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1. In the previous paper, we obtained the equation (4. 3):
(1) z = y(¢, r)+7(sin 0 sin pe, +sin 0 cos pe,+ cos Oe;) ,

which was the general imbedding function of the Schwarzschild
space-time V* into a pseudo-euclidean E°. The function y(¢, 7) in
(1) should be chosen as satisfying (4. 8):

<81 oY\ _ 77— 2m <8y ay

ot ot
(2)
<8_y oy =__2_"L
or’ or r—2m’

Conversely, we can easily verify by a direct calculation that the
four-dimensional subspace V* in E° defined by (1) has the induced
metric which is the same as the one of the Schwarzschild space-
time. The geometrical meaning of (2) is as follows. Since y is
a three dimensional vector-valued function of two variables ¢ and
7, it defines a two-dimensional subspace V? in a pseudo-euclidean
E? and the equation (2) shows that the induced metric of the V* is

(3) dst = T=2Mgp 2m .
7 r—2m

Therefore the y may be regarded as the imbedding function of
the two-dimensional Riemannian space V? with the indefinite
metric (3) into the E® Thus we have
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Theorem 1. The imbedding problem of the Schwarzschild space-
time V* into a pseudo-euclidean space E° is equivalent to the one of
a two-dimensional Riemannian space V* with the indefinite metric (3)
into a pseudo-euclidean space E°. Namely, if y(t, r) is any imbedding
function of the V?* into an E® with a signature & +&,+&,, then the
Sunction (1) gives an imbedding of the Schwarzschild space-time V*
into a pseudo-euclidean space E° with the signature & +8&,+8,—3,
where &, &, and &==+1. And conversely, any imbedding function
of the V* into an E° is obtained by this way.

2. In this paper, we shall give another proof of the theorem.
The following method of the proof is closely connected with the
one of Kasner’s paper [1] and clarifies the freedom of the imbed-
ding.

We now introduce a three-dimensional Riemannian space V3(¢)
with the positive-definite metric

ds® = g;,-dxidxj ’ i; j = 1, 2’ 3’

v 2 2 2.2
, En=7", Gu=17r'sin’0,

& = r—om

g;=0, i=l=7, r>2m,

which is obtained from the Schwarzschild metric by putting ¢=
constant and changing the algebraic sign. We shall call the V*Q#)
the stationary hypersurface in the V*. The Christoffel’s symbols
5. (, 4, k=1, 2, 3) and the curvature tensor R;;. (7, j, k, /=1, 2, 3)
of the V?(¢) are given as follows.

Al m Al A 14 Al ]'
l%l = _1’(7’—2%)—’ 131 = 1%2 = I-.?!l = 1?3 =,
1%, = L3 = cot 8, L3, = —(r—2m),
1'3s= —(r—2m) sin®* 0, 1'}3= —sin 6 cos 8, the other 1},=0,
Ry, = — " y Rygy = 2mr sin*@, Ry = — sin” ¢,
r—2m r—2m

the Other Rijkl - O .

3. We first consider the stationary V?(#) and shall prove
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Theorem 2. The stationary hypersurface V(t) in the V* can
be imbedded in the euclidean space E* with the positive-definite metric,
and then the Vt) is rigid*.

Proof. The Gauss and Weingarten formulas of V%¢) in an
pseudo-enclidean E* (I-(1.5)) are

(4) Vjui:ebijn, e::tl,

(5) Vin = —gi*h;u,,

and the Gauss and Codazzi equations (I-(1.7), (1. 8)) are
(6) eR; it = bibji—bibj

(7) Vibi; = Vb = 0.

Following the general theory developed by T.Y. Thomas [2], we
shall solve the algebraic equation (6). First we get from (6)

[det (bij)]z = estza eR2331 eRz:uz
eRyp  €Ryy;,  eRyy,
eR1223 eR1231 eRmz

3 oiend
:eR2323R3131R1212 =¢€ M > 0
(r—2m)*

Hence we must take the sign e=+1, and the b;; are given by**

b., = R;jiiRirir b

. =0, 4,7 k=
ii 5 ) ij ’ s J> .
(R2323R3131R1212)1/

Thus we have the unique system of solutions of (6) as follows.

bllz—m—» b, = —(2 1/2,
(8) (r—2m)@mr)" (@)

by, = —@2mr)?sin® 0, b,; =0, is=7.

By substitution from (8) into (7), we see easily that these (8)
satisfy (7) automatically. Therefore the V*#) under consideration
can be imbedded in the euclidean E*. It follows from det (b;;)==0
that the hypersurface V3(¢) in E* is of type three in the sense
of T. Y. Thomas, and hence we have the rigidity of the V3(#)
regarded as a hypersurface of the E*.

