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Introduction

In this paper, we shall give a compactification (denoted by R%)
of an open Riemann surface R (¢0;) such that HB-functions on
R are extended continuously onto R%. Likely as the Royden’s
compactification [15], the ideal boundary R%— R has the compact
part (denoted by Ag) with an important role with respect to HB-
functions. After H. L. Royden, we shall call it the harmonic
boundary of R, and it will be remarked in §4 as the hyper Stone
space (cf. [13]). In §1, the compactification will be carried out
by means of some family consisting of bounded continuous func-
tion on R. In §2, some properties of Ag will be studied. In §3,
we shall study the generalized harmonic measure on R in relation
to subsets of the harmonic boundary Ag, where the generalized
harmonic measure « is characterized as follows: 1) ¢ HBP,
2) 0<w<1 and 3) @eA(1—w®)=0 (cf. [5]). We shall define the
harmonic measure Q, with respect to a compact subset a of A
by the same manner as did in [7] and we shall show that Q, is
the generalized harmonic measure and conversely a generalized
harmonic measure is the harmonic measure with respect to a
compact set of Ax. And further we shall define the outer
harmonic measure with respect to any subset of Ayx. We shall
see that the outer harmonic measure is the Caratheodory outer
measure with respect to the subsets of Agx. In §4, we shall
introduce the integral representation of an HB-function. With
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respect to HD-functions, the integral representation has been
studied by M. Nakai [14]. We shall treat the integral representa-
tion of an HB-function in relation to the generalized harmonic
measure. With respect to an unbounded HP-function, some results
will be stated. In §5, we shall be concerned with the harmonic
boundary of the class Oy, (cf. [8], [3], [12]). The HB-minimal
function will be characterized by the harmonic measure with respect
to an isolated point of Ag. The Bader-Parreau, Matsumoto’s
Theorem [27], [11] will be studied concerning to the harmonic
boundary Ax.

At the end, I wish to express my hearty thanks to Professors
A. Kobori and Y. Kusunoki for their kind guidance during my
researches.

1. Compactification of R (¢ 0).

Let K:|z|< 1 be a conformal image of the universal cover-
ing surface R™ of R and let 7(z) be the mapping from K onto
R. We denote by & the family of real-valued bounded, continuous
functions on R each of which has the radial limits in K for almost
all ¢?®. % is a normed space with a norm l|f||=s;1p|f| (red).

The completeness of this space is verified by the following

Proposition 1.1. Let {f,} be the Cauchy sequence with respect
to the above norm. Then there exists the function f(€F) such as

f=Fall =0 (n—c0).

Proof. It is evident that {f,} is an uniformly convergent
sequence in the narrow sense. Let f be the limit function of the
sequence. We can see easily that f belongs to &. (q.e.d.)

From this, we know that % is a normed ring with uniform
norm ||f||=s%p|f| (fe%). Let ¥, be the subfamily of ¥ defined

as follows: f(€ %) belongs to &, if and only if lirPf(T(re""))zo
for almost all ¢®. It is evident that %, is an ideal of & We
denote by %. the family of functions (€%) whose carriers are

compact respectively. F. is an ideal of § and ¥.CF,. Let M be
the family consisting of all maximal ideal of % and we put in I
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the closure topology by the method of Gelfand [4]. Thus we have
the compact Hausdorff space R%. It is clear that M,={fe%;
f(@)=0, (e€ R)} is a maximal ideal and M,==M,  for different
points @, @’ in R. Now we have a topologcal mapping T from R
into R& such as M,=T(a). We can see easily that the image T(R)
of R is open and dense in R%. From now on, T(R) is denoted by
R again. R%—R is called the ideal boundary of an open Riemann
surface R and is denoted by I'ss. I'g consists of the maximal
ideals containing the ideal %.. The subset of 1'y, consisting of
the maximal ideals each of which contains ,, is denoted by Ag.
We call Ag the harmonic boundary of R after H. L. Royden.

Proposition 1.2. Let f belong to . Then f(T (¢%)) is the
measurable function with respect to 0(0<<0< 27), where f(T(e'®))=
lim fF(T (re*®)) for almost all e°.

From this, we have the following

Proposition 1.3. f(€®) has the following decomposition :
f=u+o (ue HB, p € ,), and the decomposition is unique. With
respect to the norm, || f||=||ul|| holds.

