On a compactification of an open Riemann surface and its application

By

Shin'ichi Mori

(Communicated by Prof. A. Kobori, May 22, 1961)

Introduction

In this paper, we shall give a compactification (denoted by R_{5}^*) of an open Riemann surface R ($\notin 0_G$) such that HB-functions on R are extended continuously onto R_{ii}^* . Likely as the Royden's compactification [15], the ideal boundary $R_{ii}^* - R$ has the compact part (denoted by $\Delta_{\mathfrak{F}}$) with an important role with respect to HBfunctions. After H. L. Royden, we shall call it the harmonic boundary of R, and it will be remarked in § 4 as the hyper Stone space (cf. [13]). In §1, the compactification will be carried out by means of some family consisting of bounded continuous function on R. In § 2, some properties of $\Delta_{\mathfrak{F}}$ will be studied. In § 3, we shall study the generalized harmonic measure on R in relation to subsets of the harmonic boundary Δ_{\Re} , where the generalized harmonic measure ω is characterized as follows: 1) $\omega \in HBP$, 2) $0 < \omega < 1$ and 3) $\omega \wedge (1 - \omega) = 0$ (cf. [5]). We shall define the harmonic measure Ω_{α} with respect to a compact subset α of Δ_{\Re} by the same manner as did in [7] and we shall show that Ω_{α} is the generalized harmonic measure and conversely a generalized harmonic measure is the harmonic measure with respect to a compact set of Δ_{\Re} . And further we shall define the outer harmonic measure with respect to any subset of Δ_{\Re} . We shall see that the outer harmonic measure is the Caratheodory outer measure with respect to the subsets of Δ_{\Re} . In § 4, we shall introduce the integral representation of an HB-function.

respect to HD-functions, the integral representation has been studied by M. Nakai [14]. We shall treat the integral representation of an HB-function in relation to the generalized harmonic measure. With respect to an unbounded HP-function, some results will be stated. In §5, we shall be concerned with the harmonic boundary of the class 0_{HB_n} (cf. [8], [3], [12]). The HB-minimal function will be characterized by the harmonic measure with respect to an isolated point of $\Delta_{\mathfrak{F}}$. The Bader-Parreau, Matsumoto's Theorem [2], [11] will be studied concerning to the harmonic boundary $\Delta_{\mathfrak{F}}$.

At the end, I wish to express my hearty thanks to Professors A. Kobori and Y. Kusunoki for their kind guidance during my researches.

1. Compactification of $R (\notin 0_G)$.

Let K:|z|<1 be a conformal image of the universal covering surface R^{∞} of R and let T(z) be the mapping from K onto R. We denote by \mathfrak{F} the family of real-valued bounded, continuous functions on R each of which has the radial limits in K for almost all $e^{i\theta}$. \mathfrak{F} is a normed space with a norm $||f|| = \sup_{R} |f|$ $(f \in \mathfrak{F})$. The completeness of this space is verified by the following

Proposition 1.1. Let $\{f_n\}$ be the Cauchy sequence with respect to the above norm. Then there exists the function $f(\in \mathfrak{F})$ such as $||f-f_n|| \to 0 \ (n \to \infty)$.

Proof. It is evident that $\{f_n\}$ is an uniformly convergent sequence in the narrow sense. Let f be the limit function of the sequence. We can see easily that f belongs to \mathfrak{F} . (q.e.d.)

From this, we know that \mathfrak{F} is a normed ring with uniform norm $||f|| = \sup_{R} |f|$ $(f \in \mathfrak{F})$. Let \mathfrak{F}_0 be the subfamily of \mathfrak{F} defined as follows: $f(\in \mathfrak{F})$ belongs to \mathfrak{F}_0 if and only if $\lim_{r \to 1} f(T(re^{i\theta})) = 0$ for almost all $e^{i\theta}$. It is evident that \mathfrak{F}_0 is an ideal of \mathfrak{F} . We denote by \mathfrak{F}_c the family of functions $(\in \mathfrak{F})$ whose carriers are compact respectively. \mathfrak{F}_c is an ideal of \mathfrak{F} and $\mathfrak{F}_c \subset \mathfrak{F}_0$. Let \mathfrak{M} be the family consisting of all maximal ideal of \mathfrak{F} and we put in \mathfrak{M}

the closure topology by the method of Gelfand [4]. Thus we have the compact Hausdorff space R_{\Im}^* . It is clear that $M_a = \{ f \in \Im : \}$ f(a) = 0, $(a \in R)$ is a maximal ideal and $M_a + M_{a'}$ for different points a, a' in R. Now we have a topological mapping T from Rinto R_{ii}^* such as $M_a = T(a)$. We can see easily that the image T(R)of R is open and dense in R_{\Im}^* . From now on, T(R) is denoted by R again. $R_{ss}^* - R$ is called the ideal boundary of an open Riemann surface R and is denoted by $\Gamma_{\mathfrak{F}}$. $\Gamma_{\mathfrak{F}}$ consists of the maximal ideals containing the ideal \mathfrak{F}_c . The subset of $\Gamma_{\mathfrak{F}}$, consisting of the maximal ideals each of which contains \mathfrak{F}_0 , is denoted by $\Delta_{\mathfrak{F}}$. We call $\Delta_{\mathfrak{F}}$ the harmonic boundary of R after H. L. Royden.

Proposition 1.2. Let f belong to \mathfrak{F} . Then $f(T(e^{i\theta}))$ is the measurable function with respect to $\theta(0 \le \theta < 2\pi)$, where $f(T(e^{i\theta})) =$ $\lim f(T(re^{i\theta}))$ for almost all $e^{i\theta}$.

From this, we have the following

Proposition 1.3. $f(\in \mathfrak{F})$ has the following decomposition: $f=u+\varphi$ ($u\in HB$, $\varphi\in\mathfrak{F}_0$), and the decomposition is unique. respect to the norm, $||f|| \ge ||u||$ holds.

Proof. It is clear that

$$u = \frac{1}{2\pi} \int_0^{2\pi} f(T(e^{i\theta})) \frac{1-r^2}{1+r^2-2r\cos{(\theta-\varphi)}} d\theta$$
,

consequently $||f|| \ge ||u||$ holds. (q.e.d.)

On the Royden's compactification, we can see that the class HBD becomes a normed ring with the norm $||u|| = \sqrt{D_R(u)} + \sup_{p} |u|$ $(u \in HBD)$, provided that the multiplication is defined as follows: the multiplicative structure is defined by the projection π such as $f(\in BD) \xrightarrow{\pi} u \ (\in HBD)$, where u is the harmonic component of the orthogonal decomposition of f, (Royden, [15]). From this normed ring HBD with the above multiplicative structure, we can construct the compact Hausdorff space & by the method of Gelfand. The space \mathfrak{D} is homeomorph to Δ (Royden's harmonic boundary) [15]. We shall show later on that the same relations hold between HBspace and $\Delta_{\mathfrak{F}}$. For this purpose, we note the following

Theorem (Littlewood [9]). Let

$$w(z) = \int_{|a|<1} \log \left| \frac{1 - \bar{a}z}{z - a} \right| d\mu(a)$$

where μ is a positive mass distribution in |z| < 1, such that

$$\int_{|a|<1} (1-|a|)d\mu(a) < +\infty$$

Then $\lim_{r \to 1} w(re^{i\theta}) = 0$ for almost all $e^{i\theta}$, and $\lim_{r \to 1} \int_0^{2\pi} w(re^{i\theta}) = 0$.

Theorem (Littlewood [10]). Let u(z) be subharmonic in |z| < 1, such that

$$\int_{0}^{2\pi} |u(re^{i\theta})| d\theta = 0(1), \quad 0 \le r < 1,$$

then u(z) = v(z) - w(z), where v(z) is harmonic in |z| < 1, such that

$$\int_{0}^{2\pi} |v(re^{i\theta})| d\theta = 0(1), \quad 0 \le r < 1,$$

and

$$w(z) = \int_{|a| \le 1} \log \left| \frac{1 - \bar{a}z}{z - a} \right| d\mu(a) ,$$

where μ is a positive mass distribution in |z| < 1, such that

$$\int_{|a| \le 1} (1 - |a|) \, d\mu(a) < + \infty.$$

Hence for almost all $e^{i\theta}$, $\lim_{r\to 1} u(re^{i\theta}) = u(e^{i\theta})$ ($\neq \infty$) exists. v(z) is the least harmonic majorant of u, such that if $v_{\rho}^*(z)$ be harmonic in $|z| < \rho < 1$, such that $v_{\rho}^* = u$ on $|z| = \rho$, then $\lim_{\rho \to 1} v_{\rho}^*(z) = v(z)$.

From this, we know that the bounded subharmonic functions belong to \mathfrak{F} . Hence the bounded superharmonic functions belong to \mathfrak{F} .

Proposition 1.4. Let M_{p^*} is the family of all HBD-functions such as $M_{p^*} = \{u \in HBD : u(p^*) = 0, (p^* \in \Delta_{\mathfrak{P}})\}$. Then M_{p^*} is a maximal ideal of the normed ring HBD, that is, M_{p^*} corresponds to a point of \mathfrak{P} . Conversely, a point \tilde{M}_q of \mathfrak{P} corresponds to a point of $\Delta_{\mathfrak{P}}$, that is, $\tilde{M}_q = M_{q^*}$ for some point $q^*(\in \Delta_{\mathfrak{P}})$.

Proof. Let u be any element of M_{p^*} . Then $4uv = (u+v)^2 (u-v)^2$ for any $v \in HBD$ and by the Royden's decomposition we have the following

$$(u+v)^2 = w_1 + \varphi_1$$

 $(u-v)^2 = w_2 + \varphi_2$, $(w_1, w_2 \in HBD, \varphi_1, \varphi_2 \in \overline{K})$.

Thus we know that $4uv = (w_1 - w_2) + (\varphi_1 - \varphi_2)$. We note that φ_1 and φ_{z} are subharmonic respectively, hence φ_{z} and φ_{z} belong to \mathfrak{F} . To be exact, φ_1 and φ_2 belong to \mathfrak{F}_0 . From this we know that $\varphi_1-\varphi_2$ vanishes at $p^*(\in \Delta_{\mathfrak{F}})$. Therefore w_1-w_2 vanishes at p^* . This means that M_{p^*} is an ideal of the normed ring HBD, because $w_1 - w_2 = \pi(uv)$ (π : Proj.). That M_{p^*} is maximal is evident. Thus we know that M_{p^*} corresponds to a point of \mathfrak{H} . Next, let \widetilde{M}_q be any point of \mathfrak{S} . Suppose that there is no any point of $\Delta_{\mathfrak{F}}$ such as a common zero point of the functions belonged to \tilde{M}_q . Then there exists an HBD-function u in \tilde{M}_q such that u is positive on $\Delta_{\mathfrak{F}}$. This is easily verified by means of the compactness of $\Delta_{\mathfrak{F}}$. This function u has a positive infimum on R (cf. § 2, Lemma 2.1). Consequently u is positive at each point of Δ . This is absurd. Thus we know that M_q corresponds to some point $q^* \in \Delta_{\mathfrak{F}}$. (q.e.d.)

Now we note that HB-space is a normed ring with a norm $||u|| = \sup |u|$ ($u \in HB$), provided that the multiplication is defined as follows: the multiplicative structure is defined by the projection π such as $f(\in \mathfrak{F}) \xrightarrow{\pi} u(HB)$, where u is the harmonic component of the decomposition of f. Thus we have the following

Proposition 1.5. $\tilde{\mathfrak{D}}$ is homeomorph to $\Delta_{\mathfrak{B}}$, where $\tilde{\mathfrak{D}}$ is a compact Hausdorff space constructed from the normed ring HB with the above multiplicative structure.

Let T be a correspondence from $\Delta_{\mathfrak{F}}$ onto Δ as follows: $q^* \in \Delta_{\Re} \xrightarrow{T} M_{q^*} \in \Delta$. Then we have the following

Proposition 1.6. The correspondence T is one-valued continuous mapping.

Proof. Let σ be an open subset of Δ (Δ is subspace of R^*). In the following, we shall show that $\sigma_{\mathfrak{F}} = T^{-1}(\sigma)$ is open with respect to $\Delta_{\mathfrak{F}}$. Since $\Delta - \sigma$ is closed

$$S = \bigcap_{M \in \Delta - \sigma} M$$

does not be contained in any maximal ideal belonging to σ , where M is a maximal ideal as a point of $\Delta - \sigma$. Consequently $S \cap HBD$ also does not be contained in any maximal ideal belonging to σ . Next, we consider an ideal $S_{\mathfrak{F}}$ such as

$$S_{\mathfrak{F}} = igcap_{M_{\mathfrak{F}} \in \Delta_{\mathfrak{F}} - \sigma_{\mathfrak{F}}} M_{\mathfrak{F}}$$
 ,

where $M_{\mathfrak{F}}$ is a maximal ideal as a point of $\Delta_{\mathfrak{F}} - \sigma_{\mathfrak{F}}$. We show that $S_{\mathfrak{F}} \cap HBD$ coincides with $S \cap HBD$. Indeed, $S \cap HBD$ is contained in any maximal ideal M of $\Delta - \sigma$, while $M \cap HBD$ coincides with $M_{\mathfrak{F}} \cap HBD$ by the Proposition 1.4, where $M_{\mathfrak{F}}$ is any one in $T^{-1}(M)$, consequently $(S \cap HBD) \subset S_{\mathfrak{F}} \cap HBD$. Conversely $S_{\mathfrak{F}} \cap HBD$ is contained in any maximal ideal $M_{\mathfrak{F}}$ of $\Delta_{\mathfrak{F}} - \sigma_{\mathfrak{F}}$, while $M_{\mathfrak{F}} \cap HBD$ coincides with $M(=T(M_{\mathfrak{F}}))$. This shows that $S \cap HBD \supset (S_{\mathfrak{F}} \cap HBD)$. Thus we know that $S \cap HBD = S_{\mathfrak{F}} \cap HBD$. Now let $\tilde{M}_{\mathfrak{F}}$ be any maximal ideal as a point in $\sigma_{\mathfrak{F}}$. Then $T(\tilde{M}_{\mathfrak{F}})$ ($=\tilde{M} \in \sigma$) does not contain $S \cap HBD$, consequently $\tilde{M}_{\mathfrak{F}}$ does not contain $S_{\mathfrak{F}} \cap HBD$, because $\tilde{M}_{\mathfrak{F}} \cap HBD = T(\tilde{M}_{\mathfrak{F}}) = \tilde{M}(\in \sigma)$. Thus we see that $\sigma_{\mathfrak{F}}$ is an open subset of $\Delta_{\mathfrak{F}}$. (q.e.d.)

2. Properties of the harmonic boundary Δ_{\Re} .

Lemma 2.1. Every HB-function u attains its maximum and minimum on $\Delta_{\mathfrak{F}}$.

Proof. Let $\inf_{R} u = \lambda$, then the infimum of $\tilde{u}(=u-\lambda)$ is zero. For any HB-function v, $\tilde{u}v$ belongs to \mathfrak{F} . We decompose $\tilde{u}v$ such as $\tilde{u}v = w + \varphi$, where $w \in HB$ and $\varphi \in \mathfrak{F}_0$. We note that w is either constantly zero or non-constant function on R, because $\inf_{R} \tilde{u} = 0$. Indeed,

$$w\left(T(re^{i\theta})\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\tilde{u}v\right) \left(T(e^{i\theta})\right) \frac{1-r^{2}}{1+r^{2}-2r\cos\left(\theta-\varphi\right)} \, d\varphi \; ,$$

consequently $\underline{M}\tilde{u} \leq w \leq \overline{M}\tilde{u}$ on R, where $\underline{M} = \inf_{R} v$ and $\overline{M} = \sup_{R} v$.

