On the Riemann's relation on open Riemann surfaces

By

Akira Kobori and Yoshikazu Sainouchi
(Received August 1, 1962)

1. F being an arbitrary open Riemann surface, we consider an exhaustion $\left\{F_{n}\right\}(n=1,2, \cdots)$ of F by regular regions satisfying the conditions:
i) for each n, F_{n} is a domain in F whose boundary $\mathrm{I}_{n}{ }_{n}$ consists of a finite number of closed analytic curves in F,
ii) for each $n, \bar{F}_{n}=F_{n} \cup \mathrm{I}_{n} \subset F_{n+1}$,
iii) $\bigcup_{n=1}^{\infty} F_{n}=F$
and
iv) for each n, any connected component of $F-F_{n}$ is noncompact in F.

Then there exists a canonical homology basis $A_{1}, B_{1}, \cdots, A_{k(n)}$, $B_{k(n)}, \cdots$ such that $A_{1}, B_{1}, \cdots, A_{k(n)}, B_{k(n)}$ form a canonical homology basis of $F_{n}\left(\bmod \partial F_{n}\right)$ and $A_{i} \times B_{j}=\delta_{i j}, \quad A_{i} \times A_{j}=B_{i} \times B_{j}=0^{1)}$ (Ahlfors [1], Ahlfors-Sario [2]).

We denote by I_{h} the class of all square integrable harmonic differentials defined on F. The relation which expresses the inner product (ω, σ^{*}) for two differentials $\omega, \sigma \in \mathrm{\Gamma}_{h}$ (or subclass of $\mathrm{\Gamma}_{h}$) in terms of periods of ω, σ is called the Riemann's bilinear relation, where σ^{*} denotes the conjugate differential to σ. Some conditions which insure the validity of the Riemann's bilinear relation are found by some suthors (Ahlfors [1], Pfruger [3], [4], Kusunoki

[^0][5], Accola [6]). In this paper we shall give some metric criteria which insure the validity of the Riemann's bilinear relation.
2. Let $F_{n}^{(i)}(i=1,2, \cdots, m(n))$ be components of $F_{n+1}-\bar{F}_{n}$. The boundary of $F_{n}^{(i)}$ consists of closed analytic curves contained in $\Gamma_{n} \cup \Gamma_{n+1}$. We denote by $\alpha_{n}^{(i)}$ the part of the boundary of $F_{n}^{(i)}$ on Γ_{n} and by $\beta_{n}^{(i)}$ that on Γ_{n+1}. Let $u_{n}^{(i)}(p)$ be a harmonic function in $F_{n}^{(i)}$ which vanishes on $\alpha_{n}^{(i)}$ and is equal to $\mu_{n}^{(i)}$ on $\beta_{n}^{(i)}$ having a conjugate harmonic function $v_{n}^{(i)}(p)$ which has the variation 2π on $\beta_{n}^{(i)}$, that is,
$$
\int_{\beta_{n}^{(i)}} d v_{n}^{(i)}=2 \pi
$$
where the integral is taken in the positive sense with respect to $F_{n}^{(i)}$. The quantity $\mu_{e_{2}^{(i)}}^{(i)}$ is called the harmonic modulus of the domain $F_{n}^{(i)}$. If we choose an additive constant of $v_{n}^{(i)}(p)$ suitably, the function $u_{n}^{(i)}(p)+i v_{n}^{(i)}(p)$ maps conformally $F_{n}^{(i)}$ with a finite number of slits onto a slit rectangle $0<u_{n}^{(i)}<\mu_{n}^{(i)}, 0<v_{n}^{(i)}<2 \pi$. Similarly, the harmonic modulus of the open set $F_{n+1}-\bar{F}_{n}$ is defined as follows. Let $u_{n}(p)$ be the harmonic function in $F_{n+1}-\bar{F}_{n}$ which is equal to zero on Γ_{n} and to μ_{n} on Γ_{n+1}, and its conjugate harmonic $v_{n}(p)$ has the variation 2π on $\mathrm{\Gamma}_{n+1}$, that is,
$$
\int_{\Gamma n+1} d v_{n}=2 \pi
$$

