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In a recent paper A. Grothendieck [1 1 ] classified the holomor-
phic fiber bundles over the Riemannian sphere P ' whose structure
group is reductive. This classification is based on the fact that
each holomorphic vector bundle over P 1 splits into holomorphic
line bundles, a result that is essentially due to G. D. Birkhoff [1].
In the present paper we raise the corresponding question for holo-
morphic families of fiber bundles g  CV over a holomorphic family

7r
c-V.—/1/ of Riemannian spheres, i.e. holomorphic fiber bundles whose
base space is the total space o f a  holomorphic fiber bundle with
fiber Pl. It turns out (Theorem 2.2) that the splitting theorem is
locally still valid provided one avoids a  1-codimensional analytic
subset A of the parameter space M  of the fam ily. The exceptional
set A  is empty if the restrictions of the vector bundle to any two
fibers are isomorphic (Theorem 2. 4). The splitting theorem permits
one to prove that the set of all points t E M  fulfilling

dime H°( V , n(B t))>

for some integer j  is an analytic subset o f M  (Theorem 2. 3). In
addition one gets a counterpart to a  theorem o f K . Kodaira and
D. C. Spencer ([1 4 ], Theorem 18. 1) stating that for any point
t0 EM  there is a neighborhood U such that

H °(1F --1(U), 12(g3)) H °(V t, n(Bt))

1 )  This research was supported by the U.S. Air Force through the Air Force Office
o f Scientific Research under contract No. Af 49 (638)-885.
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is surjective for all points tE  U— A  where A  is a 1-codimensional
analytic subset o f  U .  This remark leads to a short proof of a
theorem o f H. Grauert and R. Remmert [ 8 ]  for our special case,
saying that the direct image 7-c0(1-2(g ) )  is analytically coherent.

A fter a  side remark on orthogonal vector bundles we are
i t

dealing with holomorphic families cV—.M o f  fiber bundles
over a holomorphic family of Riemannian spheres whose structure
group G is a reductive Lie group. Let H  be a Cartan subgroup
of G, N  its normalizer, and W =N IH  the Weyl group o f G .  The

i t

main result is that fo r  any family c-V --*M there is a  1-
codimensional analytic subset A  o f  M  such that the restriction
o f g  to  7-c 1(M — A) admits a reduction of the structure group to
N ; in case M — A  is simply connected, the structure group can be
reduced to H  itself. In this case it turns out that the reduction
is uniquely determined up to an action of W.

The final section of the paper deals with holomorphic families
of vector bundles over a holomorphic family of compact Riemann
surfaces. The goal is to prove that Theorem 2. 3 is still true in
this more general case, a result that has been proved recently by
H . G rauert [10] in  a  much more general situation. As a con-
sequence one is  able to describe the structure of the set of all
Weierstrass points of a given type (of a holomorphic family of
compact Riemann surfaces) (cf. H. E. Rauch [ 1 7 ] ) .  One more
application is  the following. Suppose X  is  a compact Riemann
surface (of genus g > 1 ) .  A  n-tuple (x „ ••• , x „) of points of X
will be called a Weierstrass n-tup le  i f  there are non-negative
integers l„ ••• with l, + • • •  +l„=g  such that the vector space
of meromorphic functions f  on X  whose divisor ( f )  fulfills

( f ) + 0

has a dimension (over C )  bigger than 1. The set of all Weier-
strass n-tuples can be proved to be an analytic subset of X x ••• x X
and thus a projective variety.

The tool used in this last section is a construction that assigns
to every holomorphic vector bundle over a compact Riemann
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surface that is realized as a  covering space X--->13 1  a  holomorphic
vector bundle p* (W)—.13 '  such that 1--P(X , S(W)) is naturally iso-
morphic to H a(P,S 2(N (W )); this construction can be carried over
to holomorphic families of compact Riemann surfaces and is applied
in order to prove the required extension of Theorem 2. 4. It may
be remarked that this construction has also an independent interest
insofar as it yields a short proof of A . Weil's generalization of
the Theorem of Riemann-Roch (an idea which can be applied to
the higher dimensional case) and can be used in the construction
of the space of moduli of the Riemann surface of given genus.

1. Definitions and notations.

The definitions and notations follow essentially a  paper of K.
Kodaira and D. C. Spencer [ 1 3 ] .  For the sake of completeness we
shall recall them as far as they are needed in  this paper.

Two complex spaces cV and M  (for definition cf. [9 ]) together
with an open holomorphic mapping 7-/- of C V  onto M  are called a
holomorphic fam ily  of  com plex  manifolds if
( i) for any point tE M  th e  fiber V,=-7r 1 ( t )  equipped with the

induced structure is a  connected complex manifold
(ii) each point of M  has a  neighborhood U  admitting a  biholo-

morphic mapping f  of U onto C " x  r( U) such that the diagram

T T  fu x7r(U)
77.1

7-r ( U )  =  7r(U)

commutes.
The holomorphic family c(2—.M is said to have the total space

Cl,) and the param eter space M ; for each t E M, 7r - -1 ( t)  is denoted
by V , and called the f iber belonging to  t. We speak o f  a  halo-
morphic family o f Riemennian spheres (Riemann surfaces), i f  each
fiber of the family carries the structure of a Riemannian sphere
(Riemann surface).

Suppose C V - - M  an d  c17—>M' a re  holom orphic families of
Riemann surfaces. Then a  holomorphic mapping f:c i 7  is
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called a  f iber m apping if  th e  re s tr ic tio n  o f  f  to every fiber of
cV—>M is a  biholomorphic mapping onto some fiber of CV—M'.
T he fiber mapping f  induces a  mapping f 0 : M— M' so that

->

I,
M  M '

com m utes. f o is easily seen to be continuous. I f  in  a d d it io n  M
a n d  M ' a re  n o rm a l complex spaces (for definition c f .  [9 ]), f ,  is
known to be holomorphic (R. Remmert [18]).

T h e  fiber mapping f: CV _-o  c l/  is called a  fiber isomorphism
provided f  is biholomorphic. We say that CV—>M is (holomor-
phically) triv ial i f  there is a  fiber isomorphism f :  V -->V 0 x M  so
that

c-12 V, x M

M =  M

c o m m u te s . In  a  corresponding way one defines the notion of local
triviality.

I r '
Let CV'-4M' be a  holomorphic family o f  complex manifolds

a n d  f o : M—>M' a  holomorphic mapping. T h e  analytic subset
{( V', m)17t- '( V/ )= f0 (m)} of cV' x M  equipped with th e  induced struc-

ture shall be denoted by CV. Then cV-->M, where 7z- i s  th e  pro-
jection of c12 onto M, is a holomorphic family of complex manifolds.

7t i

CV-OM  is said to be induced from c -1/ -->M ' b y  f o : M—>M' . A
holomorphic family is trivial if and only if it is induced by a trivial
mapping, i.e. a  mapping which maps M  into one point.

A  holomorphic fam ily  of  f iber bundles (with structure group a
complex Lie group G) is a  holomorphic family c- 12—>M o f complex
manifolds together with a  holomorphic fiber bundle L8— CV (with
s tru c tu re  group G ) .  T h e  restruction of 9  t o  t h e  fiber V t is
denoted by B . W e sp eak  o f  a  f am ily  o f  f iber bundles over the
Riemannian sphere i f  c- V—>M is a  family o f  Riemannian spheres.



On holomorphic fam ilies of fiber bundles 439

For any subspace M ' of M  we get a  new fam ily o f  fiber
bundles 3  M ' c f ; M ' M ' where WI M'—> M' denotes the restric-
tion of cV—)./14- to  M ' and M ' the restriction of g ---> cV
to cV1M'.

Tw o holomorphic families g  c V — * M  and  3 ' M  of
fiber bundles having the same structure group and fiber are  said
to be isomorphic if  there exist biholomorphic mappings f : c - V—>. ci?
and f '  3 ' so that

C y

IIf i st f I
LB'c - v — ) p

commutes.
For various reasons it is convenient to deal with holomorphic

families of complex manifolds whose parameter space a s  well as
their total space are normal complex spaces. That leads u s  to

n-
the following construction. Let cV-->M be a  holomorphic family
of complex manifolds, and consider the normalizations n : c- 17 c V
and no : M—>M (for definitions cf. H. Rossi [ 2 0 ] ) .  Then there is
exactly one holomorphic m apping : M  such that

commutes. First we claim that 7- 't is  surjective. Indeed, o n  i s
onto and n , is a  homeomorphism on /a— n 1 (A ) where A (=se t of
all reducible points of M ) is a  subset of M  having the property
that M— A is dense in M  a s  well a s  /17/— /O A )  i s  dense in /a;
consequently, Ft ( )  contains ra—n,T1 (A); i.e. 7.1" ( CT) )  is dense in M.
On the other hand, let i o b e  an element of nc7.1 (A ) and to =n o(i o).
n. was assumed to be an open mapping. Hence for every point y
with 7r(y)= to there is a compact neighborhood U whose image Uo

under n- is  a compact neighborhood of to . Let Cl be n '( U )  and
CI, be ,,q 1 (Uo). n  and no being proper implies that both -U. and U,
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are compact and U., is  a neighborhood o f t o . As we saw, Ft( e) is
dense in Co ;  but CI being compact implies that Ft( (7) is closed in
U, and therefore equals Co . This proves that Ft is  surjective.

N ext we want to show that each fiber Fe- 1 (1 ) is purely d-
dimensional, where d  i s  the dimension of the fibers in  c-V—M.
For that purpose it is enough to show that n - i(z - 1 ( t ) )  is purely
d-dimensional. The la tter fact follows im m ediately from  the
hypothesis that Vt o  i s  a d-dimensional manifold. Consequently Fe
i s  an open mapping, as w e see  at once from a  theorem o f  R.
Remmert [18].

Now consider a  connected component cVK  o f CV . Its image
under Ft is again connected and therefore contained in one of the
connected components of M ,  s a y  MK . Because Fe i s  an open
mapping, Ft(cPK )  is  an open subset of MK . In the case Ft(c-V-
Ric, there is a second connected component, CV-  L , of cT7 such that
-Ft(c-TYK )n7--t(c17,) is  a non-empty open set. Denoting the set of all
reducible points of C V  by A ,  the sets CVK —n - 1 (A)n c-VK  and
cVL —n - 1 (A)t -NO L  correspond to two connected components, c-VK

respectively cVL , o f cV—A having the property that their images
under possess a non-empty intersection. That is obviously im-
possible because an irreducible analytic subset (z - V 0) )  contained
in the union of two analytic subsets (W I (  respectively cYL ) "  is
actually contained in one of them . At the same time we proved
that the connected components of CV and those of AI correspond
to each other in a one-to-one way ; corresponding connected com-
ponents shall have the same subscript.

