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1. Introduction

Consider a hyperbolic system with analytic coefficients

1.1) M[u] = 2% Y Ayw, )%~ B(x, tyu = 0,
ot k=1 ox,

where the word hyperbolic means the following: >} A.(x, £)§, has,

for any real &0 and all (x, £), N distinct real eigenvalues, A, (%, £ ; &),

v, An(x, £; ). Here u are vector-valued functions with N com-

ponents; A, and B are real analytic functions of x=(x, ---, x,)

and ?.

In the present paper we shall show that the fundamental
solutions of hyperbolic systems of partial differential equations with
analytic coefficients are analytic except on the characteristic conoid.
This property can also be expressed directly in terms of the
solution of the equation: If at time #=0 the initial data of a
solution # is analytic in an open set containing all points which
lie on a ray issuing from some given point (x,, ¢,), then u is
analytic at x,, £,.

J. Hadamard proved this property for second order hyperbolic
equations [1] and M. Riesz also treated this problem [8]. In the
case of constant coefficients, there are several papers which show
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1960-1961. This Temporary Membership Plan was supported by the National Science
Foundation, Contract No. NSF-G14520.
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this property. We quote among them a work of Petrowsky [7].
Recently, J. Leray published a series of works, which treat sys-
tematically general partial differential equations with analytic
coefficients [3] and which elucidate this property. Now, we want
to present our method, which relies assentially on a paper of P.D.
Lax [2], in which he uses an asymptotic expansion of solutions
and proves that, in the case of C~-coefficients, the fundamental
solutions are C* except on characteristic conoids.

We have already shown, in the case of constant coefficients,
that the analyticity can be proved by using his method [5]; the
present article is an extension to analytic coefficients of the work.
The reasoning in both cases is essentially the same, but there
are some technical complications in the case of variable analytic
coefficients ; for example the phase functions /“(x, ¢; ), which
existed globally in the case of constant A,, exist only for a certain
time interval in the present case. For C~ coefficients, D. Ludwing
[4] has recently overcome this difficulty by using the major
principle of Huygens (Hadamard’s terminology). We shall discuss
this problem in another article.

Although we shall give our proof in detail later (Section 3),
we give here the sketch of our proof. The fundamental solution
¢ is defined as that solution of the equation which at #=0 is a
é-function, more precisely, one of its component is a d-function
and the other components vanish. We proceed by constructing
explicitly approximate fundamental solution #,, p an index which
eventually will be taken as large, i.e. a function with the follow-
ing properties :

i) u, satisfies the differential equation approximately ;

1.2 Mlu,] = f,,
where f, has continuous partial derivatives up to oder p—1,
ii) w, satisties the initial conditions approximately, i.e.

uy(%, 0) = 8(x)+a(x)

where a is an analytic function of x indepent of p. The exact
fundamental solution can then be written as
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(1.3) €= Uyt+w,+2

where w, and z are defined as solutions of the following initial
value problems: ’

1. 4) { Mlw,] = ~f,, wyx0) =0.

M[z] =0, 2(x,0) = —a.

We are now ready to show the analyticity of e by finding
suitable estimates for the partial derivatives of e. Let » be a
multi-index, we choose

n
p= o1+ 2] +2.
It follows from (1.3), by the triangle inequality that
|DY| < |Du,|+|D'w,| +|Dz| .
What we need is suitable estimates for the derivatives of u,, w,
and z.

The explicit construction of u, is described in Section 2; we
shall derive there a suitable estimate for DY, (Proposition 1 and
Theorem 1 of Section 3).

In section 3 we shall derive suitable estimates for the partial
derivatives up to order p of f,=M[u,]. (Proposition 1 and its
corollary). By known estimates for solutions of hyperbolic differ-
ential equations, we can then estimate the solution w, and its
partial derivatives up to order v in terms of the estimate derived
for f, and its derivatives (to slightly higher order).

Finally, since z is the solution of an analytic initial value
problem, it is itself analytic; since it is also independent of p,
suitable estimates for its derivatives are immediately available.

2. Construction of approximate fundamental solution.

Hereafter we follow the notation and the definitions of [2],
and also those of our previous paper [5]. Let /‘(x, f; ®) be the
solution of

2.1) 17 = Nx, 25 157)

with the initial value /‘’(x, 0; w)=x-®, where w=(o,, ---, ®,) real
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lo|=1. Standard existence theorems guarantee that this solution
exists at least if (x, #) is not far from the origin, and that this
solution is an analytic function of (x, ¢; ). We consider the formal
expansion (cf. [2]):

(2.2) u(x, )~ f}l SIS exp (18 {v5°(x, t; @) +v{(x, t; )/E+ o

+oS(x, t; @)+ -} dEdw
0
with the initial value u(x, 0) = )
0

We now modify this expression in the following way :

§i=

@3 w0 = 3 [ e de | exp (UOpEE+010)E+ 00 do
[eag] exp ron (3 0, Vo)
1 Q, =1 q' .
Then we have, as we shall show at the end of this section,
N>, ey (1)
2.4) Mlu,]=> ’g' d& exp {PE) "~ Mo, ]de
» i=1 | P
+{exp ) (2 O MLvi8,-1)do)
Q .

We denote this right-hand side by fp(x, t).
Next we define w,(x, ) as the solution of

(1.4) M[w,]= —fs(x, t), with initial value zero: w,(x, 0)=0.

The function u=u,+w, satisfies the equation (1.1), if i.e. satisties
the stated initial condition modulo analytic data a(x),

0

(2.5) u(x, 0) = | & |+ax),
0 0

because, as we shall explain later, ﬁvg"(x,o;w): 1], Zv“’(x 0; )
i=1 :

0
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0
=0, m>1, a(x)zg E”“d’g‘gg exp (ixof)| 1 |do .
0 0 :
0
Then, we denote by z(x, ) the solution of
(1.4) M[z]=0, with the initial condition z(x, 0)= —a(x),
we know that z(x, #) is an analytic function of (x, #) (cf. [6]).
We know by proposition 1 of Section 3, that f,(x) is continuously
differentiable up to order (p—1). Then, by Proposition of Section
3, we have estimates for the derivative of w,(x, ) up to order
(p—Z—[—?—]). About those of u,(x, ¢), we use Proposition 1. Now
we shall define the »{)’, and obtain estimates for these functions.

Now we return to (2.2). Apply the operator M to the right-
hand side and set the coefficient of 1/£”"' equal to 0. We obtain

(2.6) (P —ALP)oy +M[vi2,] =0, (¢=1,2,-+,N),

where v9}=0; the factor 7 in the first term is / —1.

By the way, this operation M, more precisely, the differentiation
under the integral sign is justified as follows: For p>—1, we
interpret the expression SNS exp (lE)E?f(x, t; ®)dEdw as a distri-
bution depending on the pérameter t. This possibility comes from
the fact /,-1-0. (See the beginning of the proof of Fundamental
Lemma of Section 4). Therefore the above distribution is defined

Mr> J1

as lim SMéE"dESQ exp (il€) f(x, t ; ®)dw, where the convergence is

in the topology of distributions.
Remarking that /“(x, 0; ®)=x.0, we take the initial data
i

2.7 Zv“(x 0; w) = } 1
i 0 ,
(2. 8) Z v (x, 0; @) =0 for m>1.

To express (2.6) more explicitly, we use the eigen-vectors
Ri(x,t;®) ({=1,.--,N) of A(x, t)-»; R; corresponds to the eigen-
value A(x, ¢; ) ; we assume that R; are of unit length. We define
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R (x, t; @)= R;(x, t; 15°/115°]); thus R (,j=1, -, N) are
analytic functions of (%, f;®»). Now we put
(2.9) o’ =oix, t;0)RP(x, t; 0);

vy = i ol (x, t; )R (x, t; ®) for m>1.

=
Moreover we use the left eigenvectors L;(x, ¢ ; ®) corresponding to
A(x, by o) WI—*Asw)Ly(x, t; ®)=0. We normalize L; in such a
way that {L;, R;>=¢6], where { , > means usual scalar product;
6} is the Kronecker symbol. Analogously to RS, we define
L{(x, t;)=L(x, t;1°/118°]). Then {L§®, R{’>=38] and L§” are
analytic functions of (x, ¢; ®). Similarly, we define A\y’(x, t; @)=
Ni(x, t5 0P 1P ).

Now, we assume that o4, v§”, ---, v$/2, are determined, and
want to show how to determine »{’. Take the scalar product of
(2.6) with L{”. Taking account of (2.1), we have

(2.10) 25012 =N o —iLS?, M[v5,2.]> =0, where i=y/—1.

In order that this system of equations have a solution it is neces-
sary to assume that we have determined ¢’, in such a way that

2.11) <L, M[o52, 1> = 0.

We make this assumption. Then we have

(2.12) o)(x, t; @) = <L, Mo D/ 12 I (MP —=A7), for i==j;
more explicitly, denoting the denominator by s;;(x, ¢ ; @),

(2.13) GQ(x,t;w) = 5;;(x, t; o) {(enl) i+ gLi””[Uﬁf_l]}, for i=-j,

where L{*” is a first order differential operator of the form

(2.14) LD = ST pid(, ¢ co).aa Fqii(x, £ w),
X

v

with analytic coefficients. Now we determine o}/ in such a way that
(2.11) is satisfied for o¢?, namely

(2.15) <L, M[oURD> = — S1<L?, MLo/RT>.

Here the left-hand side is a differential operator acting on o7/ :
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(2. 16) L1 = (2 2¢“i —b )1,

with a)”=<{L{", A,R{">. We remark that the direction of differen-
tiation is that of the bicharacteristic of M (cf. [2], p. 630), there-
fore this direction is real. Of course a{”(x, ¢; ®) and b%(x, ¢; ®)
are real analytic functions.
Therefore, (2.16) is written

(2.17) Llos] = = 3 Li“Los
ki ki
where L{"” are of the form (2.14).
The initial condition of o}! is determined by (2.8), namely

(2.18) Tm (%, 0; @) = —fo”(x, ;@)

Finally, v§”=0{R{"(x, t ; ) are determined by
(2.19) L;[¢{] = 0, with the initial condition
(2. 20) oo(x, 0; ®) = oi(x; ), where
0
@2) |1 =ei;e)Rx 0;0).
0)
Now let us show how (2.4) is obtained. Take an integrand
of (2.3):

2.22) %%Qﬁwvmee, 9>2,

where we omitted the index :. Apply M to this integrand ; omit-

ting the factor exp (/) we then have

i(l,—A-l
q!

(2.23) x%ﬂv*uﬁdf+gﬁffk5%q—1XﬂY*u“d?

<m “M[v,,.,1/E .

If (2.6) is taken into account, this can be written as follows :

(2.24) —%?M@mﬂﬁit%@memﬂm

<m M1/
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Now we integrate the first term by parts:
(2. 25) Sjexp @E)EN T E dE = [(@E)@) 61
+ S:’exp GIEYGI)?*E-2dE = —exp (il)(il)" "+ Sjexp GIE)G1)" £ dE .

This is merely formal expression. For the rigorous justification,
see the beginning of the proof of the Fundamental Lemma of
Section 4. Then (2.24) becomes

@)
(g—1)!

+ O M, 08
q

(2.26) e L L

here the last term expresses the integrated part.
From this, we can see easily (2. 4).
Finally, we state again our
Main Theorem. The fundamental solutions e,(x,t), t>0:
0
(2.27) Mle,] =0, with the initial data e, (x,0) = 1k,
0
(k:]-vzy "'aN)v

are analytic functions of (x, t) except on the characteristic conoids
issuing from the origin.

Remark. As we have remarked earlier, our proof is, in general,
valid only in a neighborhood of the origin.

3. Proof of Main Theorem.

At first we state Theorem 1, Proposition 1 and 2. Using
these, we shall prove Main Theorem.

From Position 5 of Section 5, we have

Theorem 1. There exists a complex neighborhood V. of Q, such
that all vP(x, t; ®) can be extended analytically there and
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sup [ DS (x, ¢ (v)|<(m+ v I)'K"'A

W€V, pM

for O<t<to(<1)v
[m =0,1,2, ]
i :1’...,N y

Remark 1. We derived Proposition 3, 4, and 5, by assuming  real.
However, these propositions are also true even if we extend these
functions o;/(x, ¢ ; ®) analytically in a small complex neighborhood
of the real unit sphere Q,. This fact follows from the analyticity
of all functions which appear in (2.13), (2.14), and (2.16), and
from the fact that the direction of differentiation of (2.16) is real
if @ is real.

Sup ID" M[v(f)]|<£ﬂ_|i|_+_1)_'K"‘A

1V[+1
p

where K, A, and p are constants.

Remark 2. In above statement, we have mentioned nothing about
the domain of x. This domain, together with ¢,, depends on that
of the phase functions /‘(x, ¢; »). About ¢, we assumed ?,< 1.
This limitation does not diminish the generality, because by a
linear transformation in ¢, we can always bring any fixed point
to ¢,<1.

We state the following two key propositions, whose proofs
shall be given later (section 4).

Proposition 1. Consider the mapping : (@)Y (x, t; ®) —p(x, t)
defined by

P(x, 1) —S ngg exp GIEYGI) M (x, ¢ w)do .

Let us fix a compact set U in (x, t)-space, which does not wmeet the
characteristic conoid with vertex at the origin. Assume

G sup IDw o)< DDA for w0,
P

,0EU, we

Then we have

(.2 sup |Dip(x, )< <c 4t Dlig 0 gor w>o0,
p =

1vi

provided p is small: p<p,. p, depends on U and V.. Moreover,
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for |v|<p, P(x,t) is a continuous function, and (2.2) is true for
any compact set U (i.e. without above condition); C and C, are
constants depending only on U and V., they are independent of q
and A.

According to Proposition 1, consider now the following simpler
transformation :

3.3) p(x, t) = Sn exp ()@ r(x, t ; @)do .

As we see it in the proof of the above proposition, we have the
same property as above, namely.

Corollary 1. Let U be a compact set (without the condition in Prop.
1), Assume (3.1), then we have (3.2). p(x, t) is an analytic function
in x.

As we see in (2. 3), we should also consider the distribution
of the form :

(3.4) pix, &) = [TE e exp @)vix, ¢ w)do,

where 7 is an integer positive 0 or negative. Let U be a compact
set satisfying the condition of Proposition 1; assume r(x, {; ®)
satisfies (3.1), then we have

Corollary 2. @(x,t) is an analytic function in x for x€ U.
In order to estimate the derivatives of w, in (1.4), we use the

Proposition 2.° Consider the mapping f(x, t)—v(x, t) defined by
M[v]=f(x, t), v(x, 0)=0. Let U be a compact set in the space
t=t,. We assume

(3.5)
sup | D; f(x, t)léﬁ‘—’—:l'y—f')!A, 0Lt<t,, for |u|<k+[%]+1,

then there exist constants C, and p, such that

(3.6)  sup|Dioix, 1< UL A o i<,
" Po

1) Since the proof is given in [6], we don’t reproduce it here.



Analyticity of the fundamental solutions of hyperbolic systems 337

C, and p, are independent of f. More precisely, they depend on U,
and are independent of q, k, and A.

Remark. Here we assumed p fixed. What is needed for the proof
of Main Theorem is that C, and p, can be taken independently
of ¢ and k. Here we need not assume that f is analytic in x.
The estimate (3.6) claims only for |v|<(k, assuming (3.5) for
|y|<k+[_’§_]+1. The symbol sup of the left-hand side of (3.6)
is taken in the domain defined as follows: we choose first a fixed
retrograde convex cone C such that the domain of dependence with
respect to any point (x, £) is contained in (x, #)+C, (for instance,
we take as C the cone [£/7|<(max (S}!p [Ni(x, t; ®)|), < 0. Then
the domain swept by (x, {,)+C when x runs a neighborhood of U
replies to our demand.

Now we prove Main Theorem. Take a point (x,, f,) which
does not belong to the characteristic conoid. We want to prove
the distribution u(x, t,)=u,(x, t,) +w,(%, ¢,), u, and w, being difined
by (2.3) and (1.4), is analytic in x at x=x,. We choose a small
neighborhood U of x, in the space {={, in such a way that it has
a positive distance from the characteristic conoid.

Decompose (2.3) in two parts: u,=u’+4,, where

B7  wwm =3 stn—*dégg exp (z‘zwfxg vy E)dw |

By the Corollary 2 or Proposition 1, we see that «°(x, ¢,) is analytic
in x for x€ U.
Take an arbitrary v. According to this v, we fix p by

3.9) p=1v+[ 2]z,

and consider #, and w, corresponding to this p. By Proposition 1
and Theorem 1, we have

sup | D2 (x, 1)< C,NA 3 ¢ @at [)! (%)”' K
€U = q!

Since we can assume C, K_>2, we have
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(3.9) sup | D2, (x, )< (2C,NA) (_”““—1;___““'"")! (%)'“' CrRm?
TeU .

In order to estimate Djw,(x, ¢,), at first we estimate f,(x,{). By
proposition 1 and its corollary 1, we have for 0<(¢t<¢,,

sup | Dz f,(x, 1)< (C,NA)ycr-+{#] +1pJ'rn+p)!<%>wHK”+p

e e M
=2 q! p

por(pl +14n+p) LN o,
< (3C,NA)C o (p) X

for |u|<lp—1=]v| +[~g-]+1. Then, by Proposition 2, we have

(3.10)
sup | D2y, ) < CBCNA) €+ UL LA DY (Y g
(7374 .

Since p,< p, combining this estimate with (3.9), we have

(3.11) sup | D1, (x, ) +u,(x, 10} 1< (CK L) g,

where B=(2C,NA+3C,NAC)/p, .

We remark here (ntp+l+ IV|)!<(;H-1)! eyl
p!

Therefore taking account of (3.8) and of the analyticity of «‘(x, #,),
[v]!
p/m’

we see easily that sup |Dyu(x,t,)| is majorized by the form c¢
el

for v>>0. This shows u(x, £,) is analytic in x on x€ U.

The solution ey(x, {,)=u(x, t,)+z(x, t,) is thus analytic in x on U,
because z(x, f) is an analytic function. The proof is thus complete,
since the analyticity in (x, ) of e.(x, f) follows from Cauchy-
Kowalewski Theorem.

4. Proof of Proposition 1.
We rely on the following fundamental lemma:

Fundamental lemma. Consider the function g(x), more precisely,
distribution defined by
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@1 g = ["waE( exp @t fv; oo, 50, ¢>-2.
Denote
4.2) L =max (2, sup [i(x;@)]),

where U satisfies the condition of proposition 1.
Then there exist constants C, and 6(<_1) such that

@.3) sup | g |< CED Lom (5 V.G,

where MA{f; Vi}= sup |f(x;e)l,
and & and C, depend ’onljy on U and V,; they do not depend on p, q
and f. Moveover, if p_>q+2, we need not to assume on U the
condition that U does not meet the characteristic conoid with vertex
at the origin.

We shall give the proof of this lemma at the end, and we admit
this lemma as proved.

Now we want to estimate D'g(x), where

4. 4) g(x) = SME‘ZdESQ exp (iIE)@D)? f(x ; w)dw .

We assnme

(4.5) sup | Df(x; )< YDy
YEU,WET P

Since /(x ; ®) is an analytic function of ¥ and ®, we assume
[v]!
p/WI—l
For the simplicity of estimates, we assume L >1.

If necessary, by taking p’ smaller we can assume that

4.7) p’<2—8L—, 6 being defined in Fundamental Lemma.

(4. 6) egumlgvID;l(x;w)l< L, for [p|>1.

Moreover, we assume (by taking p smaller in (4.5)) that
(4.8) p<r/8.

Under this condition, we want to show that
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vl

4.9) sup | Dg(x)|< T PDisc 124
xely p

Now we operate D) to (4.4). We shall denote hereafter D
instead of D). Then, under the sign of integration, we have

(4. 10) 2}; CiD"{exp (il§)(@il)?} D*~"f.
Now again by Leibniz,
D*{exp (il&)(@l)*} = ; CiD* exp (#0E)D*~*{(il)*} .

Here, we have

DY exp (ilf) = 'g exp (i/§) (igkly,k;

min (8, 1V
DDy =" Rty

Dpll><DP21> <Dpkl>
_ .
l"-k v.p1+~§Pk=V< p,! P! Pel /o

where the summation is taken over all partitions of v into %2 posi-
tive (|p;|>1) vectors.

Now, we want to estimate /, ,. We shall write simply |/, ,|<,
instead of sup [/, .[<. At first,

YU, weV,

where

1.

/1v] ku‘
Pyt tpy=v

(4.11) !lv,k|<ka !

This last summation can be majorized by the coefficient of x" in

, name
1—(x,+ e +x,) y

L e+ (e +2) - (et v 1) = Lexgm-t.
2 v

Since, C{"M' "< CHY' < 2°¥7Y we have

vl

1 ne (4
4.12) Bl g e (5)

Now, we apply Fundamental Lemma to the integral

SSeXp Ge) ) GnP¥1, v DY rFEdEde
A Ak p-Xk .
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This function can be majorized by

Lp\*1 [ 4\™ VPN I A r+ |v—p|)!
C0{< ) —<——> A !} {L" (L k—(—) -2 !}——-A-
5 ) 2\p Ry (Lp) 2\ | =] plv-H

Since (Lgp/>k<<%>k and fortiori (Lp’)k’<<%>k, we see the fol-

lowing : In order to majorize DYg(x), we expand (4.10) by Leibniz,
and we majorize there

; . N
Lo by (%) Ivl!%)l Gl by Ly Drer by ey

plv—I‘-I

Therefore, we can marjorize Dg(x) by
4 1AL A 1 ki1
cxa{ses(m(2) (1))
W X o =1\ 2
X<|/ﬁ_7\|! <4 >|#—>\| 5»_‘ CZ’(%)k/HL”_k/)} (r+ |u——~,u,|)!A '

o G- v=p
P k=1 P

Al
Since the first factor <<i/> |k|!%, and the second factor
p

)/

[=A|
<(i>“ * [M—M!%L", the term between {---} is majorized by
1 2 4 1| .
(4.13) <ﬁ> LP<~,> STCEM! | p—2]!
2 P
The summation is majorized by ﬁ CH™s! (Ju| —s)!. Now by (4.8)

4 1 . 1 \!¥l 3\ 1K/ 9\ Ik 2\ Ik / 3\ Il
gy siee (3)"=(3)7 () =(@) " (§) tor i<l
2, ince 2 2 3 < 3 1 or |NM<|pl

(4.13) is marjorized by

() EE) - ) e

Finally, we see that Dg(x) is marjorized by
C()Lp,(’ur 1¥D! 4 Z <2>s = 3C0L"(r+ »Dig.
p! &\ 3 P!

This completes the proof (4.9) and therefore that of Proposition 1.

Proof of the Fundamental Lemma.

The proof is carried out in the same way as in [5]. Namely,
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we follow the way of P.D. Lax ([2]). However, we need a more
precise argument. We adapted an argument of L. Schwartz to
our case (cf. [9], Exposé 6).

At first, we remark that the integral

(4.1) g = [Terag | exp @0 £(x; @)do

has no more meaning as function when ¢_>—1. We understand
g(x) in the following way: g(x) is the distribution defined by,

(6>>0),
(4.14) lim S“&"dfgg exp {GI—OE h(x ; w)do,  h(x; ) = GI)?f,

where the convergence is taken in the topology of distribution
(i.e. ). We can also define g(x) as follows: For o(x)€ D.

<g), o> = [Teae | dof exp @5 h(x s ) pix) d.

We see that g(x) is a continuous linear form on 2. This fact relies
on the condition /,-|=0. Namely, by taking / as one of local coordi-

nates, we can show that the integral S dcoSexp @EE) h(x ; @) p(x)dx
Q

is majorized by C,,£ ™, where C,, is ‘a constant majorized by
Cim, K) X || D*pl|r for p€ Dy (K is a compact), and here we can
[vli<m

take m as large as we like.

Now we return to our purpose. We remark that in (4.14) we
can take (:/—&)? instead of (¢/)?. Then, if p>1, the integration
by parts gives

["e exp (1-0 81 1—eyra
= exp (51—5)(51—5)”_'—48Texp {(G1—8)EY (il — &)~ §71dE
here we assume ¢_>1. We denote this relation by
[ & exp 516t dE ~ exp (D)D)~ —q | exp @ENiD)? " £'dE
Therefore, for p_>¢ >0, the integration by parts yields

(4.15) S?exp (18)(@)?E°dE~exp (i) 2 (—1)Yg(g—1)--(g—j+2)@l)* 7,
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where 0!=1, (—1)!=1. Therefore we have

@16) [ ga( exo@oinesi; vdo

q+1

(~1alg—1) - (@=i+2) | exp (DD If(x; @)do,

=1 0

= for p>¢>0,

> (the same term as above)+q(q—1)~~(q—p+1)gm§""’d§
XSQ exp (ilé) f(x; w)do,  for ¢>p>0.

~.

<.
-

We see here that in the first case (i.e. p_>¢>0), the integral is
a continuous function.
Now consider

@.17)  h(x) = S“’f"’dsgg exp (ilf) f(x; 0)do, m=q—p.
We want to prove that there exist 6 (<'1) and C, such that

4.18) sup A< P2 M VIC,  for m> -1,
el Bm!z

where 8 and Cj depend only on U and V., they don’t depend on
m and f.

At first we assume that /(x; ®) does not vanish on the sphere Q,,
namely

(4.19) [{(x; @) | >8>0 for x€ U and w€ Q,.

We assume here 6’<’1. We remark that i(x) is defined by
h(x) = lim sz:'" dES exp {(I—&)8) f(x; 0)do,

where the convergence is taken in the topology of 2’. Then, by
integration by parts, we have

(4. 20)

[exp (i1-&)816mds = exp i1-6) S ’"(’”‘1&1':(6’;‘” 2 (—1y.

Hence

!
sup [1(x) 1< DY sup (£(x, @)
Ret/a 8 XEU,WEQ,

If we consider the case m=—1, —2, we have
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. 21) |h(x)|\<\,2(ﬁg§)lsupff(x;(.))||_(zn|, for m>—2.

