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Introduction. This paper consists of two parts. In Part [
we study some properties of Hausdorff m-adic modules and we
introduce the notions of m-adic free modules (see, Definition 1).
We see in §2 that m-adic free modules have very similar pro-
perties as free modules, especially when coeflicients rings are local
rings. In §4, we see that m-adic free modules are nothing but
free modules, so far as only semi-finite modules (see, Definition 2)
over local rings are considered (Theorem 2). Making use of the
results in Part I, we develope in Part II the theory of m-adic
differentials which has been introduced in [9]. The main results
are as follows.

(1) We see in §2 that the notion of the m-adic differentials
coincides with the notion of usual differentials, so far as we treat
only localities defined over fields.

(2) In §3, we seek conditions for a prime ideal in an m-adic
ring to be unramified over its subring, in terms of m-adic differ-
entials. This is an analogous subject to that in Nakai [8], §5 or
Kunz [4], §3.

(3) Regular local rings are characterized in our languages (§4
and §7). These are generalizations of a number of results in [9],
§6 and §7. These are also generalizations of Satz 1 in Kunz [5]
and Kunz’'s Satz 1 itself is proved by a different way. This shows
that the theory of me-adic differentials is useful even in order to
study the usual theory of differentials, like the fact that the method
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of completions is useful in order to study the theory of local rings.
(4) 85 and §6 are written as preliminary parts of §7. §5 in-
cludes some precise statements of a structure theorem of complete
local rings (Proposition 1 and Proposition 2).
(5) In §8 we see that our notion of m-adic differentials is dual
to Nagata’s derivations defined in [6].
I would like to express my heartfelt thanks to Prof. M. Nagata
for his precious advices and encouragement.

Part 1

1. General properties of Hausdorff m-adic modules. All rings
in this paper are commutative rings with unit elements. Let R be
a ring and let m be its ideal. When we call R an m-adic ring,
we always assume that m has a finite basis and /:\m”:(O). When

we say that an R-module M is an m-adic module, we mean that
R is an m-adic ring and we consider m-adic topology in M (i.e.,
{m"M: n=1, 2, ---} is defined to be a system of neighbourhoods
of (0)). But we do not always mean that M is a Hausdorff space,
that is, we do not always assume that [H\m”Mz(O). If Mis a

Hausdorff m-adic R-module, if R* is the m-adic completion of R
and if M* is the m-adic completion of M, then, as in the theory
of finite modules, the following are true:

(1) M is a Hausdorff m*-adic R-module, where m*=mR*,

2 wm*M*"M=m"M,

3) M*/m**M*=M/m"M,

4) if M=mM, then M=(0).

Remark. Let R be an m-adic ring and let R’ be an over-ring
of R which is an mR’-adic ring. Let M be a Hausdorff R-module
and let M* be the m-adic completion of M. It is well known that
if Ris an m-adic Zariski ring and R’ and M are finite R-modules,
then it holds that R'® ,M* is the mR’-adic completion of R'Q .M.
Generally, the following assertion is true. “R’'& M/ ["\m” (R & M)

is a dense subspace of R'&Q M*/N\m" (R'&Q.M*). If R’ is a finite

R-module and if it is an mR’-adic ring, the latter is the mR’-adic
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completion of the former.”
The following lemma will be used later.

Lemma 1. Let M be a Hausdorff m-adic R-module and let N
be its dense submodule. We denote by N* the m-adic completion of
N. Assume that there exists an R-homomorphism r of M into N*
such that the restriction of < on N is the natural injection of N
into N*. Then ¥ is injective and N* is the m-adic completion of
Y(M).

Proof. Let n be an arbitrary non-negative integer and let a
be an element of m”"MNN. Then Y(a)e m"N*"N=m"N. This
shows that m"MNNC "N, hence m"M~N=m"N. Hence the m-
adic R-module N is a subspace of the m-adic R-module M. From
this our assertions are proved, if we notice that r is a continuous
map.

2. m-adic free modules. Let M be an m-adic Hausdorff R-
module.

Definition 1. We call M an wm-adic free R-module, when M
contains a set of elements {a}. such that:

(1) the submodule N generated by {a |.€1} is dense in M,

(2) the a, are linearly independent mod. m"M over R/m" for every
positive integer n. In this case, we call {a}.. an m-adic free
base of M.

It follows immediately that a free module over an m-adic ring
R is m-adic free. When M is an m-adic Hausdorff R-module, if
the a, are elements of M and if we write 2a.a, (¢, € R), we shall
always understand that «, € m” except for a finite number of ¢ for
each n, hence X «,a, has meaning (at least in the completion of M).

Let M be an m-adic free R-module and {a}..; be its m-adic
free base. If Zaa =0, then a,=0 for all J/s. If we denote by
R* and M* the m-adic completions of R and M respectively and
if m*=mR*, then by (3) in §1 we see that M* is an m*-adic free
R*-module with an wm*-adic free base {a.}..;. Hence it follows
also immediately that the completion of a free module over an
m-adic ring is m-adic free.
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Proposition 1. Let R be a complete m-adic ring and let M
be a complete Hausdorff m-adic R-module. Then M is m-adic free,
if and only if there exists a set of elements {a}. of M such that
every element of M is expressed uniquely in the form Zda.a, (@, € R).
In this case {a}.; is an m-adic free base of M.

Proof. Let M be m-adic free and let {a}.; be its m-adic
free base. Let @ be an element of M, then a=lim (Xa{a,), where

npoo

ameR and a®™=0 except for a finite number of ¢ for each x.
We may assume that Sa"Vg, —Xa™q € m"M, hence, by defini-
tion, @ —a®™ em” for every n. Then for every ¢ there exists
a,=lim @™, because R is complete. It is easy to see that «, em”

except for a finite number of ¢, for each #n. Hence Za.a,=a’ exists
in M. It is also easily seen that a=a’. Conversely, assume the
existence of {a}.; of the said property. Then it follows directly
from our assumptions that N=3Ra, is dense in M. We shall
show that the a, are linearly independent mod. m”M over R/m”

m
for every n. Assume that z;aL(i)at(i)6111"M where «,;,€R and
=

Wi)€l. It is easy to see that every element in m”M is expressed
in the form 2 B3.a, with 8, €m”. From this we see that «,,€m"

Proposition 2. Let M be a Hausdorff m-adic R-module and
let R* and M* be the m-adic completion of R and M respectively.
We put m*=wmR*. Then the following three conditions are equiva-
lent to each other.