Furthermore we show that each fiber Fe- Ti o )  i s  a  complex
manifold that is isomorphic to Vt o  w here 4—n0 (10 ). For that pur-
pose let A o b e  the set of all reducible points of M .  Then no is  a
biholomorphic mapping o f /f4- -ncT1 (A 0)  onto M— A0 . In  case there
is a reducible point y with 71- (v)EM— A0 , we choose an open con-
nected neighborhood U o f y so small that 7r(U) M — A0 , th a t co2
can be decomposed in  U  in k (>1 ) irreducible components, and
that for each point t E M ,U n z - i(t) is connected ; then the normali-

1) ci4 denotes the closure of c14.
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zation Ci o f  U  has at least k  connected components, while the
normalization n-(U )  o f  7r(U) has only one connected component.
That contradicts our previous statement about the correspondence
between the components of U and those of n- (U ) . Therefore there is
no reducible point over M— A o ,  and consequently CP —  n - ion— '(A 0)
is homeomorphic to CV— n- 1(A0). That proves already that Fe- Vio )
is isomorphic to Vt ,  provided l o i s  an element o f M—n 1 (A 0). In
any case Ft-1 (10)  is a purely d-dimensional analytic subset according
to  a  theorem o f  R . Remmert ; furthermore it is contained in
n'orcion,(1 0 )  which is easily proved to be a (possibly not connected)
submanifold of CP. Therefore it remains to be shown that Fe-1 (i o )
is connected. The mapping Fe : C 11'  —>/1-4- creates a situation to which
a theorem of K. Stein [2 2 ] can be applied. In case, cV—.M is  a
family o f  Riemmann surfaces') there is a  complex space X  and
a  holomorphic mapping q: CV -- , X  such that fo r every normal
complex space Y and every holomorphic mapping p Y each
fiber o f  which consists o f fibers of there is exactly one holo-
morphic mapping (11 : X—,  Y  fulfilling p =rp io q . It turns out that
the fibers of q  are the connected components of the fibers o f Ft.
Consequently there is a uniquely determined holomorphic mapping
(7)* o f X  onto fa such that Ft = p * . q .  TA is  a one-to-one mapping
of X— p* - 1 (n 1 (A 0)) onto la —  (AO; obviously all fibers of rp* are
discrete. If there were two points x 1 , x , of X  with y*(x1)=P * (x2),
then we could choose disjoint compact neighborhoods W , and W,
o f x ,  respectively x , .  Because the fibers o f p *  are discrete, q, *
i s  an open mapping according to a  theorem o f  R . Remmert.
Therefore q3*(W 1)r\q)*(W 2)  is  a neighborhood o f cp*(x ). There is
an open, connected neighborhood U *  o f  q)*(x ,) contained in
q)*( W ,)np*(W 2)  so that cp* - 1 (U*) does not intersect the boundary
o f W,v W 2 :  otherwise there would be for every neighborhood of
rp*(x,) a point on the boundary o f W, u W 2  (which is compact and
does neither contain x ,  nor x ,)  that is m apped by q)* into this
neighborhood, which contradicts the fact that cf.)* is continuous.
Denoting W ,np* - 1 (U*) by WI' respectively 9)* - 1 (U*)n W, b y  T4/1
we have now two neighborhoods o f x , respectively x , so that the

1 )  The restriction to  fam ilies of Riemann surfaces, i .e . d = 1 , is unnecessary by
virtue of a theorem of H. Cartan. (Theorem 3 in "Quotients of complex analytic spaces",
Contributions to function theory, T ata  Inst. Fund. Research, Bombay, 1960).
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restriction of rp *  to MI' vI47 i s  proper. Hence a  theorem of
H . Cartan [ 6 ]  shows th a t  Wr i s  a  covering space of
9)*(Wt vi4P2}') — U* which is unramified and unbounded outside of
an analytic subset o f  U * .  But (p*IT4Ptu WI' maps —
p*'(n,V(A o ) )  homeomorphically onto its im age. Consequently the
number o f  sheets o f th e  covering WI' v W'21  ̀—> U *  i s  one and
therefore (p*  is  a  biholomorphic mapping o f  Wr \.) 14q onto U .
This means that each fiber o f Fe C  7  >SI is connected.

Finally we want to show that Fr : — 7/ fulfills also the last
condition of a holomorphic family of complex manifolds. For that
purpose consider the commutative diagram

Cdx 7r(U)
U Cd x 7r(U)/ I
1 7r( U) 7r( U )

7c( U) = 7-r( U)

According to the definition of the normalization there exists a
holomorphic mapping (1--.Cd x 7T(U) so  that the above diagram
remains commutative after inserting that mapping. Again accor-
d ing to  the definition of the normalization it turns out, that the

mapping U— Cd x n(U) is  biholomorphic.
Summarizing we get

T h eo rem  1 .1 :  L e t cV --Of be a  holomorphic family of Riemann
surfaces, di-I  and M  the normalizations o f  ci? respectively M , and
Ft :  CT; --- 44- -  the uniquely determined holomorphic mapping so that

"

commutes. Then cT7 is  a  holomorphic family (whose para-
meter space as well as its  total space are normal) so that each
fiber V  is isomorphic to the fiber V„0 (7) .

CV_ M  will be called the normalization of the family CV—+M.
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Without proof we shall give another result in  that direction :

Proposition 1 2 :  L e t  CV  ->M and c i/ > M ' be two holomorphic
fam ilies of Riemann surf aces. Let f :  C V  b e  a fiber mapping
and suppose th at no irreducible component of CV  is m apped into
the set of all reducible points o f  C V . T h e n  th e re  is  e x ac tly  one
fiber mapping f  o f  the normalization CV  -.ICI into the normalization

so that

CV cP
/ fcy cv

/
II-1I 11-1/

- fo -

com m utes. The induced mapping f ,: fa--. fa' is holomorphic.
Finally we need in  th e  sequel the following statement, the

easy proof of which we shall omit :

Proposition 1 .3 : L e t  3-> CV ->M  b e  a  holomorphic f am ily  of
f iber bundles w here the holomorphic f am ily  C V  _M  f ulf illus the
hypothesis o f  T heorem  1.1. L e t n: c P -> CV  be the normalization
mapping and :g-3 -> cP the f iber bundle induced from  3 -> CV  by  n»
Then fo r  every t E 1-14.,  the restriction 13, , V , is isomorphic to 13,0 7,
-.V  no ci, by means of the induced fiber mapping of into B .

2. H olom orph ic families of vector bundles over the Riemannian
sphere.

Let 3 ->cV ->M  be a  holomorphic family of vector bundles
over th e  Riemannian sphere 13 '  where th e  parameter space is
supposed to be a  complex manifold. First we study the local
structure of such families. This problem can be simplified by
results of K. Kodaira and D. C. Spencer ([13 ], Theorem 6. 3, [14]
Lemma 14. 1 and Theorem 18. 2,) which show that a  holomorphic
family of Riemannian spheres whose parameter space is a complex
manifold is actually locally tr iv ia l. That means the above family
of vector bundles is locally isomorphic to a  holomorphic family

1) coincides with the normalization in case the fiber 3---.c1) is a normal complex
space.
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U o f vector bundles where U is  a polycylinder and
U x P' U  the canonical projection. Because both (13 ' —0) x U and
(P' — 00)x U are holomorphically complete manifolds which are of
the topological type of the cell, 3  is (holomorphically) trivial over
both (13 1  — 0)x U and (P' — 00)x U, according to a  theorem of H.
Grauert [7]. T h is  implies that the v e c to r  b u n d le  3  U x 13 '  can
be defined by a holomorphic mapping G(u, z) o f Ux (0 < z <0°)
into the general linear group GL(q, C).

In the case w e are dealing w ith  a  fam ily  o f  line bundles
(q  =1 ) , 3  U  x  P ' is defined by a holomorphic and holomorphically
invertible function g(u, z ) in  U x (0< lz l<  09 ). The fundamental
group o f U x (0<  z 1<o ° )  being free cyclic there exists an integer
k  such that log g(u , z) — k log z  is holomorphic and single valued
in  U x  (0 < lz i< 0 0 ). If

4-
E  g(u)2'

is the Hartogs series o f that function, then the equation

exp ( g,(u)zÀ) • g(u, z) • exp ( gx (u) ) = z"

shows the vector bundle 3— .Ux 13 '  earl be given by the function
zk. I f  w e denote finally by L k  the holomorphic line bundle over
En which is defined by z", then we have

Lem m a 2 .1 :  F o r each holomorphic fa m ily  3  U  x U  o f
line bundles over th e  Riemannian sphere with a polycy linder as
parameter space there exists an  integer k  an d  an  isomorphism o f
families

3  — .  U x P i  U
H

U x L k  — >  T x Pl — . U.

If the rank of the vector bundle 3 — .U x F" is bigger than 1,
then we consider the restriction .8,, o f the bundle _B to  the fiber
V„, u G U .  Denoting the sheaf o f germ s o f holomorphic sections
in  B ,, by 12(B„) the principle o f  upper semi-continuity ([13],
Theorem 2.1) shows that there is a neighborhood U' of the origin
0  in U such that for a ll points u  of U ' the inequality
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( 1  ) dimc H '(V „,n (B „))< dime  11 1 (V„, 12(Bo))

holds.
On the other hand , a theorem of G. D. Birkhoff [1] and A.

Grothendieck [12 ] shows that the vector bundle B u  splits into the
direct sum

e L k K (u)
, =1

o f  holomorphic line bundles where k,(u), ••• , k g ( u )  a re  suitable
integers.

An easy calculation shows

( 2 ) dim H 1( V„ , S2(/30) t i max (0, — k„(u)-1).

(1) and (2) imply that in  U  all exponents are uniformly bounded
from below. Thus we can find an integer 1 such that the Whitney
product .0—.U1 x P ' of the holomorphic line bundle U' P1
and  the restriction of the bundle to  U' x P 1 h as the property :

for each point u E U ' the bundle B , splits into the direct

sum e L k „/ ( u ) of line bundles whose degrees  k ( u )  are not
=1

negative.
The fact that each k„' (u) is not negative implies

( 3 ) dim Ir(V „, f 2(X )) = Ê  max (0, k (u) +1) + .

The functor det on the category of vector bundles of rank q  with
values in the category of line bundles' )  maps the direct sum eK=1
into the element L q . Lemma 2. 1 shows that ±  k (u )  is  in

,,(u ) M1
A  =

fact independent o f u. The functor det gives rise to a  mapping
det of the set 1[ H('( V, s'2(Bg)) into the set HA V ,12(det Ba)) where
B q  i s  a  vector bundle o f rank qz ) . Because all k (u ) 's  are  not
negative, we have enough holomorphic sections in B„' over P'.

1) The image of a vector bundle of rank q  g iven  by the transition functions g i ;

is  the line bundle given by the transition functions det g i ;

2) The image of a q-tuple s 1 , • • • , .34,  o f elements in  H °( V, 1.2(130) under (let is
the element dot (s, • •• , s g )  in  H °( V, LI(det 13g)).
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Hence det maps 11 H°( V, 12(/3)) not into the neutral element of

H°(11 S2(det B )).
Now we want to construct a set of meromorphic sections in

B' over U" x P ' (U "  being a suitable neighborhood o f 0 ) so that
the restrictions of those sections to a  fiber o f U" U "  form
"in general" a basis of the module of global holomorphic sections
in the restriction of g '  to that fiber. For later use we also need
a certain normalization of those meromorphic sections at 00.

