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Introduction

The present paper contains some generalizations and supple-
ments of our previous results [6]. Furthermore the relation between
harmonic boundary points and the minimal functions (in HD) will
be studied.

We shall denote by R an open Riemann surface and by R*
the Royden compactification of R .  In §1 the structure of R* and
some definitions are stated. § 2 is concerned with the harmonic
measure with respect to any compact subset o f harmonic boundary
A  of R .  In particular, the harmonic measure with respect to a
single point becomes a minimal function in  class HD studied by
Constantinescu-Cornea [1] and one-to-one correspondence between
minimal functions (in HD) and some points in A  will be established.
These results are the contents of § 3. Finally in § 4 from our
point of view we shall study the properties of non-compact sub-
regions G  on R, by which some theorems in previous paper [6]
will be made more clear and complete. Particularly, Theorem 6
(or 6 ') gives the characterization o f G SO H D ,  which has some
remarkable applications.

§  1 .  Structure of R*

1. Let R denotes an arbitrary open Riemann surface. For
the sake o f definiteness and convenience we shall state briefly the
structure of the compactification R * o f R (fo r some proofs see
Gelfand-Silov [2] and Royden [11]. cf. Nakai [10] for another
approach). Let BD denotes the class of bounded continuous func-
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tions which are piecewise smooth on R  and have finite Dirichlet
integrals. The class o f B D functions with compact carriers forms
an ideal K  in the ring B D . By K  we denote the closure o f K  in
BD-topology". Introducing the B D a norm given by

( ) sup Ifl + N/DR ( f ) ,

where DR ( f )= I grad f l 'A d y ,  we get a  normed ring A . K , R
are ideals still in A .  Let n be the set of all maximal ideals in
A .  Now the topology o f n is defined as follows :  a maximal ideal
M  is called a  lim it point of a subset w(n, i f  M  contains an
ideal f\ N .  The totality o f  lim it  points of %  constitutes the

New_
closure % . For any two sets 2I and 0  we have

( 2 ) =  v 0 ) .

It is proved that 9i1 with the topology induced by this closure
operation becomes a compact Hausdorff space, which will be written
as R * .  For every point aE R  the set

M a  = { x ; x E A, x(a) = 0}

makes obviously a maximal ideal. With each xEA  a real number
X(Ma ) is  associated  (A lM a is isom orphic to the real number
field). Then it is proved that x(Ma ) =x (a) and the mapping a- .M a

gives a homeomorphism of R  into R * .  Since f\ M 0  consists of a
"ER

function x 0, every point of R * is a  limit point of V  Ma ,  i.e.
, ER

the image of R  is a subset dense in R * , which will be denoted
again by R .  Every function in A  becomes continuous on R*.

2. We call a non dense closed set

r  =  R* —R , R  =  V  M a
, Es

the ideal boundary of R .  It is easily seen that every point M a  E R
does not include an ideal K , while every point M (maximal ideal)
o f 1' necessarily contains K .  Now a point M in the ideal boundary

is called a  harmonic boundary point o f R , if maximal ideal M
contains not only K , but also an ideal k .  The set of harmonic
boundary points of R  constitutes a  closed set A ,  the harmonic
boundary o f R , which plays an important role in our studies.

1 ) f„— . 0  in BD-topology if I f !  are uniformly bounded, f„—.O uniformly on every
compact set of R  and D 5 ( f )  O.
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In the sequel, we shall assume that Riemann surface R  does
not belong to 0  „,  unless otherwise stated.

§ 2. Harmonic measures with respect to harmonic boundary
points.

3. LEMMA 1. Let u  be a non-constant BD-function which is
subharmonic (resp. superharmonic) on R , then u attains its maximum
(resp. minimum) on A.

Proof. Let

( 3 ) u U d - p , UE HBD, çpERT

be the orthogonal decomposition on R .  Take an exhaustion IR,J
of R  and consider a sequence of harmonic functions u n  (n=1, 2,
which have, on aR n ,  the same boundary values as u. Then u,,
(subsequence) converge uniformly to U on every compact set in R.
Since un  > u  on Rn ,  we have for 00 U > u on R , therefore by
means of maximum principle (Mon -Ôta [9 ])

sup u sup U =  U(q*) ,
R n

q* Ezx

While (13(e )  0, hence we have sup u =u (q * ), q.e.d.