Consider now the general situation. We denote V,= {0 ;/(x ; ®)
=0}. The hypothesis that U (we can assume hereafter U small
set) has a positive distance from the characteristic conoid implies
that, on V,, /,4-0 (see [2] p. 645). Then, we can take / as one
of the local coordinates in the neighborhood of V, on Q,. We
introduce also analytic local coordinates («,, ---, #,_,) of V,, then
(4, -+, #,_,, )=(u, ) forms analytic local coordinates on Q, (see
our previous paper, [5]). We can cover the V, by such a finite
number of local coordinates, and define a partition of unity sub-

ordinate to this covering: ﬁa,-(u)EL Then, take a function £8(/)
of small support, which is 1 in a small neighborhood of /=0, and
0<{BW)<1. Then h(x)=h(x)+ é h$’(x), where

() = (“enae | exp @p[1-B)] sdo,

(4.22) i
(%) = S £ a’ESQ exp (ilE)a,(u) B(7) fdo .

About %,(x) there is nothing to say, because this case is essentially
the same one as /=0 on Q,. Now we consider 4°. do= J;(u,[)dudl,
where [J; is an analytic function.

fdo = f(u, 1) J;(u, I)dudl = f,(u, I)dudl .

Here we have

o i=1,p.
4.23) DA DI<FM{ri VYT, 1,2
(4.23)  |Difu )I<pk vy k=012, .

where p does not depend on f; it depends on U and V..
19 (x) = S”s"' dESafj(u) du exp (i15)80) f(u, Dl .
By integration by parts, the last integral is equal to

) X GO DY) £, Dl

- (—5"’*2 [ exp @0)180)DF £+ S Cr DB F) .
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Now look at the integral :
S exp GIE)DIB DI+ £, dl .
Integration by parts gives,
— (~19 |8 Di fexp (28 Dy £y di
Since
D; *{exp (/&) D7+*~° f;} = exp (il§) ;‘ Ci (@& Dy f;

taking into account of the fact that |/|>6’, where B'(/)==0, and
applying (4.21), we see that

Swf‘zdfs o ;(u) duS exp (&) DB DY~ f;dl
is majorized by

(4. 24) 2530”‘ (mt1=0lprervys,7,

St pm+1 t

where S;= Sa'j(u) 18/(0) | dudl .

Denote

(4. 25) 5 — % min (8, p)
then, (4.24) is majorized by

(m+1)
2 A GO VS T

Finally, /$’(x) is majorized by

(m+2)' 0 m
20 DML vals+-Eos sers-n),

where S°= gdco. The quantity between [ ] is majorized by
B0
23S0+ JS,) =278
Therefore
) <2 Dy r Vs, j=1.2,,5.

Bm +2
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Since
[h(x) < 2("21 2} sup | f(x, ®)| |Q,|, we have finally
(4. 26) ) 1< Dy v,

Sm 2
where C,=2|Q, |+ZZS, This is nothing but (4.18).

Now we want to prove (4.3). From (4.16) we get
i) for p>>¢>>0, |g(x)|<L? ¢'|Q, Isuplf(x ®);
il) for ¢_>=p >0,

sup [g(¥) [<< L?q! [ Q| sup | f(x; @) +(q;,‘22)!-M{f; VG,

Therefore, if we take

(4.27) C, =10, +Cq,

we get (4.3). Now we look at the case ¢g=—1, —2. For g=—2,
(4. 3) is evidently true. For ¢g=—1, we have

(@) exp (i) + S”exp GIE)il)?— £-dE
S exp (iE)(il)? £ dE ~ for p>1
S exp GI)E'dE, for p—0.
Therefore, for p>1,
[8(x) <2177 Q| sup | f(x; @) < L?|Q,] sup | f(x; )] ;
for p=0, by (4.18) we have

T ymrvic.

sup [ g(x) < 5
€U

This completes the proof of Fundamental Lemma.

5. Proof of Theorem 1.%°

We start from the

*) The part (p. 347-352) is the same as that of our previous paper (i.e. p. 275-281) :
Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. 1-2 (1962). To
make this article self-contained, we reproduce it.
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Lemma 1. Let a(x) and b(x) be two analytic functions, we assume

va(x) |< (FH1D!
| D¥a(x) << (k)'“'A E>1,

ID*bx) < S LDl
P

where r and s are non negative integers. Then we have the follow-
ing estimate :

| D¥(ab)(x) |< (r—+‘;+|%|)(k/k 1) AB/CI* .

1vi

Proof :
D*(ab) = EC,ID"a-D“"‘b. Since ZC;<C,',”‘, we have

| D¥(ab)| < mzc'”%rw)' (s v =) (1/R)" .
C1v|(7+3+| |)

Cr+s+|v|

because CriyMICM > Crr,

Now Cp(r+p)!(s+|v[—p)! = L(@r+s+|vD1Crr,

Hence,

IDv(db)I é?s(f"l‘sp‘ltll )L 2 (l/k)i)

and the last factor <Ck/k—1.
Consider the equation L[u]=f(x, ¢), where

ot
where a,(x, t) are functions with real values. We assume :
a; and b are real analytic functions, namely :

(6.1) |D.ax, )< (('3 5.-”)1 1>, ez, 1< y

D b(x, 1)< (:l) )l|'v| v>0.