Because (3) does not depend on u  a  theorem of K. Kodaira
and D. C. Spencer ([14], Theorem 18. 1) establishes the existence
of a neighborhood U " of 0 and the existence of elements .3;. , ••• , s'„
E H°(U" x P', 12( f f ) )  such that for each point u E U " the restrictions
o f those sections to V u  fo rm  a  basis of H°(V u , S2(BL)). Writing
down those sections in terms o f the above mentioned fiber co-
ordinates we get two vectors a z )  and k(u , z ) holomorphic in
U" x (1z1<co) resp. U" x (0 <1.z I ) which fulfill the equation

( 4 ) z) =  G '(u , z)k (u , z) i n  U" x (0 <lz I < co) .

Let
b (u )z 'A=0

be the Hartogs expansion of b' (u, z) in  z= 0 0 . Denoting the th -

component of the vector b by b( ''') we choose the integer X„ such
that (after a suitable rearrangement of the sequence s , • • • , s,)

bT ) (u) 0 for X  <  X „ , K = 1, ••• , k', b u t

1)M (u ) 0

Such a choice is possible because det ( H°(17 , 1.2(13L))) is not con-,
tained in the neutral element o f H°(V o , f2(det B ) ) .  Replacing
by sl'= (bU (u )) - 's;. and s by .3'; = — big(u).31' for K>1, we have
new meromorphic sections sf', ••• , s',/, in  g '  over U " x P'; their
restrictions to ( U" — A ' )  P ', A ' being the support of the divisor
defined by b a ( u ) ,  are holomorphic sections in g' and for every
point u E U "— A ' the restrictions of ••• , s'," to  Vu form a basis
o f H°(Vu , f2 (B0). Applying the above process to ••• , s and
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continuing by induction, we find integers 0 <  < X i z <  < X i i , ,

a  1-codimensional analytic subset A "  o f  U " ,  and meromorphic
sections sr , • • • , s" in g '  over U " x  P ' so that
( i ) the restrictions to  ( U" — A") x  P ' are holomorphic sections

in g '
(ii) the restrictions of sr , • • • , to  17

,4 form a basis for H° (V „,
f2 (B',1) )  for each point u E  U"—A"

(iii) Y ( u )  — 8 "
Y:X(1 )(u) 0

K 9 l
a

' 
= 1

9 . . •  9  
1.

9

IC • • •  k', X 0,1, •••

hold. The fact that det ( I I H°(V „, f2(X)) is not contained in the

neutral element o f H°(V„, f2(det B)) implies again that iK k '.
Now we carry out the same constuction for , •  ,  s '  and

the components r ," ) ( u ) .  I f  w e continue b y  induction we finally
construct a 1-codimensional analytic subset A of U ", q  non-empty
se ts  o f in tegers 0  <  <  X.K2 ‹  •  <X,,, K - 1 ,  • • •  q ,  and mero-
morphic sections s„ ••• , se in  g '  over U " x P '  which fulfill the
conditions (i) and (ii) with A  instead o f A" and have the property
that for p =1 , ,  q

b (u) 0 f o r  x =  +  •  + i,+  1, • • • , k' X  =  0 , 1 , • • •

=  1 ,  • • •  , =-  1, •••bn,„(u )=—_-8„8 8„ for 1, •  •  • K  = ••• P  •

Let A, be the smallest analytic subset of U "  so that the sections
s11 , s 1 2 , • • • , .  are holomorphic sections over ( U" — A,)x P 1 .
A , is  e ither em pty o r  1-codimensional in  each  o f  i t s  points.
Furthermore it is obvious that A, is uniquely determined by the
matrix G'(u, z) because G'(u, z) and the conditions (5 ) determine
the sections s„ ••• , se uniquely.

The matrices

A(u, z) = (a i i (u, z), ••• , z))

B(u, z) = (b i i (u, z), ••• z))

are holomorphic in  ( U" — A 0 ) x (1 zi < 0 0 ) resP • U" — Ao) x (0 <1 z 1)
and fulfill the equation

( 4') A(u, z) = G(u, z)B(u, z) i n  ( U" — A. 0 ) x (0 <1z1<00)

(  5 )
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Because o f (5) det B (u, z ) does not vanish identically. Thus the
same holds for det A (u , z ) . Furthermore we derive from (5) and (4')

- idet A (u, z ) = det G (u, z )z  - f(u , z)

where f (u , z )  is  holomorphic in  (U" — A 0) x (0 z I )  and does not
vanish for each fixed u E U" — A 0 a n d  a l l  points z  o f a  suitable
neighborhood of co which might depend on the choice of u. On
the other hand, the restriction of det a,  t o  U " is isomorphic to
the line bundle U" x Lk ,  -Q U "  X P ' . Hence Lemma 2. 1  assures
the existence of functions ho(u , z ) and ho.,(u, z ) holomorphic and
holomorphically invertible i n  U" x (I z i<  co ) re sp . U" x (0<I zl)
such that

hwl(u, z)zi/ - qh„(u, z) = det G(u, z)

holds. Therefore we have
' -  q •( 6 ) h„(u, z) det A (u, z ) = Z k "I. f (u, z )h,„(u, z ).

Obviously the inequality

( 7 ) k(u) = k ' — q K-1

h o ld s. The tw o sides o f  (6 )  define a  holomorphic function in
(U" — A o) x P i  w hich vanishes identically i f  ( 7 )  i s  no  equality.
Thus det A(u, z)  I   0  implies that we have an equality in (7). That
means that

•
=  F - 1 fo r  K = 1, ••• , q = 1, ••• , .

Hence there is a  matrix C(u, z ) holomorphic in  (U" — A o ) x (0<1 z  I)
such that

(
0  \

B (u, z ) = C(u, z) (
 0 z. - ''qi,1

h o ld s . One verifies easily the following property of C (u, z ): for
each compact subset K  of U" — A , there is a  neighborhood DK of
z = Do such that det C(u, z ) has no zero in K x D K .

One more consequence of the inequality (7 ) is  the fact that
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det A (u, z ) does not depend on z ;  t h e  rem ark  th a t fo r  each
u E U" — A , there is a complex number z  with det A (u, z)-I- 0 shows
now  that A (u, z ) i s  holomorphically invertible in (U" — x ( l z i
<c) .°).

D en o tin g  X  b y  n ' the last remarks together with (4') show
that the equation

z)G(u, z)C(u, z)

holds in  (U"— A o ) x (0 <1 2 . 1< c o ) .  Th is  im p lie s  th a t C(u, z )  is
holomorphically invertible in (U"— A o ) x (0<1 zl< 00) ; in addition
th is  propery  holds fo r  K x DK where K  i s  a compact subset of
U"— A 0 a n d  DK  some neighborhood of z = oo. H ence C(u, z )  is
holomorphically invertible in (U "  — A,) x (0 <1 z I). This means that
the restriction of a' to ( U"— A 0 ) x  P ' is isomorphic to the vector

bundle ( U" — x  t h L n ç .  T en so rin g  3 '  b y  U' x L_, x  Pl

leads back to the original bundle 3  and gives therefore

Theorem  2. 2 : L e t .3— ).UxP' — > U b e  a  holomorphic f am ily  of
vector bundles o f  rank  q  w hose param eter space is a  polycylinder.
T hen there  is a  neighborhood U , of the origin in  U , a  uniquely
determ ined sm allest analy tic subset A , o f  U„, and a sequence of
q  integers n, < n , ‹  • • •  < n „ such  that there  is  an isomorphism of
families

Ao ( U,— Ao ) X P i
 — > Uo —  Ao

(U,— A 0 ) x Ln, (Un— Ao)x —> Ao

In the case of line bundles (q = 1 )  A „ i s  em pty . In  case q >1 ,
A 0 is either em pty  or 1 codimensional in each o f its points.

The only statem ent which rem ains to be proved is the fact
th a t  A , is un iquely determ ined . A s w e already rem arked , the
above used sections s„ ••• ,s k ,  are uniquey defined by matrix Gi(u,z)
and the properties (5). Suppose th at U is  a neighborhood of the
origin in  U  and A an analytic subset of CI such that the statement
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o f Theorem 2.2 holds for CI— A instead of U 0 —A 0 . T hen  there
are matrices z )  and 112 (u, z ) holomorphic and holomorphically
invertible i n  (1z1 < 00)x (Û— A ) respectively (0< lzi)x  (Û — ,21-)
such that

/e l 0\
11,71(u, z)G(u, z)112 (u, z ) =

\  0 ..znq/ .

Without loss o f generality we may assume that w e are dealing
with U "x P `  instead of U "x P ' ;  therefore we may
assume that none of the exponents n„ •• • , n, is negative. Denoting
the columns o f H,(u, z ) by d„(u, z) and the columns of 112 (u, z ) by
k (u , z ) we see that

z ) = G(u, z )•z i - " k(u, z )

holds. Consequently, the pairs of vectors

(zieig (u, z), z)) i  = 0, • ,n , K  = 1, •••  ,q

form holom orphic sections in over (CI — A- ) x  P `  having the
property that their restrictions to each fiber 'V:,  form a basis for
the module of global holomorphic sections in B -->V „ fo r every
u G A. Obviously we retain the same conditions i f  we change
both H,(u, z ) and 112 (u, z) to  H,(u, z )Q respectively 112 (u, z )Q where
Q  i s  a permutation matrix. Because 112 (u, , , o )  is non-singular in
U — A  w e m ay  assume (w e on ly have to  p ick  an appropriate
permutation matrix Q ) that the product

by ,( u , 0 0 ) . ... .k7 )( u ,  0 ,9 )

does not vanish fo r  a  given point u = u ,  o f CI—A and therefore
for a full neighborhood U of uo . Hence the sections

=  (z 1 b(:) - 1 (u, ).4„(u, z) , zi th;') - 1 (u, co)i),,(u, z))
i = 0, • •• K  = 1 , " •

still form a basis for the module o f holomorphic sections in ...gr
over U x  P '.  Forming suitable linear combinations of the sections

I • • • P3,111
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we get sections s , ••• fulfilling the conditions

b (u) x K  =  1 ,  • • •  , n , + 1  X = 0, ••• , n, .

That means we are able to normalize the rest of the sections
si ,  (K > 1 ) in  such a  way that first components o f  them have a
zero at least o f order n ,+ 1  in  cc. Proceeding by induction we
end up with a  new basis „ ••• , :le of the vector space o f holo-

--
morphic sections in over Ux .P 1 fu lfilling the second set of
equations (5) without any restrictions and the first set of equations
(5) for X=0, ••• , i,,, and p,=1, ••• , q. In case the first set of equa-
tions (5) does not hold for tb=p,,, and X=0,1, ••• , we could proceed
as in the construction leading to the basis fulfilling (5) and would
consequently come up with a different representation o f  . 0 ' as a
sum of line bundles. Thus the basis g„ ••• , 1,/ fulfills all equations
(5 ) and hence coincides with the basis s„••• That implies,
according to our previous construction, that I-12(u, z ) equals C(u, z)
up to a  right factor Q .  Hence we have A o n  o r\ r 4 r■ U „r■
which proves that A , is uniquely determined.

i t
Corollary 1: L e t  g--)-cV—.111 be a  holomorphic fam ily o f  vector
bundles over the  Riemannian sphere. Then there is a  1-codimen-
sional analytic subset A  in  M  such that 31M—  A-- CV M—  A—>
M— A  is locally triv ial and therefore dime  H s ( V  f 2 (13t)) is constant
on every connected component of  M— A.

