J. Math. Kyoto Univ. **3-1** (1963) 137-143.

Note on paracompactness

By

Hisahiro TAMANO

(Received May 15, 1963) (Revised Sept. 3, 1963)

In this note, we shall be concerned with the paracompactness of a subspace of a Tychonoff space (completely regular T_1 -space). Generalizing the result previously given in [8, Th. 2.8], we shall give some necessary and sufficient conditions for a subspace of a Tychonoff space to be paracompact (Theorem 1). As a consequence of this, we shall obtain a new characterization of paracompactness (Theorem 2). In §2, we shall apply our theorem to a subspace $X \times M$ of $BX \times M$, where BX is a compactification of a paracompact space X and M is a metrizable space, and discuss the paracompactness of the product $X \times M$ (Theorem 3).

Theorem 3 in §2 stated originally that the product $X \times M$ of a hereditarily paracompact space X and a metrizable space M is paracompact if and only if it is normal and countably paracompact. The author is indepted to Prof. K. Morita for valuable remarks, in revision of Theorem 3.¹⁾

§1. PARACOMPACTNESS OF SUBSPACES

All spaces mentioned in this note will be completely regular and T_1 and all neighborhood will be assumed to be open. Let X

¹⁾ In his letter to the author, Prof. K. Morita has recently informed that he obtained the following result, which is slightly weaker than ours, with a theorem giving a necessary and sufficient condition for the product $X \times M$ of a normal space X and a metrizable space M to be normal and countably paracompact (to appear): The product $X \times Y$ of a paracompact space X and a metrizable space M is paracompact if and only if it is normal and countably paracompact. The author expresses his sincere thanks to Prof. K. Morita for his kindness.

be a subspace of a space E. Let x be a point of X. By the term "E-neighborhood of x" we mean an open subset of E containing x. Similarly, X-neighborhood of x is an open subset of X containing x. When no confusion can arise, we use the term "neighborhood" as usual. Let U be a neighborhood of X. If $Cl_E(S_a) < U$ for each α , then we shall say that \mathcal{F} is an U-bounded family, or U-bounded covering of X when \mathcal{F} is a covering of X. A family \mathcal{F} of subsets of X is said to be σ -locally finite [3] if $\mathcal{F} = \bigvee_{n=1}^{\infty} \mathcal{F}_n$, and \mathcal{F}_n is a locally finite family for each n. We call a family $\mathcal{F} = \{S_{\alpha}\}_{\alpha \in A}$ linearly locally finite if there is a linear ordering < of the index set A such that $\mathcal{F}(\alpha) = \{S_{\lambda}\}_{\lambda < \alpha}$ is locally finite for each $\alpha \in A^* = (A, <)$. It is obvious that every σ -locally finite family is linearly locally finite. The following theorem asserts that a subspace X of E is paracompact if it is the union of linearly locally finite family of closed paracompact subsets whose interiors cover X.

THEOREM 1. Let X be a subspace of a space E. Then, the following conditions are equivalent.

a) X is paracompact.

b) For each neighborhood U of X, there is a locally finite Ubounded open covering $\{S_{\alpha}\}_{\alpha \in A}$ of X such that $Cl_{X}(S_{\alpha})$ is contained in a paracompact subset R_{α} of E for each $\alpha \in A$.

c) For each neighborhood U of X, there is a σ -locally finite Ubounded open covering $\{S_{\alpha}\}_{\alpha \in A}$ of X such that $Cl_{X}(S_{\alpha})$ is contained in a paracompact subset R_{α} of E for each $\alpha \in A$.

d) For each neighborhood U of X, there is a linearly locally finite U-bounded open covering $\{S_{\alpha}\}_{\alpha \in A}$ of X such that $Cl_{X}(S_{\alpha})$ is contained in a paracompact subset R_{α} of E for each $\alpha \in A$.

Proof. To prove the implication $(a) \Rightarrow (b)$, let U_x be a X-neighborhood of $x \in X$ such that $Cl_E(U_x) < U$ and consider a covering $\{U_x\}_{x \in X}$ of X. Take a locally finite open refinement $\{U_{\alpha}\}$ of $\{U_x\}$, then $\{U_{\alpha}\}$ is the desired open covering of X, since $Cl_X(U_{\alpha})$ is paracompact for each α . Implications $(b) \Rightarrow (c)$ and $(c) \Rightarrow (d)$ are obvious. Assuming (d), we now prove that $X \times C$ is normal for any compact space C, which will imply (a), by virtue of the theorem due to the author [7] asserting that the normality of $X \times \beta X$

implies paracompactness of $X^{(2)}$ Let C be any compact space and let F_1 , F_2 be two disjoint closed subsets of $X \times C$. Put $Cl_{E \times C}(F_1) \cap Cl_{E \times C}(F_2) = K$ and $H = Pr_E(K)$, where Pr_E denotes the projection of $E \times C$ onto E. Since C is compact, Pr_E is a closed mapping and hence H is a closed subset of E contained in E - X. Put U = E - H, then U is a neighborhood of X. There is by (d) a linearly locally finite U-bounded open covering $\{S_{\alpha}\}_{\alpha \in A}$ such that $Cl_X(S_{\alpha})$ is contained in a paracompact subset R_{α} of E for each α . We may assume without loss of generality that $Cl_E(R_{\alpha}) \in U$ for each α . In fact, if we put $R'_{\alpha} = Cl_E(S_{\alpha}) \cap R_{\alpha}$, then $R'_{\alpha} > Cl_X(S_{\alpha})$ and R'_{α} is a paracompact subset of E for which $Cl_E(R'_{\alpha}) \in Cl_E(S_{\alpha}) \in U$. Now, let us put $F_1(\alpha) = Cl_{E \times C}(F_1) \cap (R_{\alpha} \times C)$ and $F_2(\alpha) = Cl_{E \times C}(F_2) \cap (R_{\alpha} \times C)$, then $F_1(\alpha)$ and $F_2(\alpha)$ are disjoint closed subsets of $R_{\alpha} \times C$ as we now verify:

$$F_1(\alpha) \cap F_2(\alpha) = Cl_{E \times C}(F_1) \cap Cl_{E \times C}(F_2) \cap (R_{\infty} \times C)$$

= $K \cap (R_{\infty} \times C) \subset (H \times C) \cap (R_{\infty} \times C) = (H \cap R_{\infty}) \times C$
= \emptyset , because $R_{\infty} \subset U$.

Since $R_{\alpha} \times C$ is normal (paracompact), there are disjoint open subsets $U'_1(\alpha)$ and $U'_2(\alpha)$ of $R_{\alpha} \times C$ containing $F_1(\alpha)$ and $F_2(\alpha)$ respectively. Put $U_1(\alpha) = U'_1(\alpha) \cap (S_{\alpha} \times C)$ and $U_2(\alpha) = U'_2(\alpha) \cap (S_{\alpha} \times C)$, then $U_1(\alpha)$ and $U_2(\alpha)$ are disjoint open subsets of $X \times C$. We put $U_1(\alpha) = \emptyset$ $(U_2(\alpha) = \emptyset)$ if $F_1(\alpha) = \emptyset$ (resp. $F_2(\alpha) = \emptyset$). Since $Cl_X(S_{\alpha}) \subset R_{\alpha}$, we can see without difficulty that $Cl_{X \times C}(U_1(\alpha)) \cap F_2 = \emptyset$. In fact,

$$egin{aligned} & Cl_{X^{ imes}C}(U_1(lpha)) = Cl_{X^{ imes}C}(U_1'(lpha) \cap (S_{a} imes C)) \ & \subset Cl_{E^{ imes}C}(U_1'(lpha)) \cap (Cl_X(S_{a}) imes C) \ & \subset Cl_{E^{ imes}C}(U_1'(lpha)) \cap (R_{a} imes C) = Cl_{R_{a}^{ imes}C}(U_1'(lpha)) \,. \end{aligned}$$

Therefore, we have

$$Cl_{X \times C}(U_1(\alpha)) \cap F_2 \subset Cl_{E \times C}(U_1'(\alpha)) \cap (R_{\alpha} \times C) \cap F_2$$

= $Cl_{R_{\alpha} \times C}(U_1'(\alpha)) \cap F_2(\alpha) = \emptyset$.

Similarly, we have $Cl_{X \times C}(U_2(\alpha)) \cap F_1 = \emptyset$ for each α . Since $\{S_{\alpha}\}_{\alpha \in A}$ is a linearly locally finite covering of X, both $\{U_1(\alpha)\}_{\alpha \in A}$ and

²⁾ Cf. [5] or [8] for simple proof.

 $\{U_2(\alpha)\}_{\alpha \in A}$ are linearly locally finite families of open subsets of $X \times C$ (with respect to the same linear ordering of the index set A). Let < denote the linear ordering of A with respect to which $\mathcal{D}(\alpha) = \{S_\lambda\}_{\lambda \leq \alpha}$ is locally finite for each $\alpha \in A^* = (A, <)$. Then, $\mathcal{F}_1(\alpha) = \{U_1(\lambda)\}_{\lambda \leq \alpha}$ and $\mathcal{D}_2(\alpha) = \{U_2(\lambda)\}_{\lambda \leq \alpha}$ are locally finite families of open subsets of $X \times C$ and therefore we have

$$Cl_{X imes C}(igcup_{\lambda \leqslant lpha} U_1(\lambda)) = igcup_{\lambda \leqslant lpha} Cl_{X imes C}(U_1(\lambda)) \in (X imes C) - F_2, \ Cl_{X imes C}(igcup_{\lambda \leqslant lpha} U_2(\lambda)) = igcup_{\lambda \leqslant lpha} Cl_{X imes C}(U_2(\lambda)) \in (X imes C) - F_1,$$

for each $\alpha \in A^*$. Put $V_1(\alpha) = U_1(\alpha) - Cl_{X \times C}(\bigcup_{\lambda \leq \alpha} U_2(\lambda))$ and $V_2(\alpha) = U_2(\alpha) - Cl_{X \times C}(\bigcup_{\lambda \leq \alpha} U_1(\lambda))$, then $V_1(\alpha)$ and $V_2(\alpha)$ are disjoint open subset of $X \times C$ containing $F_1 \cap (S_{\alpha} \times C)$ and $F_2 \cap (S_{\alpha} \times C)$ respectively. Obviously, $V_1(\alpha) \cap V_2(\alpha') = \emptyset$ for each paire (α, α') of members of A^* and therefore $W_1 = \bigcup_{\alpha \in A} V_1(\alpha)$ and $W_2 = \bigcup_{\alpha \in A} V_2(\alpha)$ are disjoint open subsets of $X \times C$. On the other hand, we have $W_1 \supset F_1$ and $W_2 \supset F_2$, since $\bigcup_{\alpha \in A} S_{\alpha} = X$. It follows that $X \times C$ is normal. The proof is completed.

Let us call a subset R of X relatively paracompact if $Cl_X(R)$ is a paracompact subspace of X. Then, we have the following

COROLLARY. If X is the union of linearly locally finite family of relatively paracompact open subsets, then X is paracompact.

In case where E is paracompact, Theorem 1 can be stated as follows.

THEOREM 1^{*}. Let X be a subspace of a paracompact space E. Then, the following conditions are equivalent.

a) X is paracompact.

b) For each neighborhood U of X, there is a locally finite U-bounded open covering of X.

c) For each neighborhood U of X, there is a σ -locally finite Ubounded open covering of X.

d) For each neighborhood U of X, there is a linearly locally finite U-bounded open covering of X.

We now give a new characterization of paracompactness.

THEOREM 2. A space is paracompact if and only if every open covering has a linearly locally finite open refinement. *Proof.* The necessity of the condition is clear. To prove the sufficiency, let BX be a compactification of X and consider the space X as a subspace of E=BX. Now, let U be any neighborhood of X, and put BX-U=C. For each point $x \in X$, let U_x be a X-neighborhood of x such that $Cl_{BX}(U_x) \cap C = \emptyset$ and consider a covering $\mathcal{U} = \{U_x\}_{x \in X}$ of X. Take a linearly locally finite open refinement $\mathcal{C} = \{S_{\alpha}\}_{\alpha \in A}$ of \mathcal{U} and put $R_{\alpha} = Cl_{BX}(S_{\alpha})$ for each $\alpha \in A$. Since R_{α} is compact and hence paracompact, \mathcal{C} is a covering of X satisfying (d) of Theorem 1. It follows that X is paracompact.

