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Introduction

The present paper contains some generalizations and supple-
ments of our previous results [6]. Furthermore the relation between
harmonic boundary points and the minimal functions (in HD) will
be studied.

We shall denote by R an open Riemann surface and by R*
the Royden compactification of R. In §1 the structure of R* and
some definitions are stated. 8§2 is concerned with the harmonic
measure with respect to any compact subset of harmonic boundary
A of R. In particular, the harmonic measure with respect to a
single point becomes a minimal function in class HD studied by
Constantinescu-Cornea [1] and one-to-one correspondence between
minimal functions (in HD) and some points in A will be established.
These results are the contents of §3. Finally in §4 from our
point of view we shall study the properties of non-compact sub-
regions G on R, by which some theorems in previous paper [6]
will be made more clear and complete. Particularly, Theorem 6
(or 6’) gives the characterization of G ¢ SOy,, which has some
remarkable applications.

§1. Structure of R*

1. Let R denotes an arbitrary open Riemann surface. For
the sake of definiteness and convenience we shall state briefly the
structure of the compactification R* of R (for some proofs see
Gelfand-Silov [2] and Royden [11]. cf. Nakai [10] for another
approach). Let BD denotes the class of bounded continuous func-
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tions which are piecewise smooth on K and have finite Dirichlet
integrals. The class of BD functions with compact carriers forms
an ideal K in the ring BD. By K we denote the closure of K in
BD-topology®. Introducing the BD a norm given by

(1) LAl = sup | f] +VDgp(f)

where DR(f):SS |grad f|*dxdy, we get a normed ring A. K, K
R

are ideals still in A. Let MM be the set of all maximal ideals in
A. Now the topology of M is defined as follows : a maximal ideal
M is called a limit point of a subset AC M, if M contains an
ideal A\N. The totality of limit points of 2 constitutes the

closure A. For any two sets 2 and B we have
(2) AUB = AUDB).

It is proved that 9 with the topology induced by this closure
operation becomes a compact Hausdorff space, which will be written
as R*. For every point a€ R the set

M, = {x;x€A, x(a) =0}

makes obviously a maximal ideal. With each x € A a real number
x(M,) is associated (A/M, is isomorphic to the real number
field). Then it is proved that x(M,)=x(a) and the mapping a— M,

gives a homeomorphism of R into R*. Since /\ M, consists of a
a€ER

function x=0, every point of R* is a limit point of \J M,, i.e.
acR

the image of R is a subset dense in R*, which will be denoted
again by K. Every function in A becomes continuous on R*,
2. We call a non dense closed set
I'=R*~-R, R= \EJRM,,
the ideal boundary of R. It is easily seen that every point M, € R
does not include an ideal K, while every point M (maximal ideal)
of T necessarily contains K. Now a point M in the ideal boundary
I' is called a harmonic boundary point of R, if maximal ideal M
contains not only K, but also an ideal K. The set of harmonic
boundary points of R constitutes a closed set A, the harmonic
boundary of R, which plays an important role in our studies.

1) f,—0 in BD-topology if |f,| are uniformly bounded, f,—0 uniformly on every
compact set of R and Dgr(f,)—0.
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In the sequel, we shall assume that Riemann surface R does
not belong to Oyp, unless otherwise stated.

§2. Harmonic measures with respect to harmonic boundary
points.

3. LEMMA 1. Let u be a non-constant BD-function which is
subharmonic (vesp. superharmonic) on R, then u attains its maximum
(resp. minimum) on A.

