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R *0 0.R *  and R '0 0 . R '*  respectively. The residue class field of
R '*  is K* = o*/ p*, we have b' = (d i 1  —  1  d „ - • • d „  1 — 1 d„)
+( f '* 0 1 ,  1 f ' * ) ' "  for any positive integer n i ,  and hence we see
easily that b'(R' * 00-1? / * )(a'.1, -01) is generated by n  elements
d, ®  1-1 O d ,  ••• d „ 0 1 - 10d .-

On the other hand, by Lemma 1, we see that (R * 0 0 . R
*is a quotient ring of (R '*® ,,R .'*) (1,•.1, •e l, and (b) is generatedb .1 ®bly)

n  elements d10 1 — d „ • • •  , d „0 1 - 1 0 d „ in  (R*0,,..R*)(b,1.01).
Let P  and Q  be components o f X  and Y  respectively such

that R  is a  component of P . Q .  If P *  and Q * are components of
P  and Q over o*  respectively such that p(P*)•p(Q*) has R *  as a
component, the coefficient of R *  in  p(P*)•p(Q *) is equal to that
of p(P* .Q *) by Proposition 8 .  This fact means that the coefficient
of R *  in 0-

0 ./ 0 (p(P)•p(Q )) is equal to that of 0-
0 ./0 (p(P•Q)), since we

have (3 -03100(P) -  P(Q)) ‘ 7 0.10(p(P)). 6 - 0.10()(Q)) k ro - to (P)) . P ( 0 - 0,10(0 )
and p(cre i 0 (P)•(7 0 , 1 0 (Q))— p(0-

0 ,,0 (P•Q ))=0 -
0 .1 0 (p (P•Q )) . Therefore the

coefficient of R  in p(P)•p(Q ) is equal to that of p(P•Q ), since R  is
the only spot of M  whose components over 0* contain R * .  From
this we can deduce our theorem. q.e.d.

R em ark . L et M  be an  absolutely irreducible model over o.
Then even if  M  is not P-simple, a  similar result as in Theorem 2
is obtained. Let P and Q be spots of M k .  Let R  be an unramified
simple spot of M -  M k , and put P0 =R ( „) R ,  where 71' is  a  prime
element o f o . I f  (Ppo (M )  is absolutely irreducible over K—oip and
if (frpo(R) is a proper component of Opo (p(P))•(Pp o (p(Q)), the coefficient
of R  in  p(P)•p(Q ) is equal to that of p(P•Q).

In  fact le t  P, • - •  , P., be all the generating spots of M  over

p, which are different from P .  Then M — (0  M (P i ) )  is  an open
8= 1

subset of M  containing R , P and Q, and a n--simple model over ir).
Therefore our assertion is obtained if we apply Theorem 2 to this
open subset.

PROPOSITION 9. L e t M  and N  be tw o absolutely  irreducible
models over o  such that M  dominates N. Suppose th at  M  i s  an
af f ine model defined by  o [ x ] .  Let P  and Q  be a spot o f  M , and
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i t s  projection on N k  respectiv ely , such that Dp(P): q5 Q (Q )]< cc .
I f  Q' is an induced spot of Q over p such that O ,(o [x ]) is integral
over (f)0 ( Q ) .  Then the coef f icient of  Q ' in p(Prm N (P ) )  is equal to
that o f Pr" N (p(P)).

P R O O F . P u t  (Pp(o[x])---  o [X ] a n d  S=4) ( ;,(q ) [ . q .  Then S  i s  a
finite thQ (Q')-module and the m axim al ideals q„ •-• , q r  o f  S corre-
spond to the spots P„ ••• . Pr  o f  M  projected to Q '.  Then we have
by Lemma 7

e(7r0Q(Q')) D p(P ) (1)(4(Q)1 r1, 1(.7rS 56o (V ))

=  Ê  e ( T S )  D i , (Pi) :550 2 ' ) ]  =  e ( -1-5br(Pi))EOp i (P i):0 0 '(q )]

and  hence

,(Q ; Q')E6 , (P )  , f, e(Q)] : P.))Dp 1(P i) 00 W ) ]
q.e.d.