(a) M is m-adic free,
(b) M* is m*-adic free with its m*-adic free base in M,
(¢) M* is an m-adic completion of a free R-module contained
in M.
The proof is easy. Hence we omit it. In the corollary to
Theorem 1, we shall see that if R is a local ring, then this pro-
position can be stated in a simpler way.

Lemma 2. Let M be an m-adic free R-module and let {a}.c;
be its m-adic free base. Let n be a natural number. Then M/m"M
is a free (R/m*)-module and the classes of the elements a,(.€1)
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mod. "M form its free base.

Proof. M is the closure of % Ra, in M, hence M/m"M is
generated by the classes of the ¢, mod. m”M. The rest of the
proof follows from our definition.

Lemma 3. Let R be a local ring with maximal ideal m. Let
M be an m-adic free R-module and {a}.; be its m-adic free base.
If N is an ideal of R with a minimal basis v, v,, ~*, Vs, then
{via}eriz1po..n is @ free base of AM mod. mAM over R/m.

Proof. 1t follows from Lemma 2 that 2AM is generated by
the v;a, mod. mUAM. Hence we have only to show that the v;a,
are linearly independent mod. mAM. Take a finite subset, say
«1), «(2), -+, «(h) out of I. Assume that 3} &;;7,a.,=0 mod. mAM

Y

(£i;€R). It is easily shown that 37§74, € 2 mUa, +m™AM for

every positive integer #, by induction on #» and using Lemma 2.
Hence 35 &;v,€ mA+m”. It follows that &7 € mYU, because R

is a local ring. Hence it holds that &;=0 mod. m for all 4, j.

Lemma 4. Besides the assumptions in Lemma 3, we assume
that {b}.ca 1S a set of elements of M such that the classes of the
b, mod.mM form a free base of M/mM over R/m. Then
{¥b:} aenizrz..n fOrm a free base of UM mod. mAM over R/m.

The proof is straightforword by virtue of Lemma 3 because
the a, form a free base mod. mM.

Theorem 1. Let R be a local ring with maximal ideal m and
let M be an m-adic free R-module. Then if a set of elements
{O\baen Of M is such that the set of classes mod. mM of the b,

form a free base of M/mM over R/m, then {b},cn is an m-adic
free base of M.

Proof. We have only to prove that the b, are linearly indepen-
dent mod. "M over R/m” for every positive integer n. Assume
that there exists a relation :

() By, =0 mod.w"M,  where B€R, AQ)EA,

i=1,2,---,¢ and not all B; are in m”. Then there exists a non-
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negative integer m< s such that 8;€m™ for all i=1,2, ---, ¢ and
B;em™** for some i. Let {v;};.,,..,» be a minimal basis for m”

and let B;=i‘,5;j"}’j (t=1,2,---,¢;&;€R). Then we have from (x) :

2185700y =0 mod. m”M. It follows from Lemma 4 that
ij

;=0 mod.m for all i=1,2, ---, ¢ and all j=1,2, ---, k. Hence
B;=0 mod. m”*'. This is a contradiction.

Corollary. Let R be a local ring with maximal ideal m. Let
M be a Hausdorff m-adic module. We denote by R* and M* the
m-adic completions of R and M respectively and put m* =mR*,
Then M is m-adic free if and only if M* is w*-adic free.

Proof. The only if part is already known. The if part is
an immediate consequence of Proposition 2, (b) and Theorem 1.

Proposition 3. Let R be a ring and let m and n be two ideals
of R such that they have finite bases, n contains m and R is an
n-adic ring (hence R is an w-adic ring, too). Let M and M’ be
two m-adic free modules with m-adic free base {a}.c and {b.}.c,
respectively. Moreover, let R’ be an arbitrary mR’-adic over-ring of
R. Then the following four assertions hold.

(@) M@M’' is an wm-adic free module with wm-adic free base

{a}.erv{b} e
(b) MR M'|N\M (MR M’') is an m-adic free module with an

m-adic free base {the class of a,®b. mod. \m"(M® M")} cr.-c;-
() M/N\n"M is an n-adic free module with an n-adic free base
{the class of a, mod. \W'M} ;.
(d) R'QM/N\M*(R'QM) is an mR’-adic free module with an
m-adic free base {the class of 1®a, mod. \M"(R'Q M)} .<;.
Proof. (a) is obvious. We put R,=R/m”. Since MQ M’'/m”"
M M) = (M/mM"M)Q g, (M’ /m"M"), MQM'/m"(MK,M’) is a
free R,-module with a free base {the class of ¢ ®b&, mod. m"

(M® M)} cr-e;. (b) follows from this. (c) and (d) are proved by
similar resonings.
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Remark. In Proposition 3, (d) above, if we assume that R is
Noetherian and complete, that M is complete too and that R’ is
a finite R-module, then it can be proved that R'® .M is Hausdorff,
hence it is mR’-adic free.

Since we do not use this fact in this paper, we omit the proof.

4. Semi-finite module. Let R be a ring and M be an R-
module.

Definition 2. We say that M is a semi-finite module, if M is
the direct sum of a free module and a finite module.

Proposition 4. If R is a Noetherian ving and M is an R-
module, then the following three conditions are equivalent to each
other :

(@) M is semi-finite,

(b) M is a residue module of a free module modulo its finite
submodule,

(¢) M has a free submodule N such that M/N is a finite module.