Proof. Let
(3) u=U+op, Ue HBD, pe K

be the orthogonal decomposition on R. Take an exhaustion {R,}
of R and consider a sequence of harmonic functions %, (n=1,2, --*)
which have, on OFR,, the same boundary values as #. Then u,
(subsequence) converge uniformly to U on every compact set in R.
Since u,=u on R,, we have for n—>o0 UZ=u on R, therefore by
means of maximum principle (Mori-Ota [9])

supu =sup U = Ulg¥), g*¥e€A
R R
While @(¢*)=0, hence we have sup u=u(g*), q.e.d.
R

Let u, v be any two harmonic functions on R, then the nota-
tions

unv and uvo

mean respectively the greatest harmonic minorant, and the least
harmonic majorant of # and ». Now we have

LEmMMA 2. Let u,, u, be HBD-functions on R, then for p*e€ A
(uy vV u,)(p*) = max [u,(p*), u.(p*)]
(u, N u)(p%) = min [o,(5%), u.(p*)]

Proof. Since the function
u(p) = max [u,(p), u(p)], pER

belongs to the class BD, we have the orthogonal decomposition (3)
of u. Since

(5) u(q) = Ulg)  for geA

and # is subharmonic, we have, by Lemma 1, u(p) << U(p) on R,
hence u,vu,<U. While, u<u,vu, and U(q)=u(q), therefore

(4)
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U<u,vu, by Lemma 1. Thus we have
(6) U=wuVu,.

(5) and (6) show the first equality in (4). As for the second one,
the proof is quite analogous.

4. After Constantinescu-Cornea [1] we consider a class HD
of harmonic functions which are limits of monotone decreasing
HD-functions. Evidently HD HD.

THEOREM 1. Let « be a compact subset (5=¢) of A and B its
complementary set (F=¢) in A. Then there exists a function Q,
defined on R* such that

(i) Q, is upper semi-continuous on R* and Q,€ HD in R

(i) Q,=1o0n «a, =0 0n B and 0<Q,<1 on R*.

We call Q, the harmonic measure with respect to «.

Proof. Consider the set of functions;

(7) Bs = {v€HBD; v=1 on @ and =0 on R} .

First we note that ¥, is non empty, because %, contains a non-
negative HBD-function #, , with the property

(8) #4,=1o0n @ and =0 at a point g€

(cf. Lemma 2, [6]). Now the function

(9) Qu(p) = inf v(p), peR*
veEFa

has the required properties. This is proved by the Perron’s method
for Dirichlet problem. Take any point p, on R and the sequence
of functions {v,} such that v,(p,)— Q.(p,) (n—> ), v,€F,. Then
we see that by Lemma 2 the functions

(10) U, = VANV, A -+ AD,

belong to ,, moreover the monotone decreasing sequence {u,}
converges to a harmonic function 2 and Q(p,)=Q,(p,). Next take
any point p, (=p,) on R, then we obtain analogously the monotone
decreasing sequence {,’}, which converges to a harmonic function
Q" and Q'(p,)=0,(p,). Now the functions w,=wu,Au,’ belong also
to ¥, and we find that the limit function Q”= lim w, are majorized

by © and ', hence Q=Q'=Q" by the minimum principle, because
Q"(po)=Q(po) =2u( o), '(0,)=(5)=,(p,). Since p, is arbitrary,
it follows that
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11 Q,=Q = limu,€ HD, #,€ By

oo
Since u,€ HBD are continuous on R* and «,,,<u, (n=1,2, --),
we see that Q, is upper semi-continuous on R*, and =1 on a.
It suffices now to show that £, vanishes on 8. Indeed, for any
point g€ 8 we have by (8) and (9)

0=<0,q) <u,.q =0,

which implies that Q,(9)=0 and 2, is continuous at ¢, q.e.d.
THEOREM 2. Q,€ HBD if and only if anpB is empty.
Proof. If af\/§=¢>, B becomes compact and a«uB=A. Hence
we can construct a non-negative function u,z€ HBD such that
#gp=1 on @ and =0 on B (cf. Lemma 3, [6]). Since u, € B,

Qm g um.B .

While, for any ve %, we have #,<v by the maximum principle,
hence

Uy = inf v = Q,.
VEFa

Thus Q,=u, ;€ HBD. Next assume that Q,€ HBD, but anB==¢.
Take a point M€anfB, then M contains an ideal /\ N. Since
NEB

HBD-function 2, vanishes at every point N of 3, Q,€ N, hence
0,¢ lv[\N(M, which shows that Q,(M)=0. While, M€ « there-
3

fore Q,(M)=1 by (ii). This is a contradiction.

5. A compact subset ¢ of A(R) is said to be of harmonic
measure zero if ,=0 in R. We state here some properties on
sets of harmonic measure zero, but not prove as they are not used
in the sequel.

THEOREM 3. 1°. If Q,=0, then e CA—e, moreover Q,=0 for
every compact subset ¢ e.

2°. If Q,=0 for i=1, -, n (<), then Qe;=0.

3°.  (Generalized maximum principle). If f is a BD-function
which is subharmonic on R and sup f<m, where 2,=0, then f<m
throughout R. e

§3. Minimal functions in HD.

6. A non-negative function #(==0) is said to be minimal in
certain class L of real-valued functions if for any o € L satisfying
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0<e<u we have u=const-w. (cf. Martin [7], Kjellberg [4],
Heins [3], Kuramochi [5] and Constantinescu-Cornea [1]).

THEOREM 4. Let Q, be the harmonic measure with respect to
a single point q €A, then Q, is minimal in the class HD, provided
that Q,==0 in R.

Proof. From the assumption
(12) 0<0=Q,<1, wcHD

we shall prove that Q,=const-w. Since o€ HD, there exists a
sequence {o,} such that o,| o, ©,€ HD (| means monotone
decreasing). We may assume that o, are bounded <1 (since
w,AN1| o). Let c,=w,(q), then c, | c (=0). Suppose ¢ _>0. Since
w,/c, € By, it follows that o,=>c,Q, (n=1,2, ---), hence o =cQ, for
n— oo, Then it is proved that the equality holds in R. Suppose
the contrary :

@(po) —cQg(po) = 6, >0

at p,€ R. We recall that u,| Q,, u,€%, (cf. (11)) and u«, are
bounded (since 1Au,| Q,). Therefore o(p,)—cu,(p,)=6,/2 for
n=n,. We fix a number » (=#,) and consider the set

(13) G={peR; o(p)—cu,(p) =8/4} .

G is non-compact, moreover the double G of G with respect to oG
is of hyperbolic type, because the anti-symmetric extension of
harmonic function ©—cu,—96,/4 is a non-constant HB-function on
G. Therefore G contains some harmonic boundary points by
Proposition 1, [6], but this is impossible by the following reasons.
First, suppose ¢ € G. Take a positive number £<8,/2(1+c). Since
o is upper semi-continuous and #, is continuous on R*, we can
find a neighborhood V, (of ¢) such that for peV,

o(p) < c+E&[2, |ulp)—ulq)|<€&/2.
Since u,(q)=1, we have in V, (hence V,NG)
o(p)—cu(p) < EQ+0c)/2<8,/4

which contradicts with (13). Next suppose that G contains a
harmonic boundary point ¢’ distinct from ¢. Since 2, is upper
semi-continuous on R*, we have for pe V, /NG

©o(p) < Qo(p) = Q(q)+E/2 = €/2 (see (12))
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whence
(p)—cu,(p) < o(p) < E/2<8,/4

which is also absurd. In case of ¢=0 we would have more easily
o=c0,=0.

7. Now we call temporally a harmonic boundary point ¢ a
HD-singular point, if 2,==0 in R, i.e. the harmonic measure of ¢
is positive, and split A into two parts

(14) A = A+3,

where A, denotes the set of all HD-singular points. As an example
of HD-singular point, every isolated point ¢ in A belongs to 4,,
because Q,=u, ==0 by Theorem 2. A criterion for HD-singular
points will be given later. As the converse of Theorem 4 we
shall prove now the following

THEOREM 5. For any wminimal function o (supw=1) in HD
there exists a HD-singular point P, €A, such that the harmonic
measure Qp, is identical with . Moreover the mapping o« P,
between minimal functions (in HD) and points of A, is one-to-one.

