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Let V be an affine variety and G an algebraic group acting
on V (on the left). Let R be the coordinate ring of V and I4(R)
its subring of G-invariants. If the characteristic of the ground
field is zero, and G is semi-simple, it is now a well-known result
that I;(R) is finitely generated over the ground field (cf. [2] or
[4]). The same result is also known to be true without any
hypothesis on the characteristic of the ground field if G is a torus
group (cf. [2]). In these cases, the essential part of the proof is
that there is a canonical projection operator of the space of regular
functions on the group G onto the space of constants, which can
be extended to a projection operator of R onto I;(R) and then
using the fact that the ring of polynomials in a finite number of
variables over a field is Noetherian, we get the result. There is
a less known result of Weitzenbisck (cf. [3]), which says that if
V is the affine space and G an algebraic 1-parameter group acting
on V by linear transformations, Io(R) is again finitely generated,
provided that the ground field is of characteristic zero; and it is
realized easily that this result is equivalent to the assertion that
I;(R) is finitely generated for the particular case G=the additive
group G,. This result is no longer true if V is an arbitrary affine
variety (this is a consequence of the famous counter example of
Nagata (cf. [1] or [2]) showing that I;(R) need not be, in general,
finitely generated).

In this note, we prove a result (cf. Theorem 1) which is valid
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for any characteristic and of which Weitzenbock’s result is an easy
consequence. Even when the characteristic is zero, our method
brings out clearly the underlying idea of Weitzenbdck’s proof.

§ 1. Suppose that the varieties V and G are both defined over a
field K, with points in a universal domain Q. Suppose that there
exists a dense subgroup H of K-rational points of G such that
every element of H gives rise to a K-automorphism of V. Let R
be the K-coordinate ring of V and R=RQ®xQ its Q-coordinate
ring. Then we see easily (cf. [2]) that [,(R)®xQ=1I;(R,), which
shows that I4(R) is finitely generated over K if and only if I;(R,)
is over Q. Since these conditions will be satisfied in the problems
we consider, we assume hereafter that K=0, or simply that K is
algebraically closed.

Let V be a vector space of dimension 2 over K and ¢, ¢, a
fixed chosen basis of V. We can then represent an element of V
by a 2x1 matrix over K. If Ae SL(2, K) and a=ae,+a.e,€ V,
we define Aoa as the element of V represented by the matrix

A-(i?). Now if W=V"=@V (m times), we extend the operation

2

of SL(2, K) to W by defining :
A(Ul, AR vm) = (Avl’ Tty Avm)’ Ae SL(Z, K)» 2),~€ V-

Every element wé& W can be represented by a 2Xm matrix :

a, "':am)
w = ) C(-,B~EK.
(181’ o )Bm ! !

Let R be the coordinate ring of W; then we can regard «;, 8; as
variable elements of R. Then ¢;=det <g‘ g,’> is an element
i 7

invariant under SL(2, K). We denote by J the subring K[t;]
A<i<lm, 1<j<<m) of R. We write G for SL(2, K).

Propesition 1: The ring Io(R) is finitely generated over K.

The only non-trivial case we have to consider is when m_>3.
Let W,;; be the G-invariant affine open subset of W defined by
t;;#=0 and let R;; be its coordinate ring. Consider for example,
the subvariety Z of W represented by points of the following form
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A0 a,, e,
( ). aio.
01 B, ,B,

Then Z meets every G-orbit in W,, at a unique point, from which
it is deduced easily that the quotient variety*, W /G exists and can
be canonically identified with the affine variety Z. This implies
in particular that I5(R,) can be canonically identified with the
coordinate ring of Z. Since A=t,, a;= —1{, and B;=\A"'t;, we see
that I4(R,,) is generated by ¢,, ti7, t; (1>3), t; (:2>3) and that
Io(R,)=]s, where Js represents the ring of quotients of J with
respect to the multiplicatively closed subset S formed of positive
powers of #,. This shows that if V is the open subset of points
P of W such that for at least one ¢;, #;;(P)==0, the quotient
variety V/G exists and it can be identified with the open subset
Y of the affine variety X whose coordinate ring is J, such that if
PeY, at least for one ¢, £;;(P)=4-0. Now it is trivial to see that
the complement of Y in X reduces to a point, in particular it is
of codimension>2 in X. From this it follows easily that if
felg(R), it is integral over J, which shows that I;(R) is finitely
generated over K since J is. q.e.d.

