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1. In the previous paper, we obtained the equation (4. 3) :

( 1)z  =  y ( t ,  r)+ r(sin 0 sin cpe4 + sin 0 cos cpe,+ cos 0e6)

which was the general imbedding function of the Schwarzschild
space-time V4 in to  a pseudo-euclidean E 6 . The function y (t, r) in
(1) should be chosen as satisfying (4. 8) :

( 2 )

/ a y  a y \  r  —2m / a y  a y
\at '  at / r \ a t  ar
/ a y  a y 2 m  
\ a r  a r r —2m .

= o ,

Conversely, we can easily verify by a direct calculation that the
four-dimensional subspace V ' in E 6 defined by (1) has the induced
metric which is the same as the one of the Schwarzschild space-
t im e . The geometrical meaning o f (2) i s  as follows. Since y  is
a three dimensional vector-valued function o f two variables t  and
r, it defines a two-dimensional subspace V' in a pseudo-euclidean
E 3 , and the equation (2) shows that the induced metric of the V' is

( 3 ) d s , r  2 m  d t , 2 m   dr 2  .
r —2m

Therefore the y  may be regarded as the imbedding function of
th e  two-dimensional Riemannian space V ' with th e  indefinite
metric (3) into the E 3 . Thus we have
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Theorem 1. The imbedding problem of the Schwarzschild space-
time V' into a pseudo-euclidean space E 6 is equivalent to the one of
a two-dimensional Riemannian space V' with the indefinite metric (3)
into a pseudo-euclidean space .E3 . Namely, i f  y (t, r) is any imbedding
function of the V ' into an E 3 with a signature 61 +6 2 +6 3 ,  then the
function (1) gives an imbedding of the Schwarzschild space-time V'
into a  pseudo-euclidean space E 6 w ith  the signature &,+&2 +8 3 —3,
where 61 , 62 and  63 =  ± 1 .  And conversely, any imbedding function
of the V ' into an E 6 is obtained by this way.

2. In this paper, we shall give another proof of the theorem.
The following method of the proof is closely connected with the
one of Kasner's paper [1] and clarifies the freedom of the imbed-
ding.

We now introduce a three-dimensional Riemannian space V 3 (t)
with the positive-definite metric

ds 2 = g u dxidxf ,i ,  j  =  1, 2, 3,

 , g „  =  r 2 , g „ 7-2 sin 2 8 ,
r —2m

g i ;  = 0 , i j  , r >2m  ,

which is obtained from the Schwarzschild metric by putting t=
constant and changing the algebraic s ign . We shall call the V 3 (t)
the stationary hy persurface in the V ' .  The Christoffel's symbols

j, k = 1, 2, 3) and the curvature tensor R i i k i  ( i ,  j ,k ,1 =1 , 2, 3)
o f th e  V 3 (t) are given as follows.

1
—

r ( r  —

m

2 m )
, 111 —  112 —  L'L

= 123 =  cot 8, =  — (r —2m)

E 3=  (r —2m) sin 2 8 ,  1 3=  s in  0 cos O, the other r i k  =  0 ,

R1212 — 2mr sin2 8 , R ,,,, —  —   m   sin2 ,
r —2m — r —2m

the other R i j k i  =  O.

3. We first consider the stationary V 3 (t) and shall prove
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Theorem 2. The stationary  hy persurf ace V 3 ( t )  in the V ' can
be imbedded in the euclidean space E ' with the positive-definite metric,
and then the V 3 ( t )  is  rigid*.

Proof. The Gauss and Weingarten formulas of W M  in an
pseudo-enclidean E 4 (I-(1. 5)) are

( 4 ) V jui -  ebi i t  ,  e  -  ± 1 ,

( 5  )v i n  =  -  g i k buuk

and the Gauss and Codazzi equations (I - (1. 7), (1. 8)) are

( 6 ) eRiik i = bikbp - babik ,
(7 )k b i ; i bi k  =  0 .

