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In a recent paper A. Grothendieck [11] classified the holomor-
phic fiber bundles over the Riemannian sphere P' whose structure
group is reductive. This classification is based on the fact that
each holomorphic vector bundle over P' splits into holomorphic
line bundles, a result that is essentially due to G. D. Birkhoff [1].
In the present paper we raise the corresponding question for holo-
morphic families of fiber bundles B— € over a holomorphic family

CVZ»M of Riemannian spheres, i.e. holomorphic fiber bundles whose
base space is the total space of a holomorphic fiber bundle with
fiber P'. It turns out (Theorem 2.2) that the splitting theorem is
locally still valid provided one avoids a 1-codimensional analytic
subset A of the parameter space M of the family. The exceptional
set A is empty if the restrictions of the vector bundle to any two
fibers are isomorphic (Theorem 2.4). The splitting theorem permits
one to prove that the set of all points €M fulfilling

dim¢ H(V,, Q(B,)) 2]

for some integer j is an analytic subset of M (Theorem 2.3). In
addition one gets a counterpart to a theorem of K. Kodaira and

D. C. Spencer ([14], Theorem 18.1) stating that for any point
t,€ M there is a neighborhood U such that

H(==(U), &(B)) > H(V,, QB,))

1) This research was supported by the U.S. Air Force through the Air Force Office
of Scientific Research under contract No. Af 49 (638)-885.
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is surjective for all points € U— A where A is a 1-codimensional
analytic subset of U. This remark leads to a short proof of a
theorem of H. Grauert and R. Remmert [8] for our special case,
saying that the direct image 7, (Q(%)) is analytically coherent.
After a side remark on orthogonal vector bundles we are

dealing with holomorphic families EF—»CVZM of fiber bundles
over a holomorphic family of Riemannian spheres whose structure
group G is a reductive Lie group. Let H be a Cartan subgroup
of G, N its normalizer, and W= N/H the Weyl group of G. The

main result is that for any family 9"—>CVZ>M there is a 1-
codimensional analytic subset A of M such that the restriction
of F to #'(M— A) admits a reduction of the structure group to
N; in case M— A is simply connected, the structure group can be
reduced to H itself. In this case it turns out that the reduction
is uniquely determined up to an action of W.

The final section of the paper deals with holomorphic families
of vector bundles over a holomorphic family of compact Riemann
surfaces. The goal is to prove that Theorem 2.3 is still true in
this more general case, a result that has been proved recently by
H. Grauert [10] in a much more general situation. As a con-
sequence one is able to describe the structure of the set of all
Weierstrass points of a given type (of a holomorphic family of
compact Riemann surfaces) (cf. H. E. Rauch [17]). One more
application is the following. Suppose X is a compact Riemann
surface (of genus g >1). A n-tuple (x,, ---, x,) of points of X
will be called a Weierstrass n-tuple if there are non-negative
integers /,, -+, {, with /,+ .- +/,=g such that the vector space
of meromorphic functions f on X whose divisor (f) fulfills

)+ 2 b, >0

has a dimension (over C) bigger than 1. The set of all Weier-
strass n-tuples can be proved to be an analytic subset of Xx --- x X
and thus a projective variety.

The tool used in this last section is a construction that assigns
to every holomorphic vector bundle W— X over a compact Riemann
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surface that is realized as a covering space Xg»P1 a holomorphic
vector bundle p«(W)— P' such that H(X, Q(W)) is naturally iso-
morphic to H(P', Q(p«(W)); this construction can be carried over
to holomorphic families of compact Riemann surfaces and is applied
in order to prove the required extension of Theorem 2.4. It may
be remarked that this construction has also an independent interest
insofar as it yields a short proof of A. Weil's generalization of
the Theorem of Riemann-Roch (an idea which can be applied to
the higher dimensional case) and can be used in the construction
of the space of moduli of the Riemann surface of given genus.

1. Definitions and notations.

The definitions and notations follow essentially a paper of K.
Kodaira and D. C. Spencer [13]. For the sake of completeness we
shall recall them as far as they are needed in this paper.

Two complex spaces €I and M (for definition cf. [9]) together
with an open holomorphic mapping = of ¢{/ onto M are called a
holomorphic family of complex manifolds if
(i) for any point €M the fiber V,=="'(f) equipped with the

induced structure is a connected complex manifold
(ii) each point of M has a neighborhood U admitting a biholo-

morphic mapping f of U onto C”"x #(U) such that the diagram

U—LC"X”(U)
T
w(U) = (V)

comimutes.

The holomorphic family ¢I/— M is said to have the fotal space
CY and the parameter space M ; for each teM, = '(¢) is denoted
by V., and called the fiber belonging to t. We speak of a holo-
morphic family of Riemennian spheres (Riemann surfaces), if each
fiber of the family carries the structure of a Riemannian sphere
(Riemann surface).

Suppose <V—M and < —-M are holomorphic families of
Riemann surfaces. Then a holomorphic mapping f: V- is
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called a fiber mapping if the restriction of f to every fiber of
C)—M is a biholomorphic mapping onto some fiber of <V— M.
The fiber mapping f induces a mapping f,: M—M so that

L, a

L,

M-——M

commutes. f, is easily seen to be continuous. If in addition M
and M’ are normal complex spaces (for definition cf. [9]), £, is
known to be holomorphic (R. Remmert [187).

The fiber mapping f: CV—CV is called a fiber isomorphism
provided f is biholomorphic. We say that ¢/—M is (holomor-
phically) #rivial if there is a fiber isomorphism f: V-V XM so
that

Y—>V,xM
L

!

M = M

commutes. In a corresponding way one defines the notion of loca/
triviality.

’

T
Let ¢ —-M’ be a holomorphic family of complex manifolds
and f,: M—M a holomorphic mapping. The analytic subset
{(V',m)| =" (V") =f(m)} of (V' xM equipped with the induced struc-

T
ture shall be denoted by ¢{. Then ¢{/—M, where = is the pro-
jection of C{/onto M, is a holomorphic family of complex manifolds.

CViM is said to be induced from CV’Z»M’ by fo: M—=M. A
holomorphic family is trivial if and only if it is induced by a trivial
mapping, i.e. a mapping which maps M into one point.

A holomorphic family of fiber bundles (with structure group a
complex Lie group G) is a holomorphic family ¢/— M of complex
manifolds together with a holomorphic fiber bundle B — CVV (with
structure group G). The restruction of @B to the fiber V, is
denoted by B,. We speak of a family of fiber bundles over the
Riemannian sphere if ¢IV— M is a family of Riemannian spheres.
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For any subspace M’ of M we get a new family of fiber
bundles B|M'— |M'— M’ where CV|M’ — M’ denotes the restric-
tion of CV—M to M’ and B|M’'— V| M’ the restriction of B — |/
to CV|M'.

Two holomorphic families $—C—-M and H' — V' —->M of
fiber bundles having the same structure group and fiber are said
to be isomorphic if there exist biholomorphic mappings f: ¢{/— ¢
and f': 83— P so that

B — Y — M
g ||
B — YV —— M
commutes.
For various reasons it is convenient to deal with holomorphic

families of complex manifolds whose parameter space as well as
their total space are normal complex spaces. That leads us to

the following construction. Let CVZM be a holomorphic family
of complex manifolds, and consider the normalizations #: C{V — ¢/
and #n,: M—M (for definitions cf. H. Rossi [20]). Then there is
exactly one holomorphic mapping 7 : CI/ — M such that

G /Ny v

T

Y —s M
commutes. First we claim that # is surjective. Indeed, wmon is
onto and 7, is a homeomorphism on M—#n;'(A) where A (=set of
all reducible points of M) is a subset of M having the property
that M— A is dense in M as well as M—#n;*(A) is dense in M:
consequently, #(CV) contains M—nz'(A); ie. #(CV) is dense in M.
On the other hand, let 7, be an element of n5'(A) and #,=n,(f,).
7 was assumed to be an open mapping. Hence for every point v
with #(v)=t, there is a compact neighborhood U whose image U,
under = is a compact neighborhood of #,. Let U be n'(U) and
U, be ny"(U,). n and n, being proper implies that both U and U,
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are compact and U, is a neighborhood of #,. As we saw, #(0) is
dense in U,; but U being compact implies that #(0) is closed in
U, and therefore equals U,. This proves that # is surjective.

Next we want to show that each fiber % '(f) is purely d-
dimensional, where d is the dimension of the fibers in ¢/— M.
For that purpose it is enough to show that n~'(=~'({)) is purely
d-dimensional. The latter fact follows immediately from the
hypothesis that V, is a d-dimensional manifold. Consequently #
is an open mapping, as we see at once from a theorem of R.
Remmert [18].

Now consider a connected component CUx of Cl/. Its image
under # is again connected and therefore contained in one of the
connected components of M, say My. Because # is an open
mapping, #(CVx) is an open subset of My. In the case #(CVx)=F
My, there is a second connected component, C/,, of CI/ such that
#(CVx)N#(CV,) is a non-empty open set. Denoting the set of all
reducible points of €I by A, the sets CVx—n'(A)NCVx and
V., —n(A)NCY, correspond to two connected components, Vg
respectively €/, , of C/— A having the property that their images
under # possess a non-empty intersection. That is obviously im-
possible because an irreducible analytic subset (#7'(%)) contained
in the union of two analytic subsets (CUx respectively C{/,)" is
actually contained in one of them. At the same time we proved
that the connected components of €I and those of M correspond
to each other in a one-to-one way ; corresponding connected com-
ponents shall have the same subscript.

