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Introduction. This paper consists o f two parts. In Part I,
we study some properties of Hausdorff m-adic modules and we
introduce the notions of tn-adic free modules (see, Definition 1).
We see in  § 2  that m-adic free modules have very similar pro-
perties as free modules, especially when coefficients rings are local
r in g s . In  § 4, we see that m-adic free modules are nothing but
free modules, so far as only semi-finite modules (see, Definition 2)
over local rings are considered (Theorem 2). Making use of the
results in  P art I , we develope in  P art II the theory o f m-adic
differentials which has been introduced in  [ 9 ] .  The main results
are as follows.

(1) W e see in  § 2  that the notion of the nt-adic differentials
coincides with the notion of usual differentials, so far as we treat
only localities defined over fields.

(2) In § 3, we seek conditions for a prime ideal in an  m-adic
ring to be unramified over its subring, in  terms of m-adic differ-
entials. This is an analogous subject to that in  Nakai [8], §5 or
Kunz [4], §

(3 )  Regular local rings are characterized in  our languages (§4
and § 7). These are generalizations of a number of results in [9],
§ 6 and § 7. These are also generalizations of Satz 1 in  Kunz [5]
and Kunz's Satz 1 itself is proved by a different way. This shows
that the theory o f m-adic differentials is useful even in  order to
study the usual theory of differentials, like the fact that the method
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of completions is useful in order to study the theory of local rings.
(4) §5  and § 6 are written as preliminary parts of § 7. §5 in-

cludes some precise statements of a structure theorem of complete
local rings (Proposition 1 and Proposition 2).

(5) In  §8 we see that our notion of m-adic differentials is dual
to Nagata's derivations defined in [6].

I would like to express my heartfelt thanks to Prof. M. Nagata
for his precious advices and encouragement.

P art I

1 . G en era l p ro p e rtie s  of Hausdorff m-adie modules. All rings
in this paper are commutative rings with unit elements. Let R be
a ring and let m be its ideal. When we call R  an m-adic ring,
we always assume that m has a finite basis and r\ mn= (0). When

we say that an R-module M  is an m-adic module, we mean that
R  is  an m-adic ring and we consider m-adic topology in M  (i.e.,
{111'W: n=1, 2, •••} is defined to be a  system o f  neighbourhoods
of (0 )). But we do not always mean that M is a Hausdorff space,
that is, w e do not always assume that [-\ ninM—(0). I f  M  is a

Hausdorff m-adic R-module, if R * is  the m-adic completion o f R
and if M * is the m-adic completion o f M, then, as in the theory
o f finite modules, the following are true :

(1) M is a Hausdorff ne-adic R-module where m*= me ,
(2) m "M * (- N M=m"M ,
(3) M*I irt*"M*= IVI/m M,
(4) i f  M—m.M , then M—(0) .

R em a rk . Let R be an m-adic ring and let R' be an over-ring
o f R which is an mR'-adic ring. Let M be a Hausdorff R-module
and let M * be the m-adic completion of M .  It is well known that
if R is an m-adic Zariski ring and R ' and M  are finite R-modules,
then it holds that R'®,M* is the mR'-adic completion of R'O R M.
Generally, the following assertion is true. "R'( .5 „M/f\ mn (R/ C. „M)

is a dense subspace of R' „M*11-\111" (Rt(R,M*). I f  R' is a finite

R-module and if it is an mR'-adic ring, the latter is the mR'-adic
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completion of the former."
The following lemma will be used later.

Lem m a 1 . Let M  be a Hausdorff R - m o d u l e  and let N
be its dense submodule. W e denote by N * the ni -adic completion of
N. Assume that there ex ists an R-homomorphism * o f M  into N*
such  that the restriction of  J r  o n  N  is  the natural injection of N
into N * .  Then ik  is  injective and N *  i s  the In-adic completion of

+(M).
P ro o f . Let n be an arbitrary non-negative integer and let a

be an element o f  Iii"M r\ N . Then Alr(a) E r N= ilinN .  This
shows that lit"Mr\ Nlitn/V, hence ill"Mr\N=mnN. Hence the Ili-
adic R-module N  is a subspace of the m-adic R-module M .  From
this our assertions are proved, if  we notice that ik is a continuous
map.

2. m - adie free m odu les. Let M  be an m-adic Hausdorff R-
module.

D efin ition  1 . W e call M  an m-adic free  R-module, w hen M
contains a set of elements {a, }, E 1  such that

(1) the submodule N generated by  {a,lt E 1}  i s  dense in  M,
(2) the a, are linearly independent mod.mnM over R im " for every

positive integer n. I n  th is  case, w e  c all la,}, E 1  a n  m-adic free
base of M.

It follows immediately that a free module over an m-adic ring
R is m-adic fre e . When M  is  an m-adic Hausdorff R-module, if
the a, are elements o f M  and if we write Ia ,a , (a, E R), we shall
always understand that a, E mn except for a finite number of t for
each n, hence la ,a , has meaning (at least in the completion of M).

Let M  be an m-adic free R-module and { a l e, be its m-adic
free base. If fa,a, = 0 , then a 2 = 0  for all t's. I f  we denote by
R* and M *  the m-adic completions of R and M  respectively and
if le= mR*, then by (3) in  §1 we see that M * is an m*-adic free
R*-module w ith  an ne-adic free base { a l e,. Hence it follows
also immediately that the completion of a free module over an
m-adic ring is m-adic free.
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P ro p o s it io n  1. Let R  be a  complete rn-adic ring and let M
be a complete Hausdorff m -adic R -m odule. Then M  is m-adic free,
if and only i f  there ex ists a set of elements la,} , E I  o f  M  such that
every element of M  is expressed uniquely in the form  c:c ca, (a, E R).
In  this case {a,}, E 1  i s  an m-adic free base of M.

P ro o f . Let M  be m-adic free and let {a,}, E i  be its m-adic
free base. Let a be an element o f M , then a =lim ( a a , ) ,  where

a,(n)ER and a`,n)--- 0 except fo r  a  finite number of t  fo r each n.
W e m ay assume that Ia"± "a, mnM, hence, by defini-
tion, a ' - E"—a") E m " fo r every n. Then for every there exists
a, = lim a;" ) , because R  is complete. It is easy to see that a, E

except for a finite number of t, for each n. Hence _;(7e,a, = a ' exists
in M .  It is also easily seen that a  a '  .  Conversely, assume the
existence of fa,I, E ,  of the said property. Then it follows directly
from our assumptions that N =  ,Ra, i s  dense in  M . We shall
show that the a , are linearly independent mod. m"M over Rim"

on

fo r every n. Assume that ,„,a,(i) E mnM where a, ( )  E R  and

t(i) E I. It is easy to see that every element in ninM is expressed
in the form IR ,a, with 13, G Inn . From this we see that cx )  E m".

P ro p o s it io n  2. Let M  be a  Hausdorf f  m -adic R-m odule and
let R * and M * be the m-adic completion o f R  and M  respectively.
W e put m * =m R * . Then the follow ing three conditions are equiva-
lent to each other.

(a) M  is m -adic free,
(b) M * is m *-adic free w ith its m *-adic free base in M,
(c) M *  is  an m -adic completion o f a  fre e  R-module contained

in M.
The proof is easy. Hence we om it it. In  th e corollary to

Theorem 1, we shall see that if  R  is a local ring, then this pro-
position can be stated in a simpler way.