THEOREM 3. Let M and N be two absolutely irreducible models
modulo p  such  that M  is complete and dominates N . L e t  P  be a
spot of M k and let Q be its projection on N. Let Q ' be an induced
spot of Q  over p  such that if  P ,,  ,  P „  a r e  all the induced spots
o f P  over p whose projections on N are Q'. Suppose that there exists
an open subset A of M which is an affine model and contains P„ .••,P„.
T hen the coefficient of CPQ.(Q ' )  in Prm i

 N i(p '(P )) is equal to that of
p'(PrmN (P )), where Q„ is the  unique generating spot of N over p  and
where NI' and N' are the induced models of M  and N  with respect
to the generating spots.

P R O O F. W e m ay assum e that [4 (P ): 4 ) 0 (Q )]< 0 .0 . L et o[x]
be th e  affine r in g  o f  A .  Then it is sufficient by Proposition 9 to
show  that Op(o[x]) is integral over (1)0 (Q'). I f  it is not so , there
exists a valuation ring v of Op(P) which dominates tk,(Q') and does
not contain p ( o [ x ] ) .  Since M is complete, there exists a  sp o t P '
o f  M  such that P '  is contained in  M (P ) and  (Pp(P') is dominated
by y. Since P ' dominates Q', the dimension of P ' is not less than
that o f  Q '.  On th e  other hand since P ' is  a  specialization o f  P.
th e  dimension o f  P ' is not m ore than that o f  P , an d  hence they
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a re  equal to each other. Therefore P ' is an induced spot o f  P
over p. Since P ' does not contain o [x ],  P ' is different from any
P. (i=1 ,  ••• ,n). T h is  is  a  con trad ic tion . q.e.d.

COROLLARY. Let M  and N  be two absolutely irreducible models
modulo p  such  that M  dominates N .  I f  M  is  a projective model,
then fo r  any  spot of Mk, we have Pe"' N , (p'(P))=p'(Prm N (P)), where
M ' and N ' are the induced models o f M  and N  with respect to  the
generating spots over p  respectively.

L et A l be a n  absolutely irreducible model modulo p  with the
generating spo t P„ over P. Now we assume that Po is norm al. L et
f  be a n  element of th e  function field L  o f  M . Then P„ contains
f  o r  1/f, since Po i s  a  valuation r in g .  Therefore we can define a
generalized quantity f  o f th e  function field  of 6 , 0(M ) over K. In
this situation we have  the  following

THEOREM 4. Let M  be an absolutely irreducible model modulo
with the generating spot P o over p. Suppose that P o i s  normal.

Let f  be an element of the function fie ld  o f M , such that I is  an
element o f  the function field of 4)p0 (M ) other than zero. Then we
have P'((f)m )=P(PO(T);p 0 ' M  •

Proof. L e t  R  b e  a  s p o t  o f  M  corresponding to a  s p o t  f ? of
rank 1 in  (Ppo (M ) .  Then R  is o f  rank 2. First w e assum e that f
is contained i n  R .  By assumptions f  is not contained in  th e
m inim al prim e divisor ni o f  (7 r)R , since 141 i s  P „ .  Therefore if  f
is not a  unit o f R , (7r, f )  is a system o f  parameters o f  R  an d  hence
we have, by Lemma 9,

e((7r, f))R) = e((7)R„1)e((7r, f)R1m)

e((f)Rq i ) e((z , cliM/qt)

where q„ •-• , q„ a r e  a l l  the  m inim al prim e divisors o f  ( f ) R .  If
we denote by  v ( J )  (resp. vR i ( f ) )  the coefficient of  l  in ( / )  (resp.

that o f  R i  i n  ( f ) ) ,  th e  above relation means that

ik(Pu)vTA.T) = vRi (f )p(R i ; R ),
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i f  we put R 1 = R 1 . Therefore we easily see that the coefficient of
of A' in p'((f)m ) is equal to that of it(P0)(1),,,p  (m ) .

If f  is  a un it o f R , then the coefficients in both generalized
cycles are zero.