Proof. It is clear that

u= g | () 17" as,

0 1+7*—27 cos (0— @)
consequently || f||=]|«|| holds. (q.e.d.)
On the Royden’s compactification, we can see that the class
HBD becomes a normed ring with the norm ||u||=\/Dg(x)+sup |«
R

(v € HBD), provided that the multiplication is defined as follows:
the multiplicative structure is defined by the projection = such as
f(eBD)l[»u (e HBD), where u is the harmonic component of the
orthogonal decomposition of f, (Royden. [15]). From this normed
ring HBD with the above multiplicative structure, we can construct
the compact Hausdorff space © by the method of Gelfand. The
space 9 is homeomorph to A (Royden’s harmonic boundary) [15].
We shall show later on that the same relations hold ‘between HB-
space and Ag. For this purpose, we note the following
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Theorem (Littlewood [9]). Let

w(z) = S log ‘}—dz‘ du(a)

lal<1 2—a

where p is a positive mass distribution in |z|< 1, such that

[ a-lahdu@<+e
Then lim w(re?®)=0 for almost all ¢'°, and lim Sh w(re®)=0.

r>1 Jo

Theorem (Littlewood [107). Let u(z) be subharmonic in |z|<1,
such that

[luemiao = oy, 0=r<1,
then u(z)=v(2) —w(z), where v(2) is harmonic in |z|<_1, such that

[Clogemido=0), o0=r<1,

and

w(z) = S‘ log ‘l_dz‘d/l;((l) ,

al<i Z2—a

where u is a positive mass distribution in |z|<_1, such that

[ a-lahdua) <+

Hence for almost all ¢*, lim u(re’®)=u(e”®) (3o0) exists. v(2) is the

least harmonic majorant of u, such that if v¥(2) be harmonic in
|2|< p<1, such that v¥=u on |z|=p, then lim v}¥(2)=0v(2).
P>1

From this, we know that the bounded subharmonic functions
belong to . Hence the bounded superharmonic functions belong

to .

Proposition 1.4. Let M, is the family of all HBD-functions
such as My={u€ HBD; u(p*)=0, (p*€Ax)}. Then M, is a
maximal ideal of the normed ring HBD, that is, M ,+ corresponds to
a point of 9. Conversely, a point M, of O corresponds to a point
of A«, that is, M,= M, for some point q*( € As).
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Proof. Let # be any element of M,.. Then 4uv=(u+v)’—
(u—v)® for any ve HBD and by the Royden’s decomposition we
have the following

(u+0v) = w,+p, .
(u—v) = w,+»,, (w,, w,€ HBD, p,, p,€K).

Thus we know that 4uv=(w,—w,)+(p,—p,). We note that @, and
@, are subharmonic respectively, hence @, and ¢, belong to %.
To be exact, », and @, belong to ¥,. From this we know that
P,— P, vanishes at p*(€ Ag). Therefore w,—w, vanishes at p*.
This means that M ,- is an ideal of the normed ring HBD, because
w,—w,==(uv) (= : Proj.). That M, is maximal is evident. Thus
we know that M« corresponds to a point of . Next, let M, be
any point of . Suppose that there is no any point of Ag such
as a common zero point of the functions belonged to M,. Then
there exists an HBD-function # in M, such that u is positive on
Ag. This is easily verified by means of the compactness of Ag.
This function # has a positive infimum on R (cf. §2, Lemma 2. 1).
Consequently # is positive at each point of A. This is absurd.
Thus we know that M, corresponds to some point g* €Ag. (q.ed.)

Now we note that HB space is a normed ring with a norm
l|u||=s%p|u| (u € HB), provided that the multiplication is defined

as follows: the multiplicative structure is defined by the projec-
tion 7 such as f(e%)zu(HB), where u is the harmonic com-
ponent of the decomposition of f. Thus we have the following
Proposition 1.5. 9 is homeomorph to Ay, where 9 is a com-
pact Hausdorff space constructed from the normed ring HB with the
above multiplicative structure.
Let T be a correspondence from Ag onto A as follows:

gt e Ay —T>Mq*e A. Then we have the following
Proposition 1. 8. The correspondence T is one-valued continuous
mapping.

Proof. Let o be an open subset of A (A is subspace of R*).
In the following, we shall show that og=7"'(c) is open with
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respect to Ag. Since A—o is closed

S= N\ M

MEA-O

does not be contained in any maximal ideal belonging to o, where
M is a maximal ideal as a point of A—o. Consequently SNHBD
also does not be contained in any maximal ideal belonging to o.
Next, we consider an ideal Sy such as
Sy = [\ Mg,

MFEAFTTF
where Mg is a maximal ideal as a point of Ag—og. We show
that S~ HBD coincides with SN HBD. Indeed, SN HBD is contain-
ed in any maximal ideal M of A—o, while MNHBD coincides
with Mg HBD by the Proposition 1.4, where Mg is any one in
T-Y(M), consequently (SNHBD) Sy~ HBD. Conversely Sqen HBD
is contained in any maximal ideal My of Ag—og, while Mgn HBD
coincides with M(= T(Ms)). This shows that SN HBD > (S HBD).
Thus we know that SANHBD=S«NHBD. Now let M be any
maximal ideal as a point in og. Then T(My) (=M€ o) does not
contain SN HBD, consequently Ms does not contain Ss~NHBD,
because My HBD= T(Ms)=M(€ o). Thus we see that oy is an
open subset of Ax. (q.e.d.)