The quantity μ_{n} is the harmonic modulus of the open set $F_{n+1}-\bar{F}_{n}$. If we choose adequately an additive constant of $v_{n}(p)$, the function $u_{n}(p)+i v_{n}(p)$ maps conformally $F_{n}^{(i)}$ with a finite number of slits onto a slit rectangle $0<u_{n}<\mu_{n}, b_{i}<v_{n}<a_{i}+b_{i}$, where a_{i} and b_{i} are constants satisfying the following conditions

$$
a_{i}=2 \pi \frac{\mu_{n}}{\mu_{i l}^{(i)}}, \quad \sum_{i=1}^{m} a_{i}=2 \pi
$$

and

$$
b_{1}=0, \quad b_{i}=\sum_{k=1}^{i-1} a_{k} \quad(1<i \leqslant m) .
$$

The function $u_{n}(p)+i v_{n}(p)$ maps conformally $F_{n-1}-\bar{F}_{n}$ with a finite
number of slits onto a slit rectangle $0<u_{n}<\mu_{n}, 0<v_{n}<2 \pi$. The function $u(p)+i v(p)$ defined by $u_{n}(p)+i v_{n}(p)+\sum_{j=1}^{n-1} \mu_{j}$ for each $F_{n+1}-\bar{F}_{n}(n=1,2, \cdots)$ maps $F-\bar{F}_{1}$ with at most an enumerable number of suitable slits onto a strip domain $0<u<R=\sum_{j=1}^{\infty} \mu_{j}$, $0<v<2 \pi$ with at most an enumerable number of slits one to one and conformally. This strip domain thus obtained is the graph of F associated with the exhaustion $\left\{F_{n}\right\}$ in Noshiro's sense (Noshiro [7], Kuroda [8]).
3. Let us consider an open Riemann surface F and its exhaustion $\left\{F_{n}\right\}$, and we shall construct the graph $0<u<R, 0<v<2 \pi$ of F associated with this exhaustion. For any $r(0 \leqslant r<R)$, the locus γ of points of F satisfying $u(p)=r$ consists of a finite number of closed analytic curves $\gamma_{r}^{(i)}(i=1,2, \cdots, m(r))$. Let $\omega_{i}=a_{i} d x+b_{i} d y(i=1,2)$ be two square integrable harmonic differentials. We consider the following integral on the level curve $\gamma_{r}^{(i)}$

$$
L_{i}(r)=\int_{\gamma_{r}^{(i)}}\left|\omega_{1}\right| \int_{\gamma_{r}^{(i)}}\left|\omega_{2}\right|
$$

and put

$$
L(r)=\sum_{i=1}^{m} L_{i}(r),
$$

Further, when $\sum_{j=1}^{n-1} \mu_{j} \leq r<\sum_{j=1}^{n} \mu_{j}$, we put

$$
\Lambda(r)=\max _{1 \leqslant i \leqslant m} \int_{\gamma_{r}^{(i)}} d v=\max _{1 \leqslant i \leqslant m} \int_{\gamma_{r}^{(i)}} d v_{n} .
$$

Then we obtain the following
Lemma 1. If the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent, then there exists a sequence $\left\{\gamma_{n}\right\}(n=1,2, \cdots)$ of level curves $\gamma_{n} ; u(p)=r_{n}$ tending to the ideal boundary of F such that

$$
\lim _{x \rightarrow \infty} L\left(r_{n}\right)=0 .
$$

Proof. When $\sum_{j=1}^{n-1} \mu_{j} \leqslant r<\sum_{j=1}^{n} \mu_{j}$, by the Schwarz's inequality, we have

$$
\begin{aligned}
L_{i}(r) & =\int_{\gamma_{r}^{(i)}}\left|\omega_{1}\right| \int_{\gamma_{r}^{(i)}}\left|\omega_{2}\right|=\int_{\gamma_{r}^{(i)}}\left|b_{1}\right| d v_{n} \int_{\gamma_{r}^{(i)}}\left|b_{2}\right| d v_{n} \\
& \leqslant \int_{\gamma_{r}^{(i)}} d v_{n}\left(\int_{\gamma_{r}^{(i)}}\left|b_{1}\right|^{2} d v_{n}\right)^{1 / 2}\left(\int_{\gamma_{r}^{(i)}}\left|b_{2}\right|^{2} d v_{n}\right)^{1 / 2} \\
& \leqslant \Lambda(r)\left(\int_{\gamma_{r}^{(i)}}\left|b_{1}\right|^{2} d v_{n}\right)^{1 / 2}\left(\int_{\gamma_{r}^{(i)}}\left|b_{2}\right|^{2} d v_{n}\right)^{1 / 2}
\end{aligned}
$$

Summing up from $i=1$ to $i=m(r)$, we obtain

$$
\begin{aligned}
L(r) & \leqslant \Lambda(r) \sum_{i=1}^{m}\left(\int_{\gamma_{1}^{(,)}}\left|b_{1}\right|^{2} d v_{n}\right)^{1 / 2}\left(\int_{\gamma_{r}^{(i)}}\left|b_{2}\right|^{2} d v_{n}\right)^{1 / 2} \\
& \leq \Lambda(r)\left(\sum_{i=1}^{m} \int_{\gamma_{r}^{(i)}}\left|b_{1}\right|^{2} d v_{n}\right)^{1 / 2}\left(\sum_{i=1}^{m} \int_{\gamma_{r}^{(i)}}\left|b_{2}\right|^{2} d v_{n}\right)^{1 / 2} \\
& =\Lambda(r)\left(\int_{0}^{2 \pi}\left|b_{1}\right|^{2} d v\right)^{1 / 2}\left(\int_{0}^{2 \pi}\left|b_{2}\right|^{2} d v\right)^{1 / 2}
\end{aligned}
$$

Hence, we get

Consequently, we have

$$
\begin{aligned}
\int_{0}^{R} \frac{L(r)}{\Lambda(r)} d r & \leqslant \sum_{n=1}^{\infty}\left\|\omega_{1}\right\|_{F_{n+1}-F_{n}}\left\|\omega_{2}\right\|_{F_{n+1}-F_{n}} \\
& \leqslant\left(\sum_{n=1}^{\infty}\left\|\omega_{1}\right\|_{F_{n+1}-F_{n}}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left\|\omega_{2}\right\|_{F_{n+1}-F_{n}}^{2}\right)^{1 / 2} \\
& \leqslant\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|<\infty
\end{aligned}
$$

Since the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent by our assumption, we obtain $\lim _{r \rightarrow R} L(r)=0$. Therefore, we obtained the above-mentioned result.

Since

$$
\int_{\sum_{j=1}^{j=1}}^{\sum_{j=1}^{n} \mu_{j}} \frac{1}{\max _{i} \int_{\gamma_{r}^{(i)}} d v} d r=\mu_{n} \cdot \min _{i} \frac{\mu_{i}^{(i)}}{2 \pi \mu_{n}}=\frac{1}{2 \pi} \min _{i} \mu_{n,}^{(i)},
$$

we have

$$
2 \pi \int_{0}^{r} \frac{d r}{\Lambda(r)} \geq 2 \pi \int_{0}^{\sum_{j=1}^{n} \mu_{j}} \frac{d r}{\Lambda(r)} \geq \sum_{j=1}^{n}\left(\min _{i} \mu_{j}^{(i)}\right)
$$

for any r satisfying $\sum_{j=1}^{n} \mu_{j} \leqslant r<\sum_{j=1}^{n+1} \mu_{j}$. Thus we can say that the result of lemma 1 hold, if $\sum_{n=1}^{\infty}\left(\min _{i} \mu_{i=}^{(i)}\right)$ is divergent.

Next, we suppose that the exhaustion $\left\{F_{n}\right\}$ is canonical, that is, each contour $\Gamma_{n}^{(i)}(i=1,2, \cdots, m(n))$ of Γ_{n} is a dividing cycle. Let $D_{n}^{(i)}(i=1,2, \cdots, m)$ be annuli each of which includes a contour $\mathrm{I}_{n}^{(i)}$ and are disjoint each other. We put $D_{n}=\bigcup_{i=1}^{m} D_{n}^{(i)}$ and assume that $D_{n}(n=1,2, \cdots)$ are disjoint each other. We constructe the graph of $\bigcup_{n=1}^{\infty} D_{n}$ associated with the sequence $\left\{D_{n}\right\}$ of open sets D_{n} and denote the harmonic modulus of $D_{n}^{(i)}\left(D_{n}\right)$ by $\nu_{n}^{(i)}\left(\nu_{n}\right)$. Also we denote the function which maps $\bigcup_{n=1}^{\infty} D_{n}$ onto the strip domain $0<u<R=\sum_{n=1}^{\infty} \nu_{n}, 0<v<2 \pi$ by $u(p)+i v(p)$. When $\sum_{j=1}^{n-1} \nu_{j} \leq r<\sum_{j=1}^{n} \nu_{j}$, we put

$$
\Lambda_{0}(r)=\max _{i} \int_{\gamma_{r}^{(i)}} d v
$$

We point out that in this case each component of the level curve is a dividing cycle. Then, by the same way as we did in the proof of lemma 1, we have

Lemma 2. If the integral $\int_{0}^{R} \frac{d r}{\Lambda_{0}(r)}$ is divergent, then there exists a sequence of level curves tending to ideal boundary of F such that each component of the curves is a dividing cycle and $\lim _{n \rightarrow \infty} L\left(r_{n}\right)=0$.