If f  is not contained in R , we may put f= t,/ t„  where t, and
t. are  elements of R  not contained in  in. In fact f  is contained
in  Po = R„, and not in  inR,„. Therefore we have

/4(P0)V (t 1) = vR i(t,)p,(R'i  R )
J-1

and

AP 0) rTz(1 2) = R,j(t OA ; R)

where R ; (j-=1. ••• , r) a re  a ll the spots corresponding to the
minimal prime divisors of (t ,)R  or (t 2 )R.

On the other hand it is easy to see that

v ( 11) =  vi(7)+z7A10
and

V R / (t =  V R I( f)±  V ie ( t2 )  •

Therefore we have

A N u A f ) v ie(PA R ; ; R)
j -,1

This means our theorem. q.e.d.

COROLLARY. Let M be a p simple model over o with the generat-
ing spot P. over p. Let f  be an element of the function fie ld  o f M.

Then if f  is  an element of the function field o f  (f)p.(M )  different

from  zero, we have p'((f) m )=(f) o p o c m ) .

§ 5. Relation between models over o  and P- varieties

L et ( L I ,  p )  be a  discrete valuation r in g  o f  rank 1 with the
quotient field k. L e t V  be an affine variety defined over k  and
le t  (x ) be a  generic point of V  over k. Then it is easy to see
that the set of all the specialization rings of points of V in k(x)
is an affine model defined by k[xl, which will be denoted by M k ( V).
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Now we consider the affine ring o [x ] over o. Let M (V ) be the
affine model defined by o [x ] .  Then the reduced model of M(V)
over k  is obviously Mk (V ) .  I f  V  is  the bunch obtained from V
by the reduction with respect of p in the sense of [8 ] ,  then it is
easily seen that M(V)—Mk (V ) is the set of all the specialization
rings of points of V in k (x ). Moreover the generating spots of M(V)
over p  correspond to  the generic points of the prim e rational
components o f  V  over K =0/p. Conversely le t  M  b e  a n  affine
model defined by o[x], which is assumed to be absolutely irreducible
over o. Then if we denote by V the locus of (x) over k , then Mk

i s  M k(17 ), and M (V ) is nothing else than M . W e shall call a
complex notion of V and V  an  aff ine P-variety , and we denote it
by (V, V).

L e t V ' be an affine variety defined over k  and let (x ') be a
generic point of V ' over k. Then it should be noticed that even
i f  k [x ]=k [f ],  we have not always o [x ]= o [x l and hence M(V)
is not always equal to M (V '). We have M (V )=M (V ') if and only
if (V , V ) corresponds to  (V ', V ') b iregu larly  everywhere o n  V
and V'.

Let (a) be a po in t o f V or V . Then we denote by M(V),„,
the locus of the spot corresponding to (a).

A p-variety  in the sense of [ 8 ]  is defined as follows :
( 1 )  There a r e  given a  finite number o f  affine P--varieties

( V,, V ,), ••• , (V„, V„) satisfying the following conditions :
(i) There exist generic points (x,) , , (x„) o f V„ ••• , V„ over

k  respectively such that k (x ,)= ••• =k (x „)=L . We shall denote by
M1 the affine model defined by o[x i ]  for each i.

(ii) For each i, there exist a  finite number of points (au )  of
(V 1 ,  V1)  such that the union of n  models M Mi —( V  At k a )  is

also a  model M  in L  defined over o.
( 2 )  Let M I, be the reduced model of M  over k , and we denote

b y  V  an  abstract variety defined over k  corresponding to Mk in
th e  sense o f  [4 ]. ( V  is  a n  abstract variety defined by affine
representatives V„ ••• , V„ with some frontiers).

(3) Let P,,•••,P„, be the generating spots of Mover p, and let
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Wi be an algebraic set, i.e., an algebraic variety in the sense of
of Serre [7 ] ,  which corresponds to the induced model ( i (M ) for
each i. We shall denote by V  the union W „  ,  Wm . V is also
an algebraic set defined over op.

( 4 )  A ti-variety is defined as a  complex notion of V and V .'"
We shall denote henceforce a P--variety thus defined by (V , 17).

When a  p-variety (V. V) is given, we shall denote by M(V, 17)
the model obtained in  (1)-(ii).