2. Properties of the harmonic boundary Ag.

Lemma 2.1. Every HB-function u attains its maximum and
minimum on Ag.

Proof. Let inf =X, then the infimum of #(=u—\) is zero.
R

For any HB-function v, #v belongs to . We decompose #v such
as @v=w+p, where we HB and p€%%,. We note that w is either
constantly zero or non-constant function on R, because inf #=0.

R
Indeed,

w(Tem) = & | @) (TN gy 42

consequently Ma<w<Mi on R, where M=inf v and M=sup v.
R R
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From this, we know that P¥={af; f varies on P} is a principal
ideal of ¥ and furthermore PN F, is also an ideal of ¥. Therefore
# is contained in some maximal ideal of Ag, that is, # vanishes
at the point of Ag. Thus we know that # takes its minimum on
Ag. From this we know that c—» vanishes at some point of Ag,

where c=sup . (q.e.d.)
R

Proposition 2.1. Let D be a non-compact subregion of R whose
relative boundary 9D consists of an at most countable number of
analytic Jordan curves not accumulating in R. Then D—0D meets
Ag, provided that D¢ SOyp, where D and 9D are respectively the
closure of D and 9D with respect to R%.

Proof. Let o=1I,[1] (cf.[3]). Now we define the subharmonic
function # such as #=® on D and =0 on R—D. Then # belongs
to ¥ by the Littlewood’s Theorem. Let #=v+@ be the decom-
position of #, where ve HB, p€$,. It is easily verified that v
is the least harmonic majorant of #. Consequently sup v=1 and

from the Lemma 2.1 we know that there is a point p* € Ay such
as v(p*)=1. From this, we know that #(p*)=1 because @(p*)=0.
This shows that p* belongs to D—23D.

Lemma 2.2. Every bounded subharmonic (superharmonic) func-
tion attains its maximum (minimum) on Ag.

Proof. Let # be a subharmonic function. We decompose « such
as u=v-+@, where v€ HB and p€%,. If v=0, then u=¢ (<0),
because #<<v. From this we know that sup u=sup =0 and this

R R

is attained on Ag. If »==0, v attains its maximum at some point
p* of Ag. Then u(p*) is the maximum of #, because sup #<<
R

sup v + sup p = v(p*). (q.ed.).

Lemma 2.3. Let u, and u, be HB functions on R, then for
2l SAv
(u, v u,) (p*) = max [u,(p*), u.(p*)]
(u, Auy) (p*) = min [u,(p%), u.(p*)],
where u,V u, is the least harmonic majorant and u, A u, is the greatest
harmonic minorant of u, and u,.
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Proof. Let f(p)=min[u,(p), u,(p)] (p € R), then f(p) is bound-
ed and super-harmonic on R, consequently f is continuously ex-
tended onto R% because f€F, On the other hand, f(p)=
min [#,(p), u,(p)] (p € RE) is continous on R%. Thus we know that
F(p)=Ff(p) on R%. Let u(p)+®(p) be the decomposition of f,
where u€ HB and p € §,. Then u(p*)=f(p*) on Ag, consequently
(6, A uy) (p*) =min[u,(p*), u,(p*)] on Ag, because u(p)=(u, Au,)(p).
In the same manner, we can prove that (u,Vu,)(p*)=max
Lu.(p*), u(p*)] on Ag. (q.ed.)

Lemma 2.4. Let e, and e, be the compact subsets of Ag
disjoint respectively. Then there exists an HBP-function u such as
u=1 on e, and =0 on e,.

Proof. We can construct an HBP-function # such as =0
on ¢, and >0 on e, (cf. [6]). Since e, is compact, the infimum
of u with respect to e, is positive. According to the Lemma 2.3,
(u/c) A1 is the function that answers to the Lemma, where
¢=inf u.

¢

1

3. Generalized harmonic measures.

Theorem. 3.1. Let a be a compact set (=l=p) of Ax and B
its complementaly set (s=¢) in Ag. Then there exists a function
QY defined in R& such that

1) QF is upper semi-continuous on R% and Qe HBP in R

ii) Qf=1o0na =0onpB

iii) QF is the harmonic measure in R, that is, Q, N (1—Q,)=0,
where Q, is the restriction of Qf to R. (we call Q, the harmanic
measure with respect to c).

Proof. Let H, be a family of HBP functions such as
H,={ueHBP; u<1 and =1 on a}.

Then we know that u,Awu, belongs to H, for any u, and u, of
H,, by means of the Lemma 2.3. Consequently,

QF = ier};f u(p)  (peR¥)

u
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is an HBP- function (may be constantly zero) (cf. [7]), and Q¥ is
obtained as the limit function of the non-increasing sequence
consisting of the elements of H,. In the following, we shall
show that O is the function that answers to the above Theorem.
From Lemma 2.4, we know that there exists a function € H,
such as, for arbitrarily given p*(€®B), u(p*)=0. This shows that
Q¥= on B, that is, QF satisfies the condition ii). Next we show
that sup Q,=1 provided that ©,==0. Suppose that sup Q,=c(<1).

Then Q,<cu for any u € H, by Lemma 2. 1, consequently Q,<cQ,.
This is absurd, that is, sup Q,=1 provided that Q==0. Let ¢ be
R

a set of Ag such as e={p*ca; Q,(p*)=1} then e is a compact
subset of . Suppose that Q, takes a positive value A at some
point ¢*(€¢ «—e). Then ¢* does not be contained in Bue, con-
sequently there exists an HBP-function U such as U(g*¥)=1 and
=0 on Bue by the Lemma 2.4. Let U=UA1, then (TUvQ,) >0,
on R. Indeed, UvQ,=1 at ¢* by the Lemma 2.3, while Q,(¢*)=
M<1). Noting that (TUvQ,)< u, for every n, we conclude that

Qm< (UVQm)g lim Up = Q4

where {u,} is a non-increasing sequence such as u, € H, for every
n and u, | Q,. This is absurd. Thus we know that Q, vanishes
on a—e, provided that a—e==¢. From this, we can see that
Q,A(1—Q,)=0 on R. (q.e.d.)

Corollary 3.2. Let « be a compact subset of Ay and (O, be
its harmonic measure. Then a—e belongs to the closure of B provided
that a—e-\=p, where B is the complementary set of « with respect
to Agf.

Corollary 3.2'. Let « be a compact subset of Ag. Then there
exists a simultaneously open and closed set & in « such as QF=Q%
on R, provided that Q, >0.

Now we define the harmonic measure with respect to an open
set of Ag. Let « be an open set of Agx. Then we call 1—-; the
harmonic measure with respect to «, where 8=Ag—«.

Theorem 3.2. Let « be an open subset of Ay and let @ be
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its closure. Then © is either a simultaneously open and closed set
of Aq or Ag itself. Cousequently Q, >0, provided that o ==d.

Proof. Let 8 be a complementary set of «(==¢) with respect
to Ag. In the case Q; >0, the @ is simultaneously open and closed
set of Ag by Corollary 3.2. Next, we suppose that Ag—a==do.
Then there exists a point ¢* in B8 such as ¢* ¢ @ consequently
there exists an HBP-function # such as #=0 on @ and =1 at g*.
From this we know that Q;=uA1>>0. This shows that @=Ag
provided that Qgz=0.

Proposition 3.1. Let {a,} be the family of open subsets of Ag
and let 'yz\J a,. Then

0, < i Q,, on R.
n=1

Proof. We assume that Q, <1 for every # and furthermore
,,ilﬂ‘”n converges. In the other cases, this Proposition is trivial.
F_rom the Corollary 3.2 and Theorem 3.2, we know that Q,=Q;
and ©, =Q; on R for every n. Suppose that Q4 po)—g Qz (po)=
&>0 for some point p, in R. Then .

D= {peR; Q&(P)—iﬂﬁn(p)>%}

is non-compact set in R. Let D be a component of D, then
D¢ SOyg. Consequently (D—2D)NAg is non-empty by the Proposi-
tion 2.1. On the other hand, we can see that (D—2D)NnAg is
empty by the following reason. Suppose that ¢*( € Ag) is contained
in D—aD. If ¢gt€\J@,, then g*€@, for some @,, consequently

sup 2; =1 by the T;l_ejorem 3.2. This is incompatible with Q3(p)—
fjnﬂan(p)>% in D. If q*¢\°°/r—¥,,, then ¢* ¢+, that is, ¢*¢% or
€¥—v. In the first case, Q;(¢*)=0, consequently ir]:if Q,=0. In
the second case we can see easily that D —2D contains some point
p* belonged to y. This point p* belongs to \/&,, and this is in-
comatible with Qy(p)—i Q,;,,(p)>% in D. Thus we know that
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(D—2D)n A« is empty. This is absurd, that is, ng{j Q.

n=1
(q.e.d.)
Now we define the outer harmonic measure u, with respect
to any subset v of Ag. Let &, be the family of open subsets of
A« each of which contains v respectively, and let H, be the family
{Q,}, where « varies on &,. We call the lower evelope of H,,
that is,

(D) = i?é Q.(p) (pek),

the outer harmonic measure with respect to 1.

Proposition 3.2. u, is the harmonic measure, that is,
py AN (1= py)=0.