L em m a 2. Let M  be an m-adic free R-module and let fa,}
be its rn-adic free base. Let n  be a natural num ber. T hen M lurnM
is  a fre e  (R/nt")-module and the classes of the elem ents a,(tE 1)
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mod.m"M form  its free base.

P ro o f. M  i s  the closure of R a , in  M , hence MI mnM is
generated by the classes of the a, mod. ni"M .  The rest of the
proof follows from our definition.

Lemma 3 .  Let R  be a local ring with maximal idea l in . Let
M  be an m-adic free R-module and faJ, E i be its m-adic free base.
I f  I  i s  an ideal o f  R  with a minimal basis 71,72, ••• ,71,, then
{'y a}

 
is a free base of KM  mod.mKM over Rim.

P ro o f. It follows from Lemma 2  that %M is generated by
the yi a, mod. ni% M . Hence we have only to show that the ryi a,
are linearly independent mod. ni% M . Take a  finite subset, say
t(1), t(2), • • • , t(h) out of I. Assume that E  1ty1a, ( 3 ) ,----0  mod. niam

E R ) .  I t  is easily shown that E E E ni a, +in'TIM for

every positive integer n, by induction on n  and using Lemma 2.
Hence E  G ta t+  ni". It follows that E  E niW, because R

is a local ring. Hence it holds that 0  mod. in for all i, j.

Lemma 4 .  Besides the assumptions in  Lemma 3 ,  we assume
that {b,},E ,  is  a  set of elements o f M  such that the classes of the
b , m o d .m M  f o r m  a  f r e e  b a s e  o f  M Im M  over R im . Then
{7ibx} X E A ,i= 1 ,2 ,. .• ,h  form  a free base of K M  mod.mKM over Rim.

The proof is straightforword by virtue o f Lemma 3  because
the a, form a free base mod. niM.

Theorem 1. Let R  be a local ring with maximal ideal n i and
let M  be an m-adic free  R-m odule. Then i f  a  s e t  o f  elements
fb,1,E ,  o f  M  is such that the set of classes m od.m M  of the  b,
form  a free base o f M I m M  over Rim, then {b,}, E A  is  an m-adic
free base of M.

P ro o f. We have only to prove that the b, are linearly indepen-
dent mod. in"M over Rim" for every positive integer n .  Assume
that there exists a  relation :

(44) Ê  0  mod. in"M , where , 1 E R, X(i) E A

i =1, 2, ••• , t  and not all /3i a re in  m " . Then there exists a non-
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negative integer m < n  such that /3i E rnm for all i =1, 2 , ••, t  and
Ri  E  n t ' i  for some i. Let {71 } 1 _

1
,

2
,...,n be  a m inim al basis for nim

and let( i = = 1 ,  2, •••, t ;6 i ;  E R ) .  Then we have from (*) :

St i fyj bx" ) =  0  mod. nen M .  It follows from Lemma 4  that

& _=O i n  fo r a ll i =1, 2 ,  « ,  t  and all j= 1 , 2 ,  « ,  h. Hence
mod. nen+ 1 . This is a  contradiction.

C o r o l la r y .  Let R  be a local ring w ith maximal ideal in. Let
M  be a Hausdorff m -a d ic  module. W e denote by R * and M * the
m -a d ic  completions o f  R  and M  respectively and put m*=mR*.
Then M  is  m -ad ic free if and only  i f  M * is  n e - a d i c  free.

P ro o f . The only if  p a rt is already known. T h e if p art is
an immediate consequence of Proposition 2 , (b ) and Theorem I.

Proposition 3. Let R be a ring and let i n  and n  be two ideals
o f  R  such that they  have f inite bases, u  contains n t  and R  is  an
u -a d ic ring (hence R  i s  an m -a d ic  ring, too). Let M  and M ' be
two m -ad ic free modules w ith  m -a d ic  f re e  base {(1,} ,E1 and 0,1 ,-El
respectively. Moreover, let R' be an arbitrary  m R '-ad ic over-ring of
R . T h e n  the following four assertions hold.

(a) M ea M ' i s  a n  m -a d ic  free module w ith  m -a d ic  free base

{a,} ,EI \ -) {b r }  1 - EJ •

(b) MO R M 'M  ntn(MO R M ')  i s  an m -a d ic  free module w ith an

m -ad ic free base { the class o f a,Ob r  mod. r\mn(MO R M')} J .

(c) MI r\n"M  is  an u -ad ic free module w ith an u -ad ic free base

{the class o f a, mod. n n " M I,,, .

(d) R'O R M/Amn(R'O R M ) i s  an m R '-ad ic free module w ith an

m -ad ic f ree  base {the class o f  1 0 a ,  mod. r \in n (R o R m )} ,_ ,•

P ro o f . (a) is obvious. We put R = R / m .  Since MO R M 'int"
(m ® R m i)--- ( p iiin m )0 , n ( c n in m i) ,  m o R m yre(m o R mi) is  a
free R n -module w ith  a  free  b ase  { th e  class o f  a ,0 b ,  mod. in"

(MORM / )},E/,,Ej. ( b )  follows from this. ( c )  and (d) are proved by
similar resonings.
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R em ark . In Proposition 3 , (d )  above, i f  we assume that R  is
N o e th e r ia n  and complete, that M  is complete too and that R ' is
a finite R -m odule, then it can be proved that R 'O R M  is  Hausdorff,
hence it is m R '-a d ic  free.

Since we do not use this fact in this paper, we omit the proof.

4 .  Semi - finite module. Let R  b e a ring and M  be an R-
module.

Definition 2. W e say  that M  is  a semi-finite module, if M  is
the direct sum  of a free module and a f inite module.

Proposition 4 .  I f  R  i s  a  N oetherian ring and M  i s  an R-
m odule, then the follow ing three conditions are equivalent to each
other:

(a) M  is semi-finite,
(b) M  is  a residue module of a free module modulo its f inite

submodule,
(c) M  has a free subm odule N  such that M IN  is a f inite module.

P ro o f . It is easy to see that (b )  and (c )  follow from (a), and
(a) follows from (b). Therefore we have only to prove that (b)
follows from (c). Let I t ,I , E ,  be a free base of N  and f 1 ,f 2 ,  • • •  fh
be elem ents o f  M  such that their residue classes 71 , J, ••• , f h

modulo N  generate M I N . We have only to prove that there are
only a finite number o f t ,  which appear in  some linear relations
among the t ,  and the f i . We shall use induction on the number
h of the f i . Assume that there are only a  finite number o f  t„
say t,(1), t,(2),••• ,t, ( 1 ) which appear in some linear relations among
the t ,  and f 1 , f2, ••• , f , .  L e t  M '=N +R f 1 +R f 2 + ••• +R fh ,  and
c =  :  r  E R , rf , E M i.. T h e n  c  is  an ideal o f R .  I f  c =  0, then
we have nothing to prove. Therefore we assume that c  I (0). Let

a i u , ( u i fc1 , c2 , b e  a basis for c and cifh= t ) +  R f  ( i—  1, 2,"1 2=1
••• , r). If &f.

h = 1+ E  E, t, is a relation among the f i and the
2=1 ,Eo

t „  where 12 is  a finite subset o f I  and 6, -1-0, then E c  a n d  is
expressed in the fo r m  = E l h c I (y i  E R ) .  Hence O=f —  n ic i fh

n i Ri i ) f i + E E nt  — E  ( E  •a •  ) t This i s  a relation
i.k

tU t(u)•
,ES1
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among the t ,  and f „ - . ,  f i,_„ • Hence S2C ft(1), t(2), ..• , t(l+k)},
which proves our assertion.