Furthermore we show that each fiber #7'(f,) is a complex
manifold that is isomorphic to V, where #,=n,#,). For that pur-
pose let A, be the set of all reducible points of M. Then #, is a
biholomorphic mapping of M—nz'(A,) onto M—A,. In case there
is a reducible point v with =(v) € M— A,, we choose an open con-
nected neighborhood U of v so small that =(U)ZM— A,, that ¢/
can be decomposed in U in k(C>1) irreducible components, and
that for each point ¢ €M, Un='(¢) is connected ; then the normali-

1) @k denotes the closure of CV,.
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zation U of U has at least & connected components, while the
normalization #(U) of #(U) has only one connected component.
That contradicts our previous statement about the correspondence

between the components of U and those of ;TJ). Therefore there is
no reducible point over M— A,, and consequently CUV—n"'omw~'(4,)
is homeomorphic to ¢{/—=z"'(4,). That proves already that #'(7,)
is isomorphic to V,, provided #, is an element of M—n;'(A4,). In
any case # '(f,) is a purely d-dimensional analytic subset according
to a theorem of R. Remmert; furthermore it is contained in
n~'om 'on(f,) which is easily proved to be a (possibly not connected)
submanifold of C/. Therefore it remains to be shown that #'(Z,)
is connected. The mapping # : CI/ — M creates a situation to which
a theorem of K. Stein [22] can be applied. In case, CV—M is a
family of Riemmann surfaces® there is a complex space X and
a holomorphic mapping ¢: CV—X such that for every normal
complex space Y and every holomorphic mapping @ : Cl/—Y each
fiber of which consists of fibers of #, there is exactly one holo-
morphic mapping ¢’ : X—Y fulfilling @=¢@’oq. It turns out that
the fibers of ¢ are the connected components of the fibers of #.
Consequently there is a uniquely determined holomorphic mapping
@* of X onto M such that #=@*oq. @* is a one-to-one mapping
of X—@* '(ny*(A4,) onto M—ny'(A,); obviously all fibers of @* are
discrete. If there were two points x,, x, of X with @*(x))=9*(x,),
then we could choose disjoint compact neighborhoods W, and W,
of x, respectively x,. Because the fibers of ¢* are discrete, ¢*
is an open mapping according to a theorem of R. Remmert.
Therefore @*(W,)n@*(W,) is a neighborhood of @*(x,). There is
an open, connected neighborhood U* of @*(x,) contained in
p*(W)np*(W,) so that ¢* '(U*) does not intersect the boundary
of W,uW,: otherwise there would be for every neighborhood of
@*(x,) a point on the boundary of W,uW, (which is compact and
does neither contain x, nor x,) that is mapped by @* into this
neighborhood, which contradicts the fact that ¢* is continuous.
Denoting W,n@* (U*) by W#¥ respectively @* (U¥)N\W, by W§¥
we have now two neighborhoods of x, respectively x, so that the

1) The restriction to families of Riemann surfaces, i.e. d=1, is unnecessary by
virtue of a theorem of H. Cartan. (Theorem 3 in “Quotients of complex analytic spaces”,
Contributions to function theory, Tata Inst. Fund. Research, Bombay, 1960).



442 Helmut Rohr!

restriction of @* to W¥uUW}¥ is proper. Hence a theorem of
H. Cartan [6] shows that WfuW§ is a covering space of
p*(W¥yu W¥)=U* which is unramified and unbounded outside of
an analytic subset of U*. But @*| WfuW§ maps W¥uW§—
@* (ng'(A,)) homeomorphically onto its image. Consequently the
number of sheets of the covering W¥uWg§—U* is one and
therefore @* is a biholomorphic mapping of W¥uW¥ onto U*.
This means that each fiber of #:C)/— M is connected.

Finally we want to show that #: C[7— M fulfills also the last
condition of a holomorphic family of complex manifolds. For that
purpose consider the commutative diagram

U Cix =(U)
U 5:—>Cd><7z(U)/
| = % =(0)
U )

According to the definition of the normalization there exists a

holomorphic mapping U— C? X;TL//) so that the above diagram
remains commutative after inserting that mapping. Again accor-
ding to the definition of the normalization it turns out, that the
mapping U —>C"><;(\/U) is biholomorphic.

Summarizing we get

T
Theorem 1.1: Let CUV—M be a holomorphic family of Riemann
surfaces, CV and M the normalizations of UV respectively M, and
71 CU)— M the uniquely determined holomorphic mapping so that

~ 7T -
&vW—M
nl lno
T
Y—M
commutes. Then VSN is a holomorphic family (whose para-

meter space as well as its total space are normal) so that each
fiber V, is isomorphic to the fiber V, .

LT T
CViM will be called the normalization of the family <{/— M.
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Without proof we shall give another result in that direction :

Proposition 1.2: Let CV—M and ' —M be two holomorphic
families of Riemann surfaces. Let f: CV—CV be a fiber mapping
and suppose that no irreducible component of UV is mapped into
the set of all veducible points of CV'. Then there is exactly omne
fiber mapping f of the normalization €UV — M into the normalization
V' — M so that

@ L. a
CV/lf CV/‘l
P

commutes. The induced mapping f,: M— M’ is holomorphic.
Finally we need in the sequel the following statement, the
easy proof of which we shall omit:

Proposition 1.3: Let B—CYV—->M be a holomorphic family of
fiber bundles where the holomorphic family CV—M fulfillus the
hypothesis of Theorem 1.1. Let n:CUV—>CY be the normalization
mapping and B—CV the fiber bundle induced from B— YV by n.
Then for every €M, the restriction B,—V, is isomorphic to B,
=V, by means of the induced fiber mapping of B into B.

2. Holomorphic families of vector bundles over the Riemannian
sphere.

Let 33— C—M be a holomorphic family of vector bundles
over the Riemannian sphere P' where the parameter space is
supposed to be a complex manifold. First we study the local
structure of such families. This problem can be simplified by
results of K. Kodaira and D. C. Spencer ([13], Theorem 6.3, [14]
Lemma 14.1 and Theorem 18.2,) which show that a holomorphic
family of Riemannian spheres whose parameter space is a complex
manifold is actually locally trivial. That means the above family
of vector bundles is locally isomorphic to a holomorphic family

1) B coincides with the normalization in case the fiber $—CV is a normal complex
space.
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B—-UxP'—-U of vector bundles where U is a polycylinder and
Ux P'— U the canonical projection. Because both (P'—0)x U and
(P'—o0)x U are holomorphically complete manifolds which are of
the topological type of the cell, & is (holomorphically) trivial over
both (P'—0)x U and (P'— )X U, according to a theorem of H.
Grauert [7]. This implies that the vector bundle B— UxP' can
be defined by a holomorphic mapping G(«, z) of Ux(0<|z|< o)
into the general linear group GL(q, C).

In the case we are dealing with a family of line bundles
(g=1), B— Ux P" is defined by a holomorphic and holomorphically
invertible function g, 2) in Ux(0<|z|< o). The fundamental
group of Ux(0<|z|< o0) being free cyclic there exists an integer
k such that log g(u, z)—k log z is holomorphic and single valued
in Ux(0<|z|< o). If

4 o0
3 awe
is the Hartogs series of that function, then the equation
0 oo
exp ( 27 &(u)2")-glu, 2)-exp (3 gi(u)e") = 2*

shows the vector bundle $— UX P' can be given by the function
z*, If we denote finally by L, the holomorphic line bundle over
P' which is defined by z*, then we have

Lemma 2.1: For each holomorphic family B—-UxXP'—-U of
line bundles over the Riemannian sphere with a polycylinder as
parameter space there exists an integer k and an isomorphism of

families
B - UxP' - U

I I I
UxL,— TxP' - U.

If the rank of the vector bundle 3 — Ux P' is bigger than 1,
then we consider the restriction B, of the bundle & to the fiber
V., u € U. Denoting the sheaf of germs of holomorphic sections
in B, by Q(B, the principle of upper semi-continuity ([13],
Theorem 2.1) shows that there is a neighborhood U’ of the origin
0 in U such that for all points # of U’ the inequality
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(1) dim¢e H'(V,, Q(B,)) < dime H'(V,, Q(B,))
holds.

On the other hand, a theorem of G. D. Birkhoff [1] and A.
Grothendieck [127] shows that the vector bundle B, splits into the
direct sum '

q
@ ka(“)
k=1

of holomorphic line bundles where k(u), -+, k,(#) are suitable
integers.

An easy calculation shows
(2) dim H'(V,, Q(B,)) = 3] max (0, —ku)—1).

(1) and (2) imply that in U all exponents are uniformly bounded
from below. Thus we can find an integer / such that the Whitney
product B’ — U’ x P' of the holomorphic line bundle U’ x L,—U’x P*
and the restriction of the bundle B to U’x P' has the property:

for each point # € U’ the bundle B] splits into the direct
sum é Liowy of line bundles whose degrees k.(u#) are not
negative.

The fact that each k.(x) is not negative implies
(3) dim H'(V,, Q(B})) = i} max (0, k(u)+1) = g+ ‘izjk:(u).

The functor det on the category of vector bundles of rank ¢ with

values in the category of line bundles” maps the direct sum EqB L, (u)

into the element le‘k' " Lemma 2.1 shows that Eq}k:(u) is in
pren] K K=1
K=1

fact independent of #. The functor det gives rise to a mapping
det of the set f_IH V, Q(B?)) into the set H(V, Q(det B?)) where

B? is a vector bundle of rank ¢®. Because all k/(x)’s are not
negative, we have enough holomorphic sections in B, over P

1) The image of a vector bundle of rank ¢ given by the transition functions g;;
is the line bundle given by the transition functions det g;;.

2) The image of a g-tuple s,:--,s; of elements in H°(V, Q(B?)) under det is
the element det (s, -+, ss) in HO(V, ©2(det B?)).
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Hence det maps KliIIH"(V,‘, {(B;)) not into the neutral element of
H(V,, Q(det BY)).

Now we want to construct a set of meromorphic sections in
P over U”x P' (U” being a suitable neighborhood of 0) so that
the restrictions of those sections to a fiber of U”x P'— U” form
“in general” a basis of the module of global holomorphic sections
in the restriction of @’ to that fiber. For later use we also need
a certain normalization of those meromorphic sections at oo.

Because (3) does not depend on # a theorem of K. Kodaira
and D. C. Spencer ([14], Theorem 18.1) establishes the existence
of a neighborhood U” of 0 and the existence of elements sf, -+, s}
€ H(U” x P*, (%)) such that for each point # € U” the restrictions
of those sections to V, form a basis of H(V,, Q(B.)). Writing
down those sections in terms of the above mentioned fiber co-
ordinates we get two vectors a/(«, z) and b&’(«, z) holomorphic in
U” % (|z|< o) resp. U”x(0<|z]) which fulfill the equation

(4) a(u, 2) = G'(u, 2)by(u, 2) in U"X(0<|z]|< ).