Proof :  I t  is sufficient to consider the case s = 0 :  s = 1  follows
imediately from s= 0 , Lemma 2.1, and the Theorem o f Riemann-

Roch. Furthermore, it is sufficient to consider the case where both
( -V and Mare normal complex spaces : Let be the normali-
zation o f  c-Y--.M  and A , the set of all non-normal points of M ;
then the set of all non-normal points of 

Co
 is contained in 7r- '(A 1)

(according to the definition o f a  holomorphic family o f complex
manifolds) and therefore we have an isomorphism o f families

CP AI— n t71 (A,) cV1M— A,

Pt7J_n1(A ,) <-4 M —  A ,  .
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If in addition Ay is a 1 codimensional analytic set in fa  so that

A  - A, - -  A, A,
is locally trivial, then

(M—A 1 u n0 (A2 )1 (M —A 1 u n 0 (A2 )) M  —  A ,v  n 0 (A2 )

is locally trivial and A = A,\J n o (A2 )  is a 1-codimensional analytic
subset o f  M  according to a  theorem due to R . Remmert [18].
Therefore we may restrict ourselves to the case where cY and M
are normal. Denoting the singular locus of M  by A ', Theorem 2. 2
states that fo r each point tEM — A ' there is a neighborhood [It,
a uniquely determined smallest analytic subset A , of U ,, and a se-
quence o f integers n,,, ••• , n u , such that the above isomorphy holds.
Because A , is uniquely determined, A , r\ U , U , ,  = A t ,  U , r  U , ,  for
all pairs of points t, t' G M— A'. Therefore the collection of analytic
subsets A , defines an analytic subset A " o f M— A'. Because A'
is  o f codimension two, while A " is  o f  codimension one in each
of its points, a theorem o f R. Remmert and K. Stein [1 9 ] shows
that the closure A "  o f A " in M  is an analytic subset o f M .  If
we finally put A = A ' A "  , the statements o f the corollary are
certainly fulfilled.

The above corollary tells that the set of points in which the
dimension of the cohomology module jumps can be included in
some analytic subset. Actually we get

Theorem  2. 3  (cf. H . G rauert [10 ]) : Let _6 9—> M  be a  holo-
morphic f am ily  o f v ector bundles ov er the R iem annian sphere and
j  be  an integer. T h e n  the set of a l l  points t E M  f u lf illing  the
inequality

dime  Hs ( V t 12(B:)) > j

is  an analy tic subset of  M.

Proof : It is again sufficient to consider the case s= O. According
to the corollary o f Theorem 2. 2 there is an analytic subset A , of
at least codimension one such that dim, 1--P(V „ 1-2(B ,)) is constant
in each connected component o f M— A , .  Because A , is nowhere
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dense in M , the principle o f upper semi-continuity (K . Kodaira
and D. C. Spencer [1 4 ]) shows that th is dimension actually equals
the minimal dime  1-/° V „  S2(BO) on the closure of that connected
component o f M— A , .  But the closure of a connected component
of M— A, is  an analytic subset of M .  We denote the union of A,
and the closures o f those connected components of M—  A „ where
the minimal dime  H°(V  „ n(B1)) is greater or equal j, by M ,. M , is
an analytic subset o f M  which we equip w ith the induced struc-
ture. Now we consider the fam ily of vector bundles

gim i-cVlm i-m i

and continue b y  induction. T h e n  w e  g e t  a  descending chain
MI, M2, ••• o f analytic subsets o f M  whose intersection is again
an analytic subset which obviously equals the set of a ll points of
M  for which dim,. H°( V„ S2(B0 )) >  j  holds.

Now we consider holomorphic fam ilies 3--->cY of vector
bundles o f ran k  q  over the Riemann sphere having the property

th at a ll v ec to r b u n d les 131 — >V , are isom orphic to  er,„„->1)'.
K 1

Furthermore we assume that the parameter space M  is  a complex
manifold. Without loss o f generality (cf. proof of Theorem 2. 2)
we may assume n, > •• • > n q  > O . Let to be a point of M .  Then we
can find a basis .5,, •-• , sk o f  H°( Vi ,, nr(B1 0 )) fulfilling (5) for t= t o .
Theorem 18. 1 of [14] shows that there is a neighborhood U o f t o

and elements s;. , ••• , s  in  11°(cr U , f l(g IU )) whose restrictions
to to are the sections s„ ••• , sk . A fter a  suitable rearrangement
of ••• , s ,  the matrix

((b',,T(t)))m•-1,v-o, • , n1

is  holomorphically invertible in some neighborhood U ' of to because
it reduces itself to the identity matrix for t =t o . That means we
are able to find elem ents s„ ••• , s, ,  1 -P(c-VI U', f2(291U')) so
th at the corresponding set o f equations (5) is  fu lf illed . I f  there
w ere any elem ent s  in  H '̀(( Ç  U', 12(g31U')) w ith  b ' 1(t)-=- 0  for
p= 0, ••• , n „  but b(D(t, z)  I   0 ,  th en  the construction leading to
Theorem 2.2 would show that the highest order of the line bundles
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in  which B e  ( t *  a suitable point in U ')  splits, is actually bigger
than  n „  Therefore we can normalize the rest of the sections

, sk  in  such a  way that all equations (5 ) regarding the
first component are satisfied. Proceeding by induction, we find a
neighborhood U. of t„ and elements s„•••  Se,, in .1-1°(cY1 Uo , 1.2(g I U.))
so that the equations (5 ) are fulfilled with i„ = np,+ 1. Hence we
have

T h e o r e m  2. 4 : L et 3—>c12—>M be a  holomorphic fam ily  o f  vector
bundles over R iem annian sphere w hose param eter space is a  com-
plex  m anifold. A ssum e that any  tw o v ector bundles B t —>V, are
isom orphic. T hen the fam ily  is locally  trivial.

From the proof o f Theorem 2. 4 one concludes furthermore

C o ro lla ry  1 :  H y p o th esis  a s  is T heorem  2. 2. T hen  n o  bundle
B r - -> V „  G A 0 ,  is isomorphic to the "general bundle of  the family"

where t A 0 .
One more consequence of the construction leading to Theorem

2.2 is

L e m m a  2. 5 :  S u p p o se  3—> ci)—>M i s  a  holomorphic f am ily  o f
vector bundles over the  R iemannian sphere whose parameter space
is  a  com plex  m anifold. T hen there is a  1 codimensional analytic
subset A  o f  M  such that f o r each point to G M  there is a  neighbor-
hood U f ulf illing the property:

the bundle 31U—>CV1U adm its holomorphic sections s„••• sk
whose restrictions to  V , f o rm  a  basis f o r  11°(V,, f •( 1 3 t ) )  f o r
each t E  U— Ar\U.

P ro o f  : Going back to the proof o f Theorem 2. 2, we see that
the sections s„ ••• ,s k

, fu lfilling  (5) are meromorphic sections in
3 '  over U "x l= " ; tensoring by the section 0- in L_ 1 which is holo-
morphic and different from zero in iz I <  co carries those sections
into meromorphic sections :1„ ••• , :le  in 3  over U" x 13 '. According
to the construction there are holomorphic functions f,(t), ••• , M t)
in  U "  such that the coefficients in the power series o f  f i  -s„ ••• ,
fk ' Sk' around z = 0 and z= 0 0  are holomorphic in t. Then it is
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easy to  verify that the sections

J./11 .91 + 1 7  •  • f i i S i i f i i  I IS i i I 7  ••  •

fulfill the requirements o f Lemma 2. 5.
Lemma 2. 5. is a kind of counterpart to Theorem 18. 1 of K.

Kodaira and D. C. Spencer [1 4 ] for particular families of complex
manifolds.

it
Given a  fam ily  3—> cV-->M o f  holomorphic vector bundles

we define the direct image 7r,(12(3)) of the sheaf 1'2(3) as follows
(c f . [8 ])  : the base space of the direct image i s  the parameter
space M, the sheaf itself is defined by means of the presheaf which
associates to each open subset U of M the module 1-P(7-r - '( U ), S2(3));
it is easy to see (cf. [8]) that th is presheaf is canonical for q =O.
We get

it
T h e o r e m  2. 6 :  L e t  _B—>. ( V— .M be a holomorphic fam ily o f  vector
bundles over the Riemannian sphere whose parameter space is a
complex m anifold. Then the direct image z ( 9 ) )  is  an analy-
tically coherent sheaf.

This theorem has been proved by H. Grauert and R. Remmert
[8 ]  in a much more general case. But w e shall give here a much
simpler proof resting upon Lemma 2. 5. The property o f being
coheren t is a loca l property. Thus w e m ay consider a  family

it
g , Ux13 1 --. 0  w h ere  U  i s  a  polycylinder. F ir s t  w e  have to
show that n'o( f2 (3 )) is locally fin itely generated. For that purpose
we consider the sections s„ ••• , s k  o f  Lemma 2. 5 (assuming that
t„— 0). Let s  be another section in 3  which is holomorphic in
some neighborhood of Ox P ' .  Then we have obviously an equality

s = h i (u). fT 1 • •• • + hk (u). f sk

where h„ ••• are holomorphic functions defined in some neighbor-
hood o f O. In  the given fiber coordinates we have the power
series development

s,, =
A=0

where the vectors b .,(u ) are holomorphic in some fixed neighbor-
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hood r l  of 0. Hence the holomorphic function h „  • • •  h k  define a
holomorphic section if and only if

( 8 ) (u )+ ••• + - b ( u )J., Ix X = 0, 1, •••
f  k

a re  holomorphic functions b 0 ( u )  f o r  all in t e g e r s  X=0, 1, •••.
Rewriting the equations (8) in terms o f their components we get

( 8') f , • • •  f k b4> =  h , - f , • • •  f k br,, ) +  • - •  + h e f , • • •  f k _,b(„7,' ,

X = 0, 1, ••• , lh  =  1 ,  • • •

Let U  be a relatively compact, open subset of U which contains 0.
Then a theorem due to H. Cartan [4 ]  states that there are finitely
many, in  U  holomorphic vectors (g,„, ••• , g ) ,  = 1 ,  ••• , N , so that
the germs of each of the vectors

,  f i . . .  fk-1 1)(4;') X = 0, 1, ••• = 1, ••• ,

are linear combinations of the germs o f those vectors with holo-
morphic germ s as coefficients. T hat im p lies that w e have to
consider only the equations

( 9  ) fkho — higiv+ +hkgkv = 1, ••• , N

Therefore the sheaf o f germs o f holomorphic functions over U
fulfilling the equations (8) is isomorphic to the sheaf of germs of
holomorphic functions h i , ••• , h k  o v er C/ fulfilling (9). The first
sheaf is obviously isomorphic to the sheaf 71-0(f2 (g )) over U; the
latter is analytically coherent because it is the im age of an
analytically coherent sheaf (namely the intersection of finitely
many relation sheaves which are coherent (cf. 1_81)) and therefore
locally finitely generated. What remains to be proved is the fact
that each relation sheaf o f z o(f2 (.0 )) is locally finitely generated.
But this is an immediate consequence of the fact that 7r(12( 0))
i s  a  subsheaf o f th e sheaf o f germs of k  tuples of holomorphic
functions over

C o ro lla ry  : L e t  3—> ( be  a  k o lo m o r p h i c  f am ily  o f  vector
bundles ov er t h e  R iem annian sphere w hose param eter space is
e ith e r ( i )  h o l o m o r p h i c a l l y  com plete o r  (ii) a  norm al projective
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variety. T h e n  th e re  is  a 1-codimensional analy tic subset A  o f  M
such that
(i) fo r  t E M - A the restriction map H°( ( V, S2(..B)).-->H°(V„ n(B t ))

is  surjective
(ii) f o r  tE M - A  the restriction to V t m ap s  the vector space of

all meromorphic sections in ..q3 ov er 
Co

 which are holom orphic
over (V IM - A  onto 1-1°(V „ n(B t )).

