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§ 1. Introduction

The concept of a spherically symmetric space time is important
in the general theory of relativity. Such a  space time (abbreviated
as s.s. space in  this paper) is, mathematically, a Riemannian space
whose fundamental form is reducible to

ds 2 = —  A dr2 —B(d02 +sin'Odp 2 ) +Cdt 2 ,
B  = r 2 o r  const. > 0 ,

where r, 0, (p and t  are spherical polar and temporal coordinates
and A  and C are positive-valued functions of r and t. An s.s. space
is denoted by S , or S „ according to whether B  is r 2 or constant.

Many authors have investigated the geometrical properties of
an s.s. space [1], among which the imbedding" problem was dis-
cussed by Eiesland [2] and Takeno [3] along the line of the general
theory o f Riemannian spaces (see, for example, [LI]). For appli-
cation, however, it will be desirable to obtain a  concrete picture
of an imbedding. For the Schwarzschild space time, such a  picture
was used in Fronsdal's physical paper [5], and a related mathema-
tical theory was developed by Fujitani and tw o o f  th e  present
authors (M.I. & M.M.) [6]. This theory is extended to an s.s. space
in the present paper.

1 )  By this we mean, throughout the present paper, the imbedding into a  pseudo-
Euclidean space.
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We now outline our approach. We first consider the 'spatial
section' of an s.s. space, that is, the space V, endowed with the
fundamental form

V3 : ds2 = A 0dr2 +B(d0 2 + sin2Odp2) , (1. 2)

where A o is obtained from A  by putting t=c o n s t .  The imbedding
problem o f the V, is studied in § 2. On the basis o f this result,
the imbedding problem of an s.s. space is discussed in § 3, in which
we are led to introduce the space V, with the fundamental form

172 ds2 = (97—A)dr2 +Cdt 2 . (1. 3)

Here 97=1 or 0 according to whether the s.s. space under consider-
ation is S, or S „ .  The imbedding problem for an s.s. space having
A + n is thus reduced to the problem for 173 and V,. §4 is devoted
to some particular imbeddings for V2 which can be expressed in
concrete diagrams.

R em ark s. We summarize here the known results which have
some connection with the present work.

Theorem O. A n s.s. space  is  at m ost, o f  c lass tw o , in  the
sense o f  im bedding. A  necessary  an d  sufficient condition f o r an
s.s. space to be o f  class one, is given by

A 4 =  , 2(A— C")+ (A2— A' C') 1 (n — A) + (C/ 2  — Ae)/c = 0, ( 1 . 4 )

where the prim e and the dot mean the derivatives w ith respect to  r
an d  t  respectively.

It is to be noted that the condition A + 37 is meaningless in

the case of S „, because n  =0  and A>0 hold.

§ 2. The imbedding problem fo r  (1. 2)

We begin our discussions with the imbedding problem of the
space V, having the fundamental form (1. 2).

First o f a ll, denoting the coordinates r, 0  and (7, by x ', i=1,
2, 3, we give the surviving components of the Christoffel symbols

1̀ .;, and the curvature tensor R, ) „, of V, :
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= A U2A „ = — /31 12A, l'A , = sire 012A, ,
112 — =  B '/2B  , 1 13 — Cot G , —sin 0 cos O,

R1212 A'aB/14A0, R 1 3 1 3  =  R 1 2 1 2  sin 2 0 , R 2 3 2 3  =  (
1—

 Y A 0 ) B  sin 2 .

It is clear from  the above expressions that V , is flat if and
only i f  B  =r 2 and A 0 = 1 .  In the case of a non-flat V „ an example
of the imbedding can easily be given, that is, (1. 2) may be written
as follows :

ds 2 = e(dz°) 2 + (dzt) 2 +(dz 2 )2 + (dz 3 )2 ,

z° = s (A o — 27 )dr , e  = sign (A,— 97) ,( 2 . 1 )

=  \/B  sin  0 cos 'p , z 2 = v 1 71 sin 0 sin (p, z 3 =  g  cos

Thus the following result is obtained.

Theorem 1. The space V, with the fundamental form (1.2) is
f lat if  an d  only i f  B =r 2 an d  410 = 1 .  When V, is not flat, it is of
class one.