Let
2 b(u)z™
A=0

be the Hartogs expansion of (%, z) in z=o0. Denoting the p-
component of the vector b by " we choose the integer A, such
that (after a suitable rearrangement of the sequence si, .-+, si/)

b'/(;l)(u) =0 for A < )\‘!1 y k= 1’ Tty K ) but
bin,(w) ==0
Such a choice is possible because det ( li[ H°(V,, Q(BY))) is not con-

tained in the neutral element of H°(V,, Q(det B;)). Replacing s|
by si'=(13(w)) s and s, by s=s.—b/(u)sy’ for k>1, we have
new meromorphic sections sy, .-, s/, in B over U”xP'; their
restrictions to (U”—A’)x P!, A’ being the support of the divisor
defined by bi{)(«), are holomorphic sections in 9%’ and for every
point u € U”— A’ the restrictions of sy, .-+, si/ to V, form a basis

of H(V,, (B})). Applying the above process to sy, :--, s, and
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continuing by induction, we find integers 0<TA, <A, <« <Ny,
a l-codimensional analytic subset A” of U”, and meromorphic
sections s{/, -+, s7/ in B over U”x P' so that

(i) the restrictions to (U”—A”)x P! are holomorphic sections

in &

(ii) the restrictions of s{’, ---, s/ to V, form a basis for H(V,,
Q(B})) for each point u€ U"”— A"

(iii) Vi) =8, kop=1, 0

BAP) =0 k=il e, K, A=0,1,

hold. The fact that det(lE[H °(V., €(B})) is not contained in the

neutral element of H(V,, Q(det B;)) implies again that ,< k"

Now we carry out the same constuction for s7’,, -, si and
the components b6.,®(x). If we continue by induction we finally
construct a 1-codimensional analytic subset A of U”, ¢ non-empty
sets of integers O<A ,<A,<-+<A,, #=1, .-, ¢q, and mero-
morphic sections s,, .-, S in B over U”xP' which fulfill the
conditions (i) and (ii) with A instead of A” and have the property
that for =1, -+, g

bu)=0  for wx=i+ -+ +i,+1, -, F A=0,1,-

P

(5) 1," I
1, '..,/.ll Ic

1,4,

) — .
bK A;Lv(u) - 8#88\19 fOr Z'1+ cee +Zo--1+p .

Il
Il

q ©

Let A, be the smallest analytic subset of U’ so that the sections
Siyy Sij+iy ***» Sij++i, are holomorphic sections over (U”—A,) x P
A, is either empty or 1-codimensional in each of its points.
Furthermore it is obvious that A, is uniquely determined by the
matrix G'(«, z) because G'(#, z) and the conditions (5) determine
the sections s,, ---, s, uniquely.

The matrices

A(u, 2) = (ail(uy Z), Ty az'1+"'+iq(u) Z))
B(u, z) = (b;,(, 2), -+, b; 1154, 2))

are holomorphic in (U”—A,) X (|z|< o) resp. (U”"—A)x(0<|z])
and fulfill the equation

(4) A, 2) = G(u, 2)Bu, 2)  in (U"—A)x(0<]z|<eo)
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Because of (5) det B(u, z) does not vanish identically. Thus the
same holds for det A(«, z). Furthermore we derive from (5) and (4')

det A(u, 2) = det G(u, 2)z~ =" f(u, 2)

where f(u, 2) is holomorphic in (U”—A4,)x(0<|z|) and does not
vanish for each fixed u€ U”— A, and all points z of a suitable
neighborhood of oo which might depend on the choice of #. On
the other hand, the restriction of det %’ to U’ is isomorphic to
the line bundle U” XLy _,—U”x P'. Hence Lemma 2.1 assures
the existence of functions /%, 2) and 7%_(x, z) holomorphic and
holomorphically invertible in U” x(|z|< o) resp. U’ x(0<|z])
such that
It (u, 2) 2% ~h_(u, 2) = det G(u, 2)

holds. Therefore we have
(6) hy(u, z)det A(u, z) = zk/—q—?‘“"’xf(u, 2)h (u, 2).

Obviously the inequality

holds. The two sides of (6) define a holomorphic function in
(U”"—A,)x P' which vanishes identically if (7) is no equality.
Thus det A(%, z)==0 implies that we have an equality in (7). That
means that

Ay = p—1 for €=1,-,9 p=1,--,i.

Hence there is a matrix C(u, z) holomorphic in (U”—A,)x(0<|z])
such that

z7Mi, 0
B(u, z2) = C(u, z)(

v 0 F4 _)‘qiq

holds. One verifies easily the following property of C(x, z): for
each compact subset K of U”— A, there is a neighborhood Dy of
z2=o0 such that det C(u, z) has no zero in KX Dy.

One more consequence of the inequality (7) is the fact that
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det A(x, z) does not depend on z; the remark that for each
u € U”— A, there is a complex number z with det A(«, z)==0 shows
now that A(u, z) is holomorphically invertible in (U""— A,) % (]z|
<o),

Denoting A,
that the equation

by #! the last remarks together with (4’) show

P8 0
A, 2)Gu, 2)Cu, 2) = |
0 2nq
holds in (U”"—A,)x(0<|z|< o). This implies that C(u, z) is
holomorphically invertible in (U”—A,)x(0<|z|< o0); in addition
this propery holds for Kx D, where K is a compact subset of
U”—A, and Dy some neighborhood of z=o. Hence C(x, z) is

holomorphically invertible in (U”—A,)*x(0< |z|). This means that
the restriction of ¥ to (U”—A,)x P' is isomorphic to the vector

bundle (U”—A4,)x _EjBLn'K. Tensoring B by U’'XL_,— U’ xP'

leads back to the original bundle % and gives therefore

Theorem 2.2: Let B—-UXxP'—U be a holomorphic family of
vector bundles of rank q whose parameter space is a polycylinder.
Then there is a meighborhood U, of the origin in U, a uniquely
determined smallest analytic subset A, of U,, and a sequence of
q integers n,<m,< ---<m, such that there is an isomorphism of
Jamilies
PBU~-A, - (U—-A)xP" — U,—A,
1 I [
(U,— A) x @ Lo, — (U—A)xP' — U—A4,.

In the case of line bundles (q=1) A, is empty. In case q >1,
A, is either empty or 1 codimensional in each of its boints.

The only statement which remains to be proved is the fact
that A, is uniquely determined. As we already remarked, the
above used sections s,, -+, s, are uniquey defined by matrix G'(«, z)
and the properties (5). Suppose that U is a neighborhood of the
origin in U and A an analytic subset of U such that the statement
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of Theorem 2.2 holds for U—A instead of U,—A,. Then there
are matrices H,(#,2) and H,u, z) holomorphic and holomorphically
invertible in (|z|< oo)x(U—A) respectively (0<|z|)x(T—A)
such that
2" 0

Hi¥u, 2)G(u, 2)Hu, 2) = ( "
\' 0 'Z"q .
Without loss of generality we may assume that we are dealing
with B —U”"x P' instead of $H—U"”xP'; therefore we may
assume that none of the exponents #,, ---, n, is negative. Denoting
the columns of H,(u, 2) by 4(u, z) and the columns of H,(«, z) by
3K(u, z) we see that

2w, 2) = Glu, 2)-2 b (u, 2)
holds. Consequently, the pairs of vectors

('d (u, z), 22 " I'J\K(u, 2)) 1=0-,n £ =1, ,q

K

form holomorphic sections in %’ over (U—A)xP' having the
property that their restrictions to each fiber V, form a basis for
the module of global holomorphic sections in B,—V, for every
u€ U—A. Obviously we retain the same conditions if we change
both H,(«,2) and Hj(u, z) to H,(u, 2)Q respectively H,(u, z2)Q where
@ is a permutation matrix. Because H,(u, o) is non-singular in
U—-A we may assume (we only have to pick an appropriate
permutation matrix @) that the product

13(1‘)(14, S ,5;«1)(”, )

does not vanish for a given point u=wu, of U—A and therefore
for a full neighborhood U of #,. Hence the sections

i = (2007w, 00)d(u, 2), 27" b% T (u, 00)b (u, 2))

i=0,-,n =1 ,q

still form a basis for the module of holomorphic sections in %’

over Ux P'. Forming suitable linear combinations of the sections

P A
Sey S

ny
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we get sections sy, -+, s, ,, fulfilling the conditions
bii)(u)EBK:Hl K = 1’...,n1+]_ >“=07"',n1-

That means we are able to normalize the rest of the sections
s;. (¢k=>1) in such a way that first components of them have a
zero at least of order #,+1 in oo. Proceeding by induction we
end up with a new basis §,,---,5, of the vector space of holo-
morphic sections in % over Ux P! fulfilling the second set of
equations (5) without any restrictions and the first set of equations
(5) for A=0,---,7, and p=1,-+,q. In case the first set of equa-
tions (5) does not hold for p=p, and A=0,1, -+, we could proceed
as in the construction leading to the basis fulfilling (5) and would
consequently come up with a different representation of ¥ as a
sum of line bundles. Thus the basis §,, --+, §, fulfills all equations
(5) and hence coincides with the basis s, -+, sy. That implies,
according to our previous construction, that H,(«, z) equals C(u, z)
up to a right factor Q. Hence we have A,NUNUZANUNT
which proves that A, is uniquely determined.

Corollary 1: Let _CB»CVZM be a holomorphic family of vector
bundles over the Riemannian sphere. Then there is a 1-codimen-
sional analytic subset A in M such that BIM—A— YV M—A—
M— A is locally trivial and therefore dime H*(V,, (B,)) is constant
on every connected component of M— A.