Proof. According to [1],.to every minimal function o (sup o=
1) in HD there corresponds a maximal HD-indivisible set M on
|z] =1 and ® is equal to the harmonic measure with respect to
M, where {|z|< 1} is the conformal image of the universal cover-
ing surface of R. Moreover, let

(15) F= {ve HBD on R; limv(re®)=1, a.e. on M and v =0}
then we have (pp. 213-215, [1])

(16) o(p) = inf o(p), peR
vE%
Now consider the sets

En: {pER) w(p)>1—1/7’l} (n:273"")
then E, are non-compact and E, DE,,,. Let E, be closures (in
R*) of E, and
An = Enr\A )
then A, are non empty by Proposition 1, [67], because the doubles
E, are of hyperbolic type. Furthermore, A, are compact in the

compact Hausdorff space R* and A, D>A,,, for every #u, hence by
a well-known theorem
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A=A\ A

n=2
is not void. Now we show that A’ consists of a single point. To
see this it suffices to prove that any v € HBD has a constant value
on &’ Since v is bounded, we may assume that v is positive.

From the Poisson integral formula we have

17) oz) = L S 2() Re®~T2 40 4 4 o(z)
27 Jme eif—z

”n

where M° is the complementary set of M and ¢ the radial limit
of v on M. From (17) we get yo<v<K(1—o)+qw, (K=supv),
hence for z€ E,

Y1-1/n) < o(z) < y+K/n.
These inequalities (#=2, 3, ---) are also valid on A’, hence we have
(18) =q on A,

Thus we know that A’ consists of a single point, P, say. Now
let # be any element of Fr,, then » has a constant radial limit
v (a.e.) on HD-indivisible set M, moreover we know that y=1 from

above. Therefore Fp,CF. While, FC Fp, (see (18)), hence we

have $p, =5, ie.
Qp, =0==0.

Finally, the mapping ®« P, is one-to-one. Let P,, P, be two
distinct points in A,, and ©,=Qp , ®,=Qp, be corresponding minimal
functions, then o,Zw,, because o,, w, have respectively radial

limits 1 and O (a.e.) on the indivisible set for »,, q.e.d.

CoroLLARY 1. If a minimal function o (sup w=1) in HD belongs
to the HBD, then o is identical with the harmonic measure Qg of
an isolated point g* in A,

Proof. By Theorem 5 we know that o=, for some point
g*€A,. Since Qu=w€ HBD, ¢* must be an isolated point by
Theorem 2.

CoroLLARY 2 (Proposition 3.2, [6]). R€Oup,—Oup,_, if and
only if o(R)=n.

Proof. Here we shall give a direct proof for the equivalence
(i) (ii) in Proposition 3.2, [6]. Suppose R € Oyp,—Oup,_,, then
by Theorem 5 there are m HD-singular points ¢;€4,. Hence it
suffices to show that A,=¢. Since any v € HBD can be expres-
sible as
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v = Syeils, M) = B QD) (=204,

where M; are maximal HD-indivisible sets, hence if A,3=¢, v(g)=0
at g€ A, which is absurd, because there exists a v€ HBD with
v(q)==0 (cf. Lemma 2, [6]). Conversely if o(R)=mn, these points
q; =1, ---, n) are isolated in A, hence ¢;€4,, which implies
R € Oyp,—Oyp,_, by Theorem 5.

ReEMARK. From the above proof we. see also that if R has an
infinite number of maximal HD-indivisible sets, o(R)=co. But
the converse is not true. For example, the harmonic boundary of
the unit circle R={|z|<1} contains an uncountable number of
harmonic boundary points, but there is no HD-indivisible set.
We note that this example shows also the non-validity of Proposi-
tion 4, [6] in case of o(R)=o0.

§4. Non-compact subregions.

8. SOup and Oyp,.

By a non-compact subregion G we mean a non-compact domain
on R whose boundary 9G consists of an at most countable number
of disjoint analytic Jordan curves not clustering to any point of R.

THEOREM 6. Let G be a mnon-compact subregion on R, then
G ¢SOy, if and only if G—0G contains harmonic boundary points,
ie. (G—O3G)NA=¢.