Proof. 1t is easy to see that (b) and (c) follow from (a), and
(a) follows from (b). Therefore we have only to prove that (b)
follows from (c). Let {¢.}..; be a free base of N and f,, f, -+, fa
be elements of M such that their residue classes f,, f;, -, fa
modulo N generate M/N. We have only to prove that there are
only a finite number of #, which appear in some linear relations
among the ¢, and the f;. We shall use induction on the number
h of the f;. Assume that there are only a finite number of 7,
say t.., tus, ot » L.y Which appear in some linear relations among
the ¢, and f,, fo, ==+ fo-- Let M'=N+Rf,+Rf,+ -+ +Rf,_, and
c={r:7€R, rf,¢ M'}. Then ¢ is an ideal of R. If ¢=0, then
we have nothing to prove. Therefore we assume that c¢c==(0). Let

¢y, €5, **+, C, be a basis for ¢ and cf,.—Za,,,tL(u)—kZ,B,,f, (=
). I ’g’f,,—Z‘,fy,f,JrE& t, is a relation among the f; and the

t., where Q is a finite subset of I and &, -0, then £€¢ and ¢ is
expressed in the form &= E?],c (m;€R). Hence 0=£&f,— Zn,c fa

h-1
=2 0= 2 mBif;+ %5&‘ f‘_. (7@t . This is a relation
i= i ¢
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among the #, and f,, ‘-, f,-,. Hence QT {«(1), «(2), -+, {4+ E)},
which proves our assertion.

The following corollary is an immediate consequence of (b).

Corollary. Let R be a Noetherian ring. Let M be an R-module
and let N be its finite submodule. Then M|N is a semi-finite module,
if and only if M is a semi-finite module.

Theorem 2. Let R be a local ring with maximal ideal m and
let M be a semi-finite R-module. If M is an m-adic free R-module,
then it is a free module.

Proof. Let M=N@F, where N is a free R-module and F is
a finite R-module and let {f,}.., be a free base of N and f,, f,,
-+, f» be a minimal basis of F. Then the residue classes of the
¢, and the f; modulo mM form a basis for M/mM over R/m.
Hence by Theorem 1, they are an m-adic free base of M and have
no linear relations. Hence M is a free module.

When R is a Zariski ring, some properties in the theory of
finite R-modules are extended to the case of semi-finite modules.
For instance :

Proposition 5. Let R be an m-adic Zariski ring and let M be
a semi-finite R-module. Then the following three assertions hold.
(@) M is Hausdorff, every finite submodule N of M is closed and
the m-adic topology of N is induced by the m-adic topology of M.
Let R* and M* be the m-adic completions of R and M respec-
tively.
(d) If elements x; of M are linearly independent over R, then
they are linearly independent over R*.
(¢) If R is an integral domain and M has no torsion, then those

elements of R* which are zero-divisors in M* are zero-divisors in
R*.

Proof. This follows directly from the corresponding results

in the theory of finite modules (see, for instance, [2], Exposé
18).
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Part 11

' 1. Basic notions on modules of differentials. Let R and S
be two rings and let R be an S- -algebra, that is, there is a ring
homomorphism f of S into R such that f(1)=1. We denote by
Ds(R) the module of S-differentials in R, that is, an KR-module
characterized by the universal mapping property with respect to
the S-derivations of R into an arbitrary R-module, and denote by
d¥ the S-differential operator of R, that is, the canonical derivation
map of R into Dg(R) (see [4] or [8])”. If S is the subring of R
generated by the identity, they are called simply the module of
differentials in R and the differential operator of R, and denoted
simply by D(R) and d®. Moreover when R is an m-adic ring, we
have introduced the notion of m-adic differentials in [9]. The
module of m-adic S-differentials in R is characterized as follows.
It is a Hausdorff m-adic module and satisfies the universal mapping
property with respect to the S-derivations of R into an arbitrary
Hausdorff m-adic module. We denote it by DS(R). It is identified
with the residue module of Dg(R) modulo its submodule [ﬂ\m”Ds(R).

We denote by d? the canonical derivation map of R into Dg(R)
and call it the m-adic S-differential operator of K. When S is the
subring of R generated by the identity, we omit S in the notation
and terminology above, as in the former case.

Lemma 1. Let T be a ring and let R and S be two rings both
of which are T-algebras. Then it holds that :

Dr(R®7S) = (DHR)QrS)D(RQrD~(S)) .

Proof. It is easy to see that d=d¥®1+1R®d3 is a T-deriva-
tion map of KRS into (DA(R)Q rS)DB(RRX +D(S)). Put d’'=d&®s,
Then by definition, there exists a 7-homomorphism @ of D (R® +S)
into (DA (R)Q 7:S)P(RK +D(S)) such that:

@ d = @pod’ .

If we denote by p the natural homomorphism of R into R® S,

1) D(R) and Ds(R) are denoted by M(R) and M(§ ) in [4].
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then d’op is a 7-derivation map of R into Dy (R®S). Hence
there exists an R-homomorphism v, of D4(R) into D;(R®Q S) such
that d’op=+r,cd®. Since D (RRQR;S) is an R® rS-module, +, in-
duces an R® S-homomorphism v{ of DA{R)® S into DR +S)
such that Y{((d¥r)®Qs) = (1Rs)d'(r®1) (r€R, s€S). In the same
manner, we have an R® ,S-homomorphism v; of R& +D(S) into
DA(R®QS). Put ' ={++j. Then for every r€R and s€S

Pod(r@s) = (Yi+91)eo(dFR1+1Qd3) (r®s)

= Pi(([@Fr)®s) +Pri(r Rd3s)

= (1®s)d'(rR1)+(r®R1)d'(1RXs)

= d'(1®s)(rQ1))

= d'rRs).
Hence it holds that

@) d ='od.

Since we know that D (R®S) and (D(R)Q +:S)D(RR +D(S)) are
generated by d(R® S) and d’'(R® +S) respectively, (1) and (2) show
that @ and 4 are isomorphisms.

Lemm 2. Let S be a ring and let R be an m-adic ring which
is an S-algebra. We denote by R* the m-adic completion of R.
Then Dg(R) is contained in D«(R*) as a submodule and as a dense
subspace.

Proof. By the universality of é’§ there exists an R-homomor-
phism @ of Dg(R) into Dg(R*) such that ¢ozf§x=cf§*x for each
x€R. On the other hand, since (fée is a continuous map, dA§ can
be extended to a derivation map of R* into the m-adic completion
(D(R))* of Dg(R). Hence by the universality of cfg*, there exists
an R-homomorphism ¥ of Dg(R*) into (Ds(R))* such that «poa?g*
(lim x,)=1lim cfé’x,, where {x,} is a Cauchy sequence in R. Since

nyoo npoo

«Po¢ocf§x=«#ocf§*x:tf§x for all x€ R, @ is an injective map and
the restriction of Y on ¢(153(R)) is an injective map. Evidently
p(Ds(R)) is dense in Dg(R*). Hence by Lemma 1 in Part I we
get our lemma.