Proof. Let «, and «, be open sets containing v respectively.
Then

Quyray = Qamay =1 on ana,
=0 on Ag—a,Na,

by Theorem 3.2. Therefore Q, ~,,=Q2, AL,,, because a,Na,=
a,na,, From this we can see that wx, is the limit function of a
non-increasing sequence consisting of the elements of H, (cf.[1],

[7]). Consequently uy is the HBP-function on K. Next we prove
that sup u,=1, provided that 4,==0. Let u,=lim Q,,, where {Q,,}
R n-ypoo

is a non-increasing sequence such as Q, € H, for every n. Suppose
that 0< sup py=c<1. Since uy<Q,, for every #, uy=0o0n Ag—a,
R

for every n. From this we know that
oy g Cﬂm"
for every n by Lemma 2.1 and Theorem 3.2. Thus we have
mwy=cpuy. This is absurd, that is, sup uy=1. Let e be the compact
R
set such as e= {p* € Ag; uy(p*)=1}. We note that gy=0o0n Ag—a,
for every n, consequently ux,=0 on \“] (Agy—a,), that is, uy vanishes
_— n=1

on O(Ag,.—c?,,). Thus we know that e(fe\(—(,.. Next we show
that ¢ is a simultaneously open and closed set in Ag. Suppose
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that my, does not vanish at some point q*eﬁan—e, then there

exists an HBP-function # such as =1 at ¢*, =0 on eu(Ag—ﬁ «,)
by Lemma 2.4. The function wuyv U (where U=u A1) is larger
than w,, but is smaller than Q,, for every n, because Q,,=1 on
@, and =0 on Ag—a,, while uyv U=00n Ax—@&,, and <1 on @,.
From this, we have that

my = 1im Q, = py AU >py .

n-yoo

This is absurd. Thus we conclude that pyA(1—puy)=0. (q.e.d.)
Proposition 3.3. The p, is the harmonic measure with respect
to N\ @,
Proof. It is evident that sz;”gaﬁ& =py. Therefore p,=

Qe =upy, as n—oo, that is, uy=0=_ . (q.e.d.)
na"n m”n

Lemma 3.2. Let fy=<i/7,,, where v, is any subset of A« for
n=1

every n. Then
oy g ”2=1/’[")’n on R ‘

Proof. Let G be any compact subregion in K. Then, for any
fixed &C>0) and any v,, there exists a certain open subset «, of
Ag such as v,C«a, and

&
Moy g Qam < /“l"Yn +2—n
in G. Thus we know that

,u,é(lm gzlzmn<2/£7n+8
Ua, n=1 n=1

in G by the Proposition 3.1. Therefore /ﬁygi My, in G and G is
an arbitrarily fixed subregion in K, we know that this inequality
holds on R. (q.e.d.)

Thus we know that the outer harmonic measure g, is the
Caratheodory outer measure with respect to the subsets of Ag.
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4. Integral representation of an HB-function and
quasi-bounded component of an HP-function.

We already proved that p, is the harmonic measure with
respect to a simultaneously open and closed set ¢ in f\(’tn, pro-
vided that xy==0. Now we note that envy is not empty. Suppose
that eny is empty. Then en¥ is empty, because ¢ is simul-
taneously open and closed in Ayg. According to the Lemma 2. 4,
there exists an HBP-function «# such as #=1 on ¢ and =0 on 7.

Let o be an open set in Ag such as o= {p*EA%:; u(p*)<—%~} .

Then o>v. Let {«,}s-1 be the family of open sets in Ag such as
Qg, | oy as n—oco. Then we can see easily that Q,~a, |y as
n—o0, because every oNnge, contains . Therefore u, coincides
with the harmonic measure with respect to f\(era:) This is
absurd, because [\ (¢na,) does not contain the set e. Thus we
know that eny==¢ provided that u,==0.

Lemma 4.1. Let v be any subset of Ag such as py >0 and
let e be a simultaneously open and closed set in Ag such as py,=Q,.
Then ¢y and p,_,=0.

Proof. Suppose that ¢e—7 be non-empty. Let ¢*€e—%. Then
there exists an HBP-function «# such as =1 at ¢* and =0 on ¥
by the Lemma 2.4. Let o be an open set of Ag such as

o= {p*EAg;; u(p*)<~21—} . From this, we see that Q,.,, | #y as

n—oo, that is, sy is the harmonic measure with respect to f”\(af\-—a_,,)
by the Proposition 3.3. But [\ (¢na,) does not contain the
g¥(€e). This is absurd. Thus we know that eC#®. Next we
show that px,_,=0. Evidently y—ecC ﬁ «,—e, consequently p, <

BBz (=/ﬁﬁaﬂ—/ﬁp), that is, uy_,=0 (cf. Prop. 4.2).
Proposition 4.1. Let « be an open set of Ax. Then « is -

measurable and p,=Q,.