From this, we know that $\mathfrak{P} = \{\tilde{u}f; f \text{ varies on } \mathfrak{F}\}$ is a principal ideal of \mathfrak{F} and furthermore $\mathfrak{P} \cap \mathfrak{F}_0$ is also an ideal of \mathfrak{F} . Therefore \tilde{u} is contained in some maximal ideal of $\Delta_{\mathfrak{F}}$, that is, \tilde{u} vanishes at the point of Δ_{\Im} . Thus we know that u takes its minimum on $\Delta_{\mathfrak{F}}$. From this we know that c-u vanishes at some point of $\Delta_{\mathfrak{F}}$, where $c = \sup_{v} u$. (q.e.d.)

Proposition 2.1. Let D be a non-compact subregion of R whose relative boundary ∂D consists of an at most countable number of analytic Jordan curves not accumulating in R. Then $\overline{D} - \overline{\partial} \overline{D}$ meets $\Delta_{\mathfrak{F}}$, provided that $D \notin SO_{HB}$, where \overline{D} and $\overline{\partial D}$ are respectively the closure of D and ∂D with respect to $R_{\mathfrak{F}}^*$.

Proof. Let $\omega = I_D[1]$ (cf. [3]). Now we define the subharmonic function \tilde{u} such as $\tilde{u} = \omega$ on D and =0 on R-D. Then \tilde{u} belongs to \mathcal{F} by the Littlewood's Theorem. Let $\tilde{u} = v + \varphi$ be the decomposition of \tilde{u} , where $v \in HB$, $\varphi \in \mathfrak{F}_0$. It is easily verified that v is the least harmonic majorant of $ilde{u}$. Consequently $\sup v=1$ and from the Lemma 2.1 we know that there is a point $p^* \in \Delta_{\mathfrak{F}}$ such as $v(p^*)=1$. From this, we know that $\tilde{u}(p^*)=1$ because $\varphi(p^*)=0$. This shows that p^* belongs to $\bar{D} - \partial D$.

Lemma 2.2. Every bounded subharmonic (superharmonic) function attains its maximum (minimum) on $\Delta_{\mathfrak{F}}$.

Proof. Let u be a subharmonic function. We decompose u such as $u=v+\varphi$, where $v\in HB$ and $\varphi\in \mathfrak{F}_0$. If $v\equiv 0$, then $u=\varphi$ (≤ 0), because $u \le v$. From this we know that $\sup_{n} u = \sup_{n} \varphi = 0$ and this is attained on $\Delta_{\mathfrak{F}}$. If $v \not\equiv 0$, v attains its maximum at some point p^* of $\Delta_{\mathfrak{F}}$. Then $u(p^*)$ is the maximum of u, because $\sup u \leq \infty$ $\sup v + \sup \varphi = v(p^*). \quad \text{(q.e.d.)}.$

Lemma 2.3. Let u_1 and u_2 be HB-functions on R, then for $p^* \in \Delta_{\mathfrak{F}}$

$$(u_1 \lor u_2) (p^*) = \max [u_1(p^*), u_2(p^*)]$$

 $(u_1 \land u_2) (p^*) = \min [u_1(p^*), u_2(p^*)],$

where $u_1 \vee u_2$ is the least harmonic majorant and $u_1 \wedge u_2$ is the greatest harmonic minorant of u_1 and u_2 .

Proof. Let $f(p) = \min[u_1(p), u_2(p)]$ $(p \in R)$, then f(p) is bounded and super-harmonic on R, consequently f is continuously extended onto $R_{\mathfrak{F}}^*$ because $f \in \mathfrak{F}$, On the other hand, $\tilde{f}(p) = \min[u_1(p), u_2(p)]$ $(p \in R_{\mathfrak{F}}^*)$ is continuous on $R_{\mathfrak{F}}^*$. Thus we know that $f(p) = \tilde{f}(p)$ on $R_{\mathfrak{F}}^*$. Let $u(p) + \varphi(p)$ be the decomposition of \tilde{f} , where $u \in HB$ and $\varphi \in \mathfrak{F}_0$. Then $u(p^*) = \tilde{f}(p^*)$ on $\Delta_{\mathfrak{F}}$, consequently $(u_1 \wedge u_2)(p^*) = \min[u_1(p^*), u_2(p^*)]$ on $\Delta_{\mathfrak{F}}$, because $u(p) = (u_1 \wedge u_2)(p)$. In the same manner, we can prove that $(u_1 \vee u_2)(p^*) = \max[u_1(p^*), u_2(p^*)]$ on $\Delta_{\mathfrak{F}}$. (q.e.d.)

Lemma 2.4. Let e_1 and e_2 be the compact subsets of $\Delta_{\mathfrak{P}}$ disjoint respectively. Then there exists an HBP-function u such as u=1 on e_1 and e=0 on e_2 .

Proof. We can construct an HBP-function u such as u=0 on e_2 and >0 on e_1 (cf. [6]). Since e_1 is compact, the infimum of u with respect to e_1 is positive. According to the Lemma 2.3, $(u/c) \wedge 1$ is the function that answers to the Lemma, where $c=\inf_{x}u$.

3. Generalized harmonic measures.

Theorem. 3.1. Let α be a compact set $(= | - \phi)$ of $\Delta_{\mathfrak{F}}$ and β its complementaly set $(= + \phi)$ in $\Delta_{\mathfrak{F}}$. Then there exists a function Ω_{α}^* defined in $R_{\mathfrak{F}}^*$ such that

- i) Ω_{α}^* is upper semi-continuous on R_{β}^* and $\Omega_{\alpha}^* \in HBP$ in R
- ii) $\Omega_{\alpha}^* = 1$ on α , = 0 on β
- iii) Ω_{α}^* is the harmonic measure in R, that is, $\Omega_{\alpha} \wedge (1-\Omega_{\alpha})=0$, where Ω_{α} is the restriction of Ω_{α}^* to R. (we call Ω_{α} the harmonic measure with respect to α).

Proof. Let H_{α} be a family of HBP functions such as

$$H_{\alpha} = \{u \in HBP : u \leq 1 \text{ and } =1 \text{ on } \alpha\}$$
.

Then we know that $u_1 \wedge u_2$ belongs to H_{α} for any u_1 and u_2 of H_{α} , by means of the Lemma 2.3. Consequently,

$$\Omega_{\alpha}^* = \inf_{u \in H_{\alpha}} u(p) \qquad (p \in R_{\Im}^*)$$

is an HBP function (may be constantly zero) (cf. [7]), and Ω_n^* is obtained as the limit function of the non-increasing sequence consisting of the elements of H_{α} . In the following, we shall show that Ω_n^* is the function that answers to the above Theorem. From Lemma 2.4, we know that there exists a function $u \in H_{\alpha}$ such as, for arbitrarily given $p^*(\in\beta)$, $u(p^*)=0$. This shows that $\Omega_{\alpha}^* = \text{ on } \beta$, that is, Ω_{α}^* satisfies the condition ii). Next we show that $\sup \Omega_{\alpha} = 1$ provided that $\Omega_{\alpha} \equiv 0$. Suppose that $\sup \Omega_{\alpha} = c(<1)$. Then $\Omega_{\alpha} \leq cu$ for any $u \in H_{\alpha}$ by Lemma 2.1, consequently $\Omega_{\alpha} \leq c\Omega_{\alpha}$. This is absurd, that is, $\sup_{\alpha} \Omega_{\alpha} = 1$ provided that $\Omega \equiv 0$. Let e be a set of $\Delta_{\mathfrak{F}}$ such as $e = \{p^* \in \alpha : \Omega_{\alpha}(p^*) = 1\}$ then e is a compact subset of α . Suppose that Ω_{α} takes a positive value λ at some point $q^*(\in \alpha - e)$. Then q^* does not be contained in $\beta \cup e$, consequently there exists an HBP-function U such as $U(q^*)=1$ and =0 on $\overline{\beta \cup e}$ by the Lemma 2.4. Let $\tilde{U}=U \wedge 1$, then $(\tilde{U} \vee \Omega_{\alpha}) > \Omega_{\alpha}$ on R. Indeed, $\tilde{U} \vee \Omega_{\alpha} = 1$ at q^* by the Lemma 2.3, while $\Omega_{\alpha}(q^*) =$ $\lambda(<1)$. Noting that $(\tilde{U}\vee\Omega_{\alpha})< u_n$ for every n, we conclude that

$$\Omega_{\alpha} < (\tilde{U} \vee \Omega_{\alpha}) \leq \lim_{n \to \infty} u_n = \Omega_{\alpha}$$
,

where $\{u_n\}$ is a non-increasing sequence such as $u_n \in H_{\alpha}$ for every n and $u_n \downarrow \Omega_\alpha$. This is absurd. Thus we know that Ω_α vanishes on $\alpha - e$, provided that $\alpha - e \neq \phi$. From this, we can see that $\Omega_{\alpha} \wedge (1 - \Omega_{\alpha}) = 0$ on R. (q.e.d.)

Corollary 3.2. Let α be a compact subset of $\Delta_{\mathfrak{F}}$ and Ω_{α} be its harmonic measure. Then $\alpha-e$ belongs to the closure of β provided that $\alpha - e = \phi$, where β is the complementary set of α with respect to Δ_{\Re} .

Corollary 3.2'. Let α be a compact subset of $\Delta_{\mathfrak{F}}$. Then there exists a simultaneously open and closed set $\tilde{\alpha}$ in α such as $\Omega_{\alpha}^* = \Omega_{\tilde{\alpha}}^*$ on R, provided that $\Omega_{\alpha} > 0$.

Now we define the harmonic measure with respect to an open set of $\Delta_{\mathfrak{F}}$. Let α be an open set of $\Delta_{\mathfrak{F}}$. Then we call $1-\Omega_{\beta}$ the harmonic measure with respect to α , where $\beta = \Delta_{\mathfrak{F}} - \alpha$.

Theorem 3.2. Let α be an open subset of $\Delta_{\mathfrak{F}}$ and let $\bar{\alpha}$ be

its closure. Then $\bar{\alpha}$ is either a simultaneously open and closed set of $\Delta_{\mathfrak{F}}$ or $\Delta_{\mathfrak{F}}$ itself. Cousequently $\Omega_{\alpha} > 0$, provided that $\alpha \neq \phi$.

Proof. Let β be a complementary set of $\alpha(\pm\phi)$ with respect to $\Delta_{\mathfrak{F}}$. In the case $\Omega_{\beta} > 0$, the $\bar{\alpha}$ is simultaneously open and closed set of $\Delta_{\mathfrak{F}}$ by Corollary 3.2. Next, we suppose that $\Delta_{\mathfrak{F}} - \bar{\alpha} \pm \phi$. Then there exists a point q^* in β such as $q^* \notin \bar{\alpha}$, consequently there exists an HBP-function u such as u=0 on $\bar{\alpha}$ and u=1 at u=0. From this we know that u=0 this shows that u=0 provided that u=0.

Proposition 3.1. Let $\{\alpha_n\}$ be the family of open subsets of $\Delta_{\mathfrak{F}}$ and let $\gamma = \bigcup_{n=1}^{\infty} \alpha_n$. Then

$$\Omega_{\gamma} \leq \sum_{n=1}^{\infty} \Omega_{\alpha_n}$$
 on R .

Proof. We assume that $\Omega_{\alpha_n} < 1$ for every n and furthermore $\sum_{n=1}^{\infty} \Omega_{\alpha_n}$ converges. In the other cases, this Proposition is trivial. From the Corollary 3.2 and Theorem 3.2, we know that $\Omega_{\gamma} = \Omega_{\bar{\gamma}}$ and $\Omega_{\alpha_n} = \Omega_{\bar{\alpha}_n}$ on R for every n. Suppose that $\Omega_{\gamma}(p_0) - \sum_{n=1}^{\infty} \Omega_{\bar{\alpha}_n}(p_0) = \varepsilon > 0$ for some point p_0 in R. Then

$$ilde{D} = \left\{ extit{p} \in R \; ; \; \Omega_{ar{ extit{q}}}(extit{p}) - \sum^{\infty} \Omega_{ar{ extit{q}}_n}(extit{p}) > rac{arepsilon}{2}
ight\}$$

is non-compact set in R. Let D be a component of \widetilde{D} , then $D \notin SO_{HB}$. Consequently $(\overline{D} - \overline{\partial D}) \cap \Delta_{\mathfrak{F}}$ is non-empty by the Proposition 2.1. On the other hand, we can see that $(\overline{D} - \overline{\partial D}) \cap \Delta_{\mathfrak{F}}$ is empty by the following reason. Suppose that $q^*(\in \Delta_{\mathfrak{F}})$ is contained in $\overline{D} - \overline{\partial D}$. If $q^* \in \overset{\circ}{\bigcup}_{n=1}^{\infty} \overline{\alpha}_n$, then $q^* \in \overline{\alpha}_n$ for some $\overline{\alpha}_n$, consequently $\sup_{n=1}^{\infty} \Omega_{\overline{\alpha}_n} = 1$ by the Theorem 3.2. This is incompatible with $\Omega_{\overline{\gamma}}(p) - \overset{\circ}{\sum} \Omega_{\overline{\alpha}_n}(p) > \frac{\varepsilon}{2}$ in D. If $q^* \notin \overset{\circ}{\bigcup} \overline{\alpha}_n$, then $q^* \notin \gamma$, that is, $q^* \notin \overline{\gamma}$ or $\in \overline{\gamma} - \gamma$. In the first case, $\Omega_{\gamma}(q^*) = 0$, consequently $\inf_{n} \Omega_{\gamma} = 0$. In the second case we can see easily that $\overline{D} - \overline{\partial D}$ contains some point p^* belonged to γ . This point p^* belongs to $\overset{\circ}{\bigcup} \overline{\alpha}_n$, and this is incompatible with $\Omega_{\gamma}(p) - \overset{\circ}{\sum} \Omega_{\overline{\alpha}_n}(p) > \frac{\varepsilon}{2}$ in D. Thus we know that

$$(\overline{D}-\overline{\partial D})\cap \Delta_{\mathfrak{F}}$$
 is empty. This is absurd, that is, $\Omega_{\gamma} \leqq \sum_{n=1}^{\infty} \Omega_{\omega_{n}}$. (q.e.d.)

Now we define the outer harmonic measure μ_{γ} with respect to any subset γ of $\Delta_{\mathfrak{F}}$. Let \mathfrak{G}_{γ} be the family of open subsets of $\Delta_{\mathfrak{F}}$ each of which contains γ respectively, and let H_{γ} be the family $\{\Omega_{\alpha}\}$, where α varies on \mathfrak{G}_{γ} . We call the lower evelope of H_{γ} , that is,

$$\mu_{\gamma}(p) = \inf_{\alpha \in \mathfrak{G}_{\gamma}} \Omega_{\alpha}(p) \qquad (p \in R),$$

the outer harmonic measure with respect to γ .

Proposition 3.2. μ_{γ} is the harmonic measure, that is, $\mu_{\gamma} \wedge (1 - \mu_{\gamma}) = 0$.

Proof. Let α_1 and α_2 be open sets containing γ respectively. Then

$$egin{aligned} \Omega_{a_1 igcap a_2} &= \Omega_{\overline{a_1 igcap a_2}} &= 1 & & ext{on} & & \overline{lpha_1 igcap lpha_2} \ &= 0 & & ext{on} & & \Delta_{rac{a_1 igcap lpha_2}{lpha_1 igcap lpha_2} \end{aligned}$$

by Theorem 3.2. Therefore $\Omega_{\alpha_1 \cap \alpha_2} = \Omega_{\alpha_1} \wedge \Omega_{\alpha_2}$, because $\overline{\alpha_1 \cap \alpha_2} = \overline{\alpha_1} \cap \overline{\alpha_2}$, From this we can see that μ_{γ} is the limit function of a non-increasing sequence consisting of the elements of H_{γ} (cf. [1], [7]). Consequently μ_{γ} is the HBP-function on R. Next we prove that $\sup_{R} \mu_{\gamma} = 1$, provided that $\mu_{\gamma} \equiv 0$. Let $\mu_{\gamma} = \lim_{n \to \infty} \Omega_{\alpha_n}$, where $\{\Omega_{\alpha_n}\}$ is a non-increasing sequence such as $\Omega_{\alpha} \in H_{\gamma}$ for every n. Suppose that $0 < \sup_{R} \mu_{\gamma} = c < 1$. Since $\mu_{\gamma} \le \Omega_{\alpha_n}$ for every n, $\mu_{\gamma} = 0$ on $\Delta_{\Im} - \overline{\alpha}_n$ for every n. From this we know that

$$\mu_{\gamma} \leq c\Omega_{\alpha_n}$$

for every n by Lemma 2.1 and Theorem 3.2. Thus we have $\mu_{\gamma} \leq c\mu_{\gamma}$. This is absurd, that is, $\sup_{R} \mu_{\gamma} = 1$. Let e be the compact set such as $e = \{p^* \in \Delta_{\mathfrak{F}} : \mu_{\gamma}(p^*) = 1\}$. We note that $\mu_{\gamma} = 0$ on $\Delta_{\mathfrak{F}} - \overline{\alpha}_n$ for every n, consequently $\mu_{\gamma} = 0$ on $\bigvee_{n=1}^{\infty} (\Delta_{\mathfrak{F}} - \overline{\alpha}_n)$, that is, μ_{γ} vanishes on $\bigvee_{n=1}^{\infty} (\Delta_{\mathfrak{F}} - \overline{\alpha}_n)$. Thus we know that $e \in \bigcap_{n=1}^{\infty} \overline{\alpha}_n$. Next we show that e is a simultaneously open and closed set in $\Delta_{\mathfrak{F}}$. Suppose

that μ_{γ} does not vanish at some point $q^* \in \bigcap \overline{\alpha}_n - e$, then there exists an HBP-function u such as u = 1 at q^* , = 0 on $e \cup (\Delta_{\mathfrak{F}} - \bigcap \overline{\alpha}_n)$ by Lemma 2.4. The function $\mu_{\gamma} \vee U$ (where $U = u \wedge 1$) is larger than μ_{γ} , but is smaller than Ω_{α_n} for every n, because $\Omega_{\alpha_n} = 1$ on $\overline{\alpha}_n$ and = 0 on $\Delta_{\mathfrak{F}} - \overline{\alpha}_n$, while $\mu_{\gamma} \vee U = 0$ on $\Delta_{\mathfrak{F}} - \overline{\alpha}_n$, and ≤ 1 on $\overline{\alpha}_n$. From this, we have that

$$\mu_{\gamma} = \lim_{n \to \infty} \Omega_{\alpha_n} \geq \mu_{\gamma} \wedge U > \mu_{\gamma}$$
.

This is absurd. Thus we conclude that $\mu_{\gamma} \wedge (1 - \mu_{\gamma}) = 0$. (q.e.d.)

Proposition 3.3. The μ_{γ} is the harmonic measure with respect to $\bigcap^{\sim} \overline{\alpha}_n$

Proof. It is evident that $\Omega_{\overline{a}_n} \ge \Omega_{\bigcap \overline{a}_n}^{\infty} \ge \mu_{\gamma}$. Therefore $\mu_{\gamma} \ge \Omega_{\bigcap \overline{a}_n}^{\infty} \ge \mu_{\gamma}$ as $n \to \infty$, that is, $\mu_{\gamma} = \Omega_{\bigcap \overline{a}_n}^{\infty}$. (q.e.d.)

Lemma 3.2. Let $\gamma = \bigcup_{n=1}^{\infty} \gamma_n$, where γ_n is any subset of $\Delta_{\mathfrak{F}}$ for every n. Then

$$\mu_{\gamma} \leq \sum_{n=1}^{\infty} \mu_{\gamma_n}$$
 on R .

Proof. Let G be any compact subregion in R. Then, for any fixed $\mathcal{E}(>0)$ and any γ_n , there exists a certain open subset α_n of $\Delta_{\mathfrak{F}}$ such as $\gamma_n \in \alpha_n$ and

$$\mu_{\gamma_n} \leq \Omega_{\alpha_n} < \mu_{\gamma_n} + \frac{\varepsilon}{2^n}$$

in G. Thus we know that

$$\mu_{\gamma} \leq \Omega_{\bigcup \alpha_n} \leq \sum_{n=1}^{\infty} \Omega_{\alpha_n} < \sum_{n=1}^{\infty} \mu_{\gamma_n} + \varepsilon$$

in G by the Proposition 3.1. Therefore $\mu_{\gamma} \leq \sum_{n=1}^{\infty} \mu_{\gamma_n}$ in G and G is an arbitrarily fixed subregion in R, we know that this inequality holds on R. (q.e.d.)

Thus we know that the outer harmonic measure μ_{γ} is the Caratheodory outer measure with respect to the subsets of Δ_{\Im} .

4. Integral representation of an HB-function and quasi-bounded component of an HP-function.

We already proved that μ_{γ} is the harmonic measure with respect to a simultaneously open and closed set e in $\bigcap \bar{\alpha}_n$, provided that $\mu_{\gamma} \equiv 0$. Now we note that $e \cap \gamma$ is not empty. Suppose that $e \cap \gamma$ is empty. Then $e \cap \bar{\gamma}$ is empty, because e is simultaneously open and closed in Δ_{\Re} . According to the Lemma 2.4, there exists an HBP-function u such as u=1 on e and u=0 on u=0. Let u=0 on u=0 on u=0 on u=0 on u=0. Then u=0 on u=0

Lemma 4.1. Let γ be any subset of $\Delta_{\mathfrak{P}}$ such as $\mu_{\gamma} > 0$ and let e be a simultaneously open and closed set in $\Delta_{\mathfrak{P}}$ such as $\mu_{\gamma} = \Omega_{e}$. Then $e \in \overline{\gamma}$ and $\mu_{\gamma-e} \equiv 0$.

Proof. Suppose that $e-\bar{\gamma}$ be non-empty. Let $q^* \in e-\bar{\gamma}$. Then there exists an HBP-function u such as u=1 at q^* and =0 on $\bar{\gamma}$ by the Lemma 2.4. Let σ be an open set of $\Delta_{\mathfrak{F}}$ such as $\sigma = \left\{p^* \in \Delta_{\mathfrak{F}} : u(p^*) < \frac{1}{2}\right\}$. From this, we see that $\Omega_{\sigma \cap \alpha_n} \downarrow \mu_{\gamma}$ as $n \to \infty$, that is, μ_{γ} is the harmonic measure with respect to $\bigcap_{i=1}^{\infty} (\overline{\sigma \cap \alpha_n})$ by the Proposition 3.3. But $\bigcap_{i=1}^{\infty} (\overline{\sigma \cap \alpha_n})$ does not contain the $q^*(\in e)$. This is absurd. Thus we know that $e \in \bar{\gamma}$. Next we show that $\mu_{\gamma-e} \equiv 0$. Evidently $\gamma - e \in \bigcap_{i=1}^{\infty} \overline{\alpha_n} - e$, consequently $\mu_{\gamma-e} \le \mu_{(\bigcap_{i=1}^{\infty} \overline{\alpha_n} - e)} (= \mu_{\bigcap_{i=1}^{\infty} \overline{\alpha_n}} - \mu_e)$, that is, $\mu_{\gamma-e} = 0$ (cf. Prop. 4.2).

Proposition 4.1. Let α be an open set of $\Delta_{\mathfrak{F}}$. Then α is μ -measurable and $\mu_{\alpha} = \Omega_{\alpha}$.