Following the general theory developed by T. Y. Thomas [2], we
shall solve the algebraic equation (6). First we get from (6)

Net (b11)] 1 = eR 2 3 2 3 e R „ „  e R 2 3 1 2

e l?„„ e R „„ e R „„

eR1 2 2 3 e R 123 , e R 1212

  

—  eR 2 3 2 3  R 3 1 3 1  RI
2 1 2 e  

2m3r s in ' 
(r -2m )2

 > 0 .

Hence we must take the sign e = +1, and the b i ;  are given by**

bi • = R1 1 lJRIklk b i; = 0, i , j, k  =I= .
(R 2 3 2 3

R
3131

R
1212Y

I2

Thus we have the unique system of solutions of (6) as follows.

b „ -   , 11 , 2 =  - (2mr) v 2

(r -2m)(2mr) 112

b „ = - (2 m r) 1 1 2 s in ' , bi ;  =  0, i

B y substitution from (8) into (7), we see easily that these (8)
satisfy (7) automatically. Therefore the PM under consideration
can be imbedded in the euclidean E ' .  It follows from det (b11 )  I  0
that the hypersurface W M  in E '  is o f type three in the sense
o f T . Y. Thomas, and hence we have the rigidity of the 17 3(t)
regarded as a hypersurface of the E4.

* See N of [2]. ** See (9.4) of [2].

8 )
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4 .  Next, we shall find the imbedding function u of the V 3(t)
into E 4 . The Gauss formula (4) is now rewritten in the forms

a2u rn a u— —
ar 2r ( r  — 2 m ) a r

+  

(r —2m)(2mr)v2
n ,

5 2 u au— — (r —2m) — — (2mr) 1 /2n ,
ao2a r
52u — — (r — 2m) sin2 0 

au  
— sin 0 cos 0

3 u
 (2 m r) 1 1 2 sin2 n,aw2 Sr so

a2u 1  aua 2 u
 c o t  O

au a 2u1  au
arao r SO ' Sea(/ ' ap • arap r ap •

and the Weingarten formula (5) is expressed in the forms

Sn —  ( 2 m r ) v 2 au
Sr2 r 2  S r '
an(10) _ (2mr)v 2 au
ao r2 S O '
Sn( 2 m r) 1I2 au
ay r2 S p  •

Furthermore, the imbedding function u should satisfy the isometry
conditions :

<au
au ra u  au> — r 2

S r ' S r r  — 2 m '5 0  561
/ a u  au> — r 2 sin2 O,
\ap ' Sep

/au a u \  _ /au_  /au au 
S r ' ao S r ' ap/ \ao '

and the normal n should accept the normality conditions :

<a "  , n> — <a u  , n> = a"  , n 0 ,
Sra o 'Sp

<n, n> = 1.

The solutions u  and n  of the equations (9) and (10) are easily
obtained by

(1 3 ) u =  — 2[2m(r —2m)] 1/2e,+ r sin 0(sin pe4 + cos (pe,)+ r cos 0e6,

( 9  )

—  0 ,

(12)
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(r —2my 12( 2 m r ) 112 .(1 4 )  n — e1-1  sin 0(sin pe, + cos cpe,)+ cos 0e6 .

Then the equations (11) and (12) imply that the e„ e,, e , and ef i

are orthonormal unit vectors.

5. We now return to the Schwarzschild space-time V'. Its
metric is expressed by

rd s  =  2mat 2

 ( d s 2 o f th e  V3 (t)) ,2 

and so the equation (13) shows that the Schwarzschild metric ds2 is
written in the form

(15) d s' — r  — 2 m  de — (dy) 2  ( C 1 Z 4 ) 2  (d z 5)2 — (d z 6)2

where we put

(16)
y =  2 [2 m (r  2 m )] 1/2 , z , = r sin O sin p
z , = r sin 0 cos .7) , z ,  =  r  cos 0 .

The equation (15) is equivalent to the equation (4 ) o f  Kasner's
paper [ 1 ] .  The y is the function o f r  only and we have

r  — 2 m

dt 2  —(dy)2 — 
r  — 2 m  d t ,  2 m  

 dr
,  

.
r —2m

which is the same as (3). Therefore we have proved Theorem 1.