Proof. It is evident that u,=Q,. We shall prove the me-
asurability. Let v be any subset of Ag. It is evident that
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iy <=ty + ficy-y~a DY the Lemma 3.2. If any one of the right
vanishes, then the left hand coincides with the right side. Therefore
we assume that gy, and vy y~. do not vanish respectively.
According to the Corollary 3.2, there exists the simultaneously
open and closed sets ¢, ¢, and e, such as py=Q,, py~s=2Q,, and
fcy-ymar =, It is clear that ¢, and e, are contained in e respec-
tively. According to the Lemma 4. 1, the ¢, is contained in Ag—«,
because ¢,CyN(Ag—a) CAx—a=Ag—a. With respect to e, it is
contained in @ by the Lemma 4.1. Noting that ¢, and e, are
simultaneously open and closed respectively, we know that e,ne,= .
Thus we have the following

My = Qr' _2_ Qelueg = ‘(201+Qﬂg = /'I"Yr‘\w_'_/l'(‘Y-‘Yf'\w) . (q'e'd')

Proposition 4.2. Let « be a closed set of Ayx. Then « is
measurable and p,=Q,.

Proof. Since Ag=a+(Agx—a) and Ag—a 1is measurable,
Poage™ Mo+ Mag-a>- From this we have Pe=1=pac a=1—Qcag—as-
This shows that ux,=Q,. (g.e.d.)

Proposition 4.3. Let 4,=0, then aC (Ag—a).

Proof. Supose that B=a—(Ag—a)==¢. Then B is an open
subset of Ag, because Ag=(Ax—a)va=Ag—a)va=(Ag—a)uB
and that (Ag—a)nB=¢. Therefore us >0 by Theorem 3.2. On
the contrary, us=0 since 8Ca. This is absurd, that is aC (Ag—a).

(q.e.d.)

Proposition 4.4. Let u be an HB-function such as u=0 on
Ag except for a null-set. Then u==0.

Proof. According to Prepotion 4.3, u# vanishes on Ag because
u is continuous on Ag. Thus we conclude that =0 in R. (q.e.d.)

Proposition 4.5. Let u and v be HB functions such as u—=v
(u>v) on Ag except for a null-set. Then u=v (u_>v) on R.

Proof. This is clear by Proposition 4.4 and Lemma 2. 1.
(q.e.d.)
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Lemma 4.2. Let v be a measurable set of positive measure.
Then py ,=p, y=0, that is, uy=1 on v except for a null-set and
=0 on Ag—v except for a null-set provided that py, >0.

Proof. It has been proved in Lemma 4.1 that 4, ,=0. Now
we show that u,.,=0. Since e—yn/\&,—v, we know that

Moyt A And p~z,-v»=~z,— My because v is measurable

n_'Y).
and fycfo\c_r,,. Thus we know that p,_,=0. (q.e.d.)

Theorem 4.1. Let u be an HBP-function. Then
u(p) = | up)aus*, p)
Ag

where p is the outer harmonic measure.

Proof. Let {e,}i., be a partition of Ag each of which is p-

measurable and let m,=inf u(p*) for each k. Then
€k

s(p) = Simume (D) (PER)

is an HBP-function on R by Proposition 3.2. Let I' be the family
of s(p) corresponding to each partition of Ax. Then 1' has the
following property : there exists an element s(p) of 1' such as
s(p)= max [s,(p), s.(p)] (p € R) for any given s, and s, of 1. This
is verified by means of Lemma 2.1 and Lemma 4.2. Therefore
we know that sglp s(p)=U(p) is harmonic on R (cf. [1] p. 134).

Thus we know that
U = | aodupr, p)
Ao

is harmonic on R. It is clear that s(p) (e )< u(p) for any sel’
by Lemma 4.2. Consequently U<u. And we can see easily that
U is identical with «#. (q.e.d.)

Theorem 4.2. Let f be a measurable function positive and
bounded on Ay, then

U =, e, p)
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is an HB-function on R and U=f on Ag except for a null-set.

Proof. In the same manner as did in Theorem 4.1, we can
verify that U(p) is an HB-function on R. we shall prove the
latter. Let {e{”}i*, be a partition of Ag such as

=0,1, -, k,: k,=2M-1),

~.

e = {preas; L= rom<iFH
2 2"
where M=sup f(p*). Then {s“},., is a non-decreasing sequence
.

and converges to U(p), consequently
U(p) = lim s™(p) = lim | s™(p9)dulp, p) =
Hn-poo Ny oo A_(R:
[ aimsmp)ducer, p).
Ag e
On the other hand, U(p*)=s"(p*) on A« consequently U(p*)=

lim s™(p*)=F(p*) except for a null-set, From this we know that

U(p*)=f(p*) except for a null-set, because

U~ | reduet, 5 = | U@~ duip*, p) = 0.
b o (q.e.d.)

In the following, we shall treat the unbounded H P--functions.
Let # be an unbounded HP-function. Then u(p)=1im u,(p), where

u,(p)=min [u(p), n] for every n. Let ¢, be a set of R% such
as e,={peR%; u,(p)=n}. Then e¢,De,,, for each n, therefore
em=[_\e,, is non-empty, because every e, is compact. We define

the function #*(p) as follows:
w¥(p) = u(p) on Ri—e.
= +o0 on e,_.
Then u*(p) is continuous on R¥ in the sense of lim u(p)=1lim u(p)

on R%. From now on, «*(p) is denoted by u(p) again.

Theorem 4.3. Let u be an unbounded HP-function on R. Then
u(p*) (p* € Ag) is integrable on Ax. Consequently e, NAgx IS p-
measure zero.
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Proof. Let u,(p)=min[u(p), n]. Then u,(p)t u(p) on R and
w(p) = |, wlpap p) (=12, )

is a non-decreasing sequence. According to Fatou’s lemma, we
know that

oo Sup) Zlmapz || imu(p)dus”, p) =

[ wsmyduts, ).
by

This shows that u(p*) (p* € Ag) is integrable on Ag and e ,NAg
is w-measure zero. (q.e.d.)
From this, we have a decomposition such as u(p)=w(p)+
S u(p*)du(p*, p). In the following, we show that this decomposi-
¥

1

tion coincides with the Parreau’s decomposition.

Theorem 4.4. w(p) is the singular component of u and the
integral term is the quasi-bounded component of u.

Proof. Let d(p)= SA%u(p*)dy,(p*,p) and let u,(p)=min[u(p), n]

on R. Then we have the inequality

u(p) =a(p) >up) on K.

Let ¢* be a point of Ag such as ¢*¢e_, where e = {p*€Ag;
u(p*)=+oc}. Then, for a suitable number N, u(g*)=di(q*)=
un(g*)=u(g*) by Lemma 2. 3. Therefore u(p*)=a(p*) on Ay except
for e,. This shows that w(p)=u(p)—da(p) is singular, because e_
is a null-set. (q.e.d.)

Theorem 4.5. Let an HP-function w be singular. Then w
vanishes at each point of Ag.

Proof. It is evident that w vanishes on Ag—e_, where. ¢ =
{p* € Ag; w(p*)=+ ). we shall show that e¢_=¢. Suppose that
e, is non-empty. Then a set of G,

G =A{peR; w(p)>c_>0}
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is non-empty in R and e_ is contained in G—9G. We note that e,
is a simultaneously open and closed set in Ag because 9GN Ag=d.
From this we know that u,_ is positive. This is absurd, because
. =0 by Theorem 4.3. (q.e.d.)

Finally we shall give the following

Theorem 4.6. The harmonic boundary Ag is totally disconnected.

Proof. Let o be connected subset of Ax. In the following,
we shall see that o is a single point. Suppose that o has at least
two points, say g¢¥, ¢¥. According to Lemma 2.4, there exists an
HBP-function # such as u#(¢¥)=1 and u(q¥)=0. Now let G be an

open set such as G = {p* € Ag; u(p*) > 1} Evidently ¢¥ ¢ G,

2
consequently eN G and o—on G are disjoint non-empty sets respec-
tively and furthermore G is a simultaneously open and closed set
in Ay from Theorem 3.2. This is absurd, because o is connected.
Thus we know that o must be a single point, provided that o

is connected. This shows that Ag is totally disconnected. (g.e.d.)

Remark. The results in Theorem 3.2 and 4.2 seem to us
curious, but on the other hand, from these results we see the
similarity between A and the hyper Stone space (cf. [13] pp. 108~
111). In the following, we shall show that Ag as the subspace
of R% is the hyper Stone space. Let f, and f, be essentially bound-
ed functions on Ag, then we define that f, is equivalent to f,,
provided that f,=f, except for a null-set. Under this stipulation,
we denote by M(Ag) a family of essentially bounded, measurable
function on Ag. Then we have the following theorem ; the com-
pact Hausdorff space H constructed from maximal ideals of M(Ag)
is the Stone space and furthermore is the hyper Stone space (cf.
[13]). On the other hand, Theorem 4.2 shows that M(Ag) is
‘identical with C(Ag), where C(Ag) denotes a family of continuous
function on Ag, and that the compact Hausdorff space construct-
ed from maximal ideals of C(Ag) is identical with Ag because Ag
is the compact space. Thus we know that Ag is the hyper Stone
space.
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5. 0pyp, and Ag

Let v be a measurable set of Ag with positive measure. Now
we define a partition o,|o, of v as follows: o, and o, are disjoint,
measurable sets with positive measures respectively and have union
v. We call v an indivisible set if it admits no partition.