We next consider the equations of Gauss and Codazzi for the
non-flat V 3 :

e'Ruki = bikbp — bubik, (2. 2)

V ib ik  V ib ik O , (2.3)

where e ' is  the indicator of the normal in the enveloping pseudo-
Euclidean space E,, b,- ;  i s  the second fundamental tensor and Vi

denotes the covariant derivative. For the solution of (2. 2), we
may use the result of Thomas [7 ]  concerning Riemannian spaces
of class one. From (2. 2) we have

(b 1 1 ) ]2 e'R2323R3131R1212 e' ,V B / 2B(1— n I AO s in ' /16,Q, .

It is know n that i f  th is equantity  does not vanish, the V, is in-
trinsically rigid, i.e . bi ;  can be uniquely determined, apart from
the signs, by the Gauss-Codazzi equations. Taking this fact into
account, we divide the following discussions into two cases according
to w hether A   0  and B '  0  or not.

( i ) The case B = r 2 and A,  I  c o n s t .  In this case, the solution
o f (2. 2) is given by the following apart from the signs :
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— Rifi;Kikik(e'R2323R3131R,2,2) 1 /2

bi ;  = 0  , j , k = ) ,

or in the concrete,

b„ = 41.;,B14,4 0 -\/eB (1-9 7 0 0 ) ,  b 2 2 = e N/eB(1— 971A0)
b22 sin 2 0 , e  =  sign (A,— 27) .

It can be shown by direct calculations that this solution satisfies
the Codazzi equations (2. 3), too. Thus we have proved the follow-
ing theorem.

Theorem 2. The space V 3 w ith  B =r 2 and  A o  const. is in-
trinsically  r ig id . I t s  second fundam ental tensor is giv en by  (2. 4)
apart f rom  the signs, and the imbedding functions are given by  (2. 1)
apart f rom  a motion in the enveloping pseudo-Euclidean space E 3 .

(ii) The case B = const. or A,— c o n s t .  In  th is case, R2323 is
the only surviving component o f R i i k i ,  and the Gauss equations
become

} (2 .5 )
bilk; — b,ibi; = O, b 12b13 — b„bi2 =  O,( i ,  = 2, 3) .

If b „+ 0 ,  then from the second equation o f (2. 5) w e have bu =
bi i k i lb „, which contradicts with the first equation of (2 . 5 ) . Thus
b„ = 0, and we obtain b „=b „= 0  from the second equation of (2.5).
In view of this result, a part of the Codazzi equations (2.3) becomes

bu ff I2B  =0, (i, j = 2 , 3 ) .  The integration of these leads to

bi ;  =  N/T3-  c; ; (9, , (i, J =  2, 3) ,

where c i ;  are functions of 0  and p .  Putting these expressions in
the first equation o f (2. 5) and the remaining equations of (2. 3),
we get

c22c33 — c 3 = — 911 s in 2 0

ac2 2 _ ac23 c  cot 0 =  ,ap  5 0 2 3

ac2 , a c , 3—  + sin 0 cos 0 +c„ cot 0  =  O.S(p 50 22

(2. 4)

b 221) 23 — (b2 3 )2 = e'(1-97/A 0 )B sin 20 ,

(2.6)
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It can be seen that these are nothing but the Gauss-Codazzi equa-
tions for a  space of constant curvature whose fundamental form
is given by

ds2 = (1— 711 A0 )(d02 +sin 2 04) 2 ) .

Summarizing the above, we obtain the following result.

Theorem 3. The non- flat space V, with A 0 =const. or B=const.
is not intrinsically  rigid, and (2. 1) giv es an example o f imbedding
f unc tions. The imbedding problem in  this case is equivalent to the
problem of f inding e ' and ci ; (9, (p), (i, j=2, 3), w hich satisf y  (2. 6).
This i s  th e  im bedding problem  f o r  a  two-dim ensional space of
constant curvature.

§ 3. The imbedding problem of an s.s. space

In  th is  section, the imbedding problem of an s.s. space is
discussed in the light of the foregoing investigation.

