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R*®.,.R* and R’'@®,R'* respectively. The residue class field of
R’* is «*=0%/p*, we have V=Wd,Q1-1Qd,, - .d,Q1-1Rd,)
+(I"*®1, 1Q"*)" for any positive integer m, and hence we see
easily that V(R™*Q®, R'*)w .1~g is generated by » elements
d,®1-1®4d,, - ,d,R1-1R4d,.

On the other hand, by Lemma 1, we see that (R* Qg R*).101)
is a quotient ring of (R*®R*)w .1+g1, and (d) is generated by
n elements d,Q1-1Q4d,, - .d,Q1-1Qd, in (R*Qu R*)p.1201-

Let P and @ be components of X and Y respectively such
that R is a component of P-Q. If P* and Q* are components of
P and @ over o* respectively such that p(P*)-p(Q*) has R* as a
component, the coefficient of R* in p(P*).p(Q*) is equal to that
of p(P*.Q*) by Proposition 8. This fact means that the coefficient
of R* in a5, (p(P)-p(Q)) is equal to that of o4, (p(P-Q)), since we
have o'o‘/o(p(P)'P(Q)) = ‘To‘/o(P(P))'a'o‘lo(l’(Q)) = P(‘To*/o(P))‘P("'o'/o(Q))
and  p(ogero(P) e 0om(R)) = pP(75/o( P+ Q) = 0 5eso(p(P-Q)). Therefore the
coefficient of R in p(P).p(Q) is equal to that of p(P-Q), since R is
the only spot of M whose components over o* contain R*. From
this we can deduce our theorem. q.e.d.

Remark. Let M be an absolutely irreducible model over o.
Then even if M is not p-simple, a similar result as in Theorem 2
is obtained. Let P and @ be spots of M,. Let R be an unramified
simple spot of M—M,, and put P,=K.,,, where = is a prime
element of o. If ¢, (M) is absolutely irreducible over «=o0/p and
if ¢p(R) is a proper component of ¢p (2(P))+dp (p(Q)), the coefficient
of R in p(P)-p(Q) is equal to that of p(P-Q).

In fact let P,,.--, P, be all the generating spots of M over

p, which are different from F,. Then M—(\:/M(P;)) is an open
subset of M containing R, P and @, and a p-simple model over .

Therefore our assertion is obtained if we apply Theorem 2 to this
open subset.

PrOPOSITION 9. Let M and N be two absolutely irreducible
models over v such that M dominates N. Suppose that M is an
affine model defined by o|x]. Let P and @ be a spot of M, and
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its projection on N, respectively, such that [¢p(P): ¢o(Q)]< o=
If Q' is an induced spot of Q over p such that ¢p(o[x]) is integral
over $o(Q). Then the coefficient of @ in p(Pr™y(P)) is equal to
that of Pr¥(p(P)).

Proor. Put ¢Pp(o[x])=0o[%] and S=¢o(@)[x). Then S is a
finite $4o(Q")-module and the maximal ideals q,, ---,q, of S corre-
spond to the spots P,,---. P, of M projected to . Then we have
by Lemma 7

(bl @D [$r(P) : ba(@)] = rm(S; $o(Q)
= S e(xSa) [$rdP) : $0(Q)] = 3 elwbr(PY) [6rPy) : $0(Q")]

and hence

MQ: QV[4p(P) : ba(@] = TP PI[6r P : d/@)].
q.e.d.

THEOREM 3. Let M and N be two absolutely irreducible models
modulo Y such that M is complete and dominates N. Let P be a
spot of M, and let Q be its projection on N. Let Q' be an induced
spot of Q over b such that if P,, -, P, are all the induced spots
of P over p whose projections on N are Q. Suppose that there exists
an open subset A of M which is an affine model and contains P,, -, P,,.
Then the coefficient of $q(Q") in Pr™’  A(p'(P)) is equal to that of
p'(PrMy(P)), where Q, is the unique generating spot of N over p and
where M’ and N’ are the induced models of M and N with respect
to the generating spois.