Proof: It is sufficient to consider the case s=0: s=1 follows
imediately from s=0, Lemma 2.1, and the Theorem of Riemann-
Roch. Furthermore, it is sufficient to consider the case where both
C{ and M are normal complex spaces: Let CI”— M be the normali-
zation of C/—M and A, the set of all non-normal points of M;
then the set of all non-normal points of ¢{/ is contained in 7 '(A,)
(according to the definition of a holomorphic family of complex
manifolds) and therefore we have an isomorphism of families

V| M—nz'(A) & VM- A,
V l
M—n(A) & M- A,
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If in addition A4, is a 1 codimensional analytic set in M so that
BIM—A, - VM- A, > M-A4,
is locally trivial, then
BIM— A, ung(A,)| — V(M- A, un(A,) — M— A, un(A,)

is locally trivial and A=A,un,(A4,) is a 1-codimensional analytic
subset of M according to a theorem due to R. Remmert [18].
Therefore we may restrict ourselves to the case where ¢/ and M
are normal. Denoting the singular locus of M by A’, Theorem 2.2
states that for each point € M— A’ there is a neighborhood U,,
a uniquely determined smallest analytic subset A4, of U,, and a se-
quence of integers #u,,, -+, n,, such that the above isomorphy holds.
Because A, is uniquely determined, A,n"U,n"Uy=Ayn U, U, for
all pairs of points £, ¢’ € M— A’. Therefore the collection of analytic
subsets A, defines an analytic subset A” of M—A’. Because A’
is of codimension two, while A” is of codimension one in each
of its points, a theorem of R. Remmert and K. Stein [19] shows
that the closure A” of A” in M is an analytic subset of M. If
we finally put A=A'UA”, the statements of the corollary are
certainly fulfilled.

The above corollary tells that the set of points in which the
dimension of the cohomology module jumps can be included in
some analytic subset. Actually we get

Theorem 2.3 (cf. H. Grauert [10]): Let B—V—M be a holo-
morphic family of vector bundles over the Riemannian sphere and
j be an integer. Then the set of all points t€M fulfilling the
inequality

dime H(V,, (B,)) > j
is an analytic subset of M.

Proof : It is again sufficient to consider the case s=0. According
to the corollary of Theorem 2.2 there is an analytic subset A, of
at least codimension one such that dim¢ H(V,, (B,)) is constant
in each connected component of M—A,. Because A, is nowhere
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dense in M, the principle of upper semi-continuity (K. Kodaira
and D. C. Spencer [147]) shows that this dimension actually equals
the minimal dim¢ HV,, 2(B,;)) on the closure of that connected
component of M— A,. But the closure of a connected component
of M—A, is an analytic subset of M. We denote the union of A4,
and the closures of those connected components of M— A,, where
the minimal dim¢ H(V,, (B,)) is greater or equal j, by M,. M, is
an analytic subset of M which we equip with the induced struc-
ture. Now we consider the family of vector bundles

BIM, — VIM, - M,

and continue by induction. Then we get a descending chain
M,, M,, --- of analytic subsets of M whose intersection is again
an analytic subset which obviously equals the set of all points of
M for which dim¢ H(V,, (B,))>>j holds.

Now we consider holomorphic families B — ¢{/—M of vector
bundles of rank ¢ over the Riemann sphere having the property

that all vector bundles B,—V, are isomorphic to EBL,,K-»P'.

Furthermore we assume that the parameter space M is a complex
manifold. Without loss of generality (cf. proof of Theorem 2.2)
we may assume n,_>--- >n,>0. Let £, be a point of M. Then we
can find a basis §,, .-+, 5, of H(V, , &(B,,)) fulfilling (5) for t=¢,.
Theorem 18.1 of [14] shows that there is a neighborhood U of ¢,

and elements s{, ---, s, in H(CV| U, (B|U)) whose restrictions
to ¢, are the sections §,, -+, §,. After a suitable rearrangement
of si, -+, s, the matrix

(CHR0) M-

s mery MY

is holomorphically invertible in some neighborhood U’ of f, because
it reduces itself to the identity matrix for £={,. That means we
are able to find elements s,, -+, s, ,, in H(V|U’, QB|U")) so
that the corresponding set of equations (5) is fulfilled. If there
were any element s in H°(“{|U’, Q(B|U")) with bP(#)=0 for
v=0, -+, n,, but b"(¢ 2)==0, then the construction leading to
Theorem 2.2 would show that the highest order of the line bundles
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in which B, (#* a suitable point in U’) splits, is actually bigger
than #,. Therefore we can normalize the rest of the sections
Sm+2> ***» Sp in such a way that all equations (5) regarding the
first component are satisfied. Proceeding by induction, we find a
neighborhood U, of ¢, and elements s,, -+, s, in H(V|U,, Q(B|U,))
so that the equations (5) are fulfilled with i{,=#n,+1. Hence we
have

Theorem 2.4: Let B—CV—M be a holomorphic family of vector
bundles over Riemannian sphere whose parameter space is a com-
plex manifold. Assume that any two vector bundles B,—V, are
isomorphic. Then the family is locally trivial.

From the proof of Theorem 2.4 one concludes furthermore

Corollary 1: Hypothesis as is Theorem 2.2. Then no bundle
B.—V., €A, is isomorphic to the “general bundle of the family”
B, =V, where t¢ A,.

One more consequence of the construction leading to Theorem
2.2 is

Lemma 2.5: Suppose B—V—M is a holomorphic family of
vector bundles over the Riemannian sphere whose parameter space
is a complex manifold. Then there is a 1-codimensional analytic
subset A of M such that for each point t,€ M there is a neighbor-
hood U fulfilling the property:
the bundle B\ U— V| U admits holomorphic sections s,, -, s,
whose restrictions to V, form a basis for H(V,, (B,)) for
each te U—AnU.

Proof : Going back to the proof of Theorem 2.2, we see that
the sections s,, -+, 8y fulfilling (5) are meromorphic sections in
P over U”xP'; tensoring by the section o in L_, which is holo-
morphic and different from zero in [z|< oo carries those sections
into meromorphic sections 3,, -+, 3§,s in B over U” x P'. According
to the construction there are holomorphic functions f£(¢), .-+, fw(f)
in U” such that the coefficients in the power series of f-s,, -,
fwesy around z2=0 and z=oco are holomorphic in £ Then it is



On holomorphic families of fiber bundles 455

easy to verify that the sections
fl 11S1e1s 2ty JiSip fil-i'l'i'lsil-i—l i1y 7T

fulfill the requirements of Lemma 2.5.

Lemma 2.5. is a kind of counterpart to Theorem 18.1 of K.
Kodaira and D. C. Spencer [14] for particular families of complex
manifolds.

Given a family .@—>CVZ>M of holomorphic vector bundles
we define the direct image 7,(2(3)) of the sheaf (%) as follows
(cf. [8]): the base space of the direct image is the parameter
space M, the sheaf itself is defined by means of the presheaf which
associates to each open subset U of M the module H(= '(U), Q(B));
it is easy to see (cf. [8]) that this presheaf is canonical for ¢=0.
We get

Theorem 2.6: Let _(B—>CV1M be a holomorphic family of vector
bundles over the Riemannian sphere whose parameter space is a
complex manifold. Then the direct image 7= (2(B)) is an analy-
tically coherent sheaf.

This theorem has been proved by H. Grauert and R. Remmert
[8] in a much more general case. But we shall give here a much
simpler proof resting upon Lemma 2.5. The property of being
coherent is a local property. Thus we may consider a family

.@—)UxPle where U is a polycylinder. First we have to
show that 7= (Q2(4)) is locally finitely generated. For that purpose
we consider the sections s, ---, s, of Lemma 2.5 (assuming that
t,=0). Let s be another section in B which is holomorphic in
some neighborhood of Ox P'. Then we have obviously an equality

S = kl(u)'fl—l'sl+ ot +hk(u)'f;1'sk

where /%, , -+-, ki, are holomorphic functions defined in some neighbor-
hood of 0. In the given fiber coordinates we have the power
series development

s, = b(u)z™
A=0

where the vectors b,,(#) are holomorphic in some fixed neighbor-
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hood U of 0. Hence the holomorphic function #,, -, k, define a
holomorphic section if and only if

h i Iy :
(8) Db+ e+ h@) A =0,1,
f1 A fk kA
are holomorphic functions b,(%) for all integers A=0,1, ---.
Rewriting the equations (8) in terms of their components we get

(8) fi "'fkl_)(()':) = h,f, "'fk-i’Z’+ ol f, -"fk-ﬁi'i),
)\,:0’1’...’ Iu,z]_’...’q.

Let U be a relatively compact, open subset of U which contains 0.
Then a theorem due to H. Cartan [4] states that there are finitely
many, in U holomorphic vectors (g, -+, &), v=1, -+, N, so that
the germs of each of the vectors

(fz"'fk i*:), ...’fl...fk_lbi’? )\‘:0’1’... p = 1,...’(]

are linear combinations of the germs of those vectors with holo-
morphic germs as coefficients. That implies that we have to
consider only the equations

(9) fl "'fkho = ]llg1v+ +hkgk‘u v = 1» ot ,N

Therefore the sheaf of germs of holomorphic functions over U
fulfilling the equations (8) is isomorphic to the sheaf of germs of
holomorphic functions #,, -+, h, over U fulfilling (9). The first
sheaf is obviously isomorphic to the sheaf 7z (2(%)) over U ; the
latter is analytically coherent because it is the image of an
analytically coherent sheaf (namely the intersection of finitely
many relation sheaves which are coherent (cf. [8])) and therefore
locally finitely generated. What remains to be proved is the fact
that each relation sheaf of 7 (Q(%)) is locally finitely generated.
But this is an immediate consequence of the fact that = (Q(R))
is a subsheaf of the sheaf of germs of k tuples of holomorphic

functions over U.

Corollary: Let B— (/- M be a holomorphic family of vector
bundles over the Riemannian sphere whose parameter space is
either (i) holomorphically complete or (ii) a mnormal projective
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variety. Then there is a 1-codimensional analytic subset A of M

such that

(i) for teM— A the restriction map H(CV, Q(B))— H'(V,, QB,))
is surjective

(ii) for t€M—A the restriction to V, maps the vector space of
all meromorphic sections in B over <V which are holomorphic
over CVIM— A onto H(V,, Q(B,)).

Proof: (i) Let A’ be the singular locus of M; A’ is known to
be an at least 2--codimensional analytic subset of M (M is normal!).
According to Theorem 2.2 the set of all points of M— A’ in which
B— Y ceases to be locally trivial is 1-codimensional in each of
its points; therefore its closure A” in M is an analytic subset
according to a theorem of R. Remmert and K. Stein [19]. If A
is the union of A" and A” it is easy to see that for each point
teM—A the stalk of =,(£2(%)) is isomorphic to the module
O,-H(V,, (B,)) where O, is the ring of germs of holomorphic
functions in #. Theorem A of H. Cartan and J. P. Serre [5],
Exposé XVIII shows that the statement is true.