In the same way as the remark in lemma 1, we can conclude that the result of lemma 2 holds, if $\sum_{n=1}^{\infty}\left(\min \nu_{n}^{(i)}\right)$ is divergent.
4. Let us denote by $\mathrm{I}_{\text {hse }}\left(\Gamma_{a s e}\right)$ the class of semi-exact harmonic (analytic) differentials in I_{h}^{\prime} and by $\mathrm{I}_{h e}$ the class of exact harmonic differentials in Γ_{h} and further by $\Gamma_{h 0}$ the orthogonal complement in Γ_{h} of $\mathrm{I}_{h e}^{*}$. Then $\mathrm{I}_{h 0}<\Gamma_{h s e}$. Now let c be a cycle, then there exists a harmonic differential $\sigma(c)$ so that $\int_{c} \omega=\left(\omega, \sigma(c)^{*}\right)$ for $\omega \in \Gamma_{h}$. Such a $\sigma(c)$ is unique, real, of class $\mathrm{I}_{h 0}$. If c and c^{\prime} are two cycles, then $\left(\sigma\left(c^{\prime}\right), \sigma(c)^{*}\right)$ is an integer, that is, the intersection number $c^{\prime} \times c$ of c^{\prime} and c (Ahlfors-Sario [2]).

Lemma 3. Suppose $\bar{\Omega}$ is a compact bordered surface and ω and σ are in $\mathrm{\Gamma}_{\text {hse }}(\bar{\Omega})$. Let $\left\{A_{i}, B_{i}\right\}(i=1,2, \cdots, k)$ b ea canonical homology basis of $\Omega(\bmod \partial \Omega)$. Then

$$
\left(\omega, \sigma^{*}\right)=\sum_{i=1}^{k}\left(\int_{A_{i}} \omega \int_{B_{i}} \bar{\sigma}-\int_{A_{i}} \bar{\sigma} \int_{B_{i}} \omega\right)-\int_{\partial \Omega} u \bar{\sigma},
$$

where $u(p)$ is a function defined separately on each contour of $\partial \Omega$. If α is a contour of $\partial \Omega$, then $u(p)=\int_{p_{0}}^{p} \omega$ where p_{0} is a fixed point on α and the integration is in the positive sence of α.

Proof. Let $a_{i}=\int_{A_{i}} \omega$ and $b_{i}=\int_{B_{i}} \omega$. Let $\omega^{\prime}=\sum_{i=1}^{k}\left(b_{i} \sigma\left(A_{i}\right)\right.$ $\left.-a_{i} \sigma\left(B_{i}\right)\right)$, then ω^{\prime} has the same periods as ω and ω^{\prime} belongs to $\Gamma_{h 0}(\Omega)$. Since $\omega-\omega^{\prime}$ has no periods, we have $\omega-\omega^{\prime}=d u$, where u is a harmonic function. By the Green's formula we have

$$
\left(\omega-\omega^{\prime}, \sigma^{*}\right)=\left(d u, \sigma^{*}\right)=-\int_{\partial \Omega} u \bar{\sigma} .
$$

Therefore

$$
\begin{aligned}
\left(\omega, \sigma^{*}\right) & =\left(\omega^{\prime}, \sigma^{*}\right)-\int_{\partial \Omega} u \bar{\sigma} \\
& =\sum_{i=1}^{k}\left(\int_{A_{i}} \omega \int_{B_{i}} \bar{\sigma}-\int_{A_{i}} \bar{\sigma} \int_{B_{i}} \omega\right)-\int_{\partial \Omega} u \bar{\sigma}
\end{aligned}
$$

Theorem I. If the integral $\int_{0}^{R} \frac{d r}{\Lambda_{0}(r)}$ is divergent for a canonical exhaustion, then for a corresponding canonical homology basis the Riemann's bilinear relation

$$
\begin{equation*}
\left(\omega, \sigma^{*}\right)=\lim _{n^{\prime} \rightarrow \infty} \sum_{k=1}^{\rho\left(n^{\prime}\right)}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right) \tag{1}
\end{equation*}
$$

holds for two differentials $\omega, \sigma \in \Gamma_{h s e}$.
Proof. We shall take the sequence $\left\{\gamma_{n}\right\}$ of level curves satisfying lemma 2 for two differentials ω and σ. Since each component $\gamma_{n}^{(i)}(i=1,2, \cdots, m)$ of γ_{n} is a dividing cycle, if $\gamma_{n} \subset D_{n^{\prime}}$, we may suppose that $F_{n^{\prime}}$ and the relatively compact domain Ω_{n} bounded by level curve γ_{n} have the same homology basis $A_{1}, B_{1}, \cdots, A_{p\left(n^{\prime}\right)}$, $B_{p\left(n^{\prime}\right)}$. By the application of lemma 3 to Ω_{n}, we have

$$
\left(\omega, \sigma^{*}\right)_{\Omega_{n}}=\sum_{k=1}^{p\left(n^{\prime}\right)}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right)-\int_{\partial \Omega_{n}} u \bar{\sigma} .
$$