Proof. It is evident that $\mu_{\alpha} = \Omega_{\alpha}$. We shall prove the measurability. Let γ be any subset of Δ_{\Re} . It is evident that

 $\mu_{\gamma} \leq \mu_{\gamma \cap \infty} + \mu_{(\gamma - \gamma \cap \infty)}$ by the Lemma 3.2. If any one of the right vanishes, then the left hand coincides with the right side. Therefore we assume that $\mu_{\gamma \cap \alpha}$ and $\mu_{(\gamma - \gamma \cap \infty)}$ do not vanish respectively. According to the Corollary 3.2, there exists the simultaneously open and closed sets e, e_1 and e_2 such as $\mu_{\gamma} = \Omega_e$, $\mu_{\gamma \cap \alpha} = \Omega_{e_1}$ and $\mu_{(\gamma - \gamma \cap \alpha)} = \Omega_{e_2}$. It is clear that e_1 and e_2 are contained in e respectively. According to the Lemma 4.1, the e_2 is contained in $\Delta_{\mathfrak{F}} - \alpha$, because $e_2 \in \gamma \cap (\overline{\Delta_{\mathfrak{F}} - \alpha}) \in \Delta_{\mathfrak{F}} - \alpha = \overline{\Delta_{\mathfrak{F}} - \alpha}$. With respect to e_1 , it is contained in $\overline{\alpha}$ by the Lemma 4.1. Noting that e_1 and e_2 are simultaneously open and closed respectively, we know that $e_1 \cap e_2 = \phi$. Thus we have the following

$$\mu_{\gamma} = \Omega_e \ge \Omega_{e_1 \cup e_2} = \Omega_{e_1} + \Omega_{e_2} = \mu_{\gamma \cap \alpha} + \mu_{(\gamma - \gamma \cap \alpha)}.$$
 (q.e.d.)

Proposition 4.2. Let α be a closed set of $\Delta_{\mathfrak{F}}$. Then α is measurable and $\mu_{\alpha} = \Omega_{\alpha}$.

Proof. Since $\Delta_{\mathfrak{F}}=\alpha+(\Delta_{\mathfrak{F}}-\alpha)$ and $\Delta_{\mathfrak{F}}-\alpha$ is measurable, $\mu_{\Delta_{\mathfrak{F}}}=\mu_{\alpha}+\mu_{(\Delta_{\mathfrak{F}}-\alpha)}$. From this we have $\mu_{\alpha}=1-\mu_{(\Delta_{\mathfrak{F}}-\alpha)}=1-\Omega_{(\Delta_{\mathfrak{F}}-\alpha)}$. This shows that $\mu_{\alpha}=\Omega_{\alpha}$. (q.e.d.)

Proposition 4.3. Let $\mu_{\alpha} = 0$, then $\alpha \in (\overline{\Delta_{\mathfrak{F}} - \alpha})$.

Proof. Supose that $\beta = \alpha - (\overline{\Delta_{\mathfrak{F}} - \alpha}) \neq \phi$. Then β is an open subset of $\Delta_{\mathfrak{F}}$, because $\Delta_{\mathfrak{F}} = (\Delta_{\mathfrak{F}} - \alpha) \cup \alpha = (\overline{\Delta_{\mathfrak{F}} - \alpha}) \cup \alpha = (\overline{\Delta_{\mathfrak{F}} - \alpha}) \cup \beta$ and that $(\overline{\Delta_{\mathfrak{F}} - \alpha}) \cap \beta = \phi$. Therefore $\mu_{\beta} > 0$ by Theorem 3.2. On the contrary, $\mu_{\beta} = 0$ since $\beta \in \alpha$. This is absurd, that is $\alpha \in (\overline{\Delta_{\mathfrak{F}} - \alpha})$. (q.e.d.)

Proposition 4.4. Let u be an HB-function such as u=0 on $\Delta_{\mathfrak{F}}$ except for a null-set. Then $u\equiv 0$.

Proof. According to Prepotion 4.3, u vanishes on $\Delta_{\mathfrak{F}}$ because u is continuous on $\Delta_{\mathfrak{F}}$. Thus we conclude that $u \equiv 0$ in R. (q.e.d.)

Proposition 4.5. Let u and v be HB-functions such as u=v (u>v) on $\Delta_{\mathfrak{F}}$ except for a null-set. Then $u\equiv v$ (u>v) on R.

Proof. This is clear by Proposition 4.4 and Lemma 2.1. (q.e.d.)

Lemma 4.2. Let γ be a measurable set of positive measure. Then $\mu_{\gamma-e} = \mu_{e-\gamma} = 0$, that is, $\mu_{\gamma} = 1$ on γ except for a null-set and =0 on $\Delta_{\Re} - \gamma$ except for a null-set provided that $\mu_{\gamma} > 0$.

Proof. It has been proved in Lemma 4.1 that $\mu_{\gamma-e}=0$. Now we show that $\mu_{e-\gamma} = 0$. Since $e - \gamma \cap \bigcap^{\infty} \bar{\alpha}_n - \gamma$, we know that $\mu_{e-\gamma} \leq \mu_{(\bigcap \overline{\alpha}_n - \gamma)}^{\infty}$. And $\mu_{(\bigcap \overline{\alpha}_n - \gamma)} = \mu_{\bigcap \overline{\alpha}_n} - \mu_{\gamma}$ because γ is measurable and $\gamma \in \widetilde{\bigcap} \overline{\alpha}_n$. Thus we know that $\mu_{e-\gamma} = 0$. (q.e.d.)

Theorem 4.1. Let u be an HBP-function.

$$u(p) = \int_{\Delta_{\mathfrak{R}}} u(p^*) d\mu(p^*, p)$$

where μ is the outer harmonic measure.

Proof. Let $\{e_k\}_{k=1}^n$ be a partition of $\Delta_{\mathfrak{F}}$ each of which is μ measurable and let $m_k = \inf u(p^*)$ for each k. Then

$$s(p) = \sum_{k=1}^{n} m_k \mu_{e_k}(p) \qquad (p \in R)$$

is an HBP-function on R by Proposition 3.2. Let I' be the family of s(p) corresponding to each partition of $\Delta_{\mathfrak{F}}$. Then I' has the following property: there exists an element s(p) of 1' such as $s(p) \ge \max[s_1(p), s_2(p)]$ $(p \in R)$ for any given s_1 and s_2 of 1. This is verified by means of Lemma 2.1 and Lemma 4.2. Therefore we know that $\sup_{s \in \Gamma} s(p) = U(p)$ is harmonic on R (cf. [1] p. 134). Thus we know that

$$U(p) = \int_{\Delta_{ch}} u(p^*) d\mu(p^*, p)$$

is harmonic on R. It is clear that $s(p) (\in I') \leq u(p)$ for any $s \in I'$ by Lemma 4.2. Consequently $U \le u$. And we can see easily that U is identical with u. (q.e.d.)

Theorem 4.2. Let f be a measurable function positive and bounded on Δ_{\Re} , then

$$U(p) = \int_{\Delta_{\mathfrak{R}}} f(p^*) d\mu(p^*, p)$$

is an HB-function on R and U=f on $\Delta_{\mathfrak{F}}$ except for a null-set.

Proof. In the same manner as did in Theorem 4.1, we can verify that U(p) is an HB-function on R. we shall prove the latter. Let $\{e_i^{(n)}\}_{i=1}^{k_n}$ be a partition of Δ_{\Re} such as

$$e_i^{(n)} = \left\{ p^* \in \Delta_{\mathfrak{F}} \; ; \; \frac{i}{2^n} \leq f(p^*) < \frac{i+1}{2^n} \right\} \quad (i = 0, 1, \dots, k_n \colon k_n = 2M - 1) \; ,$$

where $M = \sup_{\Delta_{\mathfrak{R}}} f(p^*)$. Then $\{s^{(n)}\}_{n=1}^{\infty}$ is a non-decreasing sequence and converges to U(p), consequently

$$U(p) = \lim_{n \to \infty} s^{(n)}(p) = \lim_{n \to \infty} \int_{\Delta_{\Re}} s^{(n)}(p^*) d\mu(p^*, p) =$$
$$\int_{\Delta_{\Re}} (\lim_{n \to \infty} s^{(n)}(p^*)) d\mu(p^*, p) .$$

On the other hand, $U(p^*) \ge s^{(n)}(p^*)$ on $\Delta_{\mathfrak{F}}$ consequently $U(p^*) \ge \lim_{n \to \infty} s^{(n)}(p^*) = f(p^*)$ except for a null-set, From this we know that $U(p^*) = f(p^*)$ except for a null-set, because

$$U(p) - \int_{\Delta_{\mathfrak{F}}} f(p^*) d\mu(p^*, p) = \int_{\Delta_{\mathfrak{F}}} (U(p^*) - f(p^*)) d\mu(p^*, p) = 0.$$
 (q.e.d.)