The following corollary is an immediate consequence of (b).

C o r o lla r y . L et R be a Noetherian ring . L et M be an R-module
and let N be its finite submodule. Then MIN is a semi-finite module,
i f  and only i f  M  is  a  semi-finite module.

Theorem  2. L et R be a local ring w ith m ax im al ideal ni and
let M be a  semi-finite R-module. I f  M  is  an  m-adic f ree  R-module,
then  it is  a free module.

P ro o f. Let M=NEDF, where N  is a free R-module and F  is
a finite R-module an d  le t {t l e i  be a free base of N  and f„  f ,,
• • • , f ,  be a minimal basis o f  F .  Then the residue classes of the
t ,  and the f ;  modulo miff form a  basis for M/mM over R/ni.
Hence by Theorem 1, they are an m-adic free base of M and have
no linear relations. Hence M  is a free module.

When R is a Zariski ring, some properties in  the theory of
finite R-modules are extended to the case of semi-finite modules.
For instance

Proposition 5. L et R be an  m-adic Zariski ring and let M be
a  semi-finite R-module. Then the follow ing three assertions hold.

(a) M  is  Hausdorf f , every f inite submodule N of  M is closed and
the m-adic topology  of  N  is induced by  the m-adic topology of  M .

L et R* and M * be the m-adic completions o f  R  and M  respec-
tively.

(b) I f  elements x i o f  M  are  linearly  independent over R , then
they  are linearly independent over R*.

(c) I f  R is  an  integral dom ain and M  has no torsion, then those
elements o f  R* which are  zero-divisors in  M *  are  zero-divisors in
R*.

P ro o f . This follows directly from the corresponding results
in the theory o f  finite modules (see, for instance, [2 ], Exposé
18).
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Part II

1. Basic notions on modules of d if fe r e n t ia ls . Let R  and S
be two rings and let R  be an S-algebra, that is, there is a ring
homomorphism f  o f  S  into R  such that f(1)=1. We denote by
Ds (R ) the module of S-differentials in R ,  that is, an R-module
characterized by the universal mapping property with respect to
the S-derivations of R  into an arbitrary R-module, and denote by
cl -k? the S-differential operator of R , that is, the canonical derivation
map of R  into Ds (R ) (see [61] o r  [8 ] ) " .  I f  S  is the subring of R
generated by the identity, they are called simply the module of
differentials in  R  and the differential operator o f R , and denoted
simply by D (R) and d R .  Moreover when R  is an m-adic ring, we
have introduced the notion of m-adic differentials in  [9 ]. T h e
module of m-adic S-differentials in R  is characterized as follows.
It is a Hausdorff m-adic module and satisfies the universal mapping
property with respect to the S-derivations of R  into an arbitrary
Hausdorff m-adic module. We denote it by b s ( R ) .  It is identified
with the residue module of DAR) modulo its submodule AmnD s (R).

We denote by d ç  the canonical derivation map o f R  into l5 (R )
and call it the m-adic S-differential operator o f R .  When S  is the
subring of R  generated by the identity, we omit S in the notation
and terminology above, as in the former case.

Lem m a 1. L e t T  be a ring and let R  and S be two rings both
o f which are T - a l g e b r a s .  Then it holds that:

D T WO TS) — T(R)0 TS)VRO TD T N ) •

P roo f. It is easy to see that d=4-01 +10dis- is a T-deriva-
tion map of RO T S into (D T (R )0  TS)EB(R0 TD2-(S)). Put d '- - -d ® 5 .
Then by definition, there exists a T-homomorphism ( f )  o f DT (RO T S)
into (DT(R)02-S)D(ROTDA5)) such that :

(1) d  pod' .

I f  we denote by p  the natural homomorphism o f R  into RO T S,

1) D (R ) and Ds (R ) are  denoted by M(R) and M( ,4? )  in  [4].
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then d'op is  a  T-derivation map o f  R  into DARO TS). Hence
there exists an R-homomorphism of DT(R) into DT (RO T S) such
that d'op=lk104 .  Since DAR® T S ) is  an  RO T S-module, Ifri in -
duces an  RO T S-homomorphism .1/, of DAM® T S  into DT (RO T S)
such that 't/4((dY.r)Os) =  (1 0 s )d (r0 1 ) (r E R, sES ). In the same
manner, we have an RO T S-homomorphism 1K o f ROTDT(S) into
DT (RO T S ) .  Put Iff' = Then for every r E R and s E S

Ab' d(r O s) = (114+1K). (dY -®1 +104) (rgs)
= qra(dY r)0s)+*(2( r0 4 s )
= (1® s)car 01) + (r 1)d'(1 ® s)
= d' ((I® s)(r 01))
= C rg s ) .

Hence it holds that

(2) d ' =
Since we know that DT(RO T S) an d  (DT (R)O T S)ED(RO T DT (S)) are
generated by d(RO T S) and  CRO T S) respectively, (1) and (2) show
that (7) and '■/(1 a re  isomorphisms.

Lem m  2 . L et S  be a ring and let R  be an  m-adic ring which
i s  an  S -algebra. W e denote by  R * th e  m -adic com pletion o f  R.
Then b s (R) is contained in  b s (R*) as  a submodule and as a dense
subspace.

P ro o f . By the universality of cif there exists an R-homomor-
phism (p of b s (R ) into b s (R*) such that pocif x =cirx  fo r  each
xE R .  On the other hand, since elf  is a  continuous map, ciff can
be extended to a  derivation map of R* into the m-adic completion
(b s (R))* of b s (R ).  Hence by the universality of e ir,  there exists
an  R-homomorphism of b s (R*) into (b,(R ))* such that kfrodr
(Ern xn )  =  lim eqx „ where {x„} is  a Cauchy sequence in  R .  Since

n  o o

*opociffx =Akociff*x=c4x for all x E R ,  q  is  an injective map and
the restriction of 4r on cp(bs (R )) is  an  in jective m ap. Evidently
P(bs(R)) is  dense in b s (R * ). Hence by Lemma 1  in  Part I we
get our lemma.

Let R  be a  r in g  with a unique maximal ideal ru  a n d  le t  P
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be a subring o f R .  We denote by K  the residue field of R  with
respect to in and by k  the quotient field of the residue ring of P
with respect to m n.P. Let q be an ideal of R  generated by the
elements o f mr■P[RP], where p is the characteristic o f K.

The following lemma 1 is stated in 4, §2 as "Rangsatz", when
some finiteness conditions are assumed. But it holds in general
without these assumptions. For the proof of it, see [4], §2 and
En Exposé 17, 3.

Lemma 3•
1 ) W i t h  the notations as above, the follow ing exact

sequence holds:

0 at/n-C-Fq (R/m)ORDp(R) DK (K ) O.