(ii) In this case, A is supposed to be the union of a hyper-
plane section and the set in (i). Again Theorem A of J. P. Serre
[5], Exposé XVIII concludes the proof.

Finally it may be remarked that the corollary of Theorem 2.2
is useful for the classification of holomorphic families of vector
bundles over the Riemannian sphere provided the parameter space
M is holomorphically complete space. In this case a family of
vegtor bundles can be given by a 1-codimensional analytic subset
A'of M, a locally trivial holomorphic family of vector bundles
over M— A, and extension of the corresponding mapping of M—A
into the universal base space to a continuous mapping of M into
thé universal base space; a theorem of H. Grauert [7] states that
thé homotopy classes of those extensions are in a 1 1 correspond-
ence to those holomorphic families of vector bundles over M which
extend the given one over M— A. That means after characterizing
the holomorphic family over M—A one has only a topological
problem to solve (extension of a given map and computing the
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homotopy classes of all possible extensions). Therefore it remains
to characterize the locally trivial holomorphic family over M— A.
Because the group of fiber preserving automorphisms of the bundle
L,— P' is the multiplicative group C* of complex numbers, the
family will be given by a sequence of integers n,= -+ =n, < 4,4,
=+ =14,44,<_-*+ and certain elements of

H'(M— A, Om-a(GL(g,, C))X -+ x H(M— A, Op-4(GL(g5, C)))

where ¢,+ -+ +¢9,=¢q. Especially in the case that M— A itself is
holomorphically complete and n,< #n,<_ -+ <n, (¢g,=¢,= -+ =1) the
family over M— A is given by #,, --+, n, and a certain element in

HM—A, Z)x - xHM—A, Z)  (q-times);

this is an immediate consequence of a well known isomorphism [23].

3. Orthogonal fiber spaces.

We shall deal with the question under which circumstances
the structure group of a holomorphic family of vector bundles
over P' can be reduced to the complex orthogonal group O(g, C).
A necessary condition for the possibility of reducing the structure
group is, that the given bundle $— C{/ is isomorphic to its dual
bundle $B*— C{. In the case where M consists of a single point
A. Grothendieck [127] showed that this condition is also sufficient
and that the reduction is uniquely determined (up to an iso-
morphism).

Using A. Grothendieck’s method and his Lemma stating that

H'(X, 0x(0(g, C))) > H'(X, Ox(GL(g, C)))

is 1njective for compact complex spaces we have as an immediate
consequence of Theorem 2.2

Thenrem 3.1: Let B— V—-M be a holomorphic family of vector
bundles over the Riemannian sphere whose parameter space is
normal such that B— YV and B*—C are isomorphic. Then
there is an analytic subset A of M (which is different from M)
such that the restriction BIM—A—-YVIM—A—->M—A of the
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original family to M— A is a family of holomorphic vector bundles
admitting the complex orthogonal group O(q, C) as structure group.

This result cannot be improved in general in so far as one
cannot get a reduction of the structure group over the whole
parameter space. To show that we consider the following example.

Example: Let $—C!"'x P'— C'" be the family of vector bundles
which is defined by the transition function

(z-, f(Z))
0 zH

where f(z) is the polynomial c¢,+ -+ +¢;2’. Applying the method
used in proving Theorem 2.2 we have to construct holomorphic
sections in the Whitney product B —C/*'x P' of B—C!*'x P!
and C'"'xL,— C""'xP'. Such sections are given by vectors
(a,, a,), (b,, b,) holomorphic in C**' (Jz|< eo) resp. C'" (0<|z])
such that

a, = b,+2'f(2)b,, a, = 2*b, hold.

Therefore a basis for the holomorphic sections in B —C!''x P!
is given by
(a,,a,)=(1,0), (b:,0,)=(1,0)
(@, a) =2 (c;+ -+ +¢,2°7%), 2%7), (b,,0,)=(0,27%), x=0, -, l+i
(@1, @) = (2102 oo a2l 70), 2479,

(b, by)=(—2""7(ci+ s 2N, 27%), k=l+i+1, 21

provided ¢,= -+ =¢;_,=0, ¢;:1-0. That implies that for all points
¢ of C'' with ¢,= -+ =c¢;_.,=0, ¢;|-0 the bundle B;—V. can be
described by the matrix

Pl 0

0 Zi*i) |

Hence the bundle B.—V, is actually isomorphic to L,PL_;—P'.
Now it is a straight-forward calculation to show for instance for
/=2 that the structure group of the corresponding bundle B#—C*
x P* cannot be reduced to O(2, C).
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4. Holomorphic families of fiber bundles over the Riemannian

sphere.

We summarize a couple of definitions concerning complex
Lie groups. A complex Lie group G is called reductive in the case
its Lie algebra & is reductive, i.e. direct sum of its center and a
semi-simple algebra. Furthermore a Cartan subgroup H of G is
a connected holomorphic subgroup of G whose Lie algebra is a
Cartan subagebra of &; because any two Cartan subalgebras of
@G are conjugate the same holds for any two Cartan subgroups of
G. If N denotes the normalizer of H the quotient group N/H
turns out to be discrete (resp. finite provided G has only finitely
many connected components); N/H=W is called the Weyl group
of G.

In the sequel we need a result which is essentially due to
A. Grothendieck [12]:

Lemma 4.1: Let B—V—-M be a holomorphic family of fiber
bundles whose structure group is the complex Lie group G and
whose fiber is the Lie algebra of G on which G operates by means
of the adjoint representatian. Suppose that each fiber of V—M
is compact. Suppose there is a meromorphic section s in B over
CV whose restriction to some fiber V, is holomorphic and which
maps a point v,€ YV into a regular element s(v,) of the fiber of
B over v,. Then there is a 1-codimensional analytic subset A of
M such that for each point vE€ CV|M— A the image s(v) is regular.
A does not contain =(v,).

Proof : The coefficients c;(s(v)) of the characteristic polynomial
of ad(s(v)) are meromorphic functions on I/ which are not iden-
tically oo because the restriction of s to V, is holomorphic. In
addition the functions c¢;(s(v)) are holomorphic in a full neighbor-
hood of V, and therefore constant on each fiber V,. ¢/— M admits
local holomorphic cross sections according to the definition of a
family of complex manifolds. Hence each function c¢;(s(»)) may
be regarded as a meromorphic function in M. Because s(v,) is
regular the highest coefficient ¢,(s(v)) cannot vanish identically ;
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thus s(v) is regular for all points of ¢/[M—A where A is the
set of zeros and poles of ¢,(s(v)) as function on M.

T
Corollary 1 (Grothendieck [127): Let G—VV—M be a holomorphic
family of fiber bundles whose structure group is G. If the associated

holomor phic family _CBg-ﬂVT—[»M of fiber bundles whose fiber is
the Lie algebra G of G admits a meromorphic section s in Bg
over CUV fulfilling the hypotheses of Lemma 4.1, then there is a
1-codimensional analytic subset A of M such that the structure
group G of the restriction FIM—A— CVIM—A can be reduced to
the normalizer N of a Cartan subgroup H of G. A does not
contain =(v,).

Proof: A. Grothendieck [12].

Now we restrict ourselves to the case of holomorphic families
G — CV— M of fiber bundles over the Riemannian sphere. Corollary
of Theorem 2.2 states the existence of a 1-codimensional analytic
subset A of M such that the restriction B4|M—A—VM—-A—
M—A is locally trivial. It has been proved in [12] that for each
point € M— A the vector bundle (B5);—V, admits a holomorphic
section s such that all elements s(v), v € V,, are regular elements of
the corresponding fiber provided the structure group G is reductive.
Because of the local triviality of B5/M—A— Y IM—-A—->M-A
one can extend s to a holomorphic section over a neighborhood
of ¢£. Obviously the extension has also the property that it maps
all points of a certain neighborhood of V, into regular points of
the fiber. Corollary 1 of Lemma 4.1 shows now that the structure
group G can be reduced to the normalizer N of the Cartan sub-
group H provided we restrict the initial family to some neighbor-
hood U of ¢ If U is properly chosen, then CV|U is simply
connected (because “{/—M is locally trivial and M—A may be
assumed to be a complex manifold). Therefore Corollary 2 to
Lemma 4.1 in [12] concludes the proof of

Corollary 2: Suppose F— V—M is a holomorphic family of
fiber bundles over the Riemannian spheve whose parvameter space
is normal ; assume furthermorve that the structure group G is
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reductive. Then there is a 1-codimensional analytic subset A of
M such that the family F|M—A— CV|M— A—M— A admits locally
a reduction of the structure group G to the Cartan subgroup H
of G.

It is easy to see that the rest of A. Grothendieck’s [12]
statements as to reduction of the structure group holds in our
case locally in the sense described in the above Corollary 2.

Next we want to study global reductions of the structure
group. For that purpose we must restrict ourselves to parameter
spaces M which are either holomorphically complete spaces or
normal projective spaces. In this case the corollary of Theorem
2.6 shows the existence of a point €M and a meromorphic
section s in Bg over ¢V whose restriction to V, coincides with a
given holomorphic section in (Bg),—V,. It has been shown in
[12] that there is always a holomorphic section in (Bg),— V; which
maps every point into a regular point of the corresponding fiber.
Hence we are in the position to apply Lemma 4.1 which tells
that there is an analytic subset A of M such that the fiber bundle
FIM—A—YVIM— A admits a reduction of the structure group G
to the normalizer N of H. Hence we get

Theorem 4.2: Let §— V- M be a holomorphic family of fiber
bundles over the Riemannian sphere whose structure group G is
reductive and whose parameter space M is either holomorphically
complete or a normal projective space. Then there is a 1-codimen-
sional analytic subset A of M such that the fiber bundle
FIM—A— CV\M— A admits a reduction of the structure group to
the normalizer N of the Cartan subgroup H.

The group N operates on G by inner automorphisms; the
subgroup H is stable under that action. Therefore N operates
on both HY(X, Ox(H)) and H'(X, Ox(G)). The action of N on
H'(X, Ox(G)) is obviously trivial. Hence W=N/H operates on
H'(X, Ox(H)) and one has a natural mapping

10) H'(X, OX(H))/W—“——» H'(X, 0x(G)).

Suppose now that the hypothesis of Theorem 4.2 is fulfilled and
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that in addition M— A is simply connected. <V|M—A—-M—A is
a fiber bundle whose base space and whose fiber are both simply
connected. Therefore ¢{/|M— A is simply connected and the fiber-
ing with fiber W which is associated to the reduction of the
structure group to N is trivial. That proves that the element in
H'(M— A, Ouy-4(G)) defining FIM—A—C/|M—A is in the image
of @. A. Grothendieck [127] proved that for each fiber in ¢VV—M
the reduction to H is uniquely determined up to an action of W.
This together with the finiteness of W shows that « is injective.
Therefore we have

Corollary 1: Under the hypothesis of Theorem 4.2 and the
assumption that M—A is simply connected, the fiber bundle
FIM—A—VIM— A admits a reduction of the structure group to
the Cartan subgroup H; the reduction is uniquely determined up
to an action of W.

Corollary 1 shows that it is of some interest to calculate
H'(X, Ox(H)). Following [12] we denote the Lie algebra of H by
H. G reductive implies that H is abelian, and we have an exact
sequence O0—7 (H)— 9 —>H—-0 where the mapping H—H is
given by H>h— exp (27ih)€ H and =,(H) is the fundamental
group of H based in the neutral element. From this we derive
the exact sequence

(11) H'(X, Ox(4) — H'(X, Ox(H)) > H*(X, =,(H)) = H*(X, Ox(H)).

Ox(4H) is the direct sum of finitely many copies of O; hence it
is enough to calculate HY(X, O).

Let X be the total space of a holomorphic fiber bundle whose
base space Y is holomorphically complete and whose fiber is P’
Consider the category C of abelian sheaves over X, the category
C’ of abelian sheaves over Y, and the category C” of abelian
groups. Then we have the covariant left exact functors =,: C—C’
and H(Y, ):C’ —C”. It is well known that each sheaf is subsheaf
of some injective sheaf and that =, maps injective sheaves into
injective sheaves (cf. A. Grothendieck [117], Lemma 3.7.1); there-
fore we get H(Y, 7,(49))=0, ¢=1, for each injective sheaf G€C,
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Consequently there is a spectral sequence whose initial term is
E%%(Q) = HX(Y, 7,(9))

and which terminates at H*(X, G) equipped with a suitable filtra-
tion (A. Grothendieck [117], Theorem 2. 4.1). Applying everything
for G=0x=0(1), Theorem 2.6 shows that 7 (Oy) is analytically
coherent. We claim that 7,(Ox)=0 for ¢>1. In the case ¢>2
we show that there are arbitrarily small open subsets U of Y such
that H(= (U), Ox)=0. For any open subset U’ of Y there are
open subsets U which are holomorphically complete and have the
property that X —Y is trivial over U, i.e. that = '(U) is isomorphic
to UxP'. But Ux(]z|< o), Ux(0<]z|) forms an open covering
U of Ux P' whose elements are holomorphically complete. There-
fore a theorem of J. Leray [14] together with Theorem B of H.
Cartan and J. P. Serre [4] implies H/ (= (U), Ox) = H*(U, Ox) for
g=>1; but HY(U, Ox) vanishes for ¢>2, because U consists of
only two elements. An element of H'(‘U, Ox) is a holomorphic
function f(%, z) in Ux(0<|z|< o0); Cauchy’s integral formula

1
f2) =L | ra o %

12| =2

dt
g —— §f< 0%

shows that the cocycle f(«, z) is cohomologous to zero which
means that H'(U, Ox)=0. Thus we get finally E%2%(Ox)=0 for
(p, 9)===(0, 0). A trivial spetral sequence argument leads to

Lemma 4.3: Let X—Y be a holomorphic fiber bundle whose
base space is holomorphically complete and whose fiber is P'.
Then H (X, Ox)=0 for ¢>1.

Applying Lemma 4.3 to (11) we find

Theorem 4.4: Let G be a reductive complex Lie group and H a
Cartan subgroup of G. Suppose X is the total space of a holo-
morphic fiber bundle whose base space is holomorphically complete
and whose fiber is P'. Then there is a natural isomorphism

HY(X, Ox(H)) = H(X, =,(H)).

It may be remarked that it is not difficult to calculate



On holomorphic families of fiber bundles 465

H*X, =(H)) in concrete cases either by means of the spectral
sequence of the fiber bundle with total space X or by means of
the homotopy sequence of the fiber bundle and the universal
coefficient theorem.

5. Holomorphic families of vector bundles over holomorphic
families of compact Riemann surfaces.

)/ . . .
Let XY be a compact Riemann surface realized as covering
space of a compact Riemann surface Y ; the covering is supposed

to have ¢ sheets. Let z,, -, zkv be the projections of the ramifi-
cation points of X—Y, z, a point in Y—{z,, -, 2.}, and {x,, -+,
%, =p7'(2,). Any closed curve @ in Y—{z,, -+, 2,} which is based
in 2z, can be lifted into x,; denote the end point «, ,, of the lifted
curve by x,,. ©—a(x)is a permutation of {1, ---, g} which depends
only on the homotopy class of «; that establishes an anti-homo-
morphism of the fundamental group = /(Y —{z,, .-, 2.}, 2,) into

the symmetric group S,. For each permutation y of S, we define
the matrix p(y)=((@;;)) by a;;=08;y-1; which gives rise to an
anti-isomorphism of S, into GL(g, C). Altogether we get a homo-
morphism p: 7, (Y—{z,, -+, 24}, 2,) > GL(g, C). Such a homo-
morphism defines (cf. [3], [23]) a holomorphic vector bundle over
Y—{z, -, 2,} whose holomorphic (meromorphic) sections over the
open set UCY—{z, -+, 2,} correspond in a one to one way to
the set of holomorphic (meromorphic) functions in p~'(U). This
vector bundle is given as follows: choose an open covering U;,
i€l, of Y—{z, -+, 2,} by discs, choose in each U; a point y; and
assign to it a curve «; in Y—{z, -+, 2,} with «,(0)=z, and
a;(1)=y;; for z€ U;nU; choose curves [3; resp. B; joining y; resp.
y; and z in U, resp. U; and define the transition functions by

hij(z) = /1'(“.‘/81"81-1“71) .

Next we extend that holomorphic vector bundle over Y— {z,,
-+, 2;} to a holomorphic vector bundle Wy  over Y by means of
the following construction. Choose an open disc D, around gz,
such that any two of those discs are disjoint, pick a point d, in
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D.—{z2} and a curve v, in Y—{z, ---, 2,} with 9(0)=2, and
7{1)=d,; given a local coordinate ¢, in D, which vanishes in 2z,
there is a uniquely determined generator 6, of =,(D,— {z,}, d,) such
that the analytic continuation 8, log ¢, of log £, along §, is log £, +
27, The matrix p(v0S,y."') can be written as PQ,P.' where P,
is a matrix having in each row exactly one non zero element
which equals 1, while @, splits into blocks B,,, ---, B,,, each of
which has the form

01 0
(1)) resp.(g A
W1 0 0

Suppose B,, has ¢q,, rows (¢,+ *** +q...=9q). Let 7., be a certain

branch of £/?« in d, and &,=exp Zﬂii. Then the matrix
KA

1 » Tea ’ 'Tf)\ y °°° TK)\qM—l
Mx)\ = ; ex)\'rx)\ ’
‘1, Gqux)‘_l(]'rq ,
has the properties
8,M,, = B M,,, (det M) = const-tI* .

Therefore the matrix

/(M 0 \
Mx = PK( )) Px_l
0 M.,..

is not singular for #,==0 and fulfills
San = /L('YKSKFY:I).MK .

In order to extend the above constructed vector bundle we have to
define transition functions %;(2) for z€ U;,nD,. For this purpose
we choose a curve & in D.— {2z} joining d, and z and set

hix(z) = ﬂ(ai8i8:17:1)°(5K°Mx) .

This definition is independent of the choice of & and fulfills the

1) For the purpose we fix some branch of log#, in d,.
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compatibility relations; hence it gives rise to a holomorphic vector
bundle WX‘Y_>Y'

Lemma 5.1: Suppose U is an open subset of Y. Then the
module of holomorphic sections in Wy, vy over U (over the ring of
holomorphic functions in U) is naturally isomorphic to the module
of holomorphic functions on p~'(U). The module of meromorphic
sections in Wy, y over U (over the ring of meromorphic functions
in U) is naturally isomorphic to the module of wmeromorphic
Junctions on p~'(U).

Proof : Cf. [23]

We will use the stated property of Wy y—Y in the following
construction. Let G,(X) be the set of equivalence classes of holo-
morphic vector bundles of rank » over the compact Riemann surface
X; G(X)=\UG,(X) is eqipped with an additive (Whitney sum)

and a multiplicative (Whitney product) structure. Let X£>Y be a
realization of X which has g sheets. Then we construct (cf. [2])
a natural mapping

P G(X) — G(Y)

as follows. It is well known ([7], [23]) that for each open subset
USY the restriction of WeG,(X) to p~'(U) is holomorphically
trivial. That means W is determined by certain transition func-
tions g;,(x): p7(U;)np~'(U;) > GL(r, C) resp. gu(x): p~(U)np~'(Di)
—GL(r, C). By means of these transition functions we define for
zeUnU;»

gij(aiﬁixl)g . 0
o aso ([ s ) ooner
0 :
and for z€ U;n D,
gi,c(aileixi)g ) 0 \\
o o= gz aoue
0 :

1) By A® B we denote the matrix ((ﬁlb)"l Aby,

matrix with » rows.

)) By 1, we denote the unit

mm



468 Helmut Rohrl

The matrices (12) and (12’) are holomorphic functions with values
in GL(qr, C); it is easy to see that they fulfill the compatibility
relations and thus define a holomorphic vector bundle p«(W) over
Y. Denoting the lifting map G(Y)—G(X) by p* and the canonical
line bundle over X by Ky, one verifies immediately (cf. [2]) the
formulas

p*(l) = WX. Y>» p*(Gr(X)) < qu(Y)v (p1°pz)>|< = Px*opz* ’
(13)  P(WEW') = ps(W) @ ps(W'), ps(WR p*(W")) = p+(W) QW'
p*(W* ® KX) = (p«( W))* RKy.