Let us consider an s.s. space, which has the fundamental form
(1. 1). By a suitable coordinate transformation of the type

= r ,  0 = 0 , =  p  ,  f = f ( r , t ) ; +  ,

(1. 1) can be reduced to

ds 2 = C df 2 +2Delfdt —  Ade— ri(d0 2 + sin' ( 3 .  1 )

w here A  A(r) +1, .1j= r 2 or const. and C and b  are functions of
F and t. In view of (2. 1), (3. 1) may be written as

ds 2 do- 2  —(dz 1 )2 —(dz 2 )2 —(dz 3 )2 ,

where dzi, (i =1, 2, 3), have expressions sim ilar to (2. 1) and

do- 2  C d t 2 +2D drdt+ (3. 2)

If we perform the transformation inverse to the above, (3. 2) must
be reduced to (1 .3 ). We have thus arrived at the fundamental form
of V2 . Here it is to be noted that A  in (1. 3) is  a generic positive-
valued function of r  and t.

It is  easily  seen  that, in the case A  I  97, the s.s. space is of
class one when and only when the V , is  flat. The condition re-
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quired for V, to be flat can be obtained by calculating the curvature
tensor, and the result coincides with the second equation o f (1. 4).
Thus we obtain the following theorem.

Theorem 4. The imbedding problem of  an s.s. space with A --t
is reduced to the problem f o r V , an d  V2 . S uch an  s.s. space is of
class one if  and only if  th e  V , is f lat.

On the other hand, in the case A=77, the fundamental form
(1. 3) o r (3. 2) is degenerate, and the results o f  § 2 cannot be
employed for the imbedding problem of the s.s. space.

§ 4. The imbedding problem for (1. 3)

From the result in the foregoing section, we see that the space
V. with the fundamental form (1. 3) has a close connection with
the imbedding problem of an s.s. sp ace . In this section, we treat
the non-flat space V, in the case where A = A (r) and C=C(r), and
obtain some particular imbeddings which can be expressed in
concrete diagrams.

The equations of Gauss and Codazzi for (1.3) are easily written
down as

&(b0 0 b„-14 1 ) = —  C"/2+ A'C' 14(A—
N 0 - 1 0 1 —b0 0 C'12C+b 1 1 C'12(A -21) =
1 4 1 —  +  {C' 12C— A'12(A —97)} --=

71)+C'' 14C ,
0,
0,

(4. 1)

where the coordinates t  and r  are denoted by x1, (i=0, 1), (5 is the
indicator of the normal and bi ;  i s  the second fundamental tensor.
It is difficult to obtain the explicit solutions of the above equations,
and we exclusively study particular solutions having the condition
b0 , = 0 .  Such solutions m ay be called stationary  after the corres-
ponding solutions in the Schwarzschild space' time [6 ] .  Under the
assumption 1)0 1 =0, the above equations are easily integrated, and
the result is given by the following apart from the signs.

b„ = N/6{ (C"/4(A -- 3i) —aC} , 1)0 1 = 0 ,
(4. 2)

b„ = 6{ — C"±A 'C'12(A -97)+C"/2C} /2b 0 0 ,

where a is the integration constant and sign {C"/ 4(A— 91)— aC}
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Now, we consider th e formulae of Gauss and Weingarten,
which take the following form :

ViV iZ  =  ebii n  Vin — gik b iiV k Z

or in the concrete,

=  {C' 12(A — n)} z'+Sb oon , (C' 12C)1 ,
z "  = {Ai/ 2(A— )} z'+&b„n ,

= —(1)0 0 1C)1 , n' = { b 1 1 I(A -97)} z '.

Here z  and n  are respectively the position and the normal vectors
in the enveloping pseudo-Euclidean space E , .  They are subject to
the further conditions

<1, 1> C,z ' > 97— A , <n , n > = (9,
<1, --- <1, n> <z ',  n > =  O,

where < ,>  stands for the scalar product of vectors.
Our next task is to give the imbedding functions z  explicitly.

Integrating the second equation o f (4. 3), we have

z  =  N/C f (t)+g(r) , (4. 6)

where f  ( t )  and g (r)  are vector functions o f t  and r  respectively.
On the other hand, if we differentiate the first equation o f  (4. 3)
and use the second of (4. 3) and the first o f (4. 4), we obtain

T+ {C/ 2 / 4C(9) — A) + = O.

The quantity in the brackets is equal to — a according to the first
equation of (4. 2). Therefore, the following equation for f  in (4. 6)
is obtained :

7—ai = o (4. 7)

It is convenient to divide the subsequent discussions according
to whether a < 0  or > 0  or = 0 .

( i )  The case — k- 2 < 0 .  The integration of (4.7) gives

f =  k  sin (t I k)e, + k cos (t I k)e, ,( 4 . 8 )

(4. 3)

(4. 4)

j. