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Let V be an affine variety and G  an algebraic group acting
on V (on the left). Let R  be the coordinate ring of V and I (R )
its  subring of G --invariants. I f  t h e  characteristic of the ground
field is  zero, and G is  semi-simple, it is now  a well-known result
that I G (R ) is finitely generated over the ground field (cf. [2 ]  or
[ 4 ] ) .  Th e sam e result is also know n to be true w ithout any
hypothesis on the characteristic of the ground field if G is a torus
group (cf. [ 2 ] ) .  In these cases, the essential part of the proof is
that there is a canonical projection operator of the space o f regular
functions on the group G onto the space of constants, which can
be extended to a projection operator o f R  onto /G (R )  and then
using the fact that the ring of polynomials in a finite number of
variables over a field is  Noetherian, w e get the result. There is
a less known result o f Weitzenbiick (cf. [3 ]) , w hich says that if
V is  the affine space and G an algebraic 1--parameter group acting
on V by linear transformations, /G (R ) is again finitely generated,
provided that the ground field is o f characteristic zero ;  and it is
realized easily that this result is equivalent to the assertion that
/G (R ) is finitely generated for the particular case G  the additive
group G a . T h is  result is no longer true i f  V is an arbitrary affine
variety (this is a consequence of the famous counter example of
Nagata (cf. [1 ] or [2 ]) showing that /G (R ) need not be, in general,
finitely generated).

In this note, we prove a result (cf. Theorem 1) which is valid
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for any characteristic and of which Weitzenbitick's result is an easy
consequence. Even when the characteristic is zero, our method
brings out clearly the underlying idea of Weitzenbbck's proof.

§ 1 . Suppose that the varieties V and G are both defined over a
field K , with points in a universal dom ain 1. Suppose that there
exists a dense subgroup H  of K-rational points of G  such that
every element o f H  gives rise to a K-automorphism of V . Let R
be the K-coordinate ring of V  and R ,=R O K S2 its 1 -2-coordinate
r in g . Then we see easily (cf. [2 ]) that /H (R )0 K 1-2=/G (R,), which
shows that / H (R ) is finitely generated over K  if and only if / G(R,)
is over f2. Since these conditions will be satisfied in the problems
we consider, we assume hereafter that K=12, or simply that K  is
algebraically closed.

Let V  be a vector space of dimension 2 over K  and e „ e , a
fixed chosen basis o f V . We can then represent an element of V
b y  a 2 x 1 m atrix over K .  If A E SL (2, K ) and a=a 1e1 +a 2e2 E V,
we define A o a as the element o f  V  represented by the matrix
A •( cel •) Now i f  W =  V m =  v (m  times), we extend the operationa ,  
o f SL(2, K ) to  W  by defining :

A(v„ ••• ,v„,) (Av„ •-• , AV,,,), A E S L (2, K ), vi  E  V .

Every element w E W can be represented by a 2x m  matrix :

fc z i  ,  •  •  •  ,  " , , ,
a i ,  S iE  K .

Let R  be the coordinate ring of W ; then we can regard a i , Oi as

variable elements o f  R. T hen ti i ---det( c a
s i.)  i s  an  element

invariant under S L (2 , K ). W e  d e n o te  b y  J the s ab rin g  K [t]
(1< i < m , 1 < j < m )  o f R . W e w rite  G  for SL(2, K).

Proposition 1: T h e  r in g  1,(R ) is f initely  generated over K.
The only non-trivial case we have to consider is when m>3.

Let W i f  b e  the G-invariant affine open subset o f W  defined by
ti ;   I  0  and let R i ;  be its coordinate r in g . Consider for example,
the subvariety Z  of W represented by points of the following form
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(X  0  a,, ••• ,
1 1-93 , ••• ,

Then Z  meets every G-orbit in  W „ a t a unique point, from which
it is deduced easily that the quotient variety*, W  „IG exists and can
be canonically identified with the affine variety Z .  This implies
in  particular that / G (R „) can be canonically identified with the
coordinate ring of Z .  Since X= t„, a i = — 4 1 and A=X - iti i , we see
that / G (R12)  is generated by t„, 2

1 ,  t 1 i ( i> 3 ) ,  t , i  ( i> 3 )  and that
/ G (R,2) = J s ,  where J rep resen ts the ring of quotients of J  with
respect to the multiplicatively closed subset S  formed of positive
powers o f t „ .  This shows that if V  is  the open subset of points
P  o f W  such  th at fo r  a t le a s t one tu ,  t i i (P)--k 0, the quotient
variety V IG exists and it can be identified with the open subset
Y of the affine variety X  whose coordinate ring is  J ,  such that if
PE  Y, at least for one t i p  t 1 3 ( P ) 4 - 0 .  Now it is trivial to see that
the complement o f Y  in  X  reduces to a point, in particular it is
of codimension>2 in X .  F rom  th is it fo llow s easily  th at if
f  E  G (R ) ,  it is integral over J ,  which shows that / G (R )  is finitely
generated over K  since J  is. q.e.d.