Proof :  (  i)  Let A ' be the singular locus of M ; A ' is known to
be an at least 2--codimensional analytic subset of M (M is normal !).
According to Theorem 2.2 the set of all points of M - A ' in which

cV ceases to be locally trivial is 1-codimensional in each of
its points ;  therefore its closure A "  in  M  is  an analytic subset
according to a  theorem o f R. Remmert and K. Stein [ 1 9 ] .  I f  A
is the union of A ' and A "  it is easy to see that fo r  each point
t E M - A  th e  stalk o f  z o( n ( g ) )  is isomorphic to the module
Ot-IF(V t, n(B,)) where Ot i s  the ring of germs o f holomorphic
functions in  t. Theorem A  o f H . Cartan and J. P. Serre [5 ],
Exposé XVIII shows that the statement is true.

( i i )  In this case, A  is supposed to be the union of a hyper-
plane section and the set in (i). Again Theorem A  o f J . P. Serre
[5 ] ,  Exposé XVIII concludes the proof.

Finally it may be remarked that the corollary o f Theorem 2.2
is useful for the classification of holomorphic families o f vector
bundles over the Riemannian sphere provided the parameter space
M  is  holomorphically complete space. In  this case a family of
vector bundles can be given by a 1-codimensional analytic subset
A l.o f  M , a  locally trivial holomorphic family o f vector bundles
ovér M - A , and extension of the corresponding mapping of M - A
into the universal base space to a continuous mapping o f M  into
th0  universal base space ;  a theorem of H. Grauert [7] states that
the homotopy classes of those extensions are in a 1 1 correspond-
ence to those holomorphic families of vector bundles over M  which
extend the given one over M -  A .  That means after characterizing
the holomorphic family over M - A  one has only a  topological
problem to solve (extension o f a  given map and computing the
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homotopy classes of all possible extensions). Therefore it remains
to characterize the locally trivial holomorphic family over M— A.
Because the group of fiber preserving automorphisms of the bundle

> 17 1  i s  the multiplicative group C *  o f complex numbers, the
family will be given by a sequence o f integers n1 = ••• =na i <nq i +i

••• ---n,,,, q ,< •••  and certain elements of

111(M— A , 0 m _ A (GL(qi, C)))x ••• xi-1W —  A , 0 m _A (GL(qs, C)))

where q1 + ••• +q s =  q .  Especially in the case that M— A  itself is
holomorphically complete and n,< ; ‹ • •  •  < n q  (q i= q 2 =  ••• 

= 1 )  the
family over M— A  is given by n„ ••• , )4 and a certain element in

H 2(M— A , Z)x • • • x 1-12 (M— A , Z )  (q-times) ;

this is an immediate consequence of a well known isomorphism [23].

3 .  Orthogonal fiber spaces.

We shall deal with the question under which circumstances
the structure group o f  a  holomorphic family o f  vector bundles
over P '  can be reduced to the complex orthogonal group 0(q, C).
A necessary condition for the possibility o f reducing the structure
group is, that the given bundle B—  cV  is isomorphic to its dual
bundle g *  c V . In the case where M  consists of a single point
A. Grothendieck [12 ] showed that this condition is also sufficient
and that the reduction is uniquely determined (up to an iso-
morphism).

Using A . Grothendieck's method and his Lemma stating that

H '(X , 0 (0 (q , C )))  1 1 1(X, 0 x (GL(q, C)))

is injective for compact complex spaces we have as an immediate
consequence o f Theorem 2. 2

T h e n r e m  3 . 1 :  Let g —> M  be a holomorphic family  of  vector
bundles ov er the R iem annian sphere w hose param eter space is
normal su c h  th at 3—> cV and g '1 c V  a re  isomorphic. T h e n
there is an analy tic subset A  o f  M  (w hich is dif f erent f rom  M )
s u c h  th at  the restriction gIM — c V 1 M —  A ----> M— A  o f  the



On holomorphic f am ilies of  f iber bundles 459

original f am ily  to  M— A  is  a f am ily  of  holomorphic vector bundles
adm itting the complex orthogonal group 0 (q , C ) as structure group.

This result cannot be improved in  general in  so far as one
cannot get a  reduction of the structure group  over th e  whole
parameter space. To show that we consider the following example.

Example :  Let x .1-) 1b e  the family of vector bundles
which is defined by the transition function

f (z )

0 z1-1 )

where f ( z )  is  the polynomial co +  ••• +c l e .  Applying the method
used in  proving Theorem 2. 2 w e have to construct holomorphic
sections in the Whitney product 3 '  C 1 +1 x  P l  o f  .0 —>C1 +' x Pi
an d  0 " ' x C"' x 13 '. S u ch  sections are given by vectors
(a„ a 2 ) ,  (b,, b 2 ) holomorphic in  0 ± ' (  zI < 0 9 )  resp. (0< iz  j)
such that

a, — b ,+ z 'f(z )b „ a,—  z21 b, hold.

Therefore a  basis fo r the holomorphic sections in .13' — e " x P 1

is given by

(a„ a,)= (1, 0), (b „ b 2 ) = (1 , 0)

(a„ a,)= (z' + • • • + er e -  z 2 " ) ,  (b „  b 2 ) = (0, z - "), K = 0 ,  ••• , 1+i

(a „  a ,)= (e " - K(c ,zg- t - i +  •  + z21 "),
(b„b 2 ) = (— ziti - K(ci + — K = l+ i+ 1 ,••• ,2 l

provided co = ••• =c,,=0, c i :I- 0. That im plies that for a ll points
c  o f C i l  w ith  co = ••• =c,,=0 , c i :1-0 the bundle c a n  b e
described by the matrix

Hence the bundle i s  a c t u a l l y  i s o m o r p h i c  t o  L i G9 L i
,  P '.

N ow it is a  straight-forward calculation to show for instance for
1= 2  that the structure group of the corresponding bundle 'B—C 3

x/3 '  cannot be reduced to 0(2, C).
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4. Holomorphic families o f fiber bundles over the Riemannian
sphere.

We summarize a  co u p le  o f definitions concerning complex
Lie groups. A  complex Lie group G  is called reductive in the case
its Lie algebra g  is reductive, i.e. direct sum of its center and a
semi-simple algebra. Furthermore a  Cartan subgroup H  o f G  is
a  connected holomorphic subgroup o f G  whose L ie  algebra is a
Cartan subagebra o f g ;  because any two C artan subalgebras of
g  are conjugate the same holds for any two Cartan subgroups of
G .  I f  /V denotes th e  normalizer o f  H  the quotient group N IH
turns out to be discrete (resp. finite provided G  has only finitely
many connected components) ; N IH---W  is called th e  Weyl group
of G.

In  th e  sequel we need a  result which is essentially due to
A. Grothendieck [12] :

Lem m a 4 .1 : L e t .13--->cV--. M  b e  a  holomorphic f am ily  o f fiber
bundles whose structure g ro up  is  the complex L ie  group G and
w hose f iber is the Lie algebra o f  G on which G operates by means
of the adjoint represent atian. Suppose that each  f iber o f  ( Y—. M
is  compact. Suppose there  is  a  meromorphic section s  in  g3 over
cV  w hose restriction to som e f iber V t o  is holom orphic and which
m aps a point vo Eci> into a  regular element s(v o )  o f  the f iber of
g3 over v o . T h e n  th e re  is  a  1-codimensional analy tic subset A  o f
M  such that f o r each point v E ( VIM— A  the image s(v ) is regular.
A  does not contain 7r(v 0).

P ro o f :  The coefficients c,(s(v)) o f  th e  characteristic polynomial
o f ad(s(v )) are  meromorphic functions on CV which are not iden-
tically 00 because the restriction of s  to 171 0 is holomorphic. In
addition the functions c,(s(v)) are holomorphic in  a  fu ll neighbor-
hood of Vt o  and therefore constant on each fiber V. C V—>M admits
local holomorphic cross sections according to th e  definition of a
family o f complex m anifolds. Hence each function ci (s(v)) may
be regarded a s  a  meromorphic function in  M .  Because s(v o )  is
regular th e  highest coefficient cr (s(v )) cannot vanish identically ;
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thus s(v ) is  regu la r  fo r a l l  points of WI M— A  where A  i s  the
set of zeros and poles o f cr (s(v)) as function on M.

71"

Corollary 1 (Grothendieck [1 2 ] ) :  Let g—> ( b e  a holomorphic
family  of fiber bundles whose structure g ro u p  is  G . I f  the associated

7r
holomorphic f am ily  g g --->c Y M  o f  f iber bundles w hose f iber is
the  L ie  algebra .G o f  G  adm its a  meromorphic section s  in  g g

over cV  f u lf illing  the hypotheses o f  Lemma 4. 1, then there is a
1-codim ensional analy tic subset A  o f  M  su c h  th at the structure
group G of the restriction Sf1M —  (-V IM —  A  can be reduced to
the no rm aliz er N  of a  C a rtan  subgroup H  o f  G .  A  does not
contain rt(v o ).

Proof : A. Grothendieck [12].
Now we restrict ourselves to the case of holomorphic families

M  of fiber bundles over the Riemannian sphere. Corollary
o f Theorem 2. 2 states the existence of a 1 codimensional analytic
subset A  o f M  such that the restriction _B,3 1M— A  (V I  M— A
M — A  is locally trivial. It has been proved in [12 ] that for each
point t E M— A the vector bundle (3 g ), V , a d m its  a holomorphic
section s such that all elements s(v), y  E V, are regular elements of
the corresponding fiber provided the structure group G is reductive.
Because of the local tr iv ia lity  o f ,139 ,1M— A —> A—>M— A
one can extend s  to  a holomorphic section over a  neighborhood
of t. Obviously the extension has also the property that it maps
a ll points of a certain neighborhood o f  V , into regular points of
the fiber. C o ro llary  1  o f Lemma 4. 1 shows now that the structure
group G can be reduced to the normalizer N  of the Cartan sub-
group H provided we restrict the initial family to some neighbor-
hood U  o f  t. I f  U  is properly chosen, then W I U  is sim ply
connected (because c()--)- M  is  lo ca lly  trivial and M — A  may be
assum ed  to  b e  a  complex manifold). Therefore Corollary 2 to
Lemma 4. 1 in [1 2 ] concludes the proof of

Corollary 2 : Suppose g"—.c-(2--). M  i s  a  holom orphic f am ily  of
f iber bundles over the Riem annian sphere whose param eter space
is norm al ;  assume f u rtherm ore  that the structure group  G  is
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reductiv e. T hen there is a  1 codimensional analy tic subset A  o f
M such that the fam ily  91M —  A  cV M —  M —  A  adm its locally
a  reduction of the structure group G  to  th e  Cartan subgroup H
of G.