Conversely le t  M  be an absolutely irreducible model over o,
and let A , ,  •-• , A n b e  affine models which cover M . L e t ( Vi , 171)
be the affine p-variety corresponding to A i  fo r each i. Then it is
easy to see that there exists a  p-variety ( V , V ) with an affine
open covering (1/1 ,  Vi )  such that M  is equal to the model M (V , 17 ).

It is also easily seen that fo r two 1-varieties (V , V ) and
(V ', 17 '), which h ave th e  same function field over k ,  w e have
M (V , V)--=M (V', V ')  if  an d  on ly i f  there exists a n  everywhere
biregular birational correspondence between ( V , V ) and (V ', V').

Next we shall show that the operation p ' defined in  § 3  is
equivalent to the operation p  defined in  [8 ] . In  order to  do so,
we shall consider to represent the multiplicity of a proper speciali-
zation"' over o by that of a primary ideal of its specialization ring.

Theorem  5•
1"  L et ( t )  be a se t o f  quantities in  n  and let (T)

be a  finite specialization o f  ( t)  over o ,  w hich is a se t o f  quantities
in  112'. L et (s) be a se t  o f  quantities in 12 , algebraic over k (t) and
le t (0) be a proper specialization o f  (s) over the specialization ring

Ut) — *H i  L e t  (R, m ) an d  (S, r )  be the specializ ation rings

[(t)---■ (T)] and [(s, t) (0-, 7 - ) ]  respectively. T h e n  the multiplicity
o f  ( a )  a s  a  proper specializ ation o f  (s) ov er R  is  eq u al to
e(mS)[K(T, 0): K ern if  th e  following conditions are satisfied:

13) This definition is not apparently the same one as given in  [ 8 ] ,  but attentive
readers will find easily that they are essentially the same.

14) As for the definition, see § 2  in  [8 ] .
1 5 )  T his theorem gives more precise result than the theorem 2  in  [ 8 ] ,  and the

theorem 3  in [ 8 ]  will be obtained from this theorem using Lemma 7.
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(i) o [t ] is integrally  closed and o [t , s i  is integral over 4 1 1
(ii) R  is  a simple spot.
(iii) k (t) is separably generated over k  and k (t, s) is separable

algebraic over k(t).
Moreover ( i i i )  is not necessary i f  o  satisf ies the finiteness con-

dition f o r integral extensions."'

PROOF.")  F ir s t  w e  assume that k (t, s) is separable extension
o f  k(t). L e t ( t )  b e  (t„ ••• , t„) a n d  le t  ( s )  b e  (s,, ••• , s,„). Let
u „ ••• , u„_„, be independent variables over k ( t ) .  Then if  we put

=u t  + u n + i si ,  it is  e a sy  to  se e  th a t k(u, t, s, , ••• , s,„)

=k(u, t, On the other hand let z , ,  fi, , „  be independent
ovariables over K(rr) and let o' be the specialization ring [(u) — ÷ (a)].

Then (I-, 0- )  is also a  specialization o f ( t , s )  over o'. Let (R ', ne)

b e  th e  specialization r in g  [(t) '(r)]. Now we notice that if
• • •  , c4 . , i )  and (al , ••• , cr )  are specializations of (s,. ••• , s„,.,)

over R ', (0• = (o - " )  if and only if
Let f (X )=X `i -i-c,X d - I+ +c d  be the irreducible equation for

s„,,, over k(u, t). Then by assumptions all the ci  a re  in  o[t, u].
Therefore we can consider the equation .T (X ) in  K (7, ii)[X ] ob-
ained from f (X )  by reduction of coefficients modulo p.