Remark : The statement analogous to Prop. 1  for the case G=
S L (n , K ), n >2 , can be proved in a similar manner.

Let 17 ( m) b e  the m-th symmetric power of the vector space V.
A  canonical basis for the vector space Wm) is given by homoge-
neous monomials o f degree m  in  e „ e ,  (the chosen basis of V).
The operation o f  G  can be canonically extended to V ( m) . Let
M =  v ( m t ) ; th en  the operation of G can be extended to M  by
defining

A o(x„ ••• , x n ) (A •x „ ••• ,A •x n ) , x i E V ( m i) , A G G.

Let S  be the coordinate ring of M.

Proposition  2 :  T h e  rin g  I G (S ) is f initely  generated ov er K.

*  I f  G  is  an  algebraic group actin g  o n  a  variety X , we say that the quotient
variety X /G exists if the canonical structure o f a  ringed space on the space of orbits
in  X  is a  variety.

X =1 -  0.
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We present an element q  o f V"'t by the matrix

q p

Let Q i  be the subset of Vrni such that for every j, 1 < j < m 1 ,  ce;  or
Of  is different from zero. The subset Q i is  open, G-invariant and
its complement is of codimension>2 in  Vrni. There is a canonical
morphism k • : Q 1 —>V(mi) defined by k 1(q) =the element o f  17(''i)
represented by the homogeneous form H  (cei e1 +,e ; e2)  in  e „ e 2 .

1 <j<m ,

T he morphism k i i s  a  G-morphism (i.e.) it commutes with the
operation o f G .  The symmetric group P i o n  m i elements acts
canonically on Vrni, leaves Q i  invariant and also commutes with
the operation of G .  If T i is the torus group of dimension (m1 - 1)
represented by y = ( y „ ••• , yrni ), y i  E K, I I  y . = 1 ,  T i operates oni<i <m,
P n i by defining g o y , g E T 7 m i  as the element

(Y ia i Y2a2 , • • • Ymi  i )
.31119 1) Y 2 0 2 , •  •  •

of V I .  W e see that the operation o f T i also commutes with G.
Now if  Q  is the open subset of W =  H  r n i  defined by Q =

H Q „ Q  is  G-invariant and its complement is o f codimension
1 <i<"

> 2  in  M . If we now define the morphism k : Q , M  by k =k i x •••
x k ,  k  commutes with G .  I f  T = I I  T i a n d  r  =  H  ri , we see

1‹.‹.
that H = T x  17 acts canonically o n  W , leaves Q  invariant and
commutes with the operation of G .  Further we see easily that
the quotient variety Q I H  can be canonically identified with an
open subset o f M .  I f  R  is  th e  coordinate r in g  o f W , we see
easily that / ,(S )— / H (/G ( R ) ) .  By Prop. 1 , 1 ,(R ) is finitely generated
and since H  is  the product of a torus group and a finite group,
/„( / ,( R ) )  is also finitely generated over K .  q.e.d.

§  2 . If X  is an algebraic variety on which an algebraic group
G  operates (on the left), we call it a  transformation space and
denote this object by (X, G ) . A m orphism  between two such objects
(X 1 , 111)  and (X 2 , 112)  is a morphism f :  of varieties together

(
a

i  ,  • a n t i

• • • A n i) •
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with a homomorphism p :  H ,  o f algebraic groups such that
f(g-x)— p(g)f(x), xE  X „ gE H ,. We can then define an isomorphism
between two transformation spaces. We call (W, G) a fundamental
space f or the  group G=SL(2, K), if (upto an isomorphism), W is
a  finite direct sum o f  vector spaces of the form  V ( m)  and G
operates canonically on W as we have seen before. The additive
group G0  can be considered as a subgroup of G by means of the

morphism X : G a
, G, X(a) = (

1  a

)' Therefore if ( W, G) is a funda-0 1
mental space for G, Ga  operates on W and the object (W, Ga )  is
called a fundam ental space f o r Ga . If for example W= V°", W
can be identified with the vector space generated by the translates
of a regular function on Ga .

Proposition 3 :  L e t  (X, G 0 ) be a transform ation space such that X
is  a f inite dimensional vector space and every element of Ga  operates
by a  linear transform ation of  X . T hen  (X , Ga )  i s  a  fundamental
space f o r Ga  i f  th e  characteristic o f  K  is  zero.