I t  is  e a sy  to  se e  th a t the re s t of A. Grothendieck's [12]
statements as to reduction of the structure group holds in  our
case locally in the sense described in the above Corollary 2.

N ext w e w ant to  study global reductions of the structure
group. For that purpose we must restrict ourselves to parameter
spaces M  which are either holomorphically complete spaces or
normal projective spaces. In  th is case the corollary of Theorem
2. 6 shows the existence of a point t E M  and a meromorphic
section s  in _B9 . over CV whose restriction to  Vt coincides with a
given holomorphic section in (.0 9 ), Vt . It has been  show n in
[12] that there is always a holomorphic section in (g 9 ), which
maps every point into a regular point of the corresponding fiber.
Hence we are in the position to apply Lemma 4. 1 which tells
that there is an analytic subset A  of M such that the fiber bundle
gl M—  A  c(21M—  A  admits a reduction of the structure group G
to the normalizer N  o f H .  Hence we get

Theorem 4 . 2 :  Let g--* c-V—.M be a  holomorphic fam ily  of  f iber
bundles ov er the Riem annian sphere whose structure group G  is
reductive and whose param eter space M  is either holom orphically
complete or a normal projective space. Then there is a 1-codimen-
s io n al analy tic  su bse t A  o f  M  s u c h  t h a t  th e  f iber bundle
¶F M—A-- —  A  admits a reduction of the structure group to
the norm alizer N  of the Cartan subgroup H.

The group N  operates on G  b y  in n er automorphisms ; the
subgroup H  i s  stable under that action. Therefore N  operates
on both 11 1 (X , O (H ))  and H '(X , 0 ,(G )). The action of N  on
H '(X , 0 (G ))  is obviously trivial. Hence W= A TIII operates on
111 (X , O (H )) and one has a natural mapping

cy
(10) H'(X , 0 x (H))1W H'(X , 0 x (G)) .

Suppose now that the hypothesis of Theorem 4. 2 is fulfilled and
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that in addition M - A  is simply connected. (VI M - A - . M - A  is
a fiber bundle whose base space and whose fiber are both simply
connected. Therefore WI M -  A  is simply connected and the fiber-
ing  w ith  fib er W  w h ich  is assoc iated  to  the reduction of the
structure group to N  is  trivial. That proves that the element in
H M I-  A, Om _A (G)) defining gl M -  (-V IM - A  i s  in the image
of ce. A. Grothendieck [1 2 ] proved that for each fiber in c- V --.M
the reduction to H  is uniquely determined up to an action of W.
This together with the finiteness o f W  shows that ce is injective.
Therefore we have

Corollary 1: U n d e r  th e  hypothesis o f  Theorem 4 . 2  and the
assumption that M -  A is s im ply  connected , th e  fiber bundle

A -> cV IM - A admits a reduction of the structure group to
the Cartan subgroup H: th e  reduction is uniquely determined up
to an action of W.

Corollary 1 shows t h a t  i t  i s  o f  som e interest to calculate
H'(X , 0 x (H ) ) .  Following [12] we denote the Lie algebra o f H  by
A .  G reductive implies that H  is abelian, and w e have an exact
sequence 0->z ,(H )-)..91--->H ->0 w here the m apping St- > H  is
g iven  by SD  h - >  exp (2 z ih) ex and 7r1(H )  i s  the fundamental
group of H  based in  the neutral elem ent. From  this w e derive
the exact sequence

(1 1 )  H '(X , O (S ))  -> H '(X , Ø (H ))  -> HAX , 7r1(H ) )  H 2 (X ,  x ( 11)).

1( M A )  is  the direct sum o f finitely many copies of O ;
 hence it

is enough to calculate II' (X, Os).
Let X  be the total space of a holomorphic fiber bundle whose

base space Y  is holomorphically complete and w hose fiber is P'.
Consider the category C o f abelian sheaves over X , the category
C ' o f abelian sheaves over Y, and the category C "  o f  abelian
groups. Then we have the covariant left exact functors 71- 0 : C->C'
and 1-1°(Y, ): C '-->C ". It is well known that each sheaf is subsheaf
o f some injective sheaf and th a t  7r ( ) m ap s  injective sheaves into
injective sheaves (cf. A. Grothendieck [11 ], Lemma 3. 7. 1) ; there-
fore we get 1 -P(Y, 71- „(E))=0, q 1, for each injective sheaf EEC.
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Consequently there is a spectral sequence whose initial term is

'(g )  = HP (Y , 7r,(

and which terminates at H*(X , g) equipped with a  suitable filtra-
tion (A. Grothendieck [11 ] , Theorem 2. 4. 1). Applying everything
for _g= Ox =1-2(1), Theorem 2. 6  shows that 71-

0(0 x )  is analytically
coherent. We claim that n-

a (0 x )= 0  for q >1. In  th e  ca se  q >  2
we show that there are arbitrarily small open subsets U of Y such
that H q (z - 1 ( U ) ,  x ) = 0 .  For an y  open subset U ' of Y  there are
open subsets U  which are holomorphically complete and have the
property that X —.IT is trivial over U, i.e. that 7T- 1 (U ) is isomorphic
to U  x P '.  But Ux (121 < co), U x (0 <  z1) forms an open covering
CO of U x P 1 whose elements are holomorphically complete. There-
fore a  theorem of J .  Leray [1 4 ]  together with Theorem B  o f H.
Cartan and J. P. Serre [ 4 ]  implies Hq(7r - '( U), O x ) H a ( c l l ,  x )  for
q > 1  ;  but f l a ( V ,  x )  vanishes for q >2, because c/J consists of
only two elem ents. An element o f HV U, O )  i s  a  holomorphic
function f  (u, z ) in  U x  (0  < lz  <  co ) ; Cauchy's integral formula

c4-1  Cf (u, z) f  ,u ,

" f  ( u ' 6 4 -— ziz 1-2 —z 2 7 r i

shows th a t th e  cocycle f ( u ,  z )  i s  cohomologous to  zero which
means that HI (CU, 0 x ) = O. T hus w e get finally  E ( 0 ) = O  for

q) =I- (0, 0). A trivial spetral sequence argument leads to

L em m a 4. 3 : L e t  X—. Y  be a  holom orphic fiber bundle whose
base space is holomor phically complete and whose fiber is P'.
Then Hq (X, 0 , ) = 0  for q >1.

Applying Lemma 4. 3 to (11) we find

T heorem  4. 4 : L e t  G  be a reductive complex Lie group and H a
Cartan subgroup o f  G .  Suppose X  is  the total space of a  bolo-
morphic fiber bundle whose base space is holomorphically  complete
and whose fiber is P. Then there is a  natural isomorphism

H '(X , O (H )) 112(X , r i(H)) .

It m ay be rem arked  that it is no t d ifficu lt to  ca lcu late



On holomorphic f am ilies of f iber bundles 465

I-1 2 (X , 7t1(H ) )  in  concrete cases either by means of the spectral
sequence o f the fiber bundle with total space X  or by means of
the homotopy sequence o f th e  fiber bundle and the universal
coefficient theorem.

5 . H o lom orph ic  fam ilies o f  vector bundles over holomorphic
fam ilies of compact Riemann surfaces.

Let X .P.Y be a compact Riemann surface realized as covering
space of a compact Riemann surface  Y ;  the covering is supposed
to have q  sheets. Let z „ ••• , z k be the projections of the ramifi-
cation points of X—,  Y , z„ a point in Y— lz „ ••• , z k l, and {x„ ••• ,
xa } =p - 1 (z 0 ). Any closed curve a in Y— lz„ ••• , z k l  which is based
in z ,  can be lifted into x„ ; denote the end point a',„( I )  of the lifted
curve by x 0 . K—>a(K) is a permutation of {1, • , q} which depends
only on the homotopy class of a; that establishes an anti-homo-
morphism o f th e  fundamental group 7r,( Y— {z„ ••• , ,  z o )  into
the symmetric group S .  For each permutation , y o f S a  we define
the matrix 11,(7)=((a i ., ) )  by 1(;) which gives rise to an
anti-isomorphism of S ,  into G L (q , C ) . Altogether we get a homo-
morphism p, : ( Y—  {z„ ••• ,  z„) G L ( q , C ) . Such a  homo-
morphism defines (cf. P i  [2 3 ]) a holomorphic vector bundle over
Y— {z„ ••• , z } whose holomorphic (meromorphic) sections over the
open set {z„ ••• , oz,} correspond in a one to one way to
the set of holomorphic (meromorphic) functions in p - i( u ) .  This
vector bundle is given as follows :  choose an open covering Ui ,
i E I , o f Y— • • •  ,  z ij  by discs, choose in each U , a point y i and
assign  to  it a  curve a ,  in  Y— {z„ ••• , z k } w i t h  a i (0 )=z 0 and
a i (1 )=y 1 ; for z  E U, r\ U1 choose curves /3, resp. i3;  joining y i resp.
yi  and z  in  U; resp. U1 and define the transition functions by

h, 1 (z) .

Next we extend that holomorphic vector bundle over Y— lz„

, z k l  to a holomorphic vector bundle WK, y over Y  by means of
the following construction. Choose an open disc D0  around z„
such that any two o f those discs are disjoint, pick a point d „ in
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1 ; }  a n d  a  curve y g  i n  Y— {z„ ••• , z k } w ith  7 „(0 )= z , and
7 (1 )= d , ; given a local coordinate tK  in  DK which vanishes in  z„,
there is a uniquely determined generator 8K o f z i (D,,—  { z ,j, elj such
that the analytic continuation 8„ log t„ of log tg  along 8,, is  log t„-1-
27z-i.' ) T h e  matrix [6(7g 8g ry,, 1)  can be written a s  PS),,13 ,-, 1 where P K

i s  a  m atrix having in  each row exactly one non zero element
which equals 1, while Q„ splits into blocks I3,,„ ••• , 13,‘ „,,, each of
which has the form

/ 0 10 \ \
(( 1 )) resp.

\ \ 1  0 • O n  .

Suppose B ,,, has q „ rows (q,,, + • • •  +q ,,, , ,=q ) . Let 9-„ , be a certain
branch of tgva.À in  d„ and 8„,=exp 27-ri  1  . Then the matrix

q K À

/ 1 , 7- „ A.

6
, ‘  x'rx

q
T

 K2  X • • •  T K X \ \

             

\ \  ,  6 „ q • , À q , 7

has the properties

    

— (det A4, ) 2c o n s t  •  t,q'À .