Remark: The statement analogous to Prop. 1 for the case G=
SL(n, K), n>2, can be proved in a similar manner.

Let V™ be the m-th symmetric power of the vector space V.
A canonical basis for the vector space V™ is given by homoge-
neous monomials of degree m in e,, ¢, (the chosen basis of V).
The operation of G can be canonically extended to V. Let
M= & V™2 then the operation of G can be extended to M by

I<ign

defining
Ao(x,, -+, x,) = (A-x,, -+, A-x,), x; € V™2 AeG.
Let S be the coordinate ring of M.

Proposition 2: The ring 15(S) is finitely generated over K.

* If G is an algebraic group acting on a variety X, we say that the quotient
variety X/G exists if the canonical structure of a ringed space on the space of orbits
in X is a variety.
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We present an element ¢ of V”: by the matrix

(“1» e ami)

q —

By, -y B/ .

Let Q; be the subset of V" such that for every j, 1<j<{m;, «; or
B; is different from zero. The subset Q; is open, G-invariant and
its complement is of codimension_>2 in V™:. There is a canonical
morphism k;: Q;— V¢ defined by k;(q) =the element of V>

represented by the homogeneous form 1II (ase,+B,e,) in e, e,.
i<jism;

The morphism %; is a G-morphism (i.e.) it commutes with the

operation of G. The symmetric group I; on m; elements acts

canonically on V™:, leaves Q; invariant and also commutes with

the operation of G. If T;is the torus group of dimension (m;—1)

represented by y=(,, -+, ¥m), %:€ K, 1<11 y;=1, T, operates on
<™

V™ by defining goy, g€ V™: as the element

(ylal) VXyy o0, ym,-am,.)
yl’81’ J’sz, o ,ymi:@mi

of V™. We see that the operation of 7; also commutes with G.
Now if @ is the open subset of W= Il V" defined by @=

1<ig®

II Q;, @ is G-invariant and its complement is of codimension
1<ign

—>2 in M. If we now define the morphism £: @ =M by k=Fk X -
xk,, k commutes with G. If T= II T; and I'= Il I';, we see

1<ign I<ign
that H=TXTI acts canonically on W, leaves @ invariant and

commutes with the operation of G. Further we see easily that
the quotient variety @Q/H can be canonically identified with an
open subset of M. If R is the coordinate ring of W, we see
easily that I5(S)=I4(Is(R)). By Prop. 1, I;(R) is finitely generated
and since H is the product of a torus group and a finite group,
I.(I&(R)) is also finitely generated over K. q.e.d.

§2. If X is an algebraic variety on which an algebraic group
G operates (on the left), we call it a transformation space and
denote this object by (X, G). A morphism between two such objects
(X,, H)) and (X,, H,) is a morphism f: X,— X, of varieties together
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with a homomorphism p: H,— H, of algebraic groups such that
flg-x)=p@)f(x), x€ X,, g€ H.. We can then define an isomorphism
between two transformation spaces. We call (W, G) a fundamental
space for the group G=SL(2, K), if (upto an isomorphism), W is
a finite direct sum of vector spaces of the form V> and G
operates canonically on W as we have seen before. The additive

group G, can be considered as a subgroup of G by means of the

morphism A : G, —G, x(a):(}) ‘{) Therefore if (W, G) is a funda-

mental space for G, G, operates on W and the object (W, G,) is
called a fundamental space for G,. If for example W=V W

can be identified with the vector space generated by the translates
of a regular function on G,.

Proposition 3: Let (X, G,) be a transformation space such that X
is a finite dimensional vector space and every element of G, operates
by a linear transformation of X. Then (X, G,) is a fundamental
space for G, if the characteristic of K is zero.