§2. PARACOMPACTNESS OF PRODUCT SPACES

In his paper [8], the author proved that if Y is a space such that $X \times Y$ is normal for any paracompact space X, then $X \times Y$ is paracompact for any paracompact space X. However, the normality of the product space $X \times Y$ of a paracompact space X and a space Y does not always imply the paracompactness of $X \times Y$. In fact, the product $X \times Y$ of a compact metric space X and a normal countably paracompact space Y is normal [1] but is not necessarily paracompact. A question arise here: Does the normality of the product $X \times Y$ of a paracompact space X and a space Y imply the paracompactness of $X \times Y$, in case where Y is a metrizable space?³⁾ As we can see from Theorem 3 below, the negative answer to this question implies the negative answer to Dowker's problem on the countable paracompactness of a normal space [1]. The product of a paracompact space and a metrizable space need not be normal. E. Michael [4] has given an example of a non-normal product space of a hereditarily paracompact space and a separable metric space. On the other while, K. Morita [6] has proved that if X is a paracompact space such that $X \times M$ is normal for any metrizable space M, then $X \times M$ is paracompact for any metrizable space M. However, the question stated above remains open.

THEOREM 3. Let X be a paracompact space and M a metrizable space. Then, the product $X \times M$ is paracompact if and only if it is countably paracompact.

³⁾ Note that the answer is positive if Y is a compact metrizable space.

Hisahiro Tamano

Proof. To prove the non-trivial part of the theorem, let us consider the product $X \times M$ as a subspace of $BX \times M$, where BX is a compactification of X. By virtue of Theorem 1^* , it will suffice to show that for any closed subset C of $(BX \times M) - (X \times M)$ there is a σ -locally finite open covering \mathcal{W} of $X \times M$ such that $Cl_{BX \times M}(W) \cap C = \emptyset$ for each $W \in \mathcal{W}$, since $BX \times M$ is paracompact. Let $\mathcal{O} = \bigcup_{n=1}^{\infty} \mathcal{O}^n$, $\mathcal{O}^n = \{V_{\alpha_n}\}_{\alpha_n \in A_n}$, be a σ -discrete open base of M. Let Λ_k be the collection of maximal sets $\{(\alpha_i, \alpha_j, \dots, \alpha_k)\}$ of indices $\alpha_i \in A_i, \alpha_j \in A_j, \dots, \alpha_k \in A_k$, with $1 \le i < j < \dots < k$, and $V_{a_i} \cap V_{a_j} \cap \dots \cap V_{a_k} \neq \emptyset$, and put $\Lambda = \bigcup_{k=1}^{\infty} \Lambda_k$. We put $N_{\lambda} = V_{a_i} \cap V_{a_j}$ $\cap \dots \cap V_{\alpha_k}$ for $\lambda = (\alpha_i, \alpha_j, \dots, \alpha_k)$ and choose a point $P_{\lambda} \in N_{\lambda}$ for each $\lambda \in \Lambda$. It is easy to see that $\{N_{\lambda}\}_{\lambda \in \Lambda}$ is a σ -locally finite open base of M. For each point $z \in X \times M$, there is a neighborhood (in $X \times M$) of the form $0(z) = U \times V_{a_n}$ whose closure taken in $BX \times M$ does not intersect C. Let Pr_M denote the projection of $BX \times M$ onto M and let $S(\alpha_n)$ be the set of $z \in X \times M$ such that $Pr_M[0(z)]$ $=V_{\alpha_n}$. Let A'_n be the subset of A_n consisting of all α_n such that $S(\alpha_n) \neq \emptyset$ and put $O(\alpha_n) = \bigcup_{z \in S(\alpha_n)} O(z)$ for each $\alpha_n \in A'_n$. Put O(n) = $\bigcup_{\alpha_n \in A'_n} 0(\alpha_n), 0_m = \bigcup_{n=1}^m 0(n)$, and put $F_m = (X \times M) - 0_m$, then $\{F_m\}$ is a countable descending chain of closed subsets of $X \times M$ with empty intersection⁴⁾. There is a countable descending chain $\{U_m\}$ of open subsets of $X \times M$ such that $U_m > F_m$ for each *m* and $\bigcap_{m=1}^{\infty} Cl_{X \times M}(U_m)$ $= \emptyset$ by virtue of Ishikawa's characterization of countable paracompactness [2]. Put $H_m = (X \times M) - Cl_{X \times M}(U_m)$, then we have $Cl_{X \times M}(H_m) \in 0_m$ for each m and $\bigcup_{m=1}^{\infty} H_m = X \times M$. Thus, $\{H_m\}$ is a countable open covering of $X \times M$. Let Pr_X denote the projection of $X \times M$ onto X. For each $\lambda \in \Lambda_k$, let us put $F_{\lambda} = Pr_X[(X \times \{P_{\lambda}\})]$ $\cap Cl_{X \times M}(H_k)$], and consider the family $\{F_{\lambda} \times N_{\lambda}\}_{\lambda \in \Lambda}$ of subsets of $X \times M$, which is a covering of $X \times M$ as we now verify. Let z be any point of $X \times M$. There is a neighborhood of z of the form $U \times N_{\lambda}$ contained in some H_m . We may take λ to be a member of Λ_k for $k \ge m$. Then, we have $U \times N_{\lambda} \subset H_k$ and it follows that $F_{\lambda} = Pr_{X}[(X \times \{P_{\lambda}\}) \cap (Cl_{X \times M}(H_{k}))] \supset U \ni Pr_{X}[z]$ and consequently