Let ( s 1') , ••• ,(s ( d) )  b e the complete set of conjugates of (s)

over k(t). If we put u iti+  2 then (s T , i  . •-•
1 - 1

i s  the complete set of conjugates of s„,_, over k(u, t). Therefore
the multiplicity X  o f (0- )  in  the specialization (0- `") , ••• ,

 ( a d ) )  o f
( s " ) ,  , (..54 ) )  is  equal to  that of O- „, , a s  a  root of j(X ) , where
O m s i  = f i t r i+ _„(Ti. On the other hand let g(X ) be the equa-,-1
tion for over r e ( r ,  a). Then f (X )= g(X ) / h(X ), where h(X ) is
an equation in K (7, f i)[X ] such that h(m _,) 1-0. Therefore if
is  a  root of g(X ) of multiplicity we have X = X 'p . .  Let S ' and

0o' ,
SÇ b e the specialization rings [(t, s) a ) ]  an d  [(t , s,„+ ,) —÷

16) As for the definition, see the introduction of [4 -I].
17) The original idea of this proof is due to the proof of Theorem 5 . 1 6  in  [5 ] .
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a-„, respectively. T hen S'i i s  a  quotient o f  R Is„,,,], which
is isomorphic to R T X ]l( f ( X ) ) .  Since R ' is  sim ple, the unmixed-
ness theorem holds in  R '"  and hence in  S . 1 .̀ S in c e  S ; is  a local
ring, any system  o f  parameters in SÇ is  a distinct system o f  para-
m eters."  S ince R ' is regular an d  rank R '=S 'i ,  the m axim al ideal
in ' o f  R ' is generated by rank  SÇ e lem ents a n d  hence we have
e(iii'S',)=/(SUin'S'1). M o re o v e r  it  is  e a s ily  s e e n  th a t  SUin'Sf
is  isom orph ic to  (K ( f i ,  7 ) [X ]/ (g (X )k ) ) , . Therefore we have
e(in'SD = X' and hence X = X ',L6= e(iit'S a f f ( a ,  '7, m .„ ) .  Since
(s )  has the  un ique  specialization ((r) over S Ç ,  S '  is integral over
SÇ . The quotient field  of S ' is that of SÇ and  hence, by assump-
tions, S' is  a  finite S'i -module. Therefore, by Lemma 7, it is easy
to see that

e(ne =  r tn ( n t 'S '; e(it'S`)Eic(rt, 0 - ) :  IC07, 7 , rf m . , i ) ]

Since K(fi, 7 , 0 - )  is purely inseparable over T , X  is equal
to  e(iii'S')EK(Ii. 7, : (ii. T ) ] ; .

 I t  is  e v id e n t  th a t  e(inS)--e(nt' S ')
u /C‘ T ,  ( T ,  1C‘ 7 , , i = 7 , : KV( , ,a n d  r ( ( r ( 7 a n d  hence w e obtain

X = e(iitS)Etc(T, c r ) :  K e rn ,
I f  k (t, s)  is not separab le over k (t), l e t  L  b e  th e  separable

closure of k (t)  in  k (t, s) a n d  A  the intersection of L  and  itt, s].
Then A is an affine r in g  r[t ,  r] over o  and  o[t, s ]  is integral over
A .  Therefore a  un ique  specialization (7 ,  p) o f  (t, r ) is determined
by a specialization (7 ,  (r) o f  (t, s) over o and conversely any speciali-
zation (7 ,  p) o f  (t, r)  over o  is extended to (7 ,  a l  o f  (t, s) uniquely.
I f  X0 i s  th e  multiplicity o f  (p) i n  a  specialization o f  th e  complete
set of conjugates o f  (r) over k (t), the  mutliplicity o f  (OE) in  a  com-
plete set of conjugates o f  (s )  over k(t) is equal to X „Lk(t, s): k(t, r)].

I f  S , i s  t h e  specialization r in g  [(t, r) (T, p)],X o  is  e q u a l to
e(InS0) pc(7-, p )  KM] ;  b y  t h e  above in v e s t ig a t io n . O n  th e  other
h an d  it  is  e a sy  to  se e  th a t S  is in tegral over S,,. Since now o
satisfies th e  finiteness condition for integral extensions and  So i s

18) See Theorem 6  in [3 ] .
19) See Propositions 8  and 9 , and Remark 1  of p. 211 in [3 ] .
2 0 )  See Theorems 4  and 5  in [3 ] .
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a spot over o, S  is  a finite Se --module. Therefore, by Lemma 7,
we have

X = Xe [k(t, s): k (t, r ) ]  =  e(mS„)[K(r, p ) :  K (T ) I [k ( t ,  s ) :  k ( t ,  r)]
ovr, 0- , : K  j i= e(n1S)[ic(r,0 - ): K e r ,  p a [ K ( r ,  p):K(T)] ;  = e(niS)1 (

q.e.d.
Now we shall show that our multiplicity It( )  is equivalent

to  p (  ;  )  defined in  [ 8 ] . ' ) It is  su ffic ien t to  treat o n ly  affine
varieties.