* See [5] of [2]. ** See (9.4) of [2].
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4. Next, we shall find the imbedding function #2¢ of the V)
into E*. The Gauss formula (4) is now rewritten in the forms

Su_ __m_omw,  m n
or? r(r—2m)or  (r—2m)@Cmr)"* "’
o'u ou
—————— = —(r—2m) = —(2mr)"’n,
(9) 006° ( )ar ( )
2
o —(r—2m) sin® @ M _ in 6 cos 0 a—“—(Zmr)‘/2 sin®fn,
op* or 20
ou _ 1ou o'u _ ot 0OH ou _ 1ou
oro0  r o0’ 309¢p op’ orop  rop’

and the Weingarten formula (5) is expressed in the forms

on _ _ (2mr)*ou
or 2r* or’
1/2
(10) on _ (2"1:)_?1“_,
o0 7 o0
on _ (@mr)"ou
op r: op’

Furthermore, the imbedding function #¢ should satisfy the isometry
conditions :

ou owN _ v Jjou _a_’f>=,2
or’ or r—2m’ o8’ 20

(11) QE, ou = r*sin’ @,
op  op
ou ouN _ sou Q’j>: on a_“>:0
or’ o0 or’ op 20’ op '

and the normal # should accept the normality conditions :

(5 (e 2
a—:-f-,n>= ;a—g,n>= a—:;,n>=0,

{n, n>=1.

(12)

The solutions 2 and n of the equations (9) and (10) are easily
obtained by

(13) 2z = —2[2m(r —2m)]"%e,+r sin 6(sin pe,+cos pe,)+ ¥ cos fe, ,
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. 1/2 1/2
(14) n= <f_2@) el+m sin 6(sin @e, + cos pe;) + cos Oe, .
r 7
Then the equations (11) and (12) imply that the e, e,, e; and e,
are orthonormal unit vectors.
5. We now return to the Schwarzschild space-time V' Its
metric is expressed by

ds' = T=2M g5 (ds? of the V¥()),
/4

and so the equation (13) shows that the Schwarzschild metric ds® is
written in the form

(15) ds* = %’df—(dyf-(dzoz—(dzs)z—(dze)z,

where we put

(16) y = —2[2m(r—2m)]"*, 2z, =rsinfsinp,
2, =rsinfcosp, 2,=rcosb.
The equation (15) is equivalent to the equation (4) of Kasner’s

paper [1]. The y is the function of # only and we have

f:g@dtz_(dy)z _r=2m e 2m g
r r r—2m

which is the same as (3). Therefore we have proved Theorem 1.

6. Consequently we may say that our imbedding problem of
the Schwarzschild space-time V* is reduced to the one of the
V? with the metric (3) into an E°. The Christoffel’s symbols
i@, 7, k=0, 1) of the V? are given by

1% =1 =17 =0, 5= [:_Zzﬂ ’
2r
(17)
19, = M ‘%1 = ‘_—1
r(r—2m)’ 2(r—2m)’

and the curvature tensor of the V? is

3m
18 Ry =
(18) S



68  Tamehiro Fujitani, Mineo Ikeda and Makoto Matsumoto

Hence the Gauss and Codazzi equations of the V? in the E® are
written in the forms

(19) — (b = 3’" = +1,
(aab;o_%;_l_r(rian) Dot "_2327” bu =0,
(20)

| 26y _2b,, _r+2m

— =T b, =0.
or ot 2v(r—2m)

The imbedding function y and the normal m are the solutions of
the Gauss and Weingarten formulas as follows:

o’y _ r—2moy

o = 2z o T
o'y m_ Oy
= + by,
@1) otor  rr—2myor M
y 1 oy
. - DYDY +b11 ’
or® 2(7' 2m)or i
om_ _ r b, 8y+r 2mbmay_7
ot r—2m "ot 2m or
(22)
om _ v ay y—2m 2my ay
> or r—2m "ot 2m Yor’

The three-dimensional vectors y and #m satisfy the well-known
algebraic conditions :

9y OyN _ _ oy 9y
03 far’ar> r— 2m < ’
“ |2 2w _r—2m
“Not ' ot r
Yy _ /oy _
24) { é‘r""’>‘<at"'">‘0’
<m, mp> =1,

where the symbol <, > is the inner product in the E®. As is well-
known, a system of solutions b;; of (19) and (20) corresponds one-
to-onme to an imbedding function y of the V? (within a motion in
the E®) and hence to an imbedding function z of the Schwarzschild
space time V-
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7. For example, we consider the case where b,, b, and b,
in (19) and (20) do not depend upon t. These b;; are immediately
given by

(bo) = m(r—2m)+£2_+c’(r—2m) ’

2r! v 7
(25) b — o)’
01 r—2m »
b, = l(BLn+L>
Y b, \2¢° (r—2m)*/’

where ¢ and ¢ are integral constants. On the other hand, we
have obtained the stationary solutions at the end of the previous
paper. If we deal with the stationary solution (i), then we have

Ay )+ (dy.) — (dy) = T=2Map— 21 gy
7 r¥—2m

from which it follows that

%{ = <7‘/Zcos—}i—, —yl® siné—, O> ,

2 1/2 1/2
of — (Shpsing T eos L 0),
oy < m ¢ m .t >
2 = (—"—C0S —, — sin—, 0},
otor riyit k riyl? k

m = (p Sin%,PCOS%, przlfr;’;lf, ’

where we put

N N
v 2r

Hence the equation (21) gives

b01=0, (b00)227—2m<m 1>

RN _1__
7 2r®  F

These are obtained from (25), if we take ¢=0 and c’=§12-. Similar-

ly we can verify that the other stationary solutions (ii) and (iii)
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are special cases of (25), the former being ¢=0, ¢’'= —7517, and the

the later being ¢=0, ¢/=0. Thus we see that the stationary solu-
tions in the previous paper ave the special cases of the solutions
(25), where we put c=0.
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