Let R be a ring with a unique maximal ideal m and let P
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be a subring of R. We denote by K the residue field of R with
respect to m and by k the quotient field of the residue ring of P
with respect to mnP. Let q be an ideal of R generated by the
elements of mnN P[R?], where p is the characteristic of K.

The following lemma 1 is stated in 4, §2 as ‘“Rangsatz’, when
some finiteness conditions are assumed. But it holds in general
without these assumptions. For the proof of it, see [4], §2 and
[2], Exposé 17, 3.

Lemma 3.” With the notations as above, the following exact
sequence holds :

0 - m/m’+q - (R/m)QRgDp(R) = Dg(K) — 0.

Let R be an m-adic ring. Then, since Dp(R)=Dp(R)/ N\ m"Dp(R),
it holds that (R/m)@Rﬁp(R)=(R/m)®RDp(R). Hence the follow-
ing lemma 4 holds.

Lemma 4. If R is an wm-adic ring, Dp(R) can be replaced by
Dp(R) in Lemma 3.

In some cases these exact sequences are simplified. For the

proof of Lemma 3/, see [2], Exposé 17, 3 and [9], §5.

Lemma 3. Besides the assumptions in Lemma 3, we assume
that K is separable over k.
(@) If P is a field, then the following exact sequence holds :
0 —- m/m?* - (R/m)Q®zDp(R) —> D,(K) — 0.
(b) If P is a discrete valuation ring with a prime element u,
then the following exact sequence holds :
0 - m/m?® +uR — (R/m)Q zDp(R) - D(K) — 0.
Lemma 4. If R is an m-adic rving, Dp(R) can be replaced by
Dp(R) in Lemma 3.

2. Differentials of localities. The following theorem is

1) Added in Proof. Prof. Y. Nakai has kindely communicated to me that as for
the complete proof of Lemma 3, we should refer to Satz 1 in R. Berger and E. Kunz:
Uber die Struktur der Differentialmoduln von discreten Bewertunksringen, Math. Zeit.
77, 314-338 (1961). In Satz 1 in that paper, our lemma 3’ was also mentioned in a
more general form.
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essentially due to Kunz [5]. We restate it as an application of
Lemma 1.

Theorem 1. Let K be a field. Let k be a subfield of K and
let S=K[x,, -, x,] be an affine integral domain generated by
Xy, =, x, over K. Then Dy(S) is a semi-finite module.

Proof. Let k' be a subfield of K which is a finitely generated
extension of & such that K and S'=F[x,, .-, x,] are linearly dis-
joint over k' (see, [13], Chap. 1, §6). Then S=K®,S. Hence
D/(S)=D/(K)YRQuS'BKRQwD(S) by virtue of Lemma 1. There-
fore D(S) is a semi-finite module. On the other hand, D,(S) is
the residue module of D,(S) modulo its submodule which is the
natural homomorphic image of S®. Dy (%), and D,k') is a finite
module. Hence by the corollary to Proposition 4 in Part 1, we
get our conclusion.

Corollary. Let, K, k and S be those as in Theorem 1. Let R
be a locality which is a quotient ving with respect to a prime ideal
in S. Then Dy(R) coincides with Dy(R).

Proof. This is a direct consequence of Theorem 1 and Pro-
position 5, (a) in Part L

3. Unramified extension. Let P be a ring and let R be an
over-ring of P. Let ¥ be a prime ideal in R and let p=PNP.
Then we say that % is unramified if the following conditions are
satisfied ([8], §5).

(1)) RRy=bRs,

(Ux) Rg/PRy is a separably algebraic finite extension of P,/pP,.
It is known that when R is a finite P-module, then % is unramified
if and only if Dp(Rg)=0 ([8], §5).

The condition (U,) is divided into two parts (U§") and (U SE

(U3”) Rp/PRy is a separably algebraic extension of P,/pP,,

(Us) Rgy/¥Rg is a finitely generated extension of P,/pP,.

Theorem 2. We use the notations as above. If *{ satisfies the
conditions (U,) and (USP), then it holds that Dp(Rs_B)zo. Conversely,
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if we assume that R is a Noetherian ving and satisfies one of the
following conditions (1) and (2), then from Dp(Rg)=0 the conditions
(Uy) and (US’) follows.

(1) B satisfies the condition (UP), (2) Ra/VRy is separable
over P,[pP,.

Proof. We denote by k£ and K the fields P /pP, and Rg/PRy
respectively. Since Dp(Rg) is a Hausdorff PRg-adic module, we
see by (4) in Part 1, §1 that Dp(Rg)=0 is equivalent to (Ry/%Rg)
®Dp(Rg)=0. Hence our first assertion follows from Lemma 4.
Assme that lA)P(ng):O. Then D,(K)=0 by virtue of Lemma 4.
This is equivalent to say that K is separably algebraic over £ in
the case (1) ([2], éposé 13). Hence in both cases (1) and (2), we
can use Lemma 4’ and we prove our second assertion.

When R is a finite P-module, this theorem is nothing but the
above mentioned result in [8].

Remark. In the second assertion of Theorem 2, the condition
(1) or (2) is not removable. In the following example, Dp(R)=0
induces neither of the conditions (U,;) and (U$Y).

Example. Let k, be a perfect field of characteristic p==0.
Let # be an independent element over k. We denote by K’ the
field k,(u, u?”', u*”? .-.). Let R be a commutative K’-algebra
K’ + K’x with a defining relation x*=0. Then R is a local ring with
maximal ideal P=xR. Let P be the subfield of R which is gene-
rated by u+x over k,. Let K be the residue field of R and let &
be the image of P modulo ®. It is evident that (U,) does not
hold. Since K is purely inseparable over k, (U$>) does not hold.
On the other hand, since R? = K’?= K’, it holds that dA{Suzo.
Hence aA'f.?x=O. Therefore we have Dp(R)=0.