Let V" be a prime rational cycle over k  in an affine space A",
where a system of coordinates is fixed, and let C  be a prime com-
ponent of the bunch of varieties obtained from V by the canonical
reduction with respect to this system o f coordinates. Let P "  be
a projective space containing A " and let Ve b e  the closure o f V
in P " .  Let V° be the bunch of varieties obtained from Vo b y  the
reduction with respect to p. Now we may assume that the residue
class field K  o f  o  is  no t fin ite . In fact i f  K  is finite, let t  and T

be independent variables over k  and over K  respectively. Then o
is extended to the functional valuation o f k (t) having the residue
class field tc(r). It is evident that we may replace k  by k(t).

Therefore there exists a hyperplane H  in P "  such that r i in
P" does not contain any component o f  Vo .  Let A ' and V' be an
affine space P"—  H and a prime rational cycle 17, —H in A ' respec-
t iv e ly . Let C ' be the prime rational cycle over K  in  P"—Ti cor-
responding to C .  Then it is sufficient to investigate V' and C' in
place of V  and C , since the treated properties are local.

Let (P, in) and (Q, n )  be the spots in M (A ') corresponding to
V' and C ' respectively. Then we have to show it,(P; /.6(V/ ; C'),
where the right hand side is the multiplicity defined in L8].

First w e assume th a t V ' h as no multiple components. Let
(x )  and ( )  be generic poin ts o f V ' and  C ' respectively. Let

(1=1 ,—  ,r; j=1 ,  • • •  ,n )  be independent variables over k(x)
and 711 (1 -1 , ••• , r  j = 1 , , n )  independent variables over K(0.

2 1 )  This is shown in [2] in the case when e satisfies the finiteness condition for
integral extensions,
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Put tifx; and 'r i i e;  fo r  e a c h  1. Moreover we put

- tiC (.1" Then it is easy to see that (x) is integral and
separable over 0*[t 1 , ••• t r i .  L et R  b e  th e  specialization ring

0*
[(t) (7 ) ]  and  le t S  be the specialization ring [(t, (7, e)].

0*
Then (71-)R  is the maximal ideal of R and S is equal to [(x)

If X is  the multiplicity o f (e) a s  a  specialization of (x) over R,
then by Theorem 5 we have X= e (M S ) [K (7 ,- i • :  K ( 7  , On
the other hand it is easy to see that e(xS) is equal to the multi-
p licity o f  th e  ideal generated  by ;-/- in  th e  specialization ring

[(x) (e)] and hence to Ab(P; Q) in  our sen se . Moreover it is
easy to  see [K(e): — , 7 ,  0 :  K ( 7 1 1  ,  7 ) ] ;  and hence we have
e(7,, )=x 1[,(0 :

However X/[K(e): K], is , by definition, equal to the multiplicity
p(V' ; C ') in the sense of [8].

Next we consider the case where V ' has multiple components.
L et (x ) and (e) b e a s  above, and let k* be a  purely inseparable
finite extension of k such that k*(x) is separable over k * .  Let 0*
be the unique extension of o  in  k* and let K* be the residue class
field of 0 *. Then K

*  is also purely inseparable over K. Let V(
be the locus o f (x )  over k * and  let C ( be that o f (e) over K

*

Let P, and Q, be the spots over 0* corresponding to V ; and C(
respectively. Then we have 1 ( 1, 1 ; Q,)=,a(V( ; C().

On the other hand p (V ') and p '(P ) are compatible with exten-
sion of ground r in g s . Therefore the equa lity  (P1 : 1 )  t6 ( 17 1:
means the equality p (P ; Q)= p(V ' ; C ').
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