Under this condition, we want to estimate the solution

(5.2) L[u] = f, with inital data O:u(x, 0) =
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Lemma 2. Assume

vl

5.3) |DLf(x, )< T D exp (o) K@Y 1A, where 7>1.
p

Then

6.4) D, <2 LD ep G K@y Afym,

—[;m
where K(t)=exp (ynt)L+oynt).
Proof. At first,
lu(x, 1)< 7! exp (vt)AStK(s)'ds

<
< 7! exp (vt) (L+ynty SR
r(vn)

this proves (5.4) for v=0.
Now we want to prove (5.4) as follows: Denote u,(f)=
max sup |Dyu(x, t)|.

vi=m s

Then, we shall have, taking the differentiation of (5.2), and
taking account of (5.1),”

d o i m " _.;pl—
(E y mn’y) Un(t) K Fl) 23t y(8) (Caim+C) By

Assume here that for u,,_,(¢), p>>1, the inequality (5. 4) is true.
Hence, in the above inequality, the term u,,_,(f) -+, can be majorized
by

1/3)* (CZ’H‘I“% C;j‘) (7’+m—p1m*ﬁ)! p!ZA exp (v2) K@) +"-* .

2) The argument is the same as given in [6], even simpler. Let us reproduce it.

We operate D"(:z%) to (5.2). Then
i

LD+ 3} (Diew) (Due) +(Db) (W) =Dif
In general we have
L[Di;"'DimuJ'*‘kZ.:; ;Z,.a‘l (Dipak)(Dil“‘ﬁip'"Dx'kau> + kz E_.; (Di,Diqak)(Dil'"ﬁip"'biq
D;, Dyu) + -+ %’; (Diy D, @) (Dyue) +
+ ,,é (Di ) (Dsye- Dy o Dyt + ?7 (D1, D; b)(Ds Dy pro Do Dyt -+

+ Dy D;,,0)(w) =Dy Dy, f
Taking account of (5.1), we have the desired differential inequality.
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Since (r+m—1—p)! pl =(r+m—1)!/C;*", and CP\,<mCD,
Cy*™ ' >=Cpr, we have
(c,’?+1+lc;,")(r+m~1—p)!p! <@+m—1)! (m-l—%)
n

<L r+m—1)! (m+1).

Sty e < THEP Do g exp () K@Y ™ (m+1) 3] <l>",
=1 P =1\3

Since fm(t)<(r—+m@ exp (v¢) K(¢)*"A, the integration gives,
P

Un(t) < @i’;—i,i" exp (vt) K(t)" m/rm+(’—+’;%,‘—1—>’ exp (v8) K(£) A
X (m+1)/(r+m)(yn).

Since r >1, (m+1)/(r +m)<1, the above inequality shows that (5.4)
is true for |v|<{m.

Lemma 3. Under the same condition as lemma 2, consider the solu-

tion u of L{u]=0. We assume on the intial value

vl

\Diu(x, 0) < CTD A 50, then we have
P

1vi

!
D (x, )1 < 2 D exp oy Kty A
P
Since the proof can be carried out in the same way as the
previous, we omit the proof.
Proposition 3. Consider the solution wu(x,t) of Llu]=f(x,t) with

the condition u(x, 0)=0. We assume

q+|v|

(.5) DD f(x, £)|< TEIT D e i k(Y M (ym) A, r>1,
p
then

(5.6) |D:Dfu(x, t)|<2 T IH VD oxn on K@y @ M(om)' A,

q+|v|
P

where v and p satisfy, in addition to (5.1), the following condition :
6.7 v > min (6y,, 27); p<{1/18.
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Proof. For ¢=0, (5.6) is nothing but Lemma 2. We are going to
prove this lemma by induction on ¢. Let us assume that (5.6) is
true for ¢=0, 1, ---, p—1, and we want to prove for g=p. Diu(x, t)
is the solution of

6.8 LD = Dif— £ Ct {33 (Dra) (DiDa) +(Drb) (Diw} -

We put this second hand, =D?f+@(x, ), and divide D?x in
three functions:
Dy = uy+u,+u,,
where
1) u,x,t) is defined by
Llu,] =0, ulx,0) = Dux, 0),
2) u,, u, are defined by
Llu,] = Dt f
Llu,] =9

At first, consider u,(x, f). By Lemma 2, we have

} with zero initial condition.

K (r+p—1+'1«|)' riplv 2
(5.9) | Du(x, t)|<—p—p+m— > exp (VK@) 2 (yn)? A(fy_n)-

Now consider u,(x, ). We want to estimate D)p(x, ¢). Take the
term. (D" *a;)(DiD;u) in (5.8). The derivatives D} of this function
is majorized, using Lemma 1, by

— ! p-s-1 . .
’ l;ﬁ PDHE) 2vl gy cexp K@y my A

For the simplicity, we write this fact by,
— s 1 \Pot s + 1
(Dra) (DiDa) > r=1+p+ 15D (g) 2vemy/Crr.
In the same way, we have

S

— 1 -
(DEb)(Dia) > =1+ p+ 19D (5 ) 2v6myriCr

Since Cr/Cri <L C/Co < p, and C;»'>Ci_.=C”, we see that
D,p(x, t) is majorized by
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C=LE LDt exp sty 2( S p LY oy oy

pP+IVI
Then by Lemma 2, we have

(5. 10) {4(2%+§17_1>

Diuy(x, Bl < T+ 1D! 1) K@) 2+ (yn)? ' A ———}
IDu(x, 1)< exp (v¢) K(2) (vn) Py ]

+1vl
pt’

where the last factor is majorized by 4(§+i><4.2=8.
2 2pn

Finally consider u,(x, #). Now we want to estimate D}u,(x, t)
by means of Lemma 3. For this purpose, we are going to estimate

Diu,(x, 0) = D;D%u(x, 0) .
(5.11)
Diu(x, 0) = Dy (x, 0)— & Cr7 {33 (Dr~*a) (DLDan) + (D) (Do)