Therefore the matrix r, 0x ) )
• M i c =  PK (

\ 0 M K „,,,

is not singular for 4= 0 and fulfills

8
, ,m. =

In order to extend the above constructed vector bundle we have to
define transition functions h i ,(z )  for z  E  r \  .  For this purpose
we choose a  curve SK  in  D,,— {z„} joining d„ and z  and set

h i .(z ) = tiOilei& 7 •(&K•Mr.) •

This definition is independent of the choice of &,, and fulfills the

1 ) For the purpose we fix some branch o f log t ,  in
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compatibility relations hence it gives rise to a holomorphic vector
bundle Wx, y -* Y.

Lemma 5 . 1  :  S uppose U  i s  a n  open subset o f  Y. T h e n  the
m odule of  holom orphic sections in W x, y  over U (over the ring of
holomorphic functions in  U )  is naturally  isom orphic to the module
of holomorphic functions on  p - 1 (U ) .  The module of meromorphic
sections in HT y  ov er U  (ov er the rin g  of meromorphic functions
i n  U )  is  naturally  isom orph ic  to  the m odule of  m erom orphic
functions on p - '( U).

Proof : Cf. [23]
We will use the stated property o f Wx,y - - >Y in the following

construction. Let Gr (X )  be the set of equivalence classes of holo-
morphic vector bundles of rank r over the compact Riemann surface
X ; G(X ) G  r (X )  is  eqipped with an additive (Whitney sum)

and a multiplicative (Whitney product) structure. Let X—)11- be a
realization of X  which has q  sheets. Then we construct (cf. [2])
a natural mapping

p*: G(X)— G(Y)

as follows. It is well known ([7 ], [23 ]) that for each open subset
Y  the restriction of W EG r (X )  to P - 1 (U )  is  holomorphically

trivial. That means W  is determined by certain transition func-
tions g 1 3 (x) : p - '( Ui )n GL(r, C) resp. gi ,(x):

C). By means o f these transition functions we define for
z G Ui n U;

/ / gi ; (a i g i x,) 0 \\
(12) Go (z) =

 .....
g13(a1O 1X 2) •a r  0  h i i (Z ) ) 1 )

\ 0

and for z E U, D„

4,(cro e1xi ) 0

(12') Gi g (z) g1„(Ce1i
9 1X 2) • ( i r  Ø  h i (z)).

, ••• m1 )  B y A A bB  we denote the matrix B y 1 ,  we denote the unit(( ilb „,„,) ) '
i

Ab
l

„„i •  •  
A b 

matrix with r  rows.

o



468 Helmut Rtihrl

The matrices (12) and (12') are holomorphic functions with values
in  GL (qr, C); it is easy to see that they fulfill the compatibility
relations and thus define a  holomorphic vector bundle p (W ) over
Y. Denoting the lifting map  G(Y ) — G(X ) by p* and the canonical
line bundle over X  by If„, one verifies immediately (cf. [2 ]) the
formulas

p * (1) = W . y ,  P*(Gr(X)) E11G,r(Y ), (PI°P2)* = P1e.P2*,

(1 3 ) P * (W  Tr) = P*( w) P*( w"), P*( W® p*( Tr)) = p*( w) ØW'
P*( w *  Kx) = (P*(W )) * K y

Theorem 5. 2: Suppose U  i s  a n  open subset of  Y . T h e n  th e
m odule of  holom orphic sections in  p (W ) o v e r U  (o v e r the ring
o f  holomorphic f unctions i n  U )  is naturally  isom orphic  to  the
m odule of  holom orphic sections in W  over p - '( U ) .  The module
of  m erom orphic sections in p(W ) ov er U (ov er the ring of  m ero-
morphic functions in  U ) is naturally  isom orphic to the m odule of
meromorphic sections in W  over p - 1 (U).

Proof : A holomorphic section in p(W) over U is given by holo-
morphic vectors G 1(z ) resp. GK(z) such that G i (z)= G i (z)G i (z ) resp.
G i (z ) G i „(z)G ,<(z) in  Ui n U1 r U  resp. Ui r\a n U  holds. Denoting
the vector consisting of the components r(n — 1)+1, ••• rn of G 1(z)
by G7(z) we define

g i (cri S i x,) 

Then we get from (12)

g i (a p e i x v ) g i i(a p e iX v )g i( c r i f (0 )

= g i j (cei 3 i x , )  =

That means that the collection of vectors gi (ced ei x,) forms a  holo-
morphic section in W over p - '( U—Un {z„ ••• , zk }). Now we have
to check the behavior of this section over the ramification points.
The equation Gi (z )=G(z)G„(z) can be written in the form

g1 (û 1/31x),13,x)
G (z )  =[((  

0
) ) (1 -r0 b 6 (a iO K L -6 -1 ))1 .1 -(1 ,0 & N .)-G .(z )1
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Defining g„(7 x „ )  b y  t h e  components r (n —  1 )+1 , •  , rn  of
(1, Ø 8,,M)G,,(z) we see that again

g i (ce13 1x„) g i „(cei Oi x,,) xK— aisi 8 . - 1 7,< 1 (0 )

g 1,(a 1t31x ,)g , c (cY13 i x ,)

holds. The fact that the matrix &„M.,, may be interpreted as a
holomorphic matrix in p - '(D„) shows that every component of
is a  holomorphic function in p - '(D „ ) . In addition we have

r &,,A1 .)G,Xz) = (1. p ( 7 , , 8 K7 1))(1r &KIC G , (Z )

which shows that the vector g(7„9„x 7 ,A 7 K  1 ( 0  is  the analytic con-
tinuation o f  g c ( 7 .& .x , ) .  H e n c e  w e  h a v e  a  natural mapping of
1-1°(U, n(p * (W ))) into H°(p - '( U ), n (W )). This mapping is obviously
injective. The fact that it is surjective follows immediately from
Lemma 5. 1. The second part of Theorem 5. 2 can be proved in
a  similar way.

C o ro lla ry  :  f2 (p * ( W ))= p 0(12( W)) .

P ro o f  :  According to an  earlier rem ark H "(U , p„(0,(W ))) is iso-
m orphic to H°(p - '( U ) ,1 2 (W )) which i n  turn is isomorphic to
TP(U, n(P*(W))).

This corollary shows that p ( W )  depends only on W and the
realization X—.Y, and not on the special construction we used.

It may be remarked that Theorem 5. 2 together with the last
of the formulas (13) and the theorem of A. Grothendieck [12] and
G. D. Birkhoff on the splitting of holomorphic vector bundles
over the Riemannian sphere furnishes an elementary proof of the
Theorem of Riemann-Roch for holomorphic vector bundles over
compact Riemann surfaces. This idea w ill be carried  over to
higher dimensional spaces in  a  subsequent paper.

T h e o r e m  5. 3 (Cf. [2 4 ] ) :  Let M  be a holomorphic family
o f vector bundles over a  holonzorphic f am ily  of compact Riemann
surfaces. Then the set of Points It : dim H "(V  il(B 1))> i s  an
analytic subset o f M  fo r  any  natural num ber j.

In order to prove Theorem 5. 3 we need
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L em m a 5. 4 : L e t  ( 12—>IU b e  a holomorphic f am ily  of compact
Riemann surfaces of genus g > 1  whose parameter space is normal.
Then the subset of CV  consisting of a l l  Weierstrass points of fibers
of cV—.M is  an analytic subset of CV.

P roof : Let A , be the singular locus of M .  p - '(A ,) as well as A,
is a 2-codimensional analytic subset [16], [9]. First we are dealing
with cVIM — A t --. M — A, and prove that the set of all Weierstrass
points is a. 1-codimensional analytic subset o f  WI M— A , .  It is
sufficient to show that this is true locally. Hence we have to
consider a holomorphic fa m ily  c V  U  of compact Riemann sur-
faces whose parameter space is a polycylinder. Let 2 ' be
the bundle of contravariant holomorphic vectors tangent to  the
fibers. T h e n  w e  have the equality dim e  M K , 1 - 2(B g  and
therefore Theorem 18. 1 of K. Kodaira and D. C. Spencer [14]
gives the existence of holomorphic differential forms o f degree 1
(0,(v), ••• , cog (v ) along the fibers whose restrictions to  the fiber Vu

form  a  basis o f  H°(V„,1 -2,(B,/,)) fo r  any point u  o f  a  suitable
neighborhood U, of 0 E U .  Let y o be a point of V, and h  a  fiber
preserving biholomorphic mapping o f some neighborhood U of y o

into p (G )x  C . Then there are holomorphic functions f,(u, z), •-• ,
f g (u, z) in h(0) such that

co,(v) h*( fi (u, z)dz), • • • , w g (v) h*( f g (u, z)dz) .

( ( dfV.,,d (zuo ,The determinant of is obviously holomorphic
// =1, g

in h (0 ) and the set of its zeros is exactly the set of all Weier-
strass points on fibers passing through h (0 ) .  This shows immedi-
ately that the set of all Weierstrass points of eV ' forms an
analytic subset of CV' which is 1-codimensional in  each o f  its
points. This proves that the set A ' o f all Weierstrass points of

M— A , is  a 1-codimensional analytic subset o f  WI M—
According to a  theorem o f R. Remmert and K. Stein [19], the
closure A of A' in c- V is also an analytic subset o f CV. It remains
to be proved that A  is  the set of all Weierstrass points of Cy.
Let t  be a poin t of the singular locus A , .  Because A , is  of
positive codimension, there is a 1-dimensional analytic subset of
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some neighborhood o f t  passing through t  and hitting A , in  this
neighborhood only in t ;  without loss of generality we may assume
that this 1-dimensional subset B  is  a manifold in the induced
structure. Applying the above result to the restriction WI B  B
we find that each Weierstrass point of the fiber V, belongs to the
closure A  o f A '.  In order to prove that a non-Weierstrass point
does not belong to A we proceed in the same way using the fact
that the set of all Weierstrass points in (14M— Ai has only finitely
may irreducible components. After this preparation we come to the

P roo f o f  Theorem 5. 3: Because o f  Theorem 1 . 1  it is again
sufficient to assume that M  is normal and to prove our theorem
only locally. L et Vt b e  the fiber belonging to the point t o EM
and y , a point in Vt o which is not a Weierstrass point. Suppose
h  is a fiber preserving biholomorphic mapping o f some neighbor-
hood U o f y , into p(u) x C ; le t  h(v o )  be (to , z o ). Then there is a
neighborhood U ' o f to such that none of the points h - 1 (t, z o )  is a
Weierstrass point of the corresponding fiber :  according to Lemma
5. 4 the set of a ll Weierstrass points is closed. Th e set A  o f
points h - '(t, z o ) , te  U', is  a 1-codimensional analytic subset o f U'.
The sheaf o f  germs o f  holomorphic functions in  WI U ' which
vanish on A is obviously the sheaf o f germs of holomorphic sec-
tions in a holomorphic line bundle C U '.  According to the
construction we get for the line bundle C= C - g- i  the relation

dim c  H°( V t  , (2,(C,)) 2 , t e U' .