Proor. We may assume that [$pp(P): do(@)]<oo. Let v[x]
be the affine ring of A. Then it is sufficient by Proposition 9 to
show that ¢p(ofx]) is integral over ¢o(Q’). If it is not so, there
exists a valuation ring v of $p(P) which dominates ¢y(@") and does
not contain ¢p(o[x]). Since M is complete, there exists a spot P’
of M such that P’ is contained in M(P) and ¢p(F’) is dominated
by ». Since P’ dominates &', the dimension of P’ is not less than
that of @’. On the other hand since P’ is a specialization of P,
the dimension of P’ is not more than that of P, and hence they
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are equal to each other. Therefore P’ is an induced spot of- P’
over p. Since P’ does not contain o[x], P’ is different from any
P; (i=1,..,n). This is a contradiction. q.e.d.

COROLLARY. Let M and N be two absolutely irreducible models
modulo v such that M dominates N. If M is a projective model,
then for any spot of M,, we have Pr™ y(p'(P))=p'(Pr™y(P)), where
M’ and N’ are the induced models of M and N with respect to the
generating spots over Y respectively.

Let M be an absolutely irreducible model modulo p with the
generating spot P, over p. Now we assume that P, is normal. Let
f be an element of the function field L of M. Then P, contains
f or 1/f, since P, is a valuation ring. Therefore we can define a
generalized quantity f of the function field of ¢, (M) over «. In
this situation we have the following

THEOREM 4. Let M be an absolutely irreducible model modulo
p with the generating spot P, over p. Suppose that P, is normal.
Let f be an element of the function field of M, such that f is an
element of the function field of ¢p (M) other than zero. Then we
have I)’((f)M)zfl'(Pﬂ)(f_)'ﬁpo‘ M-

Proof. Let R be a spot of M corresponding to a spot R of
rank 1 in $p (M). Then R is of rank 2. First we assume that f
is contained in K. By assumptions f is not contained in the
minimal prime divisor m of (z)R, since R, is P,. Therefore if f
is not a unit of R, (=, f) is a system of parameters of R and hence
we have, by Lemma 9,

e((m, fHR) = e((7)Ry) el(z, fIR/m)
= T el(HR) el(z, 0) R/ |
where q,, -+, q, are all the minimal prime divisors of (f)R. If

we denote by vz(f) (resp. vg{f)) the coefficient of R in (f) (resp.
that of R; in (f)), the above relation means that

MPYURF) = 2 v )R : R),
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if we put Ry;=R;. Therefore we easily see that the coefficient of
of R in p’((f)a) is equal to that of u(P)( f)"m"""

If f is a unit of K, then the coefficients in both generalized
cycles are zero.

If f is not contained in K, we may put f=t¢,/¢,, where ¢, and
¢, are elements of R not contained in m. In fact f is contained
in P,=K,, and not in mR,. Therefore we have

MPYORT) = 2 owt) R R)

and
PR E) = 3 vt w(RS ; R),

where Rj (j=1.--+.,r) are all the spots corresponding to the
minimal prime divisors of (¢,)R or (f,)R.
On the other hand it is easy to see that

vi(E) = vR(f)+vr(E.)
and
l’Rg(l,) = UR;(f)““UR;(tz) .

Therefore we have
MP)vR(f) = Py vei( )RS R).
This means our theorem. q.e.d.

COROLLARY. Let M be a p simpie model over o with the generat-
ing spot P, over p. Let f be an element of the function field of M.
Then if f is an element of the function field of bp (M) different
from zero, we have p'((f)u)=(F ),,«,PO(M,.

§5. Relation between models over o and p-varieties

Let (o, p) be a discrete valuation ring of rank1l with the
quotient field k. Let V be an afline variety defined over %, and
let (x) be a generic point of V over k£ Then it is easy to see
that the set of all the specialization rings of points of V in k(x)
is an afline model defined by k[ x], which will be denoted by M,(V).
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Now we consider the affine ring o[x] over o. Let M(V) be the
affine model defined by o[x]. Then the reduced model of M(V)
over k is obviously M(V). If V is the bunch obtained from V
by the reduction with respect of p in the sense of [8], then it is
easily seen that M(V)—M,(V) is the set of all the specialization
rings of points of Vin k(x). Moreover the generating spots of M(V)
over p correspond to the generic points of the prime rational
components of V over «=o/p. Conversely let M be an affine
model defined by o[ x], which is assumed to be absolutely irreducible
over o. Then if we denote by V the locus of (x) over k, then M,
is M(V), and M(V) is nothing else than M. We shall call a
complex notion of V and V an affine p-variety, and we denote it
by (V, V).