Let m=dim. X .  Then i f  we identify the group of K-auto-
morphisms of X  with GL(m, K) by choosing a  basis o f X , the
operation o f Ga  o n  X  is defined by a homomorphism X : Ga —>
GL(m, K) of algebraic groups. Since  X(G 0 ) is again isomorphic to
G0 , we can assume that X is injectiv e. Then X is uniquely deter-
mined by (dX)(t), where t  is  a fixed chosen non-zero element of
the tangent space at 0  o f Ga . W e note that every element of
X(Ga )  is  a unipotent matrix. Therefore (dX)(t) can be identified
with an (m x m) matrix A  such that if

' A, 0 0 ••• 0

A
0A . 0 ..• 0
00 A 3 .• 00 Ai =

X1 1
0 Xi

0 0 Xi

0  .......
1 ....... ())

1 ... O
0 ................

is  the Jordan canonical form of A, X.=0 for every i. Therefore
to prove the proposition, we can assume that A  itself has the form

0  1  0
0  0  1

0 0
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As we have seen before, the group G operates canonically on
V(m- "  and if we refer the operation o f G  to  the canonical basis
o f  V(m- " , w e have a representation p : G  G L (m , K ) . Consider
the representation (p: Ga --->GL(m, K) defined by p= poX . We check
that the Jordan canonical form for dX (t) is  A, which proves the
proposition. q.e.d.

Theorem 1 :  Let (X , Ga )  be a transformation space such that X  is
a f inite dimensional vector space and every element o f  Ga  operates
by a linear transf orm ation of  X . Let R  be the coordinate ring of
X . T h e n  ' G a (R ) is f initely  generated i f  (i) (X , Ga ) is a fundamental
space or (ii) the characteristic of K  is  zero.

By Prop. 3 , w e can  assume th a t (X , Ga )  is fundamental for
G , so  that the operation o f Ga  is induced by an operation o f G
on X  and (X, G) is fundamental for G .  Consider L = X  V. Then
G  operates o n  L  by defin ing, go(x , v )=(g.x , g•v ) and (L , G) is
fundamental for G .  Consider the subvariety X , o f  L  formed of

elements (w, y) such that wE X  and y= (
1
)  We identify G a  as a0

subgroup o f  G  b y  the homomorphism X o f Ga  in to  G .  Then X,
is  left invariant by G a  and if an element g  o f  G  transforms an
element of X , again into X „ g  in fact belongs to Ga ; in particular
the intersection of a G-orbit in  L  w ith Xl  is  e ith e r  e m p ty  or
coincides with a  Ga -o rb it in  X , .  W e note th at the G-invariant
subset XT generated by X, coincides with the complement of the
closed subset o f  L  formed o f  elements (w , 0) where w  i s  an
arbitrary element of X  and 0  is  the 0-vector o f V .  Therefore
is  open in  L  and its complement is o f codim ension > 2. Let S
be the coordinate ring of L .  Then every regular function of
is also regular on L ; in particular the algebra of regular G-invariant
functions of X f  can be identified with / , ( S ) .  By Plop. 2, / G (S) is
finitely generated over K .  W e shall now show th at every  G0 -
invariant regular function on XI is induced by a G-invariant regular
function of X .  This will complete the proof of the theorem since
(X,, G a ) is isomorphic to (X, G a ).

Consider th e  canonical mapping f: G>< X , L  defined by
f (g , x ,)= g • x „  Then f (G x X ,)=X ,G . Now i f  x  i s  Ga-invariant
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regular function on X „ we extend it to a  regular function y on
Gx X , by defining y(g, w)— x(w), gE G, w E X , .  Because of the
condition that the intersection of a G-orbit o f L  with X, is either
empty or a Ga -o rb it in  X 1 , we see that y  is  constant on the fibre
over every point of  X Ç .  T herefo re y  goes down into a regular
(G-invariant) function on X 1G, i f  we assume that f  is  a separable
morphism (i.e. the field of rational functions F(Gx  X ,) o f G x X-1 is
a separable extension over the field of rational functions F(L) of L),
which is not difficult to check. (Actually, for the theorem, it is
not necessary to use the fact that f  is separable, fo r if Q  is  the
quotient field of / G (S), w e  have the canonical inclusion QCF(L )

F(G x X ,) and if N  i s  the algebraic closure o f Q  in F(GxX ,),
y can be identified with an element o f N  integral over / G ( S ) .  This
fact is sufficient to conclude that / G (R ) is finitely generated over
K ) ,  q.e.d.

Remark :  We do not know what happens to the above theorem if
the characteristic of K  is not zero and (X, Ga )  is not fundamental.
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