Since $\sigma \in \Gamma_{h s e}$, we have $\int_{\gamma_{n}^{(i)}} \bar{\sigma}=0$. Hence for a fixed point $p_{0} \in \gamma_{n}^{(i)}$

$$
\left|\int_{\gamma_{n}^{(i)}} u \bar{\sigma}\right|=\left|\int_{\gamma_{n}^{(i)}}\left(u(p)-u\left(p_{0}\right)\right) \bar{\sigma}\right| \leqslant \int_{\gamma_{n}^{(i)}}|\omega| \int_{\gamma_{n}^{(i)}}|\sigma|,
$$

therefore

$$
\left|\int_{\partial \mathbf{\alpha}_{n}} u \bar{\sigma}\right| \leqslant \sum_{i=1}^{m} \int_{\gamma_{n}^{(i)}}|\omega| \int_{\gamma_{n}^{(i)}}|\sigma| \rightarrow 0(n \rightarrow \infty) .
$$

Thus the proof is completed.
By the remark in 3, we get the following
Corollary. If $\sum_{n=1}^{\infty}\left(\min _{i} \nu_{n}^{(i)}\right)$ is divergent, the Riemann's bilinear
relation (1) holds for two differentials $\omega, \sigma \in \mathrm{L}_{\text {'iss }}$.
Thus we know that on such a surface every $\omega \in \Gamma_{\text {ase }}$ is determined uniquely by its A-periods.

By the definition of the modulus we have

$$
\frac{1}{\nu_{n}}=\frac{1}{\nu_{n}^{(i)}}+\cdots \cdots+\frac{1}{\nu_{n}^{(m)}},
$$

hence $\nu_{n} \leqslant \min _{i} \nu_{n i}^{(i)}$. If $\sum_{n=1}^{\infty} \nu_{n}$ is divergent, F belongs to O_{G} and so $\Gamma_{h s e}=\Gamma_{h}$. Thus we have

Corollary (Kusunoki [5]). If $\sum_{n=1}^{\infty} \nu_{n}$ is divergent, then the Riemann's bilinear relation (1) holds for two $\omega, \sigma \in \Gamma_{h}$.
5. Next we choose annuli $R_{n}^{(i)}(i=1,2, \cdots, m)$ in canonical region F_{n} so that $1_{n}^{(i)} \subset \bar{R}_{n}^{(i)}, R_{n}^{(i)} \cap R_{n}^{(j)}=\phi(i \neq j)$. Let $R_{n}=\bigcup_{i=1}^{m} R_{n}^{(i)}$ and $\mu\left(R_{n}\right)$ and $\mu\left(R_{n}^{(t)}\right)$ be the harmonic modulis of R_{n} and $R_{n}^{(i)}$, respectively.

Define $\mu_{F_{n}}$ to be the supremum of $\mu\left(R_{n}\right)$ as R_{n} ranges over all possible choices. Accola [6] has given the following sufficient condition for the validity of the Riemann's bilinear relation :

If $\mu_{F_{n}} \geq M>0$ for $n \rightarrow \infty$ (M; constant), then

$$
\left(\omega, \sigma^{*}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right)
$$

holds for $\sigma \in \mathrm{\Gamma}_{\text {hse }}$ and for all $\omega \in \mathrm{I}_{h 0}$.
We shall remark that the above sufficient condition can be extended to the following form:

If $\sup _{R_{n}}\left(\min _{i} \mu\left(R_{n}^{(i)}\right)\right) \geq M>0$ for $n \rightarrow \infty$, then the bilinear relation holds for $\sigma \in \Gamma_{h s e}$ and for $\omega \in \mathrm{I}_{h 0}$.

This can be proved, with a slight modification, by the same way as in [6] and so we shall omit its proof.