Corollary 1. Let R be a Noetherian m-adic ring and let P be
a subring of R. We assume that R|/m is finitely generated over
P/mn P and the module of m-adic differentials Do(R) is a semi- finite
module. Let N be the annihilator of Dp(R) in R. Then a prime
ideal P in R containing m is unvamified if and only if B does not
contain ¥, '
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Proof. By our assumption and Theorem 2, 1} is unramified if
and only if Dp(Rg)=0. We know that Dp(Rg) = Rp® xDp(R) holds
(by [8], Proposition 10). We denote by L and N the submodules
NP (R R Dp(R)) and Re@(/\m”Dp(R)) of Dp(Rg) respectively.
Since P(Rp®Dp(R)) = RgQ@P"Dp(R) and Ry@V"Dp(R) D Ry®
m”"Dp(R) DR @(MN\m"Dp(R)), it holes that L™>N. On the other
hand, we know that Dp(Rg)=Dp(R)/L and that Ry® zDp(R)=
Ry® o(Dp(R)/N). Hence it holds that Dp(Rg)=Ra® pDe(R)/N\B"

(Ra® RDP(R)). Since Dp(R) is a semi-finite module, it follows from
this that Dp(Rg)=Rg®zDp(R). Hence the annihilator of Dp(Rg)
is ARg. This proves our assertion.

When R contains a field of characteristic 0, the condition (2)
in Theorem 2 is automatically satisfied. The following corollary
is proved in the same way as in Corollary 1.

Corollary 2. Let R be a Noetherian m-adic ring, containing
a field of characteristic 0. Let P be a subring of R. We assume
that the module of m-adic differentials Dp(R) is a semi-finite mofule.
Let 9 be the annihilator of Dp(R). Then a prime ideal ¥ in R
containing m satisfies the conditions (U,) and (US"), if and only if
R does not contain .

4. Characterizations of regular local ring (1) (equal charact-
eristic case). In this section, we shall extend Kunz’s Satz 1 in
[5] and the results in [9], §6. In the proof of Theorem 3 we
shall use a similar technique as the one used in the proof of
Theorem 7 in [9] with some modifications. Throughout this section
we always denote by p the characteristic of a local ring under
consideration.

Theorem 3. Let R be a local ring of equal characteristic with
maximal ideal m. If R is a regular local ring, then D(R) is an
m-adic free R-module. Conversely, if R satisfies one of the follow-
ing two conditions (a) and (b) and if D(R) is an wm-adic free module,
then R is a regular local ring.

(a) p=0. (b) p:1-0 and R is analytically unramified.
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Proof. By the corollary to Theorem 1 in Part I and by Lemma
2, we may assume that R is complete. If R is a regular local
ring, then R is a power series ring K[[X,, -+, X, ]] over a field K.
Let A=K[X,, -+, X,]. Let k&, be the prime field contained in K
and put B=k[X,, -+, X,]. Then A=K®, B. Hence by Lemma 1,
D(A) is a free A-module. Therefore it follows that D(R) is m-adic
free by virtue of Lemma 2 and the corollary to Theorem 1 in
Part I. Conversely, assume that R satisfies one of the conditions
(a) and (b) and that D(R) is an m-adic free R-module. Let K be
a coefficient field of R. Let {a.}. be, in the case (a), a trans-
cendental base of K over the prime field and, in the case (b), a
p-independent base of K over K?. Let (x,, --+, x,) be a minimal
basis for m. Then by Lemma 4’ we have the following exact
sequence :

0 - m/m? > (R/m)QD(R) - D(R/m) — 0.

By this fact and Theorem 1 in Part I, we see that d®x; i=1, -+, k)
and éRaL form an m-adic free base of D(R). Let A* be a formal
power series ring with % variables X,, ---, X, over K and let m
be its maximal ideal. Let @ be a K-homomorphism of A* onto
R such that o(X))=x; (i= -, k) and let A be the kernel of ¢.
We have only to prove that A=0. Let f(x)= }“ fi(X) be an
element of A where f;(X) is a homogeneous polynom1al of degree
j. Since 0=f(x)= 2 fx) and 3 fi(x)= — 37 fi(x) €m™®, it holds
that ZdR f,(x)—O mod m"b(R) Therefofgw

a 3
> (3 /i f(x)>dk > (2 of; ’(x)>dRa —0  mod. m"D(R)
k=1 \j=0 a t =0 a
where f’;z' )=0 except for a finite number of : Since the (fok

and the cz'Ra‘ form an m-adic free base of D(R), it follows that
Z af_"(x_)——jO mod. m” for each %k and Zaf’(x)
=0 9x, =0 Oa,

U@ _ 528 _ g ang

ox, =0 dx,

o) _ i ofi®) _ 0. Therefore it holds that
da, =0 da,

mod. m” for each ¢«. Hence
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(1) %)9691 for every k=1,2,---,h and (2) %)QGQI

k ¢

for every +€1. From (1) it follows, with the same reasoning as
in the proof of Theorem 7 in [9], that A=0 in the case (a), and
that 9 is generated by elements of ANK[[X?, ---, X7]] in the
case (b). Henceforce we shall treat only the case (b). Let f be
an element of ANK[[ X%, ---, XZ]]. Since every coefficient of f is
expressed uniquely as a polynomial of the @, over K? in which
the degree of each «, is less than p, f is expressed in the form
(in the sence of convergence in m-adic topology)

3 f= zfxl(il)n-xf(i,)a}i;} aiﬁ »

where f, ¢p..anip € A¥?, 0<<i,<<p—1 and there are only a finite
number of terms whose coefficients f, ¢ .. does not belong to
m” for each non-negative integer n. If we prove that each
Frycipeagcip belongs to A-+m” for any given non-negative integer #,
then we have f, ¢ ..cp €2 because A* is a local ring. Hence f
is the limit of a sequence of elements of (AN A*?)A*. Therefore
it holds than A=@ANA**)A*. Then if N==(0), we may take an
element g(==0) of the lowest degree among all the elements of 2
from A*?. Then glf € A*, glfgéi)l and (gli)”es)l. This contradicts
to our assumption that R has no nilpotent element. Therefore we
have only to prove that each f, ,....p belongs to A+m” for any
given natural number n. We divide the sum of (3) into two parts
as follows :

_ 4 i1 ves gylt 7 e pd
=% fajipencin@il o Q27 fuciensio @it =+ Gl
1M 1

where 37 sums all terms in (3) which belong to m” and X sums
the rest. Then 3’ consists of a finite number of terms. We denote
these sums by f, and f,. Since for any set of natural numbers

(e,, -+, e,) and any subset (v,, ---,»,) of I the partial derivative
oatte et te ot te
- = 1 2
aaf{,} a;:; aa{;} - agy aa\‘.:"'ra{;;’
e+ e,
belongs to 21 by (2) and since o , belongs to m”, we see
g y

)

14 e
ag--ragy
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el+"‘+en
that g——— f, belongs to A+m”. Hence we see that every
ajl-ragy

coefficient in 3’ belongs to 2+ m” by the same reasoning as in the
proof of Theorem 7 in [9].