Proof. If G ¢ SOy, then (G—3G)NA==¢ by Proposition 2, [6].
To prove the converse, take a point g* € (G—2G)NA. Since g¢* is
disjoint with 9G(R*), there is a BD-function f such that fé€ NN,
but f¢g*, that is, f(g*)==0 and f=0 on OG. Let f* be aNeg}D~
function defined so that f*=f on G and =0 on R—G, then we
have
(19) F5(@*) = F(@®) 0.

Let f* be the anti-symmetric extension of f* onto the double G

of G (with respect to 9G), then f*eBD(G‘), hence we have the
orthogonal decomposition

f*=da+p, acHBDG), peR(G).

From the construction it is easily verified that # and ¢ are anti-
symmetric with respect to oG, hence the conclusion follows if we
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could show that #==0. Assume the contrary, then f*=¢ ¢ R(G)
is a limit (in BD-topology) of functions ¢,€ K(G). Here $, may
be considered as anti-symmetric. Indeed, if we decompose ¢, into
anti-symmetric parts ¢{~ and symmetric parts $i" :

Py = PO+ PP
O = (P D)~ P DN]2, P = (P D)+ Pu(D))]2

where p denotes the symmetric point of p, then

ADa(PS —F*) = Del(P §)—FH(1)) — (o D) —F*¥(B))]
<4Da[P(D)—FHp]—0 (n—>o0).

Now we define functions v, on R which are =, on G and =0 on
R—G, then {r,€ K(R) and +,—f* in BD-topology on K. Hence
f*eK(R), that is, f*(¢g*)=0, which contradicts with (19), q.e.d.

REMARK. From above proof we see that if (G—3G)NnA==¢,
then G ¢ SOyp (without use of the general inclusion relation:
SOy SOyp), because # is bounded. The character of a domain
G ¢ SOyp will be made more clear by the following theorem.

(20)

THEOREM 6. Let G be a non-compact subregion on R and
G°’=R—(GvdG). Then G¢&SOyp if and only if (G—G)NA==¢,
that is, G contains a point € A not belonging to the closure of G°.
Furthermore (G—0G)NG° does not contain any points €A, provided
G ¢ SOyp.

Proof. Suppose G ¢ SOyp and (G—G°)NnA=¢, Then according
to Theorem 6, there is a point ¢ €A which belongs to GNG° but
not to 8G=9G". Let {E;} (j=1,2,---) be the components of G°,
then g€ \WE—J We note here that ¢ must belong to some E;.

Indeed, if
ng] (j:]-, 2’ “'))

then any neighborhood U(g) of ¢ must contain two points belong-
ing respectively to distinct domains E;, E;, that is, U(g) contains

a point €0E;9G. Hence ¢q€dG, which is absurd. Now let

quj (nga_Ej). We construct as above a BD-function # on G
(resp. #’ on E;) such that u=u#'=0 on 9G resp. 9E; and u(q)=1
(resp. u'(g)=1/2). Let u* be a BD function on R such that #*=u
on GuoG, =« on E; and =0 elsewhere. Then wu* should be
continuous on R*, while u*(p)—1 for p—q (p€G) and u*(p')—1/2
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for p’—q (p'€E;). This is a contradiction. The converse is con-
cluded by Theorem 6.

CorOLLARY 1. Let G, be a compact set such that G—G, is a
non-compact subregion on R, then G & SOy, if and only if G—G,¢
SOup.

By Theorem 6’ and Proposition 1, [6] we get the following
result which contains a criterion due to Matsumoto [8].

COROLLARY 2. If there exist (n+1) mnon-compact subregions
G,, G,, -+, G, on R such that G; ¢ SOyp (i=1, -+, n) and the double
G, (of G,) £ O¢, then R¢Oyp,. The converse is also true.

CoroLLARY 3 (Proposition 5, [6]). R¢Oyp, if and only if
there exist (n+1) non-compact subregions G; such that G; & SOy,,.