Let R be an m-adic ring. Then, since bp(R)=Dp(R)I A in"Dp(R),

it holds that (R /m)O R Dp(R)— (R/m)O R D p(R ). Hence the follow-
ing lemma 4 holds.

Lemma 4 .  I f  R  is  an iii-adic  ring, D (R ) can be replaced by
bp(R ) in  Lemma 3.

In some cases these exact sequences are simplified. For the
proof o f Lemma 3', see En Exposé 17, 3 and P i  5 .

Lemma 3'. B esides th e  assumptions in  Lemma 3, w e assume
that K  is separable over k .

(a) I f  P  is  a f ield, then the following exact sequence holds:
0 rii/m2( R 1 m ) 0 R Dp(R) D k (K) —> O.

(b) I f  P  i s  a  discrete valuation rin g  w ith a p rim e  element u,
then the following ex act sequence holds:

0 m / m 2 +u R  ( R / m ) O R Dp(R) —> Dk (K )  O.

Lemma 4'. I f  R  is  an ni-adic ring, D (R ) can be replaced by
bp(R ) in  Lemma 3'.

2. Differentials o f  localities. T h e  following theorem  is

1 )  Added in Proof. Prof. Y . Nakai has kindely communicated to me that as for
the complete proof of Lemma 3, we should refer to Satz 1 in R Berger and E. Kunz :
Über die Struktur der Differentialmoduln von discreten Bewertunksringen, Math. Zeit.
77, 314-338 (1961). In  Satz 1  in  that paper, our lemma 3' was also mentioned in a
more general form.
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essentially due to Kunz [51 . We restate it as an application of
Lemma 1.

Theorem 1. L et K  be a f ie ld . L e t k  be a  subf ield o f  K  and
le t  S =K [x „ • • •  x n ]  b e  a n  af f ine integral dom ain generated by
x„ ••• , x„ over K .  Then Dk (S ) is  a  semi-finite module.

P ro o f . Let k ' be a subfield of K  which is a  finitely generated
extension of k  such that K  and S '=k lx „• • • ,x „] are linearly dis-
joint over k ' (see, [13], Chap. 1 , §6 ). Then S =K ® , , S'. Hence
Dk i(S )=D k i(K ) g k iS'EDKO k iDk

, (S 1)  by virtue o f Lemma 1. There-
fore Dk , (S) is a  semi-finite module. On the other hand, Dk

, (S ) is
the residue module of D ( S )  modulo its submodule which is the
natural homomorphie image o f SOkipk(V), and Dk (V ) is  a  finite
module. Hence by the corollary to Proposition 4 in  Part 1, we
get our conclusion.

Coro llary . L et, K ,k  and S  be those as  in  Theorem 1. L et R
be a  locality  w hich is a quotient ring w ith respect to  a prim e ideal
i n  S .  Then b k (R ) coincides with Dk (R).

P ro o f . T his is  a d irect consequence of Theorem 1 and Pro-
position 5, (a) in Part I.

3. Unramified extension. Let P  be a ring and let R  be an
over-ring of P .  Let be a prim e ideal in  R  and let p =T r
Then we say that 13 is unramified if the following conditions are
satisfied ([8], §5).

(U1) TR$—PR93,
(U2) W IT %  is  a separably algebraic finite extension of Pp lp Pr .

It is known that when R  is a  finite P-module, then 13 is unramified
if and only if D (R )=O  ([8 ], §5 ).

The condition (U2)  is divided into two parts (UV') and (UV ):
(U V ')  R $ 1TR %  is  a  separably algebraic extension of Pp lip•P p ,
(U2) R 9314R $ is a  finitely generated extension of P p/nPv .

Theorem 2. W e use the notations as abov e. If  43 satisfies the
conditions (U1) and (UV ), then it holds that .b ,(R 13)=0. Conversely,
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i f  we assume th at  R  is  a  Noetherian ring and satisf ies one of  the
following conditions (1) and (2), then f rom  b p ( R $ ) = 0  th e  conditions
(U1)  and ( U. " )  follows.

(1) 4 3 satis f ie s  the condition (U T ) ,  (2) W T / 4  is separable
over Pp lp

P ro o f . We denote by k and K  the fields P .,/pPl, and /?$ /TR$
respectively. Since b ( R )  i s  a Hausdorff 3 /25-adic module, we
see by (4) in Part 1, § 1 that b (R )= O  is equivalent to (/4/T/4)
(_:)„15p(R%)=0. Hence our first assertion follows from Lemma 4.
Assme that bp(R$ ) =O . Then 13,(K)=0 by v irtue o f  Lemma 4.
This is equivalent to say that K  is separably algebraic over k in
the case (1) ([2], éposé 13). Hence in  both cases (1) and (2), we
can use Lemma 4' and we prove our second assertion.

When R is  a finite P-module, this theorem is nothing but the
above mentioned result in [8].

R em ark . In the second assertion of Theorem 2, the condition
(1) or (2) is not removable. In  the following example, bp(R)=
induces neither of the conditions (U1)  and ( U 1̀,1 ) ).

Ex am ple. Let k, b e  a  perfect fie ld  o f characteristic p==o.
Let u be an independent element over k„. We denote by K ' the
field ko(u, uP uP- 2 , • • •  ) .  L e t R  b e  a commutative K'-algebra
K ' K ' x  with a defining relation f  =O . Then R is  a local ring with
maximal ideal q3=xR. Let P  be the subfield of R  which is gene-
rated by u +x  over k„. Let K  be the residue field of R  and let k
be the image of P  modulo T .  I t  is ev ident that (U1)  does not
hold. Since K  is purely inseparable over k, (U ) does not hold.
On the other hand, since RP = K'P = K', it  h o ld s  th a t cifu=0.
Hence alsx= O. T herefore w e have bp(R)= O.

Corollary  1. L et R  be a  Noetherian m-adic ring and let P  be
a  subring o f  R .  W e  assum e th at R lm  is f initely  generated over
P lm nP and the module of m-adic dif ferentials bp(R) is a semi-finite
m od u le . L e t i  b e  th e  annihilator o f  bp(R) in  R . T h e n  a prim e
ideal 13 in  R containing ru i s  unramified if  and only  if  T  does not
contain W,
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Pro o f . By our assumption and Theorem 2, is unram ified if
and only if b ( R ) = 0 .  We know that D p ( & ) = R $ O R D A R )  holds
(by [8], Proposition 10). We denote by L  and N  the submodules
OTn(/40,Dp(R)) and R 130( r\ninDp(R)) of D ( R )  respectively.

Since r (R $  O R D p(R )) R $  rD p ( R )  an d  R130 T n Dp(R) 140
nin Dp(RDR930( n I n n D p(R )), it holes that L N .  O n  t h e  other

hand, we know that  I5 (R )= D (R )/ L  and that R$ g„bp(R )=
R%g R (Dp(R)/N). Hence it holds that bp(R ,13)=R%0Rbp(R)/AT"
(R$ 0 ,b p (R )).  Since bp(R) is a semi-finite module, it follows from
this that b p ( R 1 1 ) = R $ O R b p ( R ) .  H en ce  the annihilator of b ( R )
is WRq3 . This proves our assertion.

When R contains a field of characteristic 0, the condition (2)
in  Theorem 2 is automatically satisfied. The following corollary
is proved in the same way as in Corollary 1.