In the following, we shall treat the unbounded HP-functions. Let u be an unbounded HP-function. Then $u(p) = \lim_{n \to \infty} u_n(p)$, where $u_n(p) = \min \left[u(p), n \right]$ for every n. Let e_n be a set of $R_{\mathfrak{F}}^*$ such as $e_n = \{ p \in R_{\mathfrak{F}}^* : u_n(p) = n \}$. Then $e_n > e_{n+1}$ for each n, therefore $e_{\infty} = \bigcap_{n=1}^{\infty} e_n$ is non-empty, because every e_n is compact. We define the function $u^*(p)$ as follows:

$$u^*(p) = u(p)$$
 on $R_{\Im}^* - e_{\infty}$
= $+\infty$ on e_{∞} .

Then $u^*(p)$ is continuous on R_n^* in the sense of $\overline{\lim} u(p) = \underline{\lim} u(p)$ on R_n^* . From now on, $u^*(p)$ is denoted by u(p) again.

Theorem 4.3. Let u be an unbounded HP-function on R. Then $u(p^*)$ $(p^* \in \Delta_{\Re})$ is integrable on Δ_{\Re} . Consequently $e_{\infty} \cap \Delta_{\Re}$ is μ -measure zero.

Proof. Let $u_n(p) = \min [u(p), n]$. Then $u_n(p) \uparrow u(p)$ on R and

$$\tilde{u}_n(p) = \int_{\Delta_{\mathfrak{R}}} u_n(p^*) d\mu(p^*, p) \qquad (n=1, 2, \cdots)$$

is a non-decreasing sequence. According to Fatou's lemma, we know that

$$+\infty > u(p) \ge \underline{\lim} \, \tilde{u}_n(p) \ge \int_{\Delta_{\mathfrak{R}}} (\underline{\lim} \, u_n(p^*)) \, d\mu(p^*, p) =$$

$$\int_{\Delta_{\mathfrak{R}}} u(p^*) \, d\mu(p^*, p) \, .$$

This shows that $u(p^*)$ $(p^* \in \Delta_{\mathfrak{F}})$ is integrable on $\Delta_{\mathfrak{F}}$ and $e_{\infty} \cap \Delta_{\mathfrak{F}}$ is μ -measure zero. (q.e.d.)

From this, we have a decomposition such as $u(p) = w(p) + \int_{\Delta_{\mathfrak{F}}} u(p^*) d\mu(p^*, p)$. In the following, we show that this decomposition coincides with the Parreau's decomposition.

Theorem 4.4. w(p) is the singular component of u and the integral term is the quasi-bounded component of u.

Proof. Let $\tilde{u}(p) = \int_{\Delta_{\mathfrak{R}}} u(p^*) d\mu(p^*, p)$ and let $u_n(p) = \min[u(p), n]$ on R. Then we have the inequality

$$u(p) \ge \tilde{u}(p) > u_n(p)$$
 on R

Let q^* be a point of $\Delta_{\mathfrak{F}}$ such as $q^* \notin e_{\infty}$, where $e_{\infty} = \{p^* \in \Delta_{\mathfrak{F}}; u(p^*) = +\infty\}$. Then, for a suitable number N, $u(q^*) \geq \tilde{u}(q^*) \geq u_N(q^*) = u(q^*)$ by Lemma 2. 3. Therefore $u(p^*) = \tilde{u}(p^*)$ on $\Delta_{\mathfrak{F}}$ except for e_{∞} . This shows that $w(p) = u(p) - \tilde{u}(p)$ is singular, because e_{∞} is a null-set. (q.e.d.)

Theorem 4.5. Let an HP-function w be singular. Then w vanishes at each point of $\Delta_{\mathfrak{F}}$.

Proof. It is evident that w vanishes on $\Delta_{\mathfrak{F}}-e_{\infty}$, where. $e_{\infty}=\{p^*\in\Delta_{\mathfrak{F}}\,;\,w(p^*)=+\infty)$. we shall show that $e_{\infty}=\phi$. Suppose that e_{∞} is non-empty. Then a set of G,

$$G = \{ p \in R ; w(p) > c > 0 \}$$

is non-empty in R and e_{∞} is contained in $\overline{G}-\overline{\partial G}$. We note that e_{∞} is a simultaneously open and closed set in $\Delta_{\mathfrak{F}}$ because $\overline{\partial G} \cap \Delta_{\mathfrak{F}} = \phi$. From this we know that $\mu_{e_{\infty}}$ is positive. This is absurd, because $\mu_{e_{\infty}}=0$ by Theorem 4.3. (q.e.d.)

Finally we shall give the following

Theorem 4.6. The harmonic boundary Δ_{\Re} is totally disconnected.

Proof. Let σ be connected subset of $\Delta_{\mathfrak{F}}$. In the following, we shall see that σ is a single point. Suppose that σ has at least two points, say q_1^* , q_2^* . According to Lemma 2.4, there exists an HBP-function u such as $u(q_1^*)=1$ and $u(q_2^*)=0$. Now let G be an open set such as $G=\left\{p^*\in \Delta_{\mathfrak{F}}\;;\; u(p^*)>\frac{1}{2}\right\}$. Evidently $q_1^*\notin \overline{G}$, consequently $\sigma\cap \overline{G}$ and $\sigma-\sigma\cap \overline{G}$ are disjoint non-empty sets respectively and furthermore \overline{G} is a simultaneously open and closed set in $\Delta_{\mathfrak{F}}$ from Theorem 3.2. This is absurd, because σ is connected. Thus we know that σ must be a single point, provided that σ is connected. This shows that $\Delta_{\mathfrak{F}}$ is totally disconnected. (q.e.d.)

The results in Theorem 3.2 and 4.2 seem to us curious, but on the other hand, from these results we see the similarity between Δ_{\Re} and the hyper Stone space (cf. [13] pp. 108~ 111). In the following, we shall show that $\Delta_{\mathfrak{F}}$ as the subspace of R_{0}^{*} is the hyper Stone space. Let f_{1} and f_{2} be essentially bounded functions on $\Delta_{\mathfrak{F}}$, then we define that f_1 is equivalent to f_2 , provided that $f_1 = f_2$ except for a null-set. Under this stipulation, we denote by $M(\Delta_{\mathfrak{F}})$ a family of essentially bounded, measurable function on $\Delta_{\mathfrak{F}}$. Then we have the following theorem; the compact Hausdorff space H constructed from maximal ideals of $M(\Delta_{\Re})$ is the Stone space and furthermore is the hyper Stone space (cf. [13]). On the other hand, Theorem 4.2 shows that $M(\Delta_{\Re})$ is identical with $C(\Delta_{\mathfrak{F}})$, where $C(\Delta_{\mathfrak{F}})$ denotes a family of continuous function on $\Delta_{\mathfrak{F}}$, and that the compact Hausdorff space constructed from maximal ideals of $C(\Delta_{\mathfrak{F}})$ is identical with $\Delta_{\mathfrak{F}}$ because $\Delta_{\mathfrak{F}}$ is the compact space. Thus we know that $\Delta_{\mathfrak{F}}$ is the hyper Stone space.

5. 0_{HR} and Δ_{\Im}

Let γ be a measurable set of Δ_{\Re} with positive measure. Now we define a partition $\sigma_1 | \sigma_2$ of γ as follows: σ_1 and σ_2 are disjoint, measurable sets with positive measures respectively and have union We call γ an indivisible set if it admits no partition.

Lemma 5.1. Let γ be an indivisible set of $\Delta_{\mathfrak{F}}$. Then γ consists of an isolated point and a null-set.