~(Z @@ Day+b0rw)

We put this second member =D?7'f+uv,(x)+v,(x). At first, we
remark that the estimate of D,v,(x) was obtained previously,
namely

6.12) 1Do)|< T2 (po 1)+ L mype-a.
P n

p-1+1v|

Or, since 2{%(p—1)+%}<3p, r+p—1+|v)>p,

(5.13) Do) | < CTPZ L DY o yoig g,
p
6.1 Do < T e (274 6p)
prr v .
In fact,

D¥(a;»D?'Du) = a(D;Dy' D)+ 3 Ci(D*a;) (D} *Dy* D) .
==

The first term of the second hand is majorized by

— !
27, P ;);}:; D vy,
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the second term is majorized by

3\(r+p—2+|v])! .
Z’Y (7) pp—1+|*u| (7”)p A ,

and D*{b(Dy'u)} is majorized by

3\(r+p—1+[v])! . s
27<_2—>( Pp—1+|\;|v (yn)?'A.

Since

DDy (x, 0)| < TF2=LE 1D noa | we have

p+ivi
P

| Druy(x, 0)| < D= 1E1v])! (vn)”(in+2fy°+6p>/-l.
b v

pﬁ-l-IVI
Hence, by using Lemma 3, we have

(5.15)

[ Douy(x, 1) |< (r—_ip_p—i:—‘—l—u')—' (yn)? exp (ryt)K(t)”'2<_4,.+2.7o +6p>A .
P oY

Adding (5.9), (5.10), and (5.15) we have finally
(5. 16)

DD, 1)< L D e ey o empe2 (D + 2769 )4
p TR 4

By the condition on ¢ and p, mentioned in the statement of this
lemma, the last factor is less than 2, which proves (5.6) for g=p.
Our proof is thus complete.

Proposition 4. Consider the solution u(x, t) of Llu]=0. Concern-
ing the initial value u(x, 0), we assume

6.17) | Dau(x, 0)| < TELD A >0, then
P

(5.18) | DDiu(x, H|< 20 D ey ik (2y 1 (ymy A,

g+|v|
P

where v and p are assumed to satisfy (5.7) of Proposition 3.

Proof. For ¢=0, (5.18) is nothing but Lemma 3. For ¢_>1, the
proof is almost same as the previous Lemma, so we omit it.
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Now we turn to the estimate of ¢!/, Remark that oY are
defined as follows: For i==j,

6:19)  o8(x, £5 @) = si(x, £ D)+ 3 LT}

where L{'” is the first order differential operator of the form:

L[] = EP“”(x,t w) +qi“’(x,t o)u,

where all the coefficients, together with s;;, are analytic functions
of (%, t, ®).
After (5.19), we define finally of! as the solution of

(5. 20) L‘_[o-] - — 2 int)L[o.vi"k] ,
ks kFi
with the initial condition :

(5.21) on (%, 05 @) = — 3 oll(x,0; ).
ki ki

oo)(x, t; ®) are defined as follows: ¢§’=0, for i=}-j. i are de-
fined as the solution of (5.20), namely,

(5. 22) L[] = 0, with the initial value

o5'(x, 0; ®)=0i(x; ®), where

0

: ¥

1| =2 0ix, ©)R(x,0; @).
0

Then we have the following

Proposition 5. We assume

Dioy(x; @)|< IpwlllA, then
P
(5.23)
|D2Dzot(x, 15 0) | < VLD exp (Kt 2+ r24)C,

Sor 0<¢<1, where C, is a large constant conveniently chosen.
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Proof. For m=0, (5.22) and the assumption, yields, by Proposition
4,

: !
D2 Doy | < 22 L]

)Pi—l\'l((yn)ﬁA .

We assume now that (5.23) is true for o¢/, o}/, ..o, 0;),, and
prove (5.23) for o)!. We can assume that all the coefficients of
L$?, together with s;; have the radii of convergence greater than
3p. Then, from (5.19), by using Lemma 1, we have for i-|j,

(5. 24)
| DDyt | < M IELE YD ey epey oy 2 ACE,

pm+1+p4 v

where M is determined by Li", s;;.
Next, putting

U= —Z L{’[oit1], we divide o}/,; in two functions :
O = O, >1+84,§.1’1, where
L6301 = f9h1, with zero initital value: 63%,(x,0; @) =0;
L[] =0, with the given initial data given by (5.21):
ot (%, 0; ©) = —2 o, 05 o).

’ET

By the hypothesis, we have

|D Dt &) Mz(m+2+}'?+|”|) exp('yt)K(t)'"'2""F""(fyn)’”‘“‘+"AC6",

m+1 myziptivi
P

By using Proposition 3, we have

(5. 25)
|D2Dy8 <202 P LR LD e ey + 0 P AC,

pm +24p V]

On the other hand
D280, (x, 0 @) |< M(N—1) 2 ,,.1.?2»'”’ D! (ymyriacy .

By using Proposition 4, we have

(5. 26)
DD ZMIN=1) P SR exp )i+ ACE.

m i1+ p+ V]
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Adding (5.25) and (5.26), we have

G.27)  |D:Dioi,, | ELEDE]V])!

m1+p+1V]
P

< exp () Ky 2y 024Ck {MEKQ) + MOV- 1)
for 0<{¢t<{1. Therefore, if we choose C, in such a way that
(5. 28) c,> % K1) +M(N-1),

(5.27) shows that (5.23) is true for o}},;, which completes our
proof.
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