C oro lla ry  2 . L et R  be a  Noetherian m-adic ring , containing
a f ield o f  characteristic 0. L et P  be a  subring o f  R .  W e  assume
that the module of  m-adic differentials bp(R) is a semi-finite mofule.
L et W be th e  annihilator o f  b p (R ). T hen a p rim e  ideal in  R
containing ni satisf ies the conditions (U1)  and (U n ,  if  an d  only  i f

does not contain W .

4 . Characterizations of regular local ring (1) (equal charact-
eristic case). In  this section, we shall extend Kunz's Satz 1 in
[5 ] and the results in  [9 ], §  6 . In  the proof o f Theorem 3 we
shall use a similar technique as the one used in  th e  proof of
Theorem 7 in [9] with some modifications. Throughout this section
we always denote by p  the characteristic of a local ring under
consideration.

Theorem 3. L et R be a local ring of  equal characteristic with
m axim al ideal ni. I f  R is  a  regular local ring, then b (R ) i s  an
m-adic f ree  R-module. Conversely, i f  R satisf ies one of  the follow-
ing two conditions (a) and (b) and if  b (R ) is  an  m-adic f ree  module,
then R is  a  regular local ring.

(a )  p= 0. (b )  p  I 0 and R is analy tically  unramified.
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P roo f. B y the corollary to Theorem 1 in Part I and by Lemma
2, we m ay assume that R  is com plete. I f  R  is  a  regular local
ring, then R is a power series ring K[[X„ ••• , X h ] ]  over a field K.
Let A = K [X i , ••• , X ,J .  Let ko b e  the prime field contained in K
and put B= k o [X „  •  , X i ]. Then A= KO k o B .  Hence by Lemma 1,
D(A) is a free A-module. Therefore it follows that b (R ) is  m-adic
free by v irtue o f Lemma 2  and the corollary to Theorem 1 in
Part I. Conversely, assume that R  satisfies one of the conditions
(a) and (b) and that b (R ) is  an ni-adic free R-module. Let K  be
a coefficient field of R .  Let { a l e,  be, in the case (a), a trans-
cendental base of K  over the prime field and, in the case (b), a
p-independent base of K  over K P . Let (x „  •  « , x h )  b e  a minimal
basis fo r  m . Then by Lemma 4 ' w e have the following exact
sequence :

0 -> ni/m2 -> (R/m)g,b(R) D(R1m) -> O.

By this fact and Theorem 1 in Part I, we see that ciRxi (i = 1 , «, h)
and eiRa, form an m-adic free base of D (R ).  Let A * be a formal
power series ring w ith h variables X„ ••• , Xh  o v e r  K  and let iTt
b e  its  maximal ideal. Let cp. be a K-homomorphism of A * onto
R  such that (p(Xi ) = x i  (i =1, ••• , h) and let % b e  the kernel of (p.
W e have on ly to  p rove that T1=0. L e t f ( x )= E  f i (X )  b e  an

i =0
element of TI where f i (X )  is  a homogeneous polynomial of degree-
j. Since 0= f ( x ) =  f i (x ) and Ê - .E  f i (x) E mn+ 1 ,  it holds
that Ê  dRfi (x) =- 0'  Mod. mn15(R)1. Therefor'e-

t=0
(Ê' ,   fai (x)) ci, x  ± z ( afa x)) d

k - i  1 =  X k
k j  00 mod. m"b(R)

where V l ( x ) - 0  except for a  finite number o f  t. Since the ciR xkact,
and the dRa, form an m-adic free base of b (R ), it follows that

' af f (x) 0

j=0 ax ,,
a f i (x)0mod. ni" for each k and E

J = 0  aa,
8f  (x)

—

 a f 1 (x) _ 
0  a n dmod. m n for each t. Hence ax,, 5=0 ax,,

af (x)a f  i (x) O. Therefore it holds that
ace, 5 - 0  aa,
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afon(1) G TX for every k— 1, 2, •••, h a n d  ( 2 )  
af (x )

 Gaxka a ,
for every t G I. From (1 ) it follows, with the same reasoning as
in the proof of Theorem 7  in  [ 9 ] ,  that TI= 0 in the case (a), and
that t is generated by elements of K nK T [X 1 1 ,•••, X l„']] in the
case (b). H e n c e fo rc e  we shall treat only the case (b). Let f  be
an element of KrN.K[[X, • •• , Since every coefficient of f  is
expressed uniquely as a polynom ial of the a ,  over K P  in  which
the degree of each a, is less than p, f  is expressed in  th e  form
(in the sence of convergence in iii -ad ic  topology)

(3) f  = " • a , ,

where A*P, o<i o,<p — 1 and there are  only a  finite
number of terms whose coefficients f , i ( i i ,..., t ( i t ,  does not belong to
d i"  fo r  each non-negative integer n. I f  we prove that each

belongs to %-HYt" for any given non-negative integer n,
then we have f„ , ( i i ) ..., t ( i o  E V.1 because A* is a  lo ca l r in g . Hence f
is the limit o f a  sequence of elements of (V inA *P)A *. Therefore
it holds than (% r\A *P)A *. Then i f  %,--# (0), we may take an
element g (+  0 )  of the lowest degree among all the elements of 9•I

from A * P . Then E  A*, g  t  and (AP E  K .  This contradicts

to our assumption that R  has no nilpotent element. Therefore we
have only to prove that each b e l o n g s  t o  TI+1T-1" for any
given natural number n .  We divide the sum of (3 ) into two parts
as follows :

J + 1 " • • • ak

where 1 "  sums all terms in  (3 ) which belong to ITT" and / ' sums
th e  re st. Then / ' consists of a finite number of terms. We denote
these sums by f ,  and f 2 . Since fo r any set of natural numbers
(e„ ••• , e , )  and any subset (1)1 , ••• , u„) of I  the partial derivative

a•  •  •a e i + • • • + e, ae1+ ei+ + e z,•-•+e v

f   +  f2
a a  •  •  • - 4 1  •  •  a f , ” "af,l• •

a e l - F  ••• j- e,,

belongs to t by (2 ) and since f 2  belongs to di", we see
(14,1•••ra%
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a
e i • • • + e , ,

that n f l  belongs to % +ffi". Hence we see that every
v

coefficient in belongs to %1+14-i"  by the same reasoning as in the
proof of Theorem 7  in [9 ].

R em ark . In the condition (b ) in  Theorem 3 , the assumption
that R is analytically unramified is not removable, which is shown
by the following counter example.

E x am ple . Let K be a prime field of characteristic p --4-0. Let
R = K [[X , Y ] ]  be a  formal power series r in g  in  tw o  variables
over K .  Then R=RIXPR is not a regular local ring but b (R ) is
a free module of rank 2.

C o r o lla r y  1 . L et R be a  locality  over a f ield. T hen R  i s  a
regular local ring if  and only  i f  D(R) is  a free module.

P ro o f . Since every locality is analytically unramified, our
assertion follows immediately from Theorem 2  in Part I, Theorem
1 and Theorem 3.

The proof o f Theorem 3  is also valid for the following corol-
lary.

C o r o lla r y  2 . Let R be a local ring of  equal characteristic w ith
m ax im al ideal m . L et k  be  a  f ield contained in  R .  I f  R  i s  a
regular local ring, then b k (R ) is  an  m-adic f re e  R-module. Con-
versely, i f  R satisf ies one  o f  the  follow ing tw o conditions (a ) and
(b ) an d  i f  b k (R ) i s  an  m-adic f ree m odule, then R  is  a  regular
local ring.