Lemma 5.1. Let v be an indivisible set of Agx. Then v con-
sists of an isolated point and a null-set.

Proof. According to Proposition 3.2 and Lemma 4.2, we
know that p, coincides with .., where ¢ is a simultaneously open
and closed set of Ay and p,_y=py_.=0. From this, we know that
¢ is an indivisible set. In the following, we shall prove that every
HB-function is constant on e. Suppose that for some HB-function
u, (c,=)sup u >inf u(=c,) with respect to ¢. Then whether ¢,=
{p*e€e; u(p*)>c} or e,={p*€e; u(p*)< c} is a null-set for any
given c(c,<c< ¢,). If e, is a null-set, ¢, would be contained in
é,, because ¢ is a simultaneously open and closed set in Ay and a
null-set is contained the closure of its complementary set with
respect to Ag. This shows that sup u=<c (< c,). This is absurd.

Analogously we can see that ¢, must be positive measure. Thus
we know that every HB-function is constant on e, that is, ¢
consists of a single point. At the beginning of §4, we have shown
that yne does not be empty, provided that u, >0. From these,
we conclude that v is union of a simultaneously open and closed
set and a null-set. (q.e.d.)

Theorem 5.1. Let g*(€ Ag) be a point with positiue measure.
Then the e~ its HB minimal. Conversely, every HB-minimal
function whose supremum is 1 is the p-measurve of an isolated point

Of A%:.

Proof. It is clear that p+~ is HB-minimal, because ¢*.is
identical with the set e. We shall prove the inverse. Let o(p) be
an HB-minial function such as supw=1. Let ¢ be a set of Ag

R

such as e= {p*€ Ag; o(p*)=1}. Now, for any HBP-function u,
(u/|lull) N@ is smaller than . Therefore (u/||u]|)Vv ®=cw, where
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0<c<1. This shows that « is constant on ¢. From this, we know
that every HB-function is constant on e, because #=uvO0+uA0
Thus we conclude that e consists of a single point with positive
mearure ®. Indeed » vanishes on Ag—e and this is verified easily
by Lemma 2. 4.

Theorem 5.2. R€O0yg,—Oyg, , if and only if o(R)=n, where
o(R) denotes the number of the harmonic boundary points.

Proof. In the same manner as did in [7], this is proved.

Theorem 5.3. There exist at least n generalized havmonic
measure {®;}i_., on R such as o;No;=0 (i=Fj), provided that Ag
contains at least n points. The inverse is true also.

Proof. The harmonic boundary Ag does not be an indivisible
set, if not so, Ag would consist of a single point. Consequenly
there exists a partition A,|A, of Ax. Next, one or the other of
A, and A, does not be an indivisible set, if not so, the R would
be of the class Oyp,—O0yp,. Thus this decomposition will be con-
tinued up to at least the (z—1)th step, that is,

Ag = APUAP U -eeennees UA™

where every A% has positive measuse and disjoint respectively.
From this, we have the generalized harmonic measure {uz,}%-1
such as g, App»=0 (G==j), where u,w>Ap,p=0 (G==7) is clear
from Lemma 4.2.

Corollary. (Bader-Parreau [2], Matsumoto [127]) R¢ Oy, if
and only if there exist n+1 non-compact subregions {G;} such as
G:NG;=¢ (i==7) and & SOyp respectively.

Proof. It is easily verified by means of Theorem 5.2, 5.3
and Proposition 2. 1.
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Supplement
(added on August 15, 1961)

We shall state briefly the relation the measure g on Ag and
the canonical measure % on A which was introduced by M. Nakai
[14]. We defined in [7] the harmonic measure (), with respect
to a compact set o of A, Now we define the harmonic measure
Q, with respect to an open subset of A as follows: Q,=1—Q4_,.
Let v be any subset in A and & be a family of open subsets in
A each of which contains the v. We define the function (2.,' on
R such as Q,(2)=inf Q,(2), where « runs over &. Then we have
the following properties : 1) Q. is the generalized harmonic measure,
2) Q, is the Caratheodory outer measure, 3) the Borel sets are me-
asurable with respect to Q,. Next, let ¥ be any subset in A and
let v be the set T '(y) in Ag, where T is the continuous map-



42 Shin’ichi Mor:

ping from Ag onto A (cf. Prop. 1.6). Then we have the following

Theorem. Let v be a Borel set in A. Then

@) = 03(@) = | K, D)
and

[ SOKG 0d5) = | reTEndut, &),

where F(¢) is any bounded fE-measurable function on A.
Concerning to the above subjects, I shall state in detail in

another place.