Theorem 5.2: Suppose U is an open subset of Y. Then the
module of holomorphic sections in p (W) over U (over the ring
of holomorphic functions in U) is naturally isomorphic to the
module of holomorphic sections in W over p~'(U). The module
of meromor phic sections in p(W) over U (over the ring of mero-
morphic functions in U) is naturally isomorphic to the module of
meromor phic sections in W over p~'(U).

Proof : A holomorphic section in p(W) over U is given by holo-
morphic vectors G;(z) resp. G(z) such that G,(2)=G;;(z2)G;(z) resp.
G(2)=Gi(2)G(2) in U;nU;NU resp. U;nD.NU holds. Denoting
the vector consisting of the components r(n—1)+1, .-+, rn of G,(2)
by G?%(z) we define

g(a.B:x,) = Gi(p(a;8;x.,)) .
Then we get from (12)

g(,B;x,) = gij(ailgixv)gj(aiﬁjxﬂﬂ,ﬂiﬂj-“*’-j’l(y))
= gi(a.B;x,) 8,387 a7 a;B;x,) = g;(c;3;x,)g;(:B;:%,).
That means that the collection of vectors g;(«;3;x,) forms a holo-
morphic section in W over p-(U—Un{z,, ---, z,}). Now we have

to check the behavior of this section over the ramification points.
The equation G;(2)=G;(2)G(z) can be written in the form

giaBx) ¢ 0
Gi(z) — |:(( ...... O ....... ...... ))(178)/6(“,75;5:1'7:1))]'[(L@&Mx)'Gn(z)}

\
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Defining g.(v.6x,) by the components r(n—1)+1, ---,rn of
(1, ®EM,)G(2) we see that again

gi(aiﬁixv) = gix(ailgixv) gx(ryxexxwiﬁisx_l')'x‘l(l’))
= g ¥:B;x,) gc;8;x,)

holds. The fact that the matrix §M, may be interpreted as a
holomorphic matrix in p~'(D,) shows that every component of g,
is a holomorphic function in p~(D,). In addition we have

(1, ® EM)G(2) = (1, @ w(7.871)) (1, @ EM) G(2)

which shows that the vector g.(v.& q(,,)) is the analytic con-

Fr v
tinuation of g(v.&x,). Hence we have a natural mapping of
H(U, Q(px(W))) into H°(p~'(U), &(W)). This mapping is obviously
injective. The fact that it is surjective follows immediately from
Lemma 5.1. The second part of Theorem 5.2 can be proved in

a similar way.
Corollary: Q(px(W))=p,(2W)).

Proof : According to an earlier remark H°(U, p,(2(W))) is iso-
morphic to HYp '(U), &(W)) which in turn is isomorphic to
H(U, Q(p+(W))).

This corollary shows that p.(W) depends only on W and the
realization X—Y, and not on the special construction we used.

It may be remarked that Theorem 5.2 together with the last
of the formulas (13) and the theorem of A. Grothendieck [12] and
G. D. Birkhoff [1] on the splitting of holomorphic vector bundles
over the Riemannian sphere furnishes an elementary proof of the
Theorem of Riemann-Roch for holomorphic vector bundles over
compact Riemann surfaces. This idea will be carried over to
higher dimensional spaces in a subsequent paper.

Theorem 5.3 (Cf. [24]): Let B— V—>M be a holomorphic family
of vector bundles over a holomorphic family of compact Riemann
surfaces. Then the set of points {t:dim H(V,, Q(B,))>j} is an
analytic subset of M for any natural number j.

In order to prove Theorem 5.3 we need
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Lemma 5.4: Let CV—M be a holomorphic family of compact
Riemann surfaces of genus g >1 whose parameter space is normal.
Then the subset of CV consisting of all Weierstrass points of fibers
of V=M is an analytic subset of V. .

Proof: Let A, be the singular locus of M. p (A, as well as A,
is a 2-codimensional analytic subset [16],[9]. First we are dealing
with CV|M— A,—M— A, and prove that the set of all Weierstrass
points is a, 1-codimensional analytic subset of <|M—A,. It is
sufficient to show that this is true locally. Hence we have to
consider a holomorphic family ¢{” — U of compact Riemann sur-
faces whose parameter space is a polycylinder. Let B — ¢l be
the bundle of contravariant holomorphic vectors tangent to the
fibers. Then we have the equality dim¢e H(V,, Q(B}))=g and
therefore Theorem 18.1 of K. Kodaira and D. C. Spencer [14]
gives the existence of holomorphic differential forms of degree 1
®,(v), -+, o (v) along the fibers whose restrictions to the fiber V,
form a basis of H(V,, Q(B))) for any point # of a suitable
neighborhood U, of 0€ U. Let v, be a point of V, and % a fiber
preserving biholomorphic mapping of some neighborhood U of v,
into p(U)xC. Then there are holomorphic functions f£,(«, 2), -,
£, 2) in k(U) such that '

a)l(v) = h*(fl(u> Z)dZ), E) wg(v) = h*(fg(u) z)dz) .

The determinant of ((dﬁ;(zi';z—)»sv g is obviously holomorphic
in #(U) and the set of its zeros is exactly the set of all Weier-
strass points on fibers passing through A#(U). This shows immedi-
ately that the set of all Weierstrass points of <1 — U forms an
analytic subset of C{” which is 1-codimensional in each of its
points. This proves that the set A’ of all Weierstrass points of
CPIM—A, is a 1-codimensional analytic subset of CV|M—A,.
According to a theorem of R. Remmert and K. Stein [19], the
closure A of A’ in ¢V is also an analytic subset of CI/. It remains
to be proved that A is the set of all Weierstrass points of C{.
Let £ be a point of the singular locus A,. Because A, is of

positive codimension, there is a 1-dimensional analytic subset of
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some neighborhood of ¢ passing through ¢ and hitting A, in this
neighborhood only in #; without loss of generality we may assume
that this 1-dimensional subset B is a manifold in the induced
structure. Applying the above result to the restriction <¢|B— B
we find that each Weierstrass point of the fiber V, belongs to the
closure A of A’. In order to prove that a non-Weierstrass point
does not belong to A we proceed in the same way using the fact
that the set of all Weierstrass points in ¢{/| M — A, has only finitely
may irreducible components. After this preparation we come to the

Proof of Theorem 5.3: Because of Theorem 1.1 it is again
sufficient to assume that M is normal and to prove our theorem
only locally. Let V, be the fiber belonging to the point f{,€éM
and v, a point in V, which is not a Weierstrass point. Suppose
/i is a fiber preserving biholomorphic mapping of some neighbor-
hood U of v, into p(U)xC; let h(v,) be (4, z,). Then there is a
neighborhood U’ of ¢, such that none of the points #7'(¢, z,) is a
Weierstrass point of the corresponding fiber : according to Lemma
5.4 the set of all Weierstrass points is closed. The set A of
points A7'(¢, z,), t€ U’, is a 1-codimensional analytic subset of U’.
The sheaf of germs of holomorphic functions in ©{|U’ which
vanish on A is obviously the sheaf of germs of holomorphic sec-
tions in a holomorphic line bundle C— | U’. According to the
construction we get for the line bundle C=C"*"' the relation

dime H(V,, &(C,) =2, telU’.

Denoting the singular locus again by A,, Theorem 18.1 of K.
Kodaira and D. C. Spencer [14] shows that for each point £ in
U’ —U’'NnA, there is a neighborhood U, and a meromorphic func-
tion f(v) in ¢V| U, whose restriction to each fiber V,, €U, , is a
meromorphic function of (exact) degree g+1. This means that
the mapping

YU 3v— (p), f@)) € U, x P
realizes C{|U, as a covering space of U, xP'. The covering

P
av Utl—t> U, x P' has exactly g+1 sheets and is unbounded (but
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ramified). In order to study the set of points in U, X P' over
which <V|U,, is ramified we have to consider the meromorphic
function F(¢, 2)=f(h7'(¢,2)) in Unp*(U,). The support of the

divisor of a—E%i) is exactly the set of ramification points. There-
Z

fore the set of points in V| U, in which V| U,li U, xP' is
ramified is a 1-codimensional analytic subset of <{/|U,. Its pro-
jection A into U, x P' is also a 1-codimensional analytic subset of
U, x P', according to a theorem of R. Remmert [18]. From the
geometrical properties of the covering “V|U, —U, x P' it is easy
to see that P;!(A) does separate nowhere in <V|U, ; hence the
covering in discussion is an analytic covering [9]. A being an
analytic subset of U, X P' implies the existence of a neighborhood
U;, of t, and of pairwise disjoint discs D,, ---, D, such that

(i) An(UL,xP)C Ulx \J D,
(ii) for each connected component V,. of <Y|U; over U; xD,,

k=1, ---, k, there is a biholomorphic mapping #. of that
- component into U;, xC.

Using the functions Vuﬁ—» U;,xC— C instead of 7, we construct
as at the beginning of this section a holomorphic vector bundle
W, over U; X P' having the property (cf. Lemma 5.1) that the
set of holomorphic sections (meromorphic sections) in W, over an
open subset U, of U; x P' corresponds in a one to one way to the
set of holomorphic functions (meromorphic functions) in P;}(U,).
Going back to the family B|U’'— V| U’— U’ we found for each
point #, € U'—U’nA, a neighborhood U% and the bundle W, —
U; x P'. Using this bundle and the covering mapping P, we can
construct the holomorphic vector bundle P,«(B|U:)— U, xP' in
an analogous fashion as we did before (for a single fiber). This
vector bundle has the property

(14) dime H(V:, X(By)) = dime H'(t x P', &P, (B|U1))), teU:,.