Let V’/ be an affine variety defined over % and let (x’) be a
generic point of V’ over k. Then it should be noticed that even
if k[x]=k[x"], we have not always o[x]=o[x"] and hence M(V)
is not always equal to M(V’). We have M(V)=M(V’) if and only
if (V, V) corresponds to (V’, V') biregularly everywhere on V
and V.

Let (@) be a point of V or V. Then we denote by M(V)y,,
the locus of the spot corresponding to (a).

A p-variety in the sense of [8] is defined as follows:

(1) There are given a finite number of affine p-varieties
(V,, V), -, (V., V) satisfying the following conditions :

(i) There exist generic points (x,), -+, (x,) of V,, .-, V, over
k respectively such that k(x,)= --- =k(x,)=L. We shall denote by
M, the affine model defined by of x;] for each i.

(ii) For each i, there exist a finite number of points (a;;) of
(V:, V) such that the union of n models M'P=M,—(\J M;,,;) is

also a model M in L defined over o.

(2) Let M, be the reduced model of M over k&, and we denote
by V an abstract variety defined over k corresponding to M, in
the sense of [4]. (V is an abstract variety defined by affine
representatives V,, ..., V, with some frontiers).

(3) Let P, .- P, be the generating spots of M over b, and let
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W; be an algebraic set, i.e., an algebraic variety in the sense of
of Serre [7]. which corresponds to the induced model ¢p (M) for
each i. We shall denote by V the union W,,---. W,,. V is also
an algebraic set defined over o/p.

(4) A p-variety is defined as a complex notion of V and V.

We shall denote henceforce a p-variety thus defined by (V, V).
When a p-variety (V. V) is given, we shall denote by M(V, V)
the model obtained in (1)-(ii).

Conversely let M be an absolutely irreducible model over o,
and let A,,---, A, be affine models which cover M. Let (V.. V)
be the affine p-variety corresponding to A; for each i. Then it is
easy to see that there exists a p-variety (V, V) with an affine
open covering (V;, V.) such that M is equal to the model M(V, V).

It is also easily seen that for two p-varieties (V, V) and
(V', V%), which have the same function field over k we have
M(V, V)=M(V’, V') if and only if there exists an everywhere
biregular birational correspondence between (V, V) and (V’, V).

Next we shall show that the operation p’ defined in §3 is
equivalent to the operation p defined in [8]. In order to do so.
we shall consider to represent the multiplicity of a proper speciali-
zation'® over o by that of a primary ideal of its specialization ring.

Theorem 5. Let (t) be a set of quantities in Q and let (1)
be a finite specialization of (1) over v, which is a set of quantities
in Q. Let (s) be a set of quantities in (), algebraic over k(t) and
let (o) be a proper specialization of (s) over the specialization ring

[(t)—0>(r.-)]. Let (R, m) and (S,v) be the specialization rings

Al
L&) 2. ()] and [(s, t) = (o, )] respectively. Then the multiplicity
of (o) as a proper specialization of (s) over R is equal 1o
e(mS)[«(r, o) : (7)) if the following conditions are satisfied

13) This definition is not apparently the same one as given in [8], but attentive
readers will find easily that they are essentially the same.

14) As for the definition, see §2 in [8].

15) This theorem gives more precise result than the theorem 2 in [8], and the
theorem 3 in [8] will be obtained from this theorem using Lemma 7.
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(i) o[¢] is integrally closed and o[t s is integral over oft].

(i) R is a simple spot.

(iii) A(¢) is separably generated over k and k(t, s) is separable
algebraic over k(t).

Morcover (iil) is not necessary if o satisfies the finiteness con-
dition for integral extensions."