Let m=dim.X. Then if we identify the group of K-auto-
morphisms of X with GL(m, K) by choosing a basis of X, the
operation of G, on X is defined by a homomorphism X: G,—
GL(m, K) of algebraic groups. Since X(G,) is again isomorphic to
G,, we can assume that X is injective. Then X is uniquely deter-
mined by (dX)(¢), where ¢ is a fixed chosen non-zero element of
the tangent space at 0 of G,. We note that every element of
X(G,) is a unipotent matrix. Therefore (dX)(¢#) can be identified
with an (mxm) matrix A such that if

A 0 O-

-0
04, 00 0 % 1 0
A= O O .Aau O. Ai= 0 0 K" 1 “0

is the Jordan canonical form of A, A;=0 for every i. Therefore
to prove the proposition, we can assume that A itself has the form
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As we have seen before, the group G operates canonically on
V@b and if we refer the operation of G to the canonical basis
of V" we have a representation p: G—GL(m, K). Consider
the representation @ : G,—GL(m, K) defined by ¢p=por. We check
that the Jordan canonical form for @dX(¢) is A, which proves the
proposition. q.e.d.

Theorem 1: Let (X, G,) be a transformation space such that X is
a finite dimensional vector space and every element of G, operates
by a linear transformation of X. Let R be the coordinate ving of
X. Then I, (R) is finitely generated if (i) (X, G,) is a fundamental
space or (ii) the characteristic of K is zero.

By Prop. 3, we can assume that (X, G,) is fundamental for
G, so that the operation of G, is induced by an operation of G
on X and (X, G) is fundamental for G. Consider L=X®YV. Then
G operates on L by defining, go(x, v)=(g-x, g-v) and (L, G) is
fundamental for G. Consider the subvariety X, of L formed of
elements (w, v) such that we X and v=<(1)>. We identify G, as a

subgroup of G by the homomorphism A of G, into G. Then X,
is left invariant by G, and if an element g of G transforms an
element of X, again into X,, g in fact belongs to G, ; in particular
the intersection of a G-orbit in L with X, is either empty or
coincides with a G,-orbit in X,. We note that the G-invariant
subset X¢ generated by X, coincides with the complement of the
closed subset of L formed of elements (w,0) where w is an
arbitrary element of X and O is the O-vector of V. Therefore X¢
is open in L and its complement is of codimension >2. Let S
be the coordinate ring of L. Then every regular function of X¢
is also regular on L; in particular the algebra of regular G-invariant
functions of X§ can be identified with I;(S). By Prop. 2, I4(S) is
finitely generated over K. We shall now show that every G,-
invariant regular function on X, is induced by a G-invariant regular
function of X¢. This will complete the proof of the theorem since
(X,, G,) is isomorphic to (X, G,).

Consider the canonical mapping f: GxX, — L defined by
f(g, x)=g-x,. Then f(GxX,)=X¢. Now if x is G,-invariant
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regular function on X,, we extend it to a regular function y on
Gx X, by defining y(g, w)=x(w), g€ G, we X,. Because of the
condition that the intersection of a G-orbit of L with X, is either
empty or a G,-orbit in X,, we see that y is constant on the fibre
over every point of X¢. Therefore y goes down into a regular
(G-invariant) function on X¢, if we assume that £ is a separable
morphism (i.e. the field of rational functions F(Gx X,) of Gx X, is
a separable extension over the field of rational functions F(L) of L),
which is not difficult to check. (Actually, for the theorem, it is
not necessary to use the fact that f is separable, for if @ is the
quotient field of I4(S), we have the canonical inclusion @ F(L)
C F(GxX,) and if N is the algebraic closure of @ in F(GxX,),
y can be identified with an element of N integral over I4(S). This
fact is sufficient to conclude that I;(R) is finitely generated over
K), q.ed.

Remark: We do not know what happens to the above theorem if
the characteristic of K is not zero and (X, G,) is not fundamental.
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