(a ) p = 0 .  (b ) p + 0 ,  R  is analy tically  unramified an d  k  i s  a
perfect f ield.

R em ark . Let R and m be those as above. Let k be a subfield
of R such that R/m is separable over k. W e assume that b k (R)
is a finite R-module. Then we can prove easily by Lemma 4' that
R is a regular local ring, if and only i f  rank b k (R)=rank R+rank
Dk (R/m).

5 .  S om e resu lts  on the structures of local rings. We shall
give in Proposition 1 and Proposition 2  below some precise state-
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ments of a structure theorem of complete local rings. Throughout
th is  section, w e m ean  by a p-ring a discrete valuation ring of
characteristic 0 with a prime number p  as a prime element.

Lem m a 5 .  L e t  Z  be the  ring  o f  rational in tegers and let
X„ ••• , X , b e  s indeterminates. I f  p  is  a prime number, then for
any  integers n  and k such that 0 < k n ,  it holds that

p" - - k(X 1 + X 2 + ••• +XIOY" - k  = k (X ,IP  + k  xel 1-k + x r + k )

k -1
+ E pn X r ± i  •  •  •  , i )  m od . p z ,

,=0

where the fi  are polynomials with coefficients in Z.

This can be proved elementarily by induction on s. Hence we
omit the proof.

Proposition 1. Let R be a complete local ring of characteristic
,  where p  is  a prime number and m is a natural num ber. Let m

be a maximal ideal o f R .  Assume that there ex ists an integer n
such that m n = (0 ). Let {c„} „„ be an arbitrary  set of elements of R
such that the classes of the c_ mod. at f orm  a p-independent base of
R im  ov er (R1m)P and let A be the set of p 2 5 - th  pow ers o f a l l  the
elements o f R . T h e n  the follow ing assertions (1) and (2) hold.

(1) Let S  be the set of polynomials of the c, w ith coefficients in
A and of degrees less than p 2 " on each ce". T h e n  the set of elements
J=S+pS+ ••• + pn - IS  f orm s a coefficient ring of R.

(2) Let S ' be the set of polynomials of the cr with coefficients in
A and of degrees less than pn on each ce". T h e n  the set of elements
f=S ' +pS ' + • • • + pn - 1 S '  form s a subring of J, it is a residue ring of
a p-ring mod. pm and f l p f  is naturally  identif ied w ith (R1m)P n .

P ro o f . (1 ) w as already proved in  N arita [1 0 ].  (2 )  can be
proved by a  sim ilar method as in DOT), using Lemma 5 above.
In fact, in order to prove (2), it is sufficient to prove that i s  a
rin g . A n d  fo r th e  purpose, it is sufficient to  prove that f  is
additively c lo sed . For the brevity, w e put d _=e n . Let f  and g

1 )  Strictly speaking, we refer to Nagata [7 ], Chap. V, because in  rim" the detailed
proofs were omitted.
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be two elements of p rS ' (0 < r < n - 1 ) .  These are  expressed as
follows :

f  = p r  E  aP2 nc l %  •  d  ,  g  p r  E  bP2 d=1 ••• d (0 e  i <p n - 1 ) .
2n ( a p2n ± • ■-2,1 ,

By Lemma 5 we see that (a + b)P SOP )  is a sum of elements
of the forms p "(aP n + l )"(bPn + - 1 ) "  ( 0 < j < n ) .  Since every element
of the form hP"± . i is uniquely determined by the class of h mod. m,
we can replace a and b by elements of S , that is , aPn + i  an d  bPn + - 1

can be expressed as p' 3 -th powers of polynomials of the cr with
coefficients in A .  Then applying Lemma 5 repeatedly, we see that
(a+b)P" — (aP2 + bP2 n )  is expressed a s  a  sum of elements of p S i+
••• + pn - 'S '. Hence we get an expression :

f  + g  = pr(E (a+b)P 2 d er ; ••• C  % )  h

where h is  a  sum o f elements in  p r - " S + • • • + p n - lS i. Using this
fact our conclusion can be reached easily by induction on r.

C o r o lla r y . Let J  b e  the residue r in g  o f  a  p-ring  mod. p-
( m > 1 ) .  Let { cj, E,  be an arbitrary subset of J such that the residue
classes o f  the Cr m od. p is f o rm  a p-independent base of j l p j  over
( l i p j ) P .  Let f  be the subring of J, generated by  p 2 rn-th powers of
all the elements o f J  and the cr . T hen it holds that

(1) f  is a residue ring of a p-ring mod. pm and p H '  is natural-
ly  identif ied w ith ( J 1 p j ) P m ,
and

(2) J  is J'-isom orphic to the residue ring of the polynomial ring
TEX TIE, modulo i t s  id e al (X r — cr),Er•

This follows directly from Lemma 6.
The following lemma 6 can be proved by Narita's method of

constructing coefficient rings of local rings in  [10 ] with some
modifications, and was proved by Rutsch [11 ].

Lem m a 6 .  Let R  be a complete local ring with maximal ideal
m . Let I be a local subring of  R  w hose maximal ideal is generated
by  p ,  w here w e denote by  p  the characteristic of the fie ld  Rlm.
W e assume that R im  is separable ov er p p i .  T hen there ex ists a
coefficient ring J  of  R  w hich contains I.
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This lemma can be generalized as  follows.
Proposition 2 .  L et R  be a  complete local ring w ith maximal

id e al in . L et I be  a local ring dom inated by  R  such that:
(1) the m ax im al ideal o f  I  is  a principal ideal uI (uE I),

and
(2) R in i is separable over I I uI.

Then there exists a  lo ca l subring J  of R  with the same residue
field with that of R , such that J  contains I  and such that u j is the
maximal id e a l. In fact ; let I be a coefficient ring of the completion
I*  o f  I  and  le t J  be a coefficient ring of R  which contains I.
Then J = J [ [ u ] ]  is  a  complete local ring with maximal ideal uf and
contains I. If I  is  a  discrete valuation ring, then J  i s  a  discrete
valuation ring with a prime element u."

P ro o f . When Ï is a field, then /*— / n u ll H e n c e  J = R [ u ] ]
contains I  and its  maximal ideal is u J .  If u is not an algebraically
independent element over f ,  then there exists a  natural number m
such that um =O. I f  I  is  a  disc - ete valuation ring, then u  i s  an
algebraically independent element over I. Hence u is an algebraically
independent element over J  and J  is  a discrete valuation ring with
a prime element u. Henceforce we assume that I  is no t a field.
Then I and J  have maximal ideals pr and p j  respectively, where
we denote by p  the characteristic of the field R lm .  Since there
exists a  natural number r  such that p=urh where h  is  a  un it in
I  and since f  is com plete, w e see that I *  i s  a  finite I-module
generated by 1, u, u 2 , ••, ur - '  over I. Hence J  contains l and kj---
(u, p)j is  the maximal ideal of J. If I is a discrete valuation ring,
then Ï and J  are p-rings. Hence rank f  =1 and rank J-1 because
J  is  a  finite J-module. Therefore J  i s  a  discrete valuation ring
with a prime element u  (see [7], (12. 1)).