Proor.™ First we assume that k(f, s) is separable extension
of k(f). Let (¢) be (¢,,:-,t,) and let (s) be (s,.---,s,). Let
u,, -, u, , be independent variables over A(#). Then if we put

” wm
Spr= 2, Wi+ 2 U,.;S;, it is easy to see that k(. ¢, s, --,s,)
=

=k(u, ¢, s,...)- On the other hand let #,, -+, &,_, be independent

0
variables over «(7) and let o” be the specialization ring [(«) — (i7)].
Then (7, o) is also a specialization of (¢, s) over o’. Let (I, m)

’

be the specialization ring [(t)—n-”(-r)]. Now we notice that if
(71, +,0ms1) and (o7, --+, omy) are specializations of (s,.-,s,,.,)
over R’, (¢/)=(o") if and only if &,,=05,,.

Let f(X)=XY+¢,X? '+ -+ +¢, be the irreducible equation for
S+ over k(u, t). Then by assumptions all the ¢; are in o[, u].
Therefore we can consider the equation f(X) in «(r, ©)[X] ob-
ained from f(X) by reduction of coefficients modulo b.

Let (s®), -+, (s“°) be the complete set of conjugates of (s)
over k(t). If we put si),= iu;t;+ ‘2 U,:;8§7, then (sl -, sty
i=1 j=1

is the complete set of conjugates of s,., over k(u, t). Therefore
the multiplicity A of (¢) in the specialization (%), ---, (c°4’) of
(s™), -, (s) is equal to that of &, , as a root of f(X). where

Oy = 2 i+ i #t;.,0;. On the other hand let g(X) be the equa-
=1

i=l
tion for o,,., over «(r, 7). Then f(X)=g(X) h(X), where I(X) is
an equation in «(7, #)[ X] such that i(s,_,):1-0. Therefore if o,,_,
is a root of g(X) of multiplicity u#, we have A=X\p. Let S’ and

t4 ’

0 0
S1 be the specialization rings [(¢, s) — (7. )] and [(¢, s,.4.) —

16) As for the definition, see the introduction of [4-1].
17) The original idea of this proof is due to the proof of Theorem 5. 16 in [5].
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(7, 7, )] respectively. Then S; is a quotient of R'[s,,.,]. which
is isomorphic to R TX])/(f(X)). Since R’ is simple, the unmixed-
ness theorem holds in R’*™ and hence in Si.™ Since Si is a local
ring, any system of parameters in Si is a distinct system of para-
meters.” Since K’ is regular and rank R'=S1, the maximal ideal
m’ of R’ is generated by rank S{ elements and hence we have
e’ S)=/(S7/m’S}). Moreover it is easily seen that Si/m’S{
is isomorphic to («(it, 7)[X 1/(g(X)"))gx-- Therefore we have
e(m’S{)=)\ and hence M=\p=e(’'S)[«(#, =, 0,,.,) : «(it, 7)];. Since
(s) has the unique specialization (o' over S;, S’ is integral over
S{. The quotient field of S’ is that of S] and hence, by assump-
tions, S’ is a finite S{-module. Therefore, by Lemma 7, it is easy
to see that

e(m’SY) = rm(m’'S”: S7) = e’ S)[«(a, =, o) : w(id, 7. 7,,.,)].

Since «(i7, 7, o) is purely inseparable over «(#, 7, 7,.)), A is equal
to e(m/S")[«(i. 7. o) 1 x(i7, 7)];. It is evident that e(mS)=e(m’S’)
and [«(7, 7)1 k(7)) ];=[«(@, 7. 7)1 k(it, 7)];, and hence we obtain
A=e(mS)[«(r, &) : x(7)];. :

If k(t, s) is not separable over k(?), let L be the separable
closure of k(¢#) in k(f, s) and A the intersection of L and o[¢, s].
Then A is an affine ring o[¢, 7] over o and of¢, s] is integral over
A. Therefore a unique specialization (7, p) of (¢, r) is determined
by a specialization (v, &) of (£, s) over v and conversely any speciali-
zation (r, p) of (¢, r) over o is extended to (7. ¢’) of (¢, s) uniquely.
If A, is the multiplicity of (p) in a specialization of the complete
set of conjugates of (#) over k(#), the mutliplicity of (¢) in a com-
plete set of conjugates of (s) over k(#) is equal to A\ [k(2, s): k(¢ 7)].