Applying Theorem 2.2 to the vector bundle P, (8| U:)—U;, x P
we find that there is a minimal 1-codimensional analytic subset
A, in U; such that the bundle P, «(B|U:,) is locally trivial over
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U,,—A,. If we are able to show that for any choice of ¢, ¢, in
U —UnA, the relation A, "U,nU,=A,nU,nU,holds, then we
have an analytic subset B, =\/{A4,: 1€ U -UNnA} in U—-UnA
which is of codimension 1 in each of its points and has the pro-
perty that the vector bundles P, 4«(B|U;,) are locally trivial over
the complement of B, . Hence we have a similar situation as in
the proof of Theorem 2.3 ; proceeding as in the proof of Theorem
2.3 and using the equality (14) we see that Theorem 5.3 holds
locally and thus globally. What remains to be shown is the
equation A, "U, "U,=A,nU,NnU,. For this purpose we have
to study the projection mappings P,. From the definition it is
immediate that the functions defining P, and P, differ in U; N UJ,
only by a linear transformation (for each fiber) resp. by a holo-
morphic mapping of that intersection into the 1-dimensional affine
group (over the complex numbers). But such a mapping of the
base space (U;nU;)xP' of the fiberings P,«(B|U;) resp.
P,«(B|U;,) does obviously not disturb the local triviality ; hence
the uniqueness of A, (cf. Theorem 2.2) shows that the required

equation is true.

6. Applications.

Let X be a compact Riemann surface of genus g >1. A
Weierstrass point x in X is a point such that the vector space of
those meromorphic functions f on X whose divisor (f) fulfills
(f)+k-x>0 for some integer 1<<k<g has a dimension bigger
than 1. Correspondingly we say that an »-tuple (x,, ---, x,) of
points of X is a Weierstrass n-tuple if there are non-negative
integers k,, ---, k, with k,+ --- +k,<g such that the vector space
of those meromorphic functions f on X whose divisor fulfills

(15) (f)+kix+ - +k,x,>0

has a dimension bigger than 1. We consider the set of all Weier-
strass n-tuples as a subset of X" and prove

Theorem 6.1: Let X be a compact Riemann surface (of genus
>1). Then the set of all Weierstrass n-tuples is an analytic
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subset of X" and therefore a complete projective variety.

Proof : We consider the trivial family X"xX—X". Let v=(x,,
, X,, %) be a point in X”x X and choose simply connected (and
connected) neighborhoods D; of x;, i=0, -+, n, such that D,nD;=¢
provided #;4=x; and D;=D; in case x;=x;. Denoting a local
coordinate in D; which is centered in x; by £(x) we define

Folois s 3as 3) = TLG) =L, (s - DEDX e XD,

where e¢; equals 1 in case x,=x, and is zero otherwise. Considering
two points » and ¢/, we define g,,(y., -+, ¥)=Ff(P, s V(D)
-+, ) in the intersection (D, X -+ X D)N(Dix --- X Dg). Fulfilling
the compatibility relations, the functions g, may serve as
transition functions for a holomorphic line bundle B, ... ,,—> X" x X.
Therefore we have a holomorphic family of line bundles B, ...,
—X*"xX—X". The restriction of this family to the fiber over
(x,, =+ x,) has the property that its vector space of global holo-
morphic sections is naturally isomorphic to the vector space of
meromorphic functions fulfilling (15). Therefore (x,, -+, x,) is a
Weierstrass n-tuple if and only if for some %, -+, &,

dim(,‘ HO( I/(xl.m.x,,) ’ Q(Bk1,~ "-xn))) 2 2

“knCay,-

holds. Because there are only finitely many possibilities for
k., -+, k,, Theorem 5.3 proves the statement of Theorem 6. 1.

Let X be a compact Riemann surface of genus g >1. For each
point x € X there are g natural numbers 1=/,(x)</,(x) -+ <l (x)
(gap numbers) such that the vector space of meromorphic functions
fon X with (f)+(y(x)—1)-x>0 has the same dimension as the
vector space of meromorphic functions f on X fulfilling (f)+/,(x)-
x>0. A point for which /,(x)==g is a Weierstrass point; the
sequence (/,(x), --+, /,(x)) is called its type.

Suppose CV—QM is a holomorphic family of Riemann surfaces
(of genus g >1). Then we want to determine the structure of
the set of all Weierstrass point (of fibers in ¢{/— M) of given type
(Z, ==+, l;). For that purpose we consider the family CUx CV/— Y/
given by the projection mapping onto the second factor. For each
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point (v,,v,) in CUVX V we construct neighborhoods U, of v, and

U, of v, such that

(i) UnU,=¢ provided v,=t=v,, U,= U, provided v,=v,

(ii) there is a fiber preserving biholomorphic mapping /%; of U,
into p(U,)xC, i=1, 2.

For each point (v, v,) € CUx €I and each integer />0 we define

a holomorphic function

f(ul.u2>(y1 ’ yz) = (pl(hl(yl)) —pl(hz(yz)))”(”r”z) ’ (JG ’ yz) € U1 X Uz

where p, denotes the projection p(U)xC—C, and &(v,, v,)=1 in
case v,=v, and is zero otherwise. The functions

g(vl,vp). (v,/.vzl)(yl ) J’z) = f(nl.uz)(yl ’ yz)f@i’.v{)(}’x ’ .yz)

define a holomorphic line bundle B,— CI/x 7 and therefore a
holomorphic family of line bundles B,— CUVx CV—Cl/. Now we
consider the subset 9¥ of CU/xCl consisting of the points
(p7'(p(v)), v). I is the counterimage of the diagonal under the
mapping pXp: CUx Y- Mx M and therefore an analytic subset
of CUVx ). Equipped with the induced structure, 9% is a complex
space. It is easy to see that 99— CU/ (projection onto the second
factor) is a holomorphic family of complex spaces (with
singularities). Denoting the restriction of B,—CUVx Y to W by
B,— 9 we have a holomorphic family of holomorphic line bundles
B,— W — . The restriction of this family to the fiber in 9 — C/
which belongs to v€ <l is a line bundle B,,—V,.,,xv whose
vector space of global holomorphic sections is naturally isomorphic
to the set of all meromorphic functions f on V,,, fulfilling
(f)+7-v>0. That gives us the opportunity of applying Theorem
5.3. Consequently the set of all Weierstrass points in ¢}/ whose
type has first component /, is given by the set of all points v
fulfilling

dim HO( va(v)>< U> Q(Blk.v)) = dim HO( Vp(v) X U, Q(Bl;z—l.n)) = lk+ 1 _k
and hence according to Theorem 5.3 equal (A,—B.) n(A,—B})

where A,, A}, B,, B, are analytic subsets of ¢{/ with B,ZA,,
B, A,;. Therefore an easy set theoretic argument proves
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Theorem 6.2: Let CV—M be a holomorphic family of compact
Riemann surfaces (of genus>1). Then the set of all Weierstrass
points in CUV of given type is of the form A—B where A and B
are analytic subsets of <V and B A.

Corollary (cf. H. E. Rauch [17]): Let &V—M be a holomorphic
family of compact Riemann surfaces (of genus >1) whose para-
meter space is normal. Then the set of all Weierstrass points in
SV for which [,>n is an analytic subset of UV for any choice

of n.

University of Minnesota
Universitat Miinchen

LITERATURE

[1] G.D. Birkhoff: A theorem on matrices of analytic functions. Math. Ann. 74
(1913), 122-133.

[2] A. Borel and J. P. Serre: Le théoréme de Rieman-Rach. Bull. Soc. Math. France
86 (1958), 97-136.

[3] H. Cartan: Espaces fibrés analytiques complexes. Séminaire Bourbaki (1950),
1-9.

[4] H. Cartan: Idéaux des fonctions analytiques de n variables complexes. Ann.
Sci. Ec. Norm. Sup. 61 (1944), 149-197.

[5] H. Cartan: Séminaire 1951/52, 1953/54.

[67] H. Cartan: Prolongement des espaces analytiques normaux. Math. Ann. 136
(1958), 97-110.

[77] H. Grauert: Analytische Faserungen iiber holomorph-vollstindigen Riumen. Math.
Ann. 135 (1958), 263-273.

[8] H. Grauert and R. Remmert: Bilder und Urbilder analytischer Garben. Ann.
Math. 68 (1958), 393-442.

[9] H. Grauert and R. Remmert: Komplexe Rdume. Math. Ann. 136 (1958), 245-318.

[10] H. Grauert: Ein Theorem der analytischen Garbentheorie und die Modulriume
komplexer Strukturen. Inst. Hautes Etudes Sci., Publ. Math. 5 (1960), 1-64.

[11] A. Grothendieck: Sur quelques points d’algébre homologique. Tohoku Math. J.
9 (1957), 119-221.

[12] A. Grothendieck: Sur la classification des fibrés holomorphes sur la sphére de
Riemann. Am. J. Math. 79 (1957), 121-138.

[13] K. Kodaira and D. C. Spencer: On deformations of complex analytic structures.
I. Ann. Math. 67 (1958), 328-401.

[14] K. Kodaira and D. C. Spencer: On deformations of complex analytic structures.
II. Ann. Math. 67 (1958), 403-466.

[15] J. Leray: L’anneau spectral et 'anneau fibré d’homologie d’un espace localement
compact et d’une application continue. Journ. Math. Pures Appl. 29 (1950),
1-139.



[16]
[17]
[18]
[19]

[20]
[21]

[22]
[23]
[24]

On holomorphic families of fiber bundles 477

K. Oka: Sur les fonctions analytiques de plusieurs variables. VIII. ]J. Math.
Soc. Japan 3 (1951), 204-214, 259-278.

H. E. Rauch: Weierstrass points, branch points, and moduli of Riemann surfaces.
Comm. pure appl. Math. XII (1959), 543-560.

R. Remmert: Holomorphe und moromorphe Abbildungen komplexer Raume. Math.
Ann. 133 (1957), 328-370.

R. Remmert and K. Stein: Uber die wesentlichen Singularititen analyitscher
Mengen. Math. Ann. 126 (1953), 263-306.

H. Rossi: Analytic spaces, Part II, Princeton University (1960).

J. P. Serre: Quelques problémes globaux relatifs aux variétés de Stein. Centr.
Belg. Rech. Math., Colloque Bruxelles (1953), 57-68.

K. Stein: Analytische Zerlegungen komplexer Riume. Math. Ann. 132 (1957),
63-93.

H. Rohrl: Das Riemann-Hilbertsche Problem der Theorie der linearen Differential-
gleichungen. Math. Ann. 133 (1957), 1-25.

Th. Meis: Die minimale Blidtterzahl der Konkretisierung einer Kompakten
Riemannschen Fliche. Schriftenreihe Math. Inst. Univ. Miinster (1960).