Let u, y be any two harmonic functions on R , then the nota-
tions

u  v  an d  u v v

mean respectively the greatest harmonic minorant, and the least
harmonic majorant of u  and v. N ow  w e have

LEMMA 2. Let u„ u , be HBD-functions on R , then fo r  p* E
(u,y u 2 )(p*) = max [u i (p*), u,(p*)]
(u, A u2 )(p*) min [u,(p*), u,(p*)]

Proof. Since the function

u(p) = max [u,(p), u,(p)] , p e R

belongs to the class BD, we have the orthogonal decomposition (3)
o f u. Since

( 5 ) u(q) = U(q) fo r  q EA

and u  i s  subharmonic, w e have, by Lemma 1, u(p)<U (p) on R,
hence u1 v  u ,‹  U. W hile , u <u , v u ,  and  U(q)— u(q), therefore

( 4 )
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U ‹u ,v u , by Lemma 1. Thus we have

( 6 ) U =  u, v u, .

(5) and (6) show the first equality in (4).
the proof is quite analogous.

4. After Constantinescu-Cornea
o f harmonic functions which are limits
HD-functions. Evidently H D H D .

THEOREM 1. L e t a be a compact subset (+ 0 ) of A  and  13 its
complementary se t (+ 0 )  in  A .  Then there exists a  function rk,
defined on R * such that

(i) 1-2.,„ is upper semi-continuous on R * and S-2, E HD in  R
(ii) S2,3 =1  on a , =0  on /3 and 0<12 1 on R*.

We call n„  the harmonic measure with respect to a.
Proof. Consider the set of functions ;

( 7 ) = {v G H BD; v=1 on a  and 0 on R} .

First we note t h a t  c„ is  non empty, because contains a  non-
negative HBD-function u„,, with the property

( 8 ) u ,, = 1 on a  and = 0 a t a point q E 13

(cf. Lemma 2, D I. N o w  the function

( 9 ) f (p )  =  in f  v(p), p E R*

As for the second one,

we consider a  class HD
of monotone decreasing

V E
has the required properties. This is proved by the Perron's method
for Dirichlet problem. Take any point p ,  on R and the sequence
o f functions {v„} such that v„(p0)-->42,(p0) (n---> 00), y n E . Then
we see that by Lemma 2 the functions

(10) u„ = V 1 AV,,A • • AV,

belong to m o r e o v e r  the monotone decreasing sequence {un }
converges to a harmonic function n  and 1-2(A)=1-2(p 0 ). Next take
any point p1 (=1=  on  R, then we obtain analogously the monotone
decreasing sequence lu,11, which converges to a harmonic function
n ' and fY(p,)=1 -2,5(p 1). Now the functions wn = u  u n '  belong also
to 1, and we find that the limit function f2"=  lim w„ are majorized

by (1 and S2', hence S.2-= - f2'-----f2" by the minimum principle, because
( 2 "(P0)= 1-2(P0)=f2.(P0), 1

-
2"(A)=Mpi)= 1.2.(p 1). Since p , is arbitrary,

it follows that
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(11) = lirn u,, E HD,u , ,  E

Since un e HBD are  continuous on R *  and u , ,  <u , ,  (n=1, 2, •••),
we see that no, is upper semi-continuous on R * , and = 1  on a.
It suffices now to show that no, vanishes on d .  Indeed, for any
point q E i9 we have by (8) and (9)

0 <1 -2„(q) < uc„,,(q) = 0,

which implies that S .2 (q )=0  and n o  is continuous at q, q.e.d.
THEOREM 2. ( 2  HBD if and o n ly  if  an d-  is empty.
Proof. If a n 0, b ecom es  compact and a\JI3=A. Hence

we can construct a  non-negative function u,,„f i E HBD such that
u = 1  on a  and = 0  on j9 (c f. Lem m a 3, Pl. S ince uo,,I3 E

u., 0 .

While, for any v E 1 , w e have tc < v  by the maximum principle,
hence

uo,,p<  inf y = 12 .
V E

Thus S20,=zi„, i3 E H B D . Next assume that 12,„ E HBD, but a n d + (p.
Take a po int ME a n d ,  then M  contains an  ideal r \ N .  Since

WE
HBD-function n o,  vanishes at every point N  of ,8, 12,„ E N , hence
S20, E f l N c M ,  which shows that 12,„(M)=0. While, ME a  there-

fore 12„(M )=1 by (ii). This is a contradiction.
5. A compact subset e  o f A (R ) is said to be o f harmonic

measure zero  if 12,==- 0  in  R .  We state here some properties on
sets of harmonic measure zero, but not prove as they are not used
in the sequel.

THEOREM 3. 1°. I f  12, = 0, then e — e, moreover 12' =0 fo r
every compact subset e< e .

2 ° .  I f  rk i =0 for i=1, •-• ,n (<00), then nUe ,  O.

3°. (Generalized maximum principle). I f  f  is  a BD-function
which is subharmonic on R and sup f < m ,  where 12e = 0, then f < m
throughout R. -  e

§ 3. Minimal functions in  HD.

6. A  non-negative function u( 0) is said to be minimal in
certain class L  of real-valued functions if for any w E L  satisfying
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0 < co<  u  w e have u =-const • w . (cf. Martin [7 ], K je llberg  [4 ],
Heins [3], K uram ochi [5] and Constantinescu-Cornea [ 1 ]).

THEOREM 4. L et f2q  b e  the harmonic measure with respect to
a single point q E A ,  then n q is  m inim al in the class HD, provided
that (2, j  0 in  R.

Proof. From the assumption

(12) 0 < w < <  1  , w  E  HD

we shall prove that f2q = const• co. Since co E HD, there exists a
sequence {co n } su ch  th a t (0„ co, w„ E HD means monotone
decreasing). We may assume that wn a r e  bounded <1 (since
wn A 1  w ) .  Let c„— (0„(q), then c „  c  (> 0 ) .  Suppose c> 0 .  Since
COn l C n  E & ,  it follows that w„>c„1-2,. (n=1, 2, •••), hence co > cn q  for
n.--> 00 . Then it is proved that the equality holds in R .  Suppose
the contrary :

w(P0)-612q(P0) = 8,› 0

a t po E R .  W e recall that un n q ,  u„E ,e& (cf. (11)) and un are
bounded (since 1 A u „  S2,). Therefore 0 ) ( P 0 ) - - c u . ( P 0 )  8 0 / 2  for
n no . We fix a number n  ( ›n o)  and consider the set

(13) G =  {p E R ; w(p)— cu n(p) 8o /41 .

G is non-compact, moreover the double 6 o f G with respect to aG
is  o f  hyperbolic type, because the anti-symmetric extension of
harmonic function co —cu,, --8 0 /4 is  a non-constant HB-function on
O. T h ere fo re  a contains some harmonic boundary points by
Proposition 1 , [6 ], but this is impossible by the following reasons.
First, suppose q E G. T a k e  a positive number 6 < 8 0 / 2 ( 1 + c ) .  Since
w is upper semi-continuous and un is continuous on R * , we can
find a neighborhood Vg  (o f  q) such that for pE Vq

w(p) <c + 6/2 , I un (p)— u n (q)l <  8/2 .

Since un (q )=1 , we have in Vg  (hence Vq r■G)

(0(p)— cu„(p)<&(1+c)12<s 0 /4

which contradicts with (13). N ext suppose that G contains a
harmonic boundary point q ' distinct from q. Since n q  is upper
semi-continuous on R *, we have for pE V e nG

(0(p) < S-24,( P) <  1-1,q (q')+ 6/2 6/2 (see (12))
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whence
w(p)—cu„(p) < (0(p) < / 4

which is also absurd. In case of c= 0 we would have more easily
(0=.cS-2,,,= O.

7. Now we call temporally a  harmonic boundary point q  a
HD-singular point, if 12,  j  0 in R, i.e. the harmonic measure o f q
is positive, and split A  into two parts

(14) A  =  A0+3.0
where A, denotes the set of all HD-singular points. As an example
of HD-singular point, every isolated point q in A  belongs to A,
because (2,-=-It c,, ft  1   0 by Theorem 2. A criterion for HD-singular
points w ill be g iven  later. As the converse of Theorem 4 we
shall prove now the following

THEOREM 5. Fo r any m inim al function co (sup (0=1) i n  HD
there exists a  HD-singular point P,0 E Ao such  that the  harmonic
measure r2p,0  is identical with co. Moreover th e  mapping co (—)P.
between minimal functions (in  HD) and points of  A o is one-to-one.

Proof. According to [1], to every minimal function w (sup (0=
1) in HD there corresponds a maximal HD- indivisible set M  on
21 =1 and w is equal to the harmonic measure with respect to

M , where Ilzl<11 is the conformal image of the universal cover-
ing surface of R .  Moreover, let

(15) =  {v E HBD on R; lim v(reie) =1 , a.e. on M  and v>0}
1

then we have (pp. 213-215, [1 ] )

(16) (0(p) = inf v(p) , p E R
vE

Now consider the sets

E = E  R ; w ( p ) > 1 - 1 / n } ( n  =  2,3, ...)

then E„ are non-compact and E„ E i . Let En be closures (in
R *) o f En and

An = En nA ,

then A n are non empty by Proposition 1, En because the doubles
are of hyperbolic typ e . Furthermore, A n are compact in the

compact Hausdorff space R *  and A„ A„ , , for every n, hence by
a well-known theorem
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A/ = A n
,1=2

is not vo id . N ow  w e show that A ' consists of a single point. To
see this it suffices to prove that any 7.) E HBD has a constant value
on A ' .  Since v  is bounded , w e m ay assume th a t y  i s  positive.
From the Poisson integral formula w e have

(17) v(z) = —

1
v(e10) Re

e i e + z
d e  + 7 6 ) ( z )271- mce 8  - z

where MC is  the complementary set of M  and 7  the radial limit
o f v  on M .  From (17) w e  g e t 7c0< vS K (1 -0 ))+ 7 (0 , (K =  sup v),
hence for z E E„

7 ( 1 - 1 1 n )  v ( z ) ‹  ± K n
These inequalities (n=2,3, •••) are also valid on A ', hence we have

(18) V  =  7 on  A ' .

Thus we know that A ' consists of a single point, Po, say . Now
let u  be any elem ent of /,„„ then u has a constant radial limit

(a.e.) on HD-indivisible set M , moreover we know that .7= 1  from
above. Therefore W hile, a C p  (see (18)), hence we
have .= i.e.

11.p. co O.

Finally, the m apping (0,-3 P„, is one-to-one. Let P „  P ,  be two
distinct points in A ,  and co, =12p, , (02 =-42 1,2 be corresponding minimal
functions, then (,), + (0 2 , because co„ (02 h a v e  respectively radial
lim its 1 and 0 (a.e.) on the indivisible set for w„ q.e.d.

COROLLARY 1 . If a minimal function w (sup (0=1) in HD belongs
to the HBD, then to is identical with the  harmonic measure f2 ,* of
an  isolated point q* in  A.

Proof. By Theorem  5 w e know  that (0=12q * for some point
q* EA°. S in c e  12,7 *=  co E H B D , q* must b e  an isolated point by
Theorem 2.

COROLLARY 2  (Proposition 3 . 2 , [6 ]). R E - 0
/ i D n _ i  

if  and
only if  r(R )=n .

Proof. H ere w e shall give a direct proof for the equivalence
(i)<--*(ii) in Proposition 3 . 2 , [6 ]. Suppose REO H D . - O H D n _i ,  then
by Theorem 5  there are n HD--singular points qi  E Ao . Hence it
suffices to show th a t 3 0 = 4  S ince any vEH BD can be expres-
sible as
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y = wi(z , M i )  = ryi a q i (P) (ry i = v(q i )) ,,=1
where M i  are maximal HD-indivisible sets, hence if 3,  =i=  v (q) =0
a t  q EA ° w h ich  is  absurd, because there exists a  v E HBD with
y(q)=1=0 (cf. Lemma 2, [6]). Conversely i f  0-(R) = n ,  these points
q i  ( 1 =1 , • • • ,  n )  a re  isolated in  A , hence q i e A o , which implies
R E  HD n  O H D n _1 by Theorem 5.

REMARK. From the above proof we see also that if  R  has an
infinite number of maximal HD-indivisible sets, O E (R )= • B u t
the converse is not true. For example, the harmonic boundary of
the unit circle R = Ilzl < 11 contains an  uncountable number of
harmonic boundary points, but th e re  is  no HD-indivisible set.
We note that this example shows also the non-validity of Proposi-
tion 4, [6] in case of O E (R )= •

§  4 . Non - compact subregions.

8. SO„D  and 0 HD n  •
By a non-compact subregion G we mean a non-compact domain

on R  whose boundary aG consists of an at most countable number
of disjoint analytic Jordan curves not clustering to any point of R.

THEOREM 6. L e t  G  b e  a non-compact subregion on  R ,  then
G  S O H D  if and  only i f  G — aG contains harmonic boundary points,
i.e. (G — ã ) = .

Proof. If G  S O H D , then ( -0—a6)/-N I  cA by Proposition 2, Eq.
To prove the converse, take a point q* E aG) n A .  Since q* is
disjoint with aG (R *), there is a BD-function f  such that f  E A N,
but f  q * ,  that is, f ( q * ) + 0  and f= 0  on G .  L e t  f *  be a  BD-
function defined so that f * = f  on G and =0 on R — G , then we
have
(19) f  * (e )  f(q * ) I°
Let f *  be the anti-symmetric extension of f *  onto the double 6
of G (with respect to  ac), then f*  E B D (6), hence we have the
orthogonal decomposition

û+ , û E HBD(6) , q  E .

From the construction it is easily verified that û and 0  are anti-
symmetric with respect to ac, hence the conclusion follows if we
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could show that û  I  O. Assume the contrary, then f*= 0  E  k (6 )
is  a lim it (in BD-topology) of functions 0„ E K(G). Here On  may
be considered as anti-symmetric. Indeed, if we decompose 0,, into
anti-symmetric parts 44,- - )  and symmetric parts (k+)

= 4 - )+4 4 )(20)
0`» = ( ( P) - N P ) ) /2  4 4 )  =  (On(p) Oft(P))/ 2

w here denotes the symmetric point of p, then

4/J6(4 - )  -f*) DA(0.(P )-f*(P ))-(0 . ( p )-1 . *( -

)) ]
4 DC" CO n( 0  (n -> co) .

Now we define functions Jr,, on R  which are = 0 „  on G and = 0  on
R -G ,  then Ilr„ E K (R ) and i n  BD-topology on R .  Hence
f*  E k (R ), that is, f* (q *)=  0 , which contradicts with (19), q.e.d.

REMARK. From above proof we see that i f  (0 -a G )r -NA
then G  SOR B  (w ithout u se o f th e general inclusion relation :
SOHB SOHD), because û  is bounded. The character of a domain
G  SO H D  w ill be made more clear by the following theorem.

THEOREM 6'. L e t  G  b e  a non-compact subregion on R and
Gc = R- (G aG ). T hen G 0 SOH ,  if  a n d  only  i f  (0  -  )  n  A .1. 0,
that is , -a contains a point E A  not belonging to the closure of G'.
Furthermore (0  -aG )n -Gc does not contain any points E A, provided
G 0 soHD.

Proof. Suppose G 0 SOH D  and (G - 0c) n A = (/). Then according
to Theorem 6 , there is a point q E which belongs to OnGc but

not to aG---aGc. Let {E 3 }  ( j=1,2 , b e the components of Gc,

then q E V E3 . W e note here that q  must belong to some E i .

Indeed, if
q  R ; ( j  =  1 ,  2, ...) ,

then any neighborhood U(q) of q must contain two points belong-
ing respectively to distinct domains E i , E J , that is, U(q) contains
a point E a E1G .  H e n c e  q E a c ,  w h ich  is  absurd. Now let
q CE;  (q 03E ; ). We construct as above a  BD function u  on G
(resp. u ' on E 3) su ch  th a t u=u' = 0  on a G  resp. aE;  and u(q)=1
(resp. u' (q)= 1 / 2 ) .  Let u* be a BD function on R  such that u* = u
on G u a G , = u ' on E;  and = 0  elsewhere. Then u *  should be
continuous on R*, while u*(p )-.1  for p--.q (p  E G) and u*(p ')-4 /2



On the harmonic boundary of an open Riemann surface, II 219

for p'--->q ( p i  E E5 ). This is  a contradiction. The converse is con-
cluded by Theorem 6.

COROLLARY 1. Let G, be a compact set such  that G—G, i s  a
non-compact subregion on R, then G  0S0,, if and only if G—G,0
SOH , .

By Theorem 6' and Proposition 1, [6 ] w e  g e t the following
result which contains a criterion due to Matsumoto [8].

COROLLARY 2. I f  th e re  e x is t (n + 1 ) non-compact subregions
G,, G 1 , ••• , Gn on R such that G•0SOH „ (i=1,••• ,n) and the double
6 , (of  G,)00 G , then R0O H ,„. The converse is also true.

COROLLARY 3  (Proposition 5 , [6 ]). R 0 O H D n i f  a n d  only  i f
there ex ist (n+1 ) non-compact subregions G. such that Gi 0SOH D .

9. Symmetric harmonic boundary Points. NOHD  an d  OHD •
Let G be a non-compact subregion on R  and 6* be the corn-

pactification of the double 6 obtained from G .  It is assum ed
6 O .  Among harmonic boundary points of 6* we consider any
point q  G n 6  (6 - (G  a G ) and bar means the closure taken
on 6*). L e t {V j o,  b e  the neighborhoods o f  q , then obviously
q= i n . Denoting by Vo, the symmetric sets of V„' (restriction

of V,, to 6) w ith respect to aG, it is proved that r\17,, determines

a harmonic boundary point of 6*, say, which will be called the
symmetric harmonic boundary point of q. To prove this, take any

E k (6 ), then two functions (p( - ), p c "  (c f. (20)) belong to R- (6),
hence, vanish at q and

inf M(Vo3) = 0

where M(170,) = max (supl )(p)1 , sup (p ) )  (sup is taken on 170.
Since pc - A — 9 9 "(p ), p (± )()- p ( +) (p ) we find that

inf M( V„) = 0 ,

and thus, f  „ — e  consists o f points E A (6 *). That e consists of
a single point, is seen from  the fac t th a t an y  uEH B D (6 ) takes
on e a constant value. The symmetric point of returns q itself.

Under these considerations we say that harmonic boundary
points of G appear symmetrically and q, a r e  mutually symmetric.

THEOREM 7. Let G be a non-compact subregion on R , then the
harmonic boundary of the double 6 of G  consists o f symmetric two
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points if and only i f  G S O H D  and G E NOH D ."
Proof. From the proof to Proposition 6 ,  [ 6 ]  we know that

the condition is sufficient. Next, let u  be any HBD-function on
G whose normal derivative vanishes on OG, then the symmetric
extension a  becomes an HB D -f unction on  6 and we find ii(p0)=
ü( 0)=c , where po a n d  po a r e  mutually symmetric two points
E A(6*), hence a(p)= -- -- c  b y  maximum principle, i.e. G E NOH D .
Evidently G S O HD by Theorem 6', q .e .d .

THEOREM 8. I f  G is  a non-compact subregion on R  such that
G N O H D  and  SOH D ,  the closure G contains at least two harmonic
boundary points of R.

COROLLARY. feçt OHD if and only i f  there ex ists a non-compact
subregion G  such that G  Ø NOH ,  and SOH D . In particular, if the
boundary  aG is compact, the condition G ØSOH D  is unnecessary.

Indeed, if R  0 H D  it suffices to take as G  the complementary
domain of a compact set. because O * would contain at least two
pairs o f symmetric points (cf. Theorem 6 ') , hence G Ø NOH D  b y
Theorem 7.

The proof of Theorem 8 is contained in  Theorem 7  and the
following Lemma 3. W e say that a non-compact subregion G  is
HD-singular if  th e  closure a contains only o n e  p o in t o f (R).
For instance, for a minimal function w (sup 0)= 1 )  every domain
G= {p ; w (p)>x , o<x <i}  is  HD-singular, provided co E HBD(R).
In fact, w would become identical with the harmonic measure f2p0 ,
of an isolated point of a n d  P. E (Corollary to Theorem 5).

LEMMA 3. Let G  be a non-compact subregion OSOH D  a n d  be
HD-singular, then A O  consists o f two symmetric points.

Proof. Since G Ø SOH D  it follows that 6  0 H D  and A O  con-
tains at least tw o  sym m etric po in ts. Now suppose th a t A(G)
contains at least two pairs of symmetric points ( p i , p-  i ) (i=1,2),

7,

which do not belong to G n G . Then we can construct two HBD
functions Ui on  6 such that

U1(p 1 ) = S i j  (K ronecker) and Ui  0  on OGG .

For example, construct u, E HB D(6) such that u,(p 1)= 1  and = 0  at
three other points, then U1 =214 - )  fu lfils  the condition. Now for

1 )  G E  N O , ,  m eans that there does not exist non-constant HD-functions on G
whose normal derivatives vanishes on G .  It is  know n  that NO J10 =NO a BD .
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suitable constants Xi (0<X 1 < 1) tw o sets E i = 1p ; ui (p)>x i l  are

disjoint w ith  aG  and E1 nE 2 =4). Then the images (some com-
ponents) o f E i on  R are two non-compact subregions (in G) such
that E 1 0 SO H D ,  hence G must contain at least two points of (R),
which is absurd. Thus we know that (6) contains at most two
symmetric points (p„ Pi ). Next suppose that A(G) contains further
a point q E  r■G- ,  then it would also lead us to  a contradiction
as follows.

