, the regions G_i ((21) with suitable λ) become mutually disjoint HD-singular subregions and $G \in SO_{HB}$ by Theorem 9. In case of $R \in O_{HD_1} (=O_{HD} - O_G)$ it suffices to take $G_1 = R - R_0$ (R_0 is compact). Conversely, from the assumption Δ contains at least $m (\le n)$ distinct points $q_i \in \overline{G}_i$, thus it suffices to prove that $\Delta = \{q_i\}$. Suppose Δ contains another point $q^* \neq q_i$. Since by (2)

$$\overline{\bigvee_i G_i} = \bigvee_i \overline{G}_i = \bigvee_i \overline{(G_i + \partial G_i)},$$

 $q^* \notin \overline{(\bigcup_i G_i)}$ hence $q^* \in \overline{\bigcup_i E_j}$, where E_j are the components of $R - \bigcup_i (G_i + \partial G_i)$. Moreover by the same reasoning as one in proof to Theorem 6' we know easily that q^* is contained in some $\overline{E_i}$ and $q^* \notin \overline{\partial E_i}$ ($\subset (\bigcup_i \overline{\partial G_i})$). Then $E_i \notin SO_{HB}$ by Theorem 6 and its remark, which is absurd, q.e.d.

Finally we give a criterion for HD-singular points (sec. 7):

THEOREM 11. Let G be a HD-singular subregion containing a point $q^* \in \Delta$. If $G \notin SO_{HB}$, then q^* is a HD-singular point, i.e. $q^* \in \Delta_0$.

Proof. Since $G \notin SO_{HB}$, the relative harmonic measure ω is non-constant. ω vanishes on ∂G , hence for any $u \in \mathfrak{F}_{q^*}$ we have $u(p) \ge \omega(p)$ for $p \in \partial G$. It is shown that this holds for any point of G. Suppose that at some point $p_0 \in G$

$$u(p_0)-\omega(p_0)=\lambda < 0.$$

Then a subregion

(23)
$$D = \{ p \in G ; u(p) - \omega(p) < \lambda/2 \}$$

becomes non-compact and $\overline{D} \cap \Delta = \phi$ by means of Proposition 1, [6]. Since $D \subset G$, q^* must belong to $\overline{D} \cap \Delta$. Now we have

222

 $\sup_{p} (u-\omega) \ge 0$, because *u* is continuous on R^* and $u(q^*)=1$, while $\sup_{p} \omega = 1$. But this contradicts with (23). Thus

$$\Omega_{q^*} = \inf_{u \in \mathfrak{F}_{q^*}} u \ge \omega \equiv 0 \quad \text{on } G.$$

Kyoto University and Ritsumeikan University.

REFERENCES

- Constantinescu, C. and Cornea, A.: Über den idealen Rand und einige seiner Anwendungen bei Klassifikation der Riemannschen Flächen. Nagoya Math. J. 13 (1958).
- [2] Gelfand, I. und Silov, G.: Über verschiedene Methode der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes. Rec. Math.
 9 (1941).
- [3] Heins, M.: On the Lindelöf principle. Ann. of math. 61 (1955).
- [4] Kjellberg, B.: On the growth of minimal positive harmonic functions in a plane region. Arkiv Math. 1 (1950).
- [5] Kuramochi, Z.: On the ideal boundary of abstract Riemann surfaces. Osaka Math. J. 10 (1956).
- [6] Kusunoki, Y. and Mori, S.: On the harmonic boundary of an open Riemann surface, I. Japanese J. of Math. 29 (1960).
- [7] Martin, R.: Minimal positive functions. Trans. Amer. Math. Soc. 49 (1941).
- [8] Matsumoto, K.: On subsurfaces of some Riemann surfaces. Nagoya Math. J. 15 (1959).
- [9] Mori, S. and Ota, M: A remark on the ideal boundary of a Riemann surface. Proc. Japan Acad. 32 (1956).
- [10] Nakai, M.: On a ring isomorphism induced by quasiconformal mappings. Nagoya Math. J. 14 (1959).
- [11] Royden, H. L.: On the ideal boundary of a Riemann surface. Ann. Math. Studies 30 (1953).