Denoting the singular locus again by A „ Theorem 18. 1 of K .
Kodaira and D. C. Spencer [1 4 ]  shows that fo r each point t ,  in
U'— U'r- NA , there is a neighborhood Ut ,  and a meromorphic func-
tion f (v )  in C 2  ( I t ,  whose restriction to each fiber Vt ,  t eU t ,, is a
meromorphic function of (exact) degree g+ 1. This means that
the mapping

( Ut i D v (P(v), f(v)) e  Ur i X P'

realizes cV ti e ,  a s  a  covering space o f  tit , x P ' .  The covering

U,,,,  -
-
P t  ,

cV lut, ›- t, x 1 ) 1  has exactly g+ 1 sheets and is unbounded (but
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Pt,fore the set of points in CV U 1 in  which cY1 U t ,— J I t i x P l is
ramified is a 1-codimensional analytic subset o f cV1Ut i . Its pro-
jection A  into Ut , x P 1 is a lso  a 1-codimensional analytic subset of
U ,,xP ', according to a  theorem o f  R. Remmert [18]. From the
geometrical properties of the covering c(21 —>Ut i x P i  it is easy
to  see that P 1 (A )  does separate nowhere in  ( VI U t , ; hence the
covering in discussion i s  an analytic covering [ 9 ] .  A  being an
analytic subset of Ut i x  P ' implies the existence of a neighborhood
U 1 o f  t ,  and of pairwise disjoint discs Di , ••• D k  such that

(i) 24- r\(U 't1 x/3 1 )

(ii) fo r each connected component V, .  o f  ci)1 U;, over U;, x
k ,  th e re  is  a  biholomorphic mapping ho , o f  that

component into (Pt , x C.
h„

Using the functions U'cix C  instead of T,,, we construct
as a t the beginning o f th is section a holomorphic vector bundle
Wt , over U;, x having the property (cf. Lemma 5. 1) that the
set of holomorphic sections (meromorphic sections) in Wr , over an
open subset U, of Uit , x P ' corresponds in a one to one way to the
set o f holomorphic functions (meromorphic functions) in P - ,1 (U0).
Going back to the fam ily 31 U ' c V I U ' U ' we found for each
point t, E U' r NA , a  neighborhood U'f ,  and the bundle W,,
U'r1 x P .  Using this bundle and the covering mapping P t ,  we can
construct the holomorphic vector bundle P t ,*(31U;,)--. U;, x P i  in
an analogous fashion as we did before (for a single fiber). This
vector bundle has the property

(14) d im c 1 - 2 ( B , ) )  =  dime  H °(tx Pl, 1-2(P, 1*( t E U , .

Applying Theorem 2.2 to the vector bundle P t , * ( - B l U i t , ) — U ; ,  x PI

we find that there is a minimal 1-codimensional analytic subset
11,, in  P t , such that the bundle P,,,,,(3 1 U 't ,)  is locally trivial over

ramified). In  order to  study the set of points in Ut , x /3 1  over
which CV U1  is ram ified  w e have to consider the meromorphic
function F(t, z )=f (h - 1 ( t, z ))  in  U nP - '( U 1). The support of the

aF(udivisor of z) i
a ;

s exactly the set of ramification points. There-



On holom orphic fam ilies of  f iber bundles 473

U 1 —A 1 . I f  w e are able to show that for any choice o f t „ t ,  in
U '—  U ' A , the relation A t i n  U  n  U „  A  „ U t i r\ U t , holds, then we
have an analytic subset B t , = V  {A, : t E U'— (1' r\ A i l  in U'—
which is of codimension 1 in each of its  points and h as the pro-
p erty  th at the vector bundles P, 1* (291 Pe i )  are locally trivial over
the complement o f 13,0 . Hence we have a sim ilar situation as in
the proof of Theorem 2. 3; proceeding as in the proof of Theorem
2. 3 and using  the equality (14) we see that Theorem 5. 3 holds
locally  and th u s g lo b a lly . W h at rem a in s  to  b e  sh o w n  is  the
equation .11,1 n  t U t2  = A ,2U , 2 .  For this purpose we have
to study the projection mappings /3 ,1 . F r o m  the definition it is
immediate that the functions defining P, 1 and P„ differ in U U 2

only by a linear transformation (for each fiber) resp . by a  holo-
morphic mapping of that intersection into the 1-dimensional affine
group (over the complex numbers). But such a  mapping of the
base sp a c e  (U't i r\ U't ,) x  P l  o f  th e  fiberings P, 1 ( U 1) resp.
P,2 * (_01 U't , )  does obviously not disturb the local triviality ; hence
the uniqueness o f A ,, (cf. Theorem 2. 2) shows th a t the required
equation is true.

6 .  Applications.

L e t X  b e  a compact Riemann surface of g e n u s  g > 1 . A
Weierstrass point x  in X  is  a point such that the vector space of
those meromorphic functions f  on X  whose divisor ( f )  fulfills
( f ) + k • x > 0  fo r some integer 1 < k < g  h a s  a dimension bigger
than 1 . C orrespondingly w e say that an n-tuple (x„ • •• , x n)  of
points of X  i s  a  W eierstrass n-tup le  i f  th ere  are non-negative
integers k „ • • •  k . w ith k 1 + •••  +k „<g  such that the vector space
of those meromorphic functions f on X  whose divisor fulfills

(15) (f )+k ,- x ,+ ••• + k n • x„ ›

has a dimension bigger than 1. W e consider the set of all Weier-
strass n-tuples as a subset of X ", and prove

T heorem  6 . 1 :  L e t X  be  a com pact R iem ann surface (of  genus
>1 ) . T h en  th e  s e t  o f  a l l  W eierstrass n -tuples i s  a n  analytic
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subset of X" and therefore a complete projective variety.
P roof : We consider the trivial family X" x X n .  Let y= (x,,
••• , x„, x„))  be a point in X" x  X  and choose simply connected (and
connected) neighborhoods Di of x i , i = 0, ••• , n , such that Di n 1,1 —(1)
provided x i  4- x f  a n d  Di = 131 in  ca se  x i = x i . Denoting a local
coordinate in Di  which is centered in x i b y  t i (x) we define

fy (y1, , Y., =  1-1  (to(Y)— t i ( Y i ) ) k i e i  ,( y , ,  •  • •  ,  y) E D lx DoJ=1

where ei equals 1 in case x ,= x, and is zero otherwise. Considering
two points y and y', we define Er v ••• y) - 1;,(y, • • •  ,  y ) f ; 1 (Y i,
••• , y) in the intersection (D, X • • • X D,) n (IX x  •  •  •  x  D ) .  Fulfilling
th e  compatibility relations, the functions g „„, m a y  serve as
transition functions for a holomorphic line bundle ..B k 1 ,..., k n —> X m X X.
Therefore we have a holomorphic family o f line bundles
—>X"x X — ).X ". The restriction of th is fam ily to  the fiber over
(x 1 , ••• , x n )  has the property that its vector space of global holo-
morphic sections is naturally isomorphic to the vector space of
meromorphic functions fulfilling (1 5 ) . Therefore (x 1 , ••• , x„) i s  a
Weierstrass n-tup le if and only if for some k„ ••• , k„

dime H °( .xn) n(Bkr - kn<xi,. x . ) )) >  2

holds. Because there are  only finitely m any possibilities for
k „ ••• , k „, Theorem 5. 3 proves the statement of Theorem 6. 1.

Let X be a compact Riemann surface of genus g > 1 .  For each
point x EX  th ere  are g  natural numbers 1 =/,(x )</,(x ) ••• < / g (x)
(gap numbers) such that the vector space of meromorphic functions
f  on X  w ith (f)+ (/ ) ,(x ) - 1 ) • x > 0  has the same dimension as the
vector space of meromorphic functions f  on X  fulfilling (f )+4(x )•
x > 0 .  A point for which lg ( x ) +  g  i s  a Weierstrass point ;  the
sequence (/,(x), ••• , /g (x)) is called its type.

PSuppose c-V i—oM s  a holomorphic family of Riemann surfaces
(of genus g > 1 ) .  Then we want to determine the structure of
the set of all Weierstrass point (of fibers in CV — M) o f given type
(1„ ••• , l g ). For that purpose we consider the fam ily cVx cV-* cV
given by the projection mapping onto the second factor. For each
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point ( y „  v,) in cVx  C V  we construct neighborhoods U, of y, and
U, of y, such that

( i) U 1 r'  U,= (to provided y, -I- y,, U,=U , provided y, = y2
( i i )  there is a  fiber preserving biholomorphic mapping hi  o f U ,

into p(ui )xc, i =  I, 2.

For each point (y„ 1)2) E CVX CV and each integer 1>0 we define
a holomorphic function

fv 1,v2)(Yi Y2) = (P1(h1(Y1)) — P1(h2(Y2))) / "" 1 '"2 )( y , ,  y2) E Ul X U2

where p l denotes the projection P(U i ) x and &(v„ v 2) = 1  in
case v i =v, and is zero otherwise. The functions

g v i , 2 ) . ( , , , , • ,2 ' ) ( y i ,  y 2 ) f o q . , 2 , ( y i ,  y 2 )  f  ( ” 1 , , , , , ) (Y i ,  y 2 )

define a holomorphic line bundle . '14/ c V x  c V  and therefore a
holomorphic family o f  line bundles ..1) / ( V x  C V .  N o w  w e
consider th e  s u b s e t  V  o f c V x  CV consisting of the points
(p - 1 (p (y )), y). V  is the counterimage of the diagonal under the
mapping p x p : cVx cV — .M x M  and therefore an analytic subset
of c- Vx CV. Equipped with the induced structure, V is a complex
space. It is easy to see that V—> EV (projection onto the second
fa c to r ) is  a holom orphic fam ily  o f  complex spaces (with
singularities). Denoting the restriction of A — . cV x CV to  V  by

,  V  we have a holomorphic family of holomorphic line bundles
/ c V .  The restriction of this family to the fiber in c V

which belongs to u E cV  is  a  line bundle .131 ,„—>Vp ( o x v  whose
vector space of global holomorphic sections is naturally isomorphic
t o  th e  s e t  o f all meromorphic functions f  on  V p 0 ,)  fulfilling
( f ) + / • v > 0 .  That gives us the opportunity o f applying Theorem
5. 3. Consequently the set of all Weierstrass points in CV  whose
type has first component 1 , is given by the set of a ll points y
fulfilling

dim H°(V p ( , ) X V , f2(B i k ,,)) dim H°(17f i c o x v ,f2(B 14 _,,,,)) = 1,+1— k

and hence according to Theorem 5.3 equal (A,— B„)n(24 1, — B)
where A m ,  A ,  B k ,  13; are analytic subsets of (12 with 13,,C A ,,

Therefore an easy set theoretic argument proves
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Theorem 6. 2: L et cV — >M  be a holomorphic f am ily  of compact
R iem ann surfaces (of  genus>1). Then the set o f  all W eierstrass
points in ci2 of  given type is of  the form  A — B  w here A  and  B
are analytic subsets of  cV  and B A.

Corollary (cf. H. E. Rauch [17]) : L et cV — .M  be a holomorphic
f am ily  of  com pact R iem ann surfaces (of  genus>1) whose para-
m eter space is n o rm al. Then the  se t o f  a l l  W eierstrass points in
Cl,) for which l n > n  i s  an  analy tic subset of  CV  f o r  any choice
of  n.

University of Minnesota
Universitdt Mtinchen
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