In [6], Accola has constructed a Riemann surface for which the bilinear relation holds. His example is the symmetric hyperelliptic Riemann surface. Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of positive number such that $a_{k} \rightarrow \infty(k \rightarrow \infty)$. Denote by α_{n} the segment between $a_{2 n-1}$ and $a_{2 n}$. Cut the plane along
the slits. Take two copies of slits plane π_{+}and π_{-}and cross along the slits in usual way. The surface thus obtained is of infinite genus and parabolic. We exhaust it by the portion F_{n} lying over the open disk with center at zero and radius $a_{2 n}$. Let R_{n} be the ring domain lying above the annulus $a_{2 n-1}<|z|<a_{2 n}$. Then the harmonic modulus of R_{n} is $\frac{1}{4 \pi} \log \frac{a_{2 n}}{a_{2 n-1}}$. According to Accola's condition, for the validity of the bilinear relation it needs that $\frac{a_{2 n}}{a_{2 n-1}}>\rho>1$ for a subquence a_{n} 's. But, according to the corollary to theorem 1, we know that, for the validity of the bilinear relation, it is sufficient to hold $\prod_{n=1}^{\infty} \frac{a_{2 n}}{a_{2 n-1}}=\infty$.
6. Ahlfors [1] has constructed a canonical homology basis with respect to an exhaustion $\left\{F_{n}\right\}$ of F such that the cycles on ∂F_{n} are weakly homologous to a linear combination of only A-cycles and if the index n of ∂F_{n} is large, each of index of corresponding A-cycle is large. In following we shall use such a canonical homology basis.

Now let $\left\{F_{n}\right\}$ be an exhaustion of F by regular regions and for each $n, \mathrm{~L}_{n}\left(t_{j}\right)$ be a set of finite number of level curves; $u(p)=t_{j}\left(\sum_{k=1}^{n-1} \mu_{k}=t_{1}<t_{2}<\cdots<t_{j}<\cdots<t_{\nu}=\sum_{k=1}^{n} \mu_{k}\right)$ such that at least one critical point of $u(p)$ is contained in $\Gamma_{n}\left(t_{j}\right)(j \neq 1, \nu)$, where $u(p)$ is the function defined in 2 . We shall consider the relatively compact regions bounded by $\Gamma_{n}\left(t_{j}\right)(n=1,2, \cdots, j=1,2, \cdots, \nu(n))$, then we may suppose that those regions construct an exhaustion $\left\{\Omega_{n j}\right\}$. Let us introduce a canonical homology basis with respect to this exhaustion, then the region bounded by $\Gamma_{n}(t)\left(t_{i} \leqslant t<t_{i+1}\right)$ has the same canonical homology basis as that of the region bounded by $\mathrm{I}_{n}^{\prime}\left(t_{i}\right)$ (cf. Ahlfors [1], Hilfssatz 5). For such a canonical homology basis we have the following

Theorem II. If the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent for an exhaustion $\left\{F_{n}\right\}$, then there exist an exhaustion and a corresponding canonical homology basis such that the Riemann's bilinear relation

$$
\begin{equation*}
\left(\omega, \sigma^{*}\right)=\sum_{k}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right) \quad \text { (a finite sum) } \tag{2}
\end{equation*}
$$

holds for two $\omega, \sigma \in \Gamma_{\text {hse }}$ having only a finite number of non-vanishing A-periods.

Proof. We consider the relatively compact subregion Ω_{n} which are bounded by the level curves which were constructed in lemma 1. ω and σ have only a finite number of non-vanishing A-periods, hence also have vanishing periods on each contour of $\partial \Omega_{m}$ for sufficientlt large m. Therefore ω and σ belong to $\Gamma_{h s e}\left(\bar{\Omega}_{m}\right)$, because any dividing cycles in Ω_{m} are homologous to a linear combination of cycles on $\partial \Omega_{m}$. Let $\alpha_{m}^{(j)}(j=1,2, \cdots, l(m))$ be contours of $\partial \Omega_{m}$. Since $\int_{\alpha_{n}^{(j)}} \bar{\sigma}=0$, We have anologously in theorem I

$$
\left|\int_{\alpha_{m}^{(j)}} u \bar{\sigma}\right| \leqslant \int_{\alpha_{m}^{(j)}}|\omega| \int_{\alpha_{m}^{(j)}}|\sigma| .
$$

Hence

$$
\left|\int_{\partial \Omega_{m}} u \bar{\sigma}\right| \leq \sum_{j=1}^{1} \int_{\alpha_{m}^{(j)}}|\omega| \int_{\alpha_{n n}^{(j)}}|\sigma| \rightarrow 0 \quad(m \rightarrow \infty)
$$

Thus the proof is completed.
Corollary. If $\sum_{n=1}^{\infty}\left(\min _{i} \mu_{n}^{(i)}\right)$ is divergent for an exhaustion $\left\{F_{n}\right\}$, then the Riemann's bilinear relation (2) holds.