If S, is the specialization ring [(i, r)-o*('r, Y] X is equal to
e(mS,) [«(r, p) : x(v)]; by the above investigation. On the other
hand it is easy to see that S is integral over S,. Since now o
satisfies the finiteness condition for integral extensions and S, is

18) See Theorem 6 in [3].
19) See Propositions 8 and 9, and Remark 1 of p. 211 in [3].
20) See Theorems 4 and 5 in [3].
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a spot over v, S is a finite S-module. Therefore, by Lemma 7,
we have

A = N[k, 5) k(L 1)] = e(mS)[x(r, p) : e(7) ]:[R(2, ) - k(t, 7)]
= e(mS)[«(r,0) : k{7, p)L:[ (7, P) : e(7)]; = e(mS) [ (7. @) : x(7) ]; .

g.e.d.

Now we shall show that our multiplicity #( ; ) is equivalent
to x( ; ) defined in [8].*” It is sufficient to treat only affine
varieties.

Let V" be a prime rational cycle over % in an affine space A",
where a system of coordinates is fixed, and let C be a prime com-
ponent of the bunch of varieties obtained from V by the canonical
reduction with respect to this system of coordinates. Let P” be
a projective space containing A" and let V, be the closure of V
in P*. Let V, be the bunch of varieties obtained from V, by the
reduction with respect to p. Now we may assume that the residue
class field « of o is not finite. In fact if « is finite, let ¢ and ~
be independent variables over £ and over « respectively. Then o
is extended to the functional valuation of k(¢#) having the residue
class field «(7). It is evident that we may replace & by k().

Therefore there exists a hyperplane H in P” such that H in
™ does not contain any component of V,. Let A’ andV’ be an
affine space P”"— I and a prime rational cycle V,—H in A’ respec-
tively. Let C’ be the prime rational cycle over « in P"—H cor-
responding to C. Then it is sufficient to investigate V' and C’in
place of V and C, since the treated properties are local.

Let (P, m) and (@, n) be the spots in M(A’) corresponding to
V' and C’ respectively. Then we have to show u(P: Q)=u(V’; C"),
where the right hand side is the multiplicity defined in | 8].

First we assume that V’ has no multiple components. Let
() and (£) be generic points of V’ and C’ respectively. Let
t;; (i=1.-+,7r; j=1,-+,n) be independent variables over Fk(x)
and 7; (i=1,.:,r; j=1,-+,n) independent variables over «(£).

21) This is shown in [2] in the case when o satisfies the finiteness condition for
integral extensions,
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Put #,= > ¢t;x; and 7= 3 7;&; for each i. Moreover we put
i 1 j

0
0¥ [(:;) = (=;;)]. Then it is easy to see that (x) is integral and

separable over o*[¢,,.-,f,]. Let R be the specialization ring
0¥ o* .
[(#) — (7)] and let S be the specialization ring [(¢. x) — (=, §)].

*
Then (z)R is the maximal ideal of R and S is equal to [(x) 2. ®1].
If X is the multiplicity of (§) as a specialization of (x) over R,
then by Theorem 5 we have A=e(zS)[«(r;;. 7, &) :x(r;;, 7)];. On
the other hand it is easy to see that e(zS) is equal to the multi-
plicity of the ideal generated by = in the specialization ring

l:(x)—')*(&)] and hence to w(P; @) in our sense. Moreover it is
easy to see [«(§):«] =[«(7;;, 7. &) :x(7;;, 7)]; and hence we have
e(xS)=\/[x(&) : «]..

However M/[«(§):«], is, by definition, equal to the multiplicity
MV’': C’) in the sense of [8].

Next we consider the case where V’ has multiple components.
Let (x) and (§) be as above, and let #* be a purely inseparable
finite extension of % such that k*(x) is separable over £*. Let o*
be the unique extension of v in k* and let «* be the residue class
field of o*. Then «* is also purely inseparable over «. Let V;
be the locus of (x) over k* and let C{ be that of (&) over «*.
Let P, and @, be the spots over v* corresponding to V| and C;
respectively. Then we have w(P,; Q)=u(V{;: C).

On the other hand p(V’) and p’(P) are compatible with exten-
sion of ground rings. Therefore the equality u(P,: Q,)=u(V{: C})
means the equality u(P; @)=V’ C’).
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