By Theorem 6' it remains to consider the case where q E aG(C*).
Let q* be a point E  n A (R ) .  There is an H BD  -function v  such
that v(q*)=1 and v = 0  o n  G . Then a  suitable neighborhood
U= {v>X, 0<X<1}  o f  q* is disjoint with aG . Write F=(G— U)
nr(R *), then we can find a function E k(R) such that q'>0 on
R  and in f p> 0 (cf. proof to Proposition 1, N I .  Let 4.)-  b e  the

symmetric extension onto Ô of the restriction of q, to  G , then
E R(6) and inf cp> 0  on aG(6*), i.e. (r)(q) > 0 .  This is  a contra-

diction.
10. S O H B  and OH D „.
THEOREM 9. Let {con } n =„..., N (2< N < co) b e  all minimal func-

tions (sup (o„=1) on REO H D c o  and

(21) Gn= {p; p E R , .„ (p )> x ,  0 < X < 1 }
then any  non-compact subregion G  (on R ) outside \J G,, belongs to
SO HB.

Proof. According to [1] (pp. 195-196), for the inextremisation
/G  (to  G) of the harmonic measure for a set M  of ideal boundary
points of R

(22) /G w(z, M, R) = co(z, I*M, G) .
We insist here that

1G  co (z, M„, R) = 0
where M„ are maximal HD-indivisible sets corresponding to co n .
Otherwise we would have sup /G  co,,—  1 by (22). W hile, G  lies
outside V G,„ hence

I G  „  <  < X < 1  o n  G

which is absurd. Now since E 0,„-,1, we have
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1G • 1 = IG( (Ùf l ) IG(W „) = ,

which shows that G E SOH B , q.e.d.
Two HD-singular subregions are called disjoint if they deter-

mine two distinct points of A .  With this terminology we shall
give another characterisation of 0 Hpn .

THEOREM 10. R E 0 H D .  (1<n <0 0 )  i f  and only  i f  there exist
at m ost n  m utually  disjoint HD-singular subregions Gi ,  and any
subregion G outside V  G. belongs to S O,B .

Proof. In case of R E OH D ,, (2< n < 0 0 ) ,  the regions Gi  ((21)
with suitable X) become mutually disjoint HD-singular subregions
and G G SO H B  by Theorem 9. In case of R E 0 H D , ( = 0 HD —  OG) it
suffices to take G1 — R— R, (R o i s  compact). Conversely, from the
assumption A contains at least m  n) distinct points q i  E thus
it suffices to  prove that A  {q1}. Suppose A  contains another
point q * +q i . Since by (2)

G. = V  G i = V  (G i +aG i ) ,

q* 0 (V  G.) h en ce  q* E V  E  where E  are the components of

R— V  (G i +aG i ). Moreover by the same reasoning as one in proof

to Theorem 6 ' we know easily that q *  is contained in  some R i

and q* a -E 1 ( C  (V  aG i )). Then E. 0 SO H B  by Theorem 6  and its

remark, which is absurd, q.e.d.
Finally we give a criterion for HD-singular points (sec. 7) :
THEOREM 1 1 . Let G  be a HD-singular subregion containing a

point q* E A .  I f  G  S O H B ,  then q *  i s  a  HD -singular point, i.e.
q*  E Ao •

Proof. Since G  SOH ,  the relative harmonic measure co i s
non-constant. () vanishes o n  G , hence for an y  uEB 'q * we have
u(p)>(0(p) for p E a G . It is shown that this holds for any point
o f G .  Suppose that at some point A E G

u(P0) — (0(110  X  < 0 •
Then a subregion

(23) D = IpE G ; u (p ) — (0(p) <X,12).

becomes non-compact and fir■A=H ) by means of Proposition 1,
[ 6 ] .  Since D G,  q *  must belong to  Dr\ A . N o w  w e  have
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sup ( u  w )  0 ,  because u  is continuous on R *  and u(q*)=1, while
D

sup w  = 1. But this contradicts with (2 3 ) . Thus

S-2,*  =  inf u 0 on G .

Kyoto University and
Ritsumeikan University.
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