⁴⁾ We assume that $F_m \neq \phi$ for each *m*. Otherwise, the prochect $X \times M$ is easily shown to be paracompact.

 $z \in F_{\lambda} \times N_{\lambda}$. Therefore $\{F_{\lambda} \times N_{\lambda}\}_{\lambda \in \Lambda}$ is a covering of $X \times M$. In view of the definition of O(n), O(n) is the union of open subsets of the form $U \times V_{a_i}$ $(i \leq n)$ whose closures taken in $BX \times M$ are disjoint from C. Therefore $(X \times N_{\lambda}) \cap 0_k$, where $\lambda \in \Lambda_k$, is the union of open subsets of the form $U \times N_{\lambda}$ with the same property. Now, let us fix a $\lambda \in \Lambda_k$ and put $U_{\lambda} = Pr_X[(X \times N_{\lambda}) \cap 0_k]$, then $(X \times N_{\lambda}) \cap 0_k$ $=U_{\lambda} \times N_{\lambda}$. Since $Cl_{X \times M}(H_k) \in O_k$, we see that F_{λ} is a closed subset of X contained in U_{λ} . For each $x \in F_{\lambda}$, there is a neighborhood $U_x \in U_\lambda$ such that $Cl_{B_X \times M}(U_x \times N_\lambda) \cap C = \emptyset$. Consider an open covering of X consisting of $X - F_{\lambda}$ and $\{U_x\}_{x \in F_{\lambda}}$ and let \mathcal{Q}_1^{λ} be a locally finite open refinement of the covering. Let $\mathcal{U}^{\lambda} = \{U_{a}\}_{a \in A(\lambda)}$ be the subfamily of \mathcal{Q}_1^{λ} consisting of all members intersecting F_{λ} . Then $\mathcal{W}^{\lambda} = \{U_{\alpha} \times N_{\lambda}\}_{\alpha \in A(\lambda)}$ is a locally finite family of open subsets of $X \times M$ such that $Cl_{BX \times M}(U_{\alpha} \times N_{\lambda}) \cap C = \emptyset$ and $\bigcup_{\alpha \in A(\lambda)} (U_{\alpha} \times N_{\lambda}) \supset F_{\lambda}$ $\times N_{\lambda}$. Constructing \mathscr{W}^{λ} for each $\lambda \in \Lambda$ in this fashion, we have a σ -locally finite open covering $\mathcal{W} = \bigcup_{\lambda \in \Lambda} \mathcal{W}^{\lambda}$ of $X \times M$ such that $Cl_{BX \times M}(W) \cap C = \emptyset$ for each $W \in \mathcal{W}$. (The σ -local finiteness of \mathcal{W}) follows from the σ -local finiteness of $\{N_{\lambda}\}_{\lambda \in \Lambda}$.) It follows that $X \times M$ is paracompact by Theorem 1^{*}.

Theorem 1 has another consequence: If X is a paracompact space which is the union of linearly locally finite family of compact sets, then $X \times Y$ is paracompact for any paracompact space Y.

REFERENCES

- C. H. Dowker: On countably paracompact spaces, Canad. J. Math. 2 (1951) 219– 224.
- [2] F. Ishikawa: On countably paracompact spaces, Proc. Japan Acad. 31 (1955) 686-687.
- [3] E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953) 831-838.
- [5] K. Morita: Paracompactness and product spaces, Fund. Math. 50 (1962) 223-236.
- [7] H. Tamano: On paracompactness, Pacific J. Math., 10 (1960) 1043-1047.
- [8] —————; On compactifications, J. Math. Kyoto Univ. 1 (1962) 162–193.