6 .  The modules of differentials in discrete valuation rings.

Lemma 7 .  L et J and  I be p-rings and  le t I  be a subring of  J.
I f  »A l is separable over TIN, then NJ) is  a p rad ic  free module.

1 )  Since the maximal ideal o f I  is a principal ideal u/, / (with u/-adic topology)
is a subspace of R (with m-adic topolygy). Hence there exists a completion o f I  in R.



in-adic m odules and tn-adic differentials 177

Proof. By our assumptions, we see that ( j1 pD P  and a r e
linearly disjoint over (II p o P .  Hence there exist sets of elements
{bx} xEA and {a } E 0 o f  J  such that the residue classes of the b,
mod. p j  form a  p-independent base of p i  over ( i  p i )P  and the
residue classes of the b, and the ai„ mod. AT form a p-independent
base of j l p j  over ( j1 p D P . W e put j rn = j1 p - j ,  I m = i1 p - i  and

We denote by km) and cl o'n) the classes of b , and ao ,
mod. pm., respectively. Let J .  and I .  b e  the subrings of J„, and I,„
respectively such as given in the corollary to Proposition 1, that
is, T„ (resp. T„) is a ring generated by all of the p2--th powers of
the elements o f L i (resp. Im )  and the b( m)Pm  and the a( m) Pm  (resp.
lini)om ). Then j„ ,--  1 7 ,1 .E 0 , , ,E A R X r  -  y m  -  b(x"" m ).Era,xc-A
and I ,  g.0 YaEd(y ( - b;■") P m )xEA• H e n c e  J„,— .T.[I„,][X j„, E Q/(X r
— e'P m ). EQ . Therefore Dim (L )  is  a  free L i -module with a free
base fd,„(4.7) }.Ect • On the other hand, Dr,.„(J.)= DA D/rD/Cn+
jd - ( p - j) D I(T )I P m D 1(1 )- N J) I P m b i(J )  and cl,„a<- ) is the class of
dfa,„ mod• r & ( J ) .  Hence we get our result.

Proposition 3 .  L et J  and I be discrete valuation rings with a
common prim e element u  an d  such that I is a  subring o f  J. W e
assume that f l u i  is separable over I l u L  Then b 1 ( J )  is a  uj-adic
free module.

P roo f. We may assume that I  and J  are complete by virtue
of the corollary to Theorem 1 in Part I and Lemma 2. Let Ï be
a coefficient ring of I. Then there exists a coefficient ring f  of J
such that f  contains I  by virtue o f Lemma 6. First we treat the
case where I  is a  fie ld . In  this case, / and J  are formal power
series rings I [[u ]] and j t [ u ] i  respectively. L et {bx}xEA be a  p-
independent base of /- over P  and let fbx, a . I x E A , , , ,E a  be a p-indepen-
dent base of f  over J P .  Since J  is a  regular local ring of equal
characteristic, b (J)  is a  upadic free module by Theorem 3 and
we see that the cifbx , the cifa,o  and d-ru are a upadic free base of
b ( J)  by Theorem 1 in Part I and Lemma 4'. Similarly, we see
that b(/ ) is a u/-adic free module with a  uTadic free base the
cirb, and d iu .  By Proposition 5 in [9 ], it holds that b 1(J )=b (J )
mod. the uJ-adic closure o f cP(/). Hence b 1 ( J )  is  a  upadic free
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module with a uf-adic free base fdli .a.1 0 0 E ia . Next we treat the
case where t is a p-ring. Let f (X )  be a monic irreducible poly-
nomial in /[X] such that f(u) =O . Then f (X )  is irreducible also
in J[X], and /=I[X ]l( f (X ) )  and J=J[X ]l( f ( X ) ) .  It is easy to
see that b 1 ( I [X ]) = I [X ]d r 3(X )  and Di ( J [X ])=D7( DOTJ[X ]e

j [ X ] d ( X )  w h ere  / [X ]4 1 ni(X )  and J [ X ] d ' 3(X )  are  free
modules. Hence applying Proposition 9 in [8], we see that Di(I)
=  D  [X ]) I f (X )D1(1[X ])+ I[X ] d n  3

(  f ( X ) )  I d ( u )  and DA B ---

/Of(JEX ILf (X) DA JEXI + JE X id -T
i

c ' i (f  (X )) = D OJT@ J d-(u) .
From these and from Proposition 1 in [8] it follows that DAD=

DAD! Jd Y ) =- Di (p o d .  Hence ND= ñ( J) Oun(157(D0.7.1).
Since N J) is  a PJ-adic free module by Lemma 7, b 1 ( J )  is  a
kradic free module by Proposition 3, (d) and (c) in Part I.

7 .  Characterizations o f  regu lar lo ca l r in gs  (II) (unequal
characteristic case).

Theorem 4 .  L e t R  be a lo c al rin g  o f  characteristic 0  with
m axim al ideal in and with a  residue f ield of  prim e characteristic p .
T hen R  is an unram if ied regular local ring, if  and only  if  b (R ) is
an m-adic free module.

P ro o f . We may assume that R  is complete by the corollary
to Theorem 1 in  Part I and by Lemma 2. Let J  be a coefficient

ring of R .  Then J  is  a p-ring. We shall assume that R  is  an
unramified regular local ring. Then R  is  a  pow er series ring
J[EX„ •-•, X j ] .  We put A  = J [X „ • , X j  and n= ( p ,  x , ,  • • •  ,  X 9)A.
Then R  is the n-adic completion of A .  Hence in  order to prove
the only if part in our theorem, it is sufficient to prove that the
module of n-adic differentials b(A ) is an n-adic free A-module by
virtue of the corollary to Theorem 1 in Part I  and Lemma 2. Let

./0 be the ring of p-adic rational integers. We put B =L EX I , ••-,
Then A =J® j o /3, and by lemma 1 it holds that D(A )— (D(J)0 j 0 B)
e ( J ® „ D ( B ) ) .  Hence
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(1) 15(A) ---- (D(J)0 J 0 B)11)nn(D(J)g A B)

ED( J g (B)) I On" ( J ( B ) )  .

I f  we prove that both components in the right hand side of (1)
are n-adic free modules, we see that b (A ) is u-adic free module
b y  Proposition 3, (a ) in Part I. S in ce  D(B) is  a free B-module,
JO AD (B ) AO B D (B ) i s  a  free A -m odu le. Hence JO JP(B)I
r\n"(Jg j o D(B))— JO j o D (B ) and it is  a free A-module, hence an

n-adic free A-module. Next, it is easily shown that  D (J )® 0B/
f-,,,n(D(J)® 1 0 B)=15cno j 0 B lonn(bu )(3 , 0 B ) (where b (J )  is  the

module of pj-adic differentials of J ) as in the proof o f Corollary
1 to Theorem 2. Since b (J )0 .1 0 B =b (J )0 J A  and since b (J ) is
a pj-adic free m odule by virtue o f  Lemma 7, it holds that
b c n g  J o B  A pn (b (j)0 , 0B) is an pA-adic free module by virtue of

Proposition 3, (d) in Part I. H e n c e  w e  s e e  th a t  b(J )® 0B/
nnn (b (J )g j o B) is n-adic free by virtue of (c) in the same pro-

position. Now, we shall prove the if part of our theorem. Assume
that b (R ) is  an n-adic free R-module. Let  be a set of
elements of J such that the classes of the a, mod. m form a p-
independent base of RI m over (R/m)P and let x l , •••, xr  be a minimal
basis of in. First we shall show that p  m2. In the contrary case,
the following exact sequence holds by Lemma 4';

(2) 0 n i/ m 2 (R / m )0 ,b (R ) D (R / m ) — >  0.