Remark. In the condition (b) in Theorem 3, the assumption
that R is analytically unramified is not removable, which is shown
by the following counter example.

Example. Let K be a prime field of characteristic p=+=0. Let
R=K[[X, Y]] be a formal power series ring in two variables
over K. Then R=R/XFR is not a regular local ring but D(R) is
a free module of rank 2.

Corollary 1. Let R be a locality over a field. Then R is a
regular local ving if and only if D(R) is a free module.

Proof. Since every locality is analytically unramified, our
assertion follows immediately from Theorem 2 in Part I, Theorem
1 and Theorem 3.

The proof of Theorem 3 is also valid for the following corol-
lary.

Corollary 2. Let R be a local ring of equal characteristic with
maximal ideal m. Let k be a field contained in R. If R is a
regular local ring, then D,,(R) is an m-adic free R-module. Con-
versely, if R satisfies one of the following two conditions (a) and
(b) and if DyR) is an m-adic free module, then R is a regular
local ring.

(@ p=0. (b) p==0, R is analytically unramified and k is a
perfect field.

Remark. Let R and m be those as above. Let k2 be a subfield
of R such that R/m is separable over k. We assume that Du(R)
is a finite R-module. Then we can prove easily by Lemma 4’ that
Ris a regular local ring, if and only if rank D,(R)=rank R-+rank
Dy(R/m).

5. Some results on the structures of local rings. We shall
give in Proposition 1 and Proposition 2 below some precise state-
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ments of a structure theorem of complete local rings. Throughout
this section, we mean by a p-ring a discrete valuation ring of
characteristic 0 with a prime number p as a prime element.

Lemma 5. Let Z be the ring of rational integers and let
X, =+, X, be s indeterminates. If p is a prime number, then for
any integers n and k such that 0 < k<mn, it holds that

PHX A Xy e A X )P = pr R X e 1 X
+ kz_lp"—jfj(X,I)”*_jy Xg”+j) tt X?'H-j) MOd' P” )
j=0
where the f; are polynomials with coefficients in Z.

This can be proved elementarily by induction on s. Hence we
omit the proof.

Proposition 1. Let R be a complete local ring of characteristic
p”, where p is a prime number and m is a natural number. Let m
be a maximal ideal of R. Assume that there exists an integer n
such that m*=(0). Let {c}.cr be an arbitrary set of elements of R
such that the classes of the c. mod. m form a p-independent base of
R/m over (R/m)? and let A be the set of p*"-th powers of all the
elements of R. Then the following assertions (1) and (2) hold.

(1) Let S be the set of polynomials of the c. with coefficients in
A and of degrees less than p** on each c?". Then the set of elements
J=S+pS+ -+ +p"'S forms a coefficient ring of R.

(2) Let S’ be the set of polynomials of the c?” with coefficients in
A and of degrees less than p” on each c?”. Then the set of elements
J=S"+pS +--+p"'S" forms a subring of J, it is a residue ring of
a p-ring mod. p™ and J'|p] is naturally identified with (R/m)?",

Proof. (1) was already proved in Narita [10]. (2) can be
proved by a similar method as in [10]”, using Lemma 5 above.
In fact, in order to prove (2), it is sufficient to prove that J’ is a
ring. And for the purpose, it is sufficient to prove that J is
additively closed. For the brevity, we put d.=c?". Let f and g

1) Strictly speaking, we refer to Nagata [ 7], Chap. V, because in [[10], the detailed
proofs were omitted. )
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be two elements of p'S’ (0<r<n—1). These are expressed as
follows :

F=pSardn dy, g=p S67dy - dy 0=e=p"-1).

By Lemma 5 we see that (a+b)?*" —(a?”" +b*"") is a sum of elements
of the forms p"7(a?"*)*(b*"*’)" (0<<j< m). Since every element
of the form #*"*’ is uniquely determined by the class of # mod. m,
we can replace @ and b by elements of S, that is, ¢?**’ and b***’
can be expressed as p"*/-th powers of polynomials of the c¢. with
coefficients in A. Then applying Lemma 5 repeatedly, we see that
(@+b)*"" —(a?™ 4+ b?™") is expressed as a sum of elements of pS’+
< +p""'S’. Hence we get an expression :

f+g = Pr(E (a—“b)Pz”d:’_: .es d:x)_‘_h

where % is a sum of elements in p"*'S’+ -.- +p"'S’. Using this
fact our conclusion can be reached easily by induction on 7.

Corollary. Let ] be the residue ring of a p-ring mod. p™
(m=1). Let {c.}.er be an arbitrary subset of J such that the residue
classes of the c. mod. p] form a p-independent base of J/pJ over
(J/p])?. Let J be the subring of ], generated by p*"-th powers of
all the elements of | and the c¢?”. Then it holds that :

Q) J is aresidue ring of a p-ring mod. p™ and J|p] is natural-
ly identified with (J/pJ)?”,
and

(2) J is J-isomorphic to the residue ring of the polynomial ring
J[X.Joer modulo its ideal (X?" —c?™).ep.

This follows directly from Lemma 6.

The following lemma 6 can be proved by Narita’s method of
constructing coefficient rings of local rings in [10] with some
modifications, and was proved by Rutsch [11].

Lemma 6. Let R be a complete local ring with maximal ideal
m. Let I be a local subring of R whose maximal ideal is generated
by p, where we denote by p the characteristic of the field R/m.
We assume that R/m is separable over I/pl. Then there exists a
coefficient ring J of R which contains I.
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This lemma can be generalized as follows.

Proposition 2. Let R be a complete local ring with maximal
ideal m. Let I be a local ring dominated by R such that :
Q) the maximal ideal of I is a principal ideal ul (u€lI),
and
(2) R/m is separable over I]ul.