9. Symmetric harmonic boundary points. NOpyp, and Oyp.

Let G be a non-compact subregion on R and G* be the com-
pactification of the double G obtained from G. It is assumed
G¢0;. Among harmonic boundary points of G* we consider any

point qgé@r\G: (G=G—(GuaG) and bar means the closure taken
on G*). Let {V,}, be the neighborhoods of ¢, then obviously
g=/\V.. Denoting by V, the symmetric sets of V, (restriction

of V, to C) with respect to 9G, it is proved that [\‘7,, determines

a harmonic boundary point of G*, g say, which will be called the
symmetric harmonic boundary point of q. To prove this, take any
€ R(G), then two functions ¢, o (cf. (20)) belong to K(G),
hence, vanish at ¢ and

inf M(V,) =0

where M(V,)=max (sup|®‘(p)|, sup|®(p)|) (sup is taken on V).
Since P*(p)=—@p), PV (p)=#(p) we find that

inf M(V,) =0,

and thus, [\17,:6 consists of points € A(G*). That e consists of
a single point, is seen from the fact that any u € HBD(G) takes
on ¢ a constant value. The symmetric point of § returns g itself.

Under these considerations we say that harmonic boundary

points of G appear symmetrically and ¢, § are mutually symmetric.

THEOREM 7. Let G be a non-compact subregion on R, then the
harmonic boundary of the double G of G consists of symmetric two
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points if and only if G ¢ SOyp and G € NOyp.”

Proof. From the proof to Proposition 6, [6] we know that
the condition is sufficient. Next, let # be any HBD-function on
G whose normal derivative vanishes on 9G, then the symmetric
extension # becomes an HBD-function on G and we find #( D)=

a( §O)=c, where p, and Z)o are mutually symmetric two points
€ A(G*), hence #(p)=c by maximum principle, i.e. G€ NOyp.
Evidently G ¢ SOgp by Theorem 6/, q.e.d.

THEOREM 8. If G is a non-compact subregion on R such that
G¢ NOy, and SOy, the closure G contains at least two harmonic
boundary points of R.

COROLLARY. R¢ Oy, if and only if there exists a non-compact
subregion G such that G¢& NOyp and SOyp. In particular, if the
boundary 3G is compact, the condition G ¢ SOyp is unnecessary.

Indeed, if R¢ Oyp it suffices to take as G the complementary
domain of a compact set. because G* would contain at least two
pairs of symmetric points (cf. Theorem 6°), hence G ¢ NOyp, by
Theorem 7.

The proof of Theorem 8 is contained in Theorem 7 and the
following Lemma 3. We say that a non-compact subregion G is
HD-singular if the closure G contains only one point of A(R).
For instance, for a minimal function o (sup w=1) every domain
G={p; o(p) >N, 0<A<1} is HD-singular, provided o € HBD(R).
In fact, ® would become identical with the harmonic measure Qp,
of an isolated point of A and P, € G (Corollary to Theorem 5).

LEMMA 3. Let G be a non-compact subregion ¢ SOyp and be
HD-singular, then A(C) consists of two symmetric points.

Proof. Since G ¢ SO,y it follows that G ¢ Oy, and A(G) con-
tains at least two symmetric points. Now suppose that A(G)

contains at least two pairs of symmetric points (p:, b)) (=1,2),
which do not belong to GAG. Then we can construct two HBD-
functions U; on G such that

Ui(p;) = 6;; (Kronecker) and U; = 0 on 9G.

For example, construct %, € HBD(G) such that #,(p,)=1 and =0 at
three other points, then U,=2u{ fulfils the condition. Now for

1) GENOyup means that there does not exist non-constant HD-functions on G
whose normal derivatives vanishes on dG. It is known that NO;p=NOugn.
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suitable constants A; (0<A\;< 1) two sets E;= {p; U (p)>\;} are
disjoint with G and E,NnE,=¢. Then the images (some com-
ponents) of E; on R are two non-compact subregions (in G) such
that E; ¢ SOy, hence G must contain at least two points of A(R),
which is absurd. Thus we know that A(G) contains at most two

symmetric points (p,, p,). Next suppose that A(G) contains further
a point qEGr\é, then it would also lead us to a contradiction
as follows.