We put d=a?'  and d' = T. Then there exists an R-homomorphism
p  of RØ 13(J) into b (R ) such that d=g)0(1gcr). We see that
the da, and the dx, form an m-adic free base of b (R ) by (2) and
by Theorem 1 in Part I. Let f  be an element of the power series
ring J [[X i , ••-, X r ]] and let f i  be  the sum of the terms of degrees
</  in f .  Then df(x)—lim df i (x). We shall divide df i (x) into two
parts as follows :

(3) d f i (x) — 
f ( x )

 +  f  i (x) .
ax,

Since it is easily seen that each of the two terms in the right
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hand side of (3) converges when j  increases infinitely, df(x ) can
be expressed as follows :

(4) df(x) ---- E a fax
(x ) dxj +lim 8f1 (x) .

Since S f i (x ) belongs to the image of R O A D  by 97, lim .3f(x)
i-0.-

belongs to the m-adic closure of the submodule of I5(R) generated
by the d a ,. On the other hand, the first term in the right hand
side of (4) belongs to the submodule of b (R ) generated by the dxi .
Therefore if f(x).--=,-0, then both of the two terms in the right hand

af(x)side of (4) are reduced to zero, hence  , — 0  for every i. Henceoxi

by the same reasoning as in the proof of Theorem 3, we see that
R  is a  formal power series ring with coefficients in J. Hence
p 0 m2. This is a contradiction. Henceforth we shall assume that
p 0 m2. Then we may put p = x1 . Applying Lemma 4', we get the
following exact sequence :

0 —> m /m2 + pR —. (R/ m)0,b (R ) ---). D(R1m) .-- 0 .

Hence we see that dx,,•••,dx,. and the da, form an m-adic free
base of b (R ) .  Hence by the same reasoning as above, we can
prove our assertion.

The proof of Theorem 4 is also valid for the following corol-
lary, by virtue of Proposition 3.

C o r o lla r y . L et R  be  a lo c al rin g  o f  characteristic 0  with
m axim al ideal m . L et I be a  discrete valuation ring with a prime
element u. A ssume that Rim is separable over I l u l .  Then R is a
regular local ring  and  zq  m2,  i f  a n d  only  i f  151 (R ) is  an  m-adic
free module.

8 .  D erivation  of Nagata. A  derivation a of a ring R in the
sense of M. Nagata [6] is an additive endomorphism of the total
quotient ring L  of R  which satisfies the following conditions :

1 )  a(xy ) — xay + yax fo r  x, y E L

and
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2 )  there exists an element a of R which is not a  zero-divisor
such that aax E R  for x E R.

Let P  be a subring of R .  If aa = 0 for every a e P, then a is
called a derivation (in the sense of Nagata) over P.

Since L  is a quotient ring of R, a is uniquely determined by
the restriction map a' of 8 on R .  I f  -ar'  is a  derivation o f R  into
L  in the usual sense, then a' can be uniquely extended to the
derivation -a o f L  into L .  However a cannot always satisfy the
condition 2) above. The following proposition shows that when
R  is an m-adic ring and bp(R ) is a  finite R-module, then the
totality of the derivations in the sense of Nagata is the dual of
LO R bp(R).

Proposition 4. Let R  be an m-adic ring, le t L  be the total
quotient ring of R  and let P  be a  subring o f  R .  Let d be the
natural derivation m ap o f R into LO pbp(R ). I f  a is  a derivation
o f R over P  in the sense o f Nagata and let a' be the restriction of
a on R, then there ex ists an L-homomorphism (73 o f  L g R bp(R) into
L  such that a' = pod. Conversely, i f  bp(R) is  a f inite R-module and
i f  cp i s  an L-homomorphism o f  LO R bp (R ) in to  L ,  then a'—pod
induces a derivation o f R over P  in the sense o f Nagata.

P ro o f . Let a be an element of R  which is not a zero-divisor
such that aax E R  for x E R .  Then a' is a derivation map (in the

usual sense) of R into an R-module R -
1

. Since R  1 is  a Hausdorffa „ a
R-module, a' is decomposed as follows : ---Akodf where qf is an
R-homomorphism o f bp(R) into R -

1
( L ) .  Let q) be the induceda

homomorphism of LO R bp(R) into L .  Then it holds that a' --pod,
proving our first assertion. We shall prove the second assertion.
From our assumption it follows that (T, (10 15p(R)) is  a  finite R-
module. Hence there exists an element a  o f R  which is not a
zero-divisor such that 05(1 gbp(R)) R .  Therefore a8-'(R )CR.

In the condition 2), if a can be chosen to be 1, a is called an
integral derivation of R  (in the sense of Nagata). The totality of
the integral derivation of R is the dual of bp(R).



182 Satoshi Suzuki

BIBLIOGRAPHY

[  1  ]  R . Berger, Über vershiedene Differentenbegriffe, Sitzungsber d. Heiderberger
Akad. d. Wise. Math.-Naturw. K I, Abh. 1960.

[  2  ]  R. Cartan and C. Chevalley, Géométry algébrique, Séminaire de E.N.S., 8e anné,
1955/1956.

[  3  ]  I. S. Cohen, On the structure and ideal theory o f complete local rings, Trans.
Amer. Math. Soc., 59 (1946), pp. 54-106.

[  4  ]  E. Kunz, Die Primteiler der differenten in allgemeinen Ringen, J . reine angew.,
Band 204. Heft 1/4 (1960), pp. 165-182.

[  5  ]  E. Kunz, Differentialformen inseparabler algebraisher Funktionk6rper, Math.
Zeit., 76 (1961), pp. 56-74.

[  6  ]  M . Nagata, A general theory of algebraic geometry over Dedekind domains, II,
Amer. J. Math., vol. 80 (1958), pp. 382-420.

[  7  ]  M. Nagata, Local Rings, Interscience Tracts in pure and Applied Math. no. 13
(1962).

[  8  ]  Y . Nakai, On the theory o f  differentials in commutative rings, J. Math. Soc.
Japan, vol. 13 (1961), pp. 63-84.

[  9  ]  Y. Nakai and S. Suzuki, On m-adic differentials, J. Sci. Hiroshima Univ., Ser.
A, vol. 23 (1960), pp. 459-476.

[10] M. Narita, On the structure of complete local rings, J. Math. Soc. Japan, vol. 7
(1955), pp. 435-443.

[11] M. Rutsch, Koeffzientenringe lokaler Ringe, Ann. Univ. Saraviensis-1961.
[12] P. Samuel, Algéble locale, Mém. Sci. Math. no. 123 (1953).
[13] A . W e il, Foundations o f algebraic geometry, Amer. Math. Colloq. Publications,

29, (1946), N. Y..
[14 ] 0 . Zarisk i and P. Samuel, Commutative Algebra, vol. I, H, Univ. Ser. in Higher

Math., Princeton.