Then there exists a local subring J of R with the same residue
field with that of R, such that J contains I and such that #] is the
maximal ideal. In fact; let I be a coefficient ring of the completion
I* of I and let J be a coefficient ring of R which contains I.
Then J=J[[«]] is a complete local ring with maximal ideal %] and
contains I. If I is a discrete valuation ring, then J is a discrete
valuation ring with a prime element ».”

Proof. When I is a field, then I*=1I[[«]]. Hence J=J[[«]]
contains I and its maximal ideal is #J. If # is not an algebraically
independent element over J, then there exists a natural number m
such that #”=0. If I is a discrete valuation ring, then « is an
algebraically independent element over I. Hence « is an algebraically
independent element over J and J is a discrete valuation ring with
a prime element ». Henceforce we assume that I is not a field.
Then I and J have maximal ideals pI and pJ respectively, where
we denote by p the characteristic of the field R/m. Since there
exists a natural number » such that p=wu"h where % is a unit in
I and since [ is complete, we see that I* is a finite I-module
generated by 1, u, «*, -, w”~' over I. Hence J contains I and uJ=
(u, p)J is the maximal ideal of J. If Iis a discrete valuation ring,
then I and J are p-rings. Hence rank J=1 and rank /=1 because
J is a finite J-module. Therefore J is a discrete valuation ring
with a prime element u (see [7], (12. 1)).

6. The modules of differentials in discrete valuation rings.

Lemma 7. Let J and I be p-rings and let I be a subring of J.
If J/p] is separable over I/pl, then 15,(]) is a pJ-adic free module.

1) Since the maximal ideal of I is a principal ideal «l, I (with «l-adic topology)
is a subspace of R (with m-adic topolygy). Hence there exists a completion of I in R.
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Proof. By our assumptions, we see that (J/pJ)? and I/pl are
linearly disjoint over (I/pI)?. Hence there exist sets of elements
{b:}ren and {a,}.ca of J such that the residue classes of the b,
mod. pJ form a p-independent base of I/pl over (I/pI)? and the
residue classes of the b, and the @, mod. pJ form a p-independent
base of J/pJ over (J/pJ)*. We put J.=]/p"], I,=I/p™1 and
d,=dj». We denote by b™ and a the classes of b, and a,
mod. p™] respectively. Let J, and I, be the subrings of J,, and I,
respectively such as given in the corollary to Proposition 1, that
is, J5. (resp. I,) is a ring generated by all of the p**-th powers of
the elements of J, (resp. I,) and the »"?” and the a“*” (resp.
b(m)pm)- Then J,,=J.[X., Yx]wGQ,hEA/(Xﬁm_az(nm)Pm7 Yfm_b&m)pm)men,xez\
and Im=I;n[YA]AEA/(Y{m_bf\m)pm)xeA° Hence J,,= '{n[lm][Xw]wED/(Xﬁm
—a$™?™) ca. Therefore D, (J,) is a free J,module with a free
base {d,a"}.ca. On the other hand, D, (/,)=D/J])/p"D,(])+
JaUp™ 1) =D "D ) =D ])/p"D(]) and d,al™ is the class of

dA{a,,, mod. p”D,(J). Hence we get our result.

Proposition 3. Let J and I be discrete valuation rings with a
common prime element uw and such that I is a subring of J. We
assume that J/u] is separable over Iul. Then b,(]) is a uJ-adic
free module.

Proof. We may assume that I and J are complete by virtue
of the corollary to Theorem 1 in Part I and Lemma 2. Let I be
a coefficient ring of I. Then there exists a coefficient ring J of J
such that J contains I by virtue of Lemma 6. First we treat the
case where I is a field. In this case, I and J are formal power
series rings I[[«]] and J[[«]] respectively. Let {b,},cr be a p-
independent base of I over I?” and let {b,, @} Awca be'a p-indepen-
dent base of J over J?. Since J is a regular local ring of equal
characteristic, D( J) is a uj-adic free module by Theorem 3 and
we see that the d’b,, the d’a, and d’u are a uJ-adic free base of
D(J) by Theorem 1 in Part I and Lemma 4’ Similarly, we see
that D(I) is a ul-adic free module with a ul-adic free base the
d'b, and d'u. By Proposition 5 in [9], it holds that D,(J)=D(J)
mod. the #J/-adic closure of cif(l). Hence Dy( J) is a wuJ-adic free
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module with a uJ-adic free base {dJa,}.co. Next we treat the
case where [ is a p-ring. Let f(X) be a monic irreducible poly-
nomial in I[X] such that f(#)=0. Then f(X) is irreducible also
in J[X], and I=I[X]/(AX)) and J=]J[X]/(f(X)). It is easy to
see that D;(ITX1)=I[X1d1(X) and Dy(J[X])=D«(])®;J[X1®
J[X1d70(X) where I[X]d7'XX) and J[X]d/"(X) are free
modules. Hence applying Proposition 9 in [8], we see that D;(I)
=Dy(I[XD/X)DI[X )+ I[X]dL(f(X)) = 1dLw) and Dr(]) =
Di(JIXD/F(X)D(JLX D) + JIX LN f(X)) = DA(J) Q7] D Jd(w) .
From these and from Proposition 1 in [8] it follows that D,(J)=
DAD/JdN)=Di()®;]. Hence Di(J)=Di D@71/ N D D@7))-
Since D;(J) is a pJ-adic free module by Lemma 7, D,(J) is a
uJ-adic free module by Proposition 3, (d) and (c) in Part L

7. Characterizations of regular local rings (II) (unequal

characteristic case).

Theorem 4. Let R be a local ring of characteristic O with
maximal ideal m and with a residue field of prime characteristic p.
Then R is an unramified regular local ring, if and only if D(R) is
an m-adic free module.