For such a canonical homology basis, on such surface every $\omega \in \Gamma_{\text {ase }}$ is determined uniquely by its A-periods. Thus we have

Corollary. (Sario [9]). If the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent, then Riemann surface belongs to $O_{A D}$.

Since $\min _{i} \mu_{n}^{(i)} \geq \mu_{n}$, if $\sum_{n=1}^{\infty} \mu_{n}=\infty$, then theorem II holds. If F belongs to O_{G}, then there exists an regular exhausion such that $\sum_{n=1}^{\infty} \mu_{n}=\infty$ (Noshiro [7]), hence we have the following

Corollary (Ahlfors [1]). If F belongs to O_{G}, then there exist an exhaustion and the corresponding canonical homology basis such that

$$
\left(\omega, \sigma^{*}\right)=\sum_{k}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right) \quad \text { (a finite sum). }
$$

holds for two $\omega, \sigma \in \mathrm{I}_{h}$ having only a finite number of non-vanishing A-periods.
7. Let G be any region on F whose relative boundary c consists of at most an enumerable number of analytic curves, compact or non-compact and clusters nowhere in F. If there exists no non-constant, single valued, analytic function $f(p)$ which has the finite Dirichlet integral over G and its real part vanishes continuously at every point of c, then G is called the subregion of the class $S O_{A D}$. We now suppose that the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent for an exhausion $\left\{F_{n}\right\}$ of F by regular regions. We consider the subset G_{r} of G;

$$
G_{r}=G \cap\{p: u(p) \leq r(0 \leq r<R)\}
$$

where $u(p)$ is the function defined in 2 . If some components of $G-\bar{G}_{r}$ are relatively compact, we consider the union of these components and G_{r}. For simplicity, we denote it by G_{r} again. Let $f(p)=U(p)+i V(p)$ be a single valued analytic function in G whose real part $U(p)$ vanishes at every point of the relative boundary c of G. Then two differentials $d U$ and $d V$ belong to $\Gamma_{h e}(\bar{G})$ and $d U$ vanishes along c. Thus we have by lemma 3 and $U(p)=0$ ($p \in c$)

$$
\|d U\|_{G_{r}}^{2}=(d U, d U)_{G_{r}}=-\left(d U, d U^{* *}\right)_{G_{r}}=-\left(d U, d V^{*}\right)_{G_{r}}=\int_{\partial G_{r} \cap G} U d V
$$

We set $\theta_{r}=\partial G_{r} \cap G$ and denote components of θ_{r} by $\theta_{r}^{(t)}(i=1$, $2, \cdots, l(r))$. Then, by the same way as in the case of the proof of lemma 1, we can conclude that there exists a sequence $\left\{\theta_{r_{n}}\right\}$ such that

$$
\sum_{i=1}^{1} \int_{\theta_{r_{n}}^{(i)}}|d U| \int_{\theta_{r}(i)}|d V| \rightarrow 0 \quad(n \rightarrow \infty) .
$$

In such $G_{r_{n}}$, we have

$$
\|d U\|_{G_{r_{n}}}^{2}=\int_{\theta_{r_{n}}} U d V=\sum_{i=1}^{i} \int_{\theta_{r_{n}}^{(i)}} U d V .
$$

If $\theta_{r_{n}}^{(i)}$ is a closed curve, as $\int_{\theta_{r n}^{(i)}} d V=0$, we have

$$
\left|\int_{\theta_{r_{n}}^{(i)}} U d V\right| \leqslant \int_{\theta_{r_{n}}^{(i)}}|d U| \int_{\theta_{r_{n}}^{(i)}}|d V| .
$$

If $\theta_{r_{n}}^{(i)}$ is a cross cut, let $p^{\prime} \in c$ be a end point of $\theta_{r_{n}}^{(i)}$, then $U\left(p^{\prime}\right)=0$, hence

$$
\left|\int_{\theta r_{n}^{(i)}} U d V\right|=\left|\int_{\theta r_{n}^{(i)}}\left(U(p)-U\left(p^{\prime}\right)\right) d V\right| \leqslant \int_{\theta r_{n}}^{(i)}|d U| \int_{\theta_{r_{n}}^{(i)}}|d V| .
$$

Consequently,

$$
\left|\int_{\theta_{r_{n}}} U d V\right| \leqslant \sum_{i=1}^{i} \int_{\theta_{r_{n}}^{(i)}}|d U| \int_{\theta_{r_{n}}^{(i)}}|d V| \rightarrow 0 \quad(n \rightarrow \infty)
$$

Hence, G belongs to $S O_{A D}$. If we denote by $O_{A D}^{0}$ the class of Riemann surfaces each of which has no subregion not belonging to $S O_{A D}$, we have the following theorem proved by Kuroda [8]: if the integral $\int_{0}^{R} \frac{1}{\Lambda(r)} d r$ is divergent, then F belongs to $O_{A D}^{0}$.