By Theorem 6’ it remains to consider the case where g € 8?(0*).
Let ¢* be a point € GNA(R). There is an HBD-function v such
that v(¢*)=1 and »=0 on 9G. Then a suitable neighborhood
U= {v>\, 0<A<1} of g¢* is disjoint with 9G. Write F=(G—U)
NI(R*), then we can find a function @€ K(R) such that » >0 on
R and ir;f @ >0 (cf. proof to Proposition 1, [6]). Let ¢ be the
symmetric extension onto G of the restriction of @ to G, then
#€R(G) and inf >0 on 9G(G*), i.e. p(g)>>0. This is a contra-
diction.

10. SOyp and Ogyp,,.

THEOREM 9. Let {0,},_,,...n Q< N< o) be all minimal func-
tions (sup ,=1) on R€ Oyp.. and

(21) G, = {p;PER, o,(p) >N, 0N1},
then any non-compact subregion G (on R) outside \J G, belongs to
SOps. '

Proof. According to [1] (pp. 195-196), for the inextremisation
I; (to G) of the harmonic measure for a set M of ideal boundary
points of R
(22) IG (L)(Z, M) R) = (L)(Z, I*M) G) .
We insist here that

IG (0,,(2, Mn) R) =0

where M, are maximal HD-indivisible sets corresponding to o,.
Otherwise we would have sup I;»,=1 by (22). While, G lies
outside \/G,, hence “

Ipow, <o, <A1 on G

which is absurd. Now since > w,=1, we have
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Iol = I (31 0,) = 3 glw,) = 0,

which shows that Ge€ SOy, q.e.d.

Two HD-singular subregions are called disjoint if they deter-
mine two distinct points of A, With this terminology we shall
give another characterisation of Oy, .

THEOREM 10. RE€Oyp, A<<n< ) if and only if there exist
at most n mutually disjoint HD-singular subregions G;, and any
subregion G outside \J G; belongs to SOysg.

Proof. In case of R€Oy,, (2<n< o), the regions G; ((21)
with suitable A) become mutually disjoint HD-singular subregions
and G€ SOyp by Theorem 9. In case of R€Oyp (=0kp—0g) it
suffices to take G,=R—R, (R, is compact). Conversely, from the
assumption A contains at least m (< #) distinct points ¢; € G;, thus
it suffices to prove that A={q;}. Suppose A contains another
point g*=Eg¢;. Since by (2)

\JG; == \J (_;,' = U (G,—%—BG,) 5
g*¢(\JG;) hence ¢g*€\JE;, where E; are the components of
R—\_/ (G;+9G;). Moreover by the same reasoning as one in proof

to Theorem 6’ we know easily that ¢* is contained in some E;
and ¢* ¢ OF; (C(\J 9G;)). Then E;¢ SO,z by Theorem 6 and its

remark, which is absurd, q.e.d.

Finally we give a criterion for HD-singular points (sec. 7):

TueoreM 11. Let G be a HD-singular subregion containing a
point g*€A. If G¢SOyg, then g* is a HD-singular point, i.e.
greA,.

Proof. Since G ¢ SOyp, the relative harmonic measure o is
non-constant. « vanishes on 9G, hence for any u € §,« we have
u(p)=w(p) for p€OG. It is shown that this hqlds for any point
of G. Suppose that at some point p,€G

u(po)_w(pn) = 7\‘<0'
Then a subregion
(23) D= {peG; u(p)—w(p)<M\/2}

becomes non-compact and DNnA==¢ by means of Proposition 1,
[6]. Since DG, ¢* must belong to DNA, Now we have



On the harmonic boundary of an open Riemann surface, II 223

sup (#—®) =0, because # is continuous on R* and u(g*)=1, while
D

supw=1. But this contradicts with (23). Thus

L1]
r2]
£3]
L41]
[5]
£6]

[7]
[8]

Lol
[10]
[11]

Q= inf u=w=x=0 on G.
ué%q*

Kyoto University and
Ritsumeikan University.
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