6 .  Consequently we may say that our imbedding problem of
the Schwarzschild space-time V' is reduced to the one of the
V2 w i th  the metric (3 ) into an  E 3 . T h e  Christoffel's symbols

j, k =0, 1) of the V2 are given by

r —2m
2r 2

1 111 —   , L 11r (r — 2m) 2(r —2m)'

and the curvature tensor of the V' is

(18) 3m
R 0 1 0 1

•2r3

1  00 L 01
= t l  =  F ? , =  ,

(17)
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Hence the Gauss and Codazzi equations of the V ' in the E 3 are
written in the forms

3m(19) boob„— (b01) 2 =  
2 r

3
&& ± 1

Ç
aboo a b o i  m br  2m0  ,

(20)
ar a t  r(r-2 m ) 2r2
ab„ _ab„ r+2m  b o i _  0

Sr a t  2r(r-2m )

The imbedding function y and the normal m  are the solutions of
the Gauss

(21)

and Weingarten formulas as follows :
5 2y  r- 2 m ay  ± b o o n z

at 22 r 2 S r

a 2 1 1  m   1-b01 n,
Star r ( r - 2 m )  at

1 ay 
2 ( r - 2 m ) a r  

+b,int ,

am — —  r  boo  '
ay _L r —2m 

b o ,
ay 

'S t — 2m  at 2 m  -  Sr

Smr  a y  L r — 2m  ayboi  '
b1,-- .

Srr  — 2 m  at 2m  - Sr

T h e  three-dimensional vectors y and m  sa tis fy  the well-known
algebraic conditions :

S y  a y 2 m a y  a y
Sr '  Sr r —2m' "S r a t

(23)
/ a y  a y r —2m
\' St ' aV r

(24)
{ a y  m >  / a y  n i>

Sr ' \ a t  '
<m, m> 1,

where the symbol <, > is the inner product in
known, a  sy stem  o f  solutions bi ;  o f  (19) and
to-one to  an imbedding function y  of the V 2

the E 3 )  and hence to an  imbedding f unction z
space tim e V '.

a2y

ar 2

(22)

— 0 ,

the E 3 . As is well-
(20) corresponds one-
(within a motion in
of the Schwarzschild



On the imbedding of the Schwarzschild space-time II. 69

7. For example, we consider the case where b „, b „ and b„
in (19) and (20) do not depend upon t. These bi ;  are immediately
given by

(25)

( b o o ) , m(r —2m) ±  c2
 + c' (r —2m)

2r 4

b c(r)v2
r —2m

b  —  
 1   ( 3m

+l l
b „ 2 r 3 ( r - 2 m ) 31

where c  and c ' are integral constants. On the other hand, we
have obtained the stationary solutions a t  the end of the previous
paper. If we deal w ith the stationary solution (i), then we have

( d y ) 2+  (d y2 ) 2 (d y 0 2 2m d t 2 2m   d r y
r —2m

from which it follows that

a- Y-  =  ( 7 112 cos  t - 7 v 2 sin
CI)

t  

at k 
a2 y (  7 1 / 2  s in

at2
t 7 1 / 2 t „
k '

 k   cos  k  ,  )  ,

a 'Y —  m cos  tm
t

a tar r271/2
k r2711

2
 sin , o ),

m  = (p  sin t  ,  p cos  t   , p
k r 27112f 1)

where we put

r —2m 1,2 +m le
7  - P 2r3

Hence the equation (21) gives

b„ = 0 ,  ( b 00)2 
r  — 2 m  (   m  

r \2 r 3 k 2

1These are obtained from (25), if we take c = 0 and c' = 1 7 . Similar-
ly  w e can  verify  that the other stationary solutions ( i i ) and (iii)
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1are special cases of (25), the former being c=0, c'= and the

the later being c=0, c ' =0 . Thus we see that the stationary solu-
tions in the prev ious paper are the special cases o f  the solutions
(25), where we put c=0.
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