Proof. According to Proposition 3.2 and Lemma 4.2, we know that μ_{γ} coincides with μ_{e} , where e is a simultaneously open and closed set of Δ_{\Re} and $\mu_{e-\gamma} = \mu_{\gamma-e} = 0$. From this, we know that e is an indivisible set. In the following, we shall prove that every HB-function is constant on e. Suppose that for some HB-function $u, (c_1 =) \sup u > \inf u (= c_2)$ with respect to e. Then whether $e_1 =$ $\{p^* \in e : u(p^*) > c\}$ or $e_2 = \{p^* \in e : u(p^*) < c\}$ is a null-set for any given $c(c_2 < c < c_1)$. If e_1 is a null-set, e_1 would be contained in $\bar{e}_{\scriptscriptstyle 2}$, because e is a simultaneously open and closed set in Δ_{\Im} and a null-set is contained the closure of its complementary set with respect to $\Delta_{\mathfrak{F}}$. This shows that $\sup u \leq c (< c_1)$. This is absurd. Analogously we can see that e_2 must be positive measure. Thus we know that every HB-function is constant on e, that is, econsists of a single point. At the beginning of §4, we have shown that $\gamma \cap e$ does not be empty, provided that $\mu_{\gamma} > 0$. From these, we conclude that γ is union of a simultaneously open and closed set and a null-set. (q.e.d.)

Theorem 5.1. Let $q^*(\in \Delta_{\mathfrak{F}})$ be a point with positive measure. Then the $\mu_{\{a^*\}}$ is HB minimal. Conversely, every HB minimal function whose supremum is 1 is the μ -measure of an isolated point of $\Delta_{\mathfrak{F}}$.

Proof. It is clear that $\mu_{(q^*)}$ is HB-minimal, because q^* is identical with the set e. We shall prove the inverse. Let $\omega(p)$ be an HB-minial function such as $\sup \omega = 1$. Let e be a set of $\Delta_{\mathfrak{F}}$ such as $e = \{ p^* \in \Delta_{\mathfrak{F}} ; \omega(p^*) = 1 \}$. Now, for any HBP-function u, $(u/||u||) \wedge \omega$ is smaller than ω . Therefore $(u/||u||) \vee \omega = c\omega$, where

 $0 \le c \le 1$. This shows that u is constant on e. From this, we know that every HB-function is constant on e, because $u = u \lor 0 + u \land 0$. Thus we conclude that e consists of a single point with positive measure ω . Indeed ω vanishes on $\Delta_{\mathfrak{F}} - e$ and this is verified easily by Lemma 2.4.

Theorem 5.2. $R \in \mathcal{O}_{HB_n} - \mathcal{O}_{HB_{n-1}}$ if and only if $\sigma(R) = n$, where $\sigma(R)$ denotes the number of the harmonic boundary points.

Proof. In the same manner as did in [7], this is proved.

Theorem 5.3. There exist at least n generalized harmonic measure $\{\omega_i\}_{i=1}^n$ on R such as $\omega_i \wedge \omega_j = 0$ $(i \neq j)$, provided that $\Delta_{\mathfrak{F}}$ contains at least n points. The inverse is true also.

Proof. The harmonic boundary $\Delta_{\mathfrak{F}}$ does not be an indivisible set, if not so, $\Delta_{\mathfrak{F}}$ would consist of a single point. Consequenly there exists a partition $\Delta_1 | \Delta_2$ of $\Delta_{\mathfrak{F}}$. Next, one or the other of Δ_1 and Δ_2 does not be an indivisible set, if not so, the R would be of the class $0_{HB_2} - 0_{HB_1}$. Thus this decomposition will be continued up to at least the (n-1) th step, that is,

$$\Delta_{\mathfrak{R}} = \Delta^{(1)} \cup \Delta^{(2)} \cup \cdots \cup \Delta^{(n)}$$

where every $\Delta^{(i)}$ has positive measuse and disjoint respectively. From this, we have the generalized harmonic measure $\{\mu_{\Delta^{(i)}}\}_{i=1}^n$ such as $\mu_{\Delta^{(i)}} \wedge \mu_{\Delta^{(j)}} = 0$ $(i \neq j)$, where $\mu_{\Delta^{(i)}} \wedge \mu_{\Delta^{(j)}} = 0$ $(i \neq j)$ is clear from Lemma 4.2.

Corollary. (Bader-Parreau [2], Matsumoto [12]) $R \notin 0_{HB_n}$ if and only if there exist n+1 non-compact subregions $\{G_i\}$ such as $G_i \cap G_j = \phi$ $(i \neq j)$ and $\notin SO_{HB}$ respectively.

Proof. It is easily verified by means of Theorem 5.2, 5.3 and Proposition 2.1.

REFERENCES

- [1] Ahlfors, L. and Sario, L.: Riemann surfaces. Princeton Univ. Press. (1960).
- [2] Bader, R. et Parreau, M.: Domaines non compacts et classification des surfaces de Riemann. C. R. Acad. Sci. Paris. 231 (1951).

- [3] Constantinescu, C. and Cornea, A.: Über den idealen Rand und einige seiner Anwendungen bei Klassifikation der Riemannschen Flächen. Nagoya math. J. 13 (1958).
- [4] Gelfand, I. und Silov, G.: Über verschiedene Methode der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes. Rec. Math. 9 (1941).
- [5] Heins, M.: On the Principle of Harmonic Measure. Comm. Math. Helv. 33 (1959).
- [6] Kusunoki, Y. and Mori, S.: On the harmonic boundary of an open Riemann surface, I. Japanese J. of Math. 29 (1959).
- ______: On the harmonic boundary of an open Riemann [7] surface, II. Mem. Coll. of Sci. Univ. Kyoto. ser. A. 33 (1960).
- [8] Kuramochi, Z.: On the ideal boundary of abstract Riemann surface. Math. J. 10 (1956).
- [9] Littlewood, J. E.: On functions subharmonic in a circle, I. Jour. London Math. Soc. 2 (1927).
- [10] . On functions subharmonic in a circle, II. Proc. London Math. Soc. 28 (1929).
- [11] Matsumoto, K.: An extention of a theorem of Mori. Japanese J. Math. 29 (1959).
-: On subsurfaces of some Riemann surfaces. Nagoya Math. J. 15 (1959).
- [13] Mimura, M.: Topological analysis. Kyoritsu. (in Japanese).
- [14] Nakai, M.: A measure on the harmonic boundary of a Riemann surface. Nagoya Math. J. 17 (1960).
- [15] Royden, H. L.: On the ideal boundary of a Riemann surface. Ann. Math. Studies. 30 (1953).

Ritsumeikan University, Kyoto.

Supplement

(added on August 15, 1961)

We shall state briefly the relation the measure μ on $\Delta_{\mathfrak{F}}$ and the canonical measure $\tilde{\mu}$ on Δ which was introduced by M. Nakai [14]. We defined in [7] the harmonic measure Ω_{σ} with respect to a compact set σ of Δ . Now we define the harmonic measure Ω_{α} with respect to an open subset of Δ as follows: $\Omega_{\alpha} = 1 - \Omega_{\Delta - \alpha}$. Let γ be any subset in Δ and \otimes be a family of open subsets in Δ each of which contains the γ . We define the function Ω_{γ} on R such as $\Omega_{\nu}(z) = \inf \Omega_{\alpha}(z)$, where α runs over \mathfrak{G} . Then we have the following properties: 1) Ω_{γ} is the generalized harmonic measure, 2) Ω_{γ} is the Caratheodory outer measure, 3) the Borel sets are measurable with respect to Ω_{γ} . Next, let γ be any subset in Δ and let $\gamma_{\mathfrak{F}}$ be the set $T^{-1}(\gamma)$ in $\Delta_{\mathfrak{F}}$, where T is the continuous mapping from $\Delta_{\mathfrak{F}}$ onto Δ (cf. Prop. 1.6). Then we have the following **Theorem.** Let γ be a Borel set in Δ . Then

$$\mu_{\gamma_{\widehat{\mathfrak{F}}}}(z) = \Omega_{\gamma}(z) = \int_{\gamma} K(z,\,\zeta) d\widetilde{\mu}(\zeta)$$

and

$$\int_{\Delta}f(\zeta)K(z,\,\zeta)d\widetilde{\mu}(\zeta)=\int_{\Delta_{\mathfrak{F}}}f\circ T(\zeta_{\mathfrak{F}})d\mu(z,\,\zeta_{\mathfrak{F}})\,,$$

where $f(\zeta)$ is any bounded $\tilde{\mu}$ -measurable function on Δ .

Concerning to the above subjects, I shall state in detail in another place.