Since $O_{A D}^{0} \subsetneq O_{A D}$ (Kuroda [8]), this is an improvement of the Sario's sufficient condition. Moreover, by the same way as above, we can generalize the above theorem in the following form.

Theorem III. If the integral $\int_{0}^{R} \frac{d r}{\Lambda(r)}$ is divergent for an exhaustion of F by regular regions, then

$$
\left(\omega, \sigma^{*}\right)_{G}=0
$$

where $\sigma \in \Gamma_{h e}(\bar{G})$ and ω belongs to $\Gamma_{h e}(\bar{G})$, that is, $\omega=d f$ and the harmonic function $f(p)$ vanishes at every point of the relative boundary of I .
8. The special bilinear relation is said to hold on F if the following is true (Accola [6]): if $\omega \in \Gamma_{h 0}, \sigma \in \Gamma_{h s e}$ and ω has a finite number of non-vanishing A and B-periods, then

$$
\left(\omega, \sigma^{*}\right)=\sum_{k}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right), \quad \text { (a finite sum). }
$$

Let $\Gamma_{h m}$ be the orthogonal complement in I_{h} of $\Gamma_{h s e}$. In [6] the following theorem is proved: validity of the special bilinear rela-
tion on F is equivalent to $\Gamma_{h m}=\Gamma_{h 0} \cap \Gamma_{h e}$. Also a surface on which $\Gamma_{h e} \cap \Gamma_{h 0} \supsetneq \Gamma_{h m}=\phi$ holds is constructed. The surface evidently does not belong to $O_{H D}$. Since $\left(\omega, \sigma^{*}\right)=\overline{\left(\sigma^{*}, \omega\right)}=\overline{\left(\sigma^{* *}, \omega^{*}\right)}=-\overline{\left(\sigma, \omega^{*}\right)}$, if $\int_{0}^{R} \frac{d r}{\Lambda_{0}(r)}=\infty$ and $\omega \in \mathrm{I}_{h 0}$ has a finite number of non-vanishing $A-$ and B-periods, then by theorem I we have

$$
\left(\omega, \sigma^{*}\right)=\sum_{k}\left(\int_{A_{k}} \omega \int_{B_{k}} \bar{\sigma}-\int_{A_{k}} \bar{\sigma} \int_{B_{k}} \omega\right), \quad \text { (a finite sum). }
$$

Therefore we know that if $\int_{0}^{R} \frac{d r}{\Lambda_{0}(r)}=\infty$, then $\Gamma_{h m}=\Gamma_{h e} \cap \Gamma_{h 0}$.

> Kyoto University and
> Kyoto Technical University

REFERENCES

[1] Ahlfors, L.; Normalintegral auf offenen Riemannschen Fläche. Ann. Acad. Sci. Fenn. Ser. A. 1. 35 (1947).
[2] Ahlfors, L. and Sario, L; Riemann surfaces. Princeton. (1960).
[3] Pfruger, A.; Theorie der Riemannschen Flächen. Berlin. (1957).
[4] Pfruger, A.; Uber die Riemannsche Periodenrelation auf transzendenten hyperelliptischen Flächen. Comm. Math. Helv. vol. 30 (1956) 998-106.
[5] Kusunoki, Y.; On Riemann's period relations on open Riemann surfaces. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. Vol. 30 (1956) 1-22.
[6] Accola, R.; The bilinear relation on open Riemann surfaces. Trans. Amer. Math. Soc. vol. 96 (1960) 143-161.
[7] Noshiro, K.; Cluster sets. Berlin (1960).
[8] Kuroda, T.; On some theorems of Sario. Bull. Math. de la Soc. Math. Phys. de la R.p.R. Tom 2 (50) n 4, (1958) 411-417.
[9] Sario, L. ; Uber Riemannschen Flächen mit hebbarem Rand. Ann. Acad. Sci. Fenn. Ser. A. 150 (1948).

[^0]: 1) We note, throughout this paper, the intersection number of two cycles A, B is taken such that $A \times B$ has the positive sign when A crosses B from right to left as in [2]. Hence it has the opposite sign to that in [1].