Proof. We may assume that R is complete by the corollary
to Theorem 1 in Part I and by Lemma 2. Let J be a coefficient
ring of R. Then J is a p-ring. We shall assume that R is an
unramified regular local ring. Then R is a power series ring
JIx,, -, XJ1. Weput A=J[X,, -+, X.] and n=(p, X,, -+, X))A.
Then R is the n-adic completion of A. Hence in order to prove
the only if part in our theorem, it is sufficient to prove that the
module of n-adic differentials D(A) is an n-adic free A-module by
virtue of the corollary to Theorem 1 in Part I and Lemma 2. Let
J, be the ring of p-adic rational integers. We put B=J[X,, ---, X].
Then A=J®, B, and by lemma 1 it holds that D(A)=(D(J)®,,B)
H(J®,,D(B)). Hence
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O D@ = DUN,;B N (D(])R,,B)
@(]@100(3))/[”\"”(]®10D(B)) .

If we prove that both components in the right hand side of (1)
are n-adic free modules, we see that D(A) is n-adic free module
by Proposition 3, (a) in Part 1. Since D(B) is a free B-module,
J®,;D(B)=A®sD(B) is a free A-module. Hence J®,D(B)/
N (J®,,D(B)=]®,,D(B) and it is a free A-module, hence an
n-adic free A-module. Next, it is easily shown that D(J)®, B/
N (D())®;,B)=D())®;,BI \n(D(])®,,B) (where D(]) is the
module of pJ-adic differentials of J) as in the proof of Corollary
1 to Theorem 2. Since 15(])®]OB=15(])®,A and since ﬁ(]) is

a pJ-adic free module by virtue of Lemma 7, it holds that
D()H® 7.B/ Np"DO(HR 7,B) is an pA-adic free module by virtue of

Proposition 3, (d) in Part I. Hence we see that D( N®,; B/
[ﬂ\n”(ﬁ( J)®,,B) is n-adic free by virtue of (c) in the same pro-
position. Now, we shall prove the if part of our theorem. Assume
that D(R) is an n-adic free R-module. Let {a}., be a set of
elements of J such that the classes of the @, mod. m form a p-
independent base of R/m over (R/m)? and let x,, «--, x, be a minimal
basis of m. First we shall show that p ¢ m® In the contrary case,
the following exact sequence holds by Lemma 4’;

@2 00— m/m*— (R/m)Q@zD(R) - D(R/m) = 0.

We put d =d® and d’=d’. Then there exists an R-homomorphism
P of R®,f)(]) into ﬁ(R) such that d=@-(1Qd’). We see that
the da, and the dx; form an m-adic free base of f)(R) by (2) and
by Theorem 1 in Part I. Let f be an element of the power series
ring J[[X, +--, X,]] and let f; be the sum of the terms of degrees
<7jin f. Then df(x)=limdf;(x). We shall divide df;(x) into two
parts as follows:

@)  df,x) =3 a—f;—f‘)dx,-wf,-(x).

Since it is easily seen that each of the two terms in the right
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hand side of (3) converges when j increases infinitely, df(x) can
be expressed as follows:

@ dftx) = 3 %%dxﬁl}jg 5f,(x).

Since &f;(x) belongs to the image of R®,f)( J) by @, limé&f;(x)
jroo

belongs to the m-adic closure of the submodule of D(R) generated

by the da,. On the other hand, the first term in the right hand

side of (4) belongs to the submodule of D(R) generated by the dx;.
Therefore if f(x)=O0, then both of the two terms in the right hand

side of (4) are reduced to zero, hence %(cﬂ=0 for every i. Hence

by the same reasoning as in the proof of Theorem 3, we see that
R is a formal power series ring with coefficients in J. Hence
p¢m?: This is a contradiction. Henceforth we shall assume that
pg¢m’. Then we may put p=x,. Applying Lemma 4’, we get the
following exact sequence :

0 — m/m*+ pR — (R/m)QD(R) - D(R/m) = 0.

Hence we see that dx,, ---,dx, and the da, form an m-adic free
base of ﬁ(R). Hence by the same reasoning as above, we can
prove our assertion.

The proof of Theorem 4 is also valid for the following corol-
lary, by virtue of Proposition 3.

Corollary. Let R be a local ring of characteristic 0 with
maximal ideal m. Let I be a discrete valuation ring with a prime
element u. Assume that R/m is separable over I/ul. Then R is a
regular local ring and uwg¢w?®, if and only if D,(R) is an m-adic
free module.

8. Derivation of Nagata. A derivation d of a ring R in the
sense of M. Nagata [6] is an additive endomorphism of the total
quotient ring L of R which satisfies the following conditions :

1) od(xy) = x0y+yox for =x, y€L

and
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2) there exists an element @ of K which is not a zero-divisor
such that @dx€ R for x€R.

Let P be a subring of R. If da=0 for every a€ P, then d is
called a derivation (in the sense of Nagata) over P.

Since L is a quotient ring of R, ¢ is uniquely determined by
the restriction map @ of d on R. If @ is a derivation of R into
L in the usual sense, then @ can be uniquely extended to the
derivation 8 of L into L. However 0 cannot always satisfy the
condition 2) above. The following proposition shows that when
R is an m-adic ring and Dp(R) is a finite R-module, then the
totality' of the derivations in the sense of Nagata is the dual of
LR zDp(R).

Proposition 4. Let R be an wm-adic ving, let L be the total
quotient ring of R and let P be a subring of R. Let d be the
natural derivation map of R into LQDp(R). If 3 is a derivation
of R over P in the semse of Nagata and let o' be the restriction of
d on R, then there exists an L-homomorphism @ of L Dp(R) into
L such that & =pod. Conversely, if Dp(R) is a finite R-module and
if @ is an L-homomorphism of L Dp(R) into L, then &=pod
induces a derivation of R over P in the sense of Nagata.

Proof. Let a be an element of R which is not a zero-divisor
such that adx€ R for x€ R. Then ¢ is a derivation map (in the
usual sense) of R into an R-module R%. Since R% is a Hausdorff
R-module, 9 is decomposed as follows: & =+rod® where » is an
R-homomorphism of Dp(R) into R—i— (CL). Let ®» be the induced
homomorphism of L®RDP(R) into L. Then it holds that 9’=pod,
proving our first assertion. We shall prove the second assertion.
From our assumption it follows that ¢)(1®DP(R)) is a finite R-

module. Hence there exists an element a of R which is not a
zero-divisor such that ap(1QDp(R))CR. Therefore ad(R)CR.

In the condition 2), if @ can be chosen to be 1, d is called an
integral derivation of R (in the sense of Nagata). The totality of
the integral derivation of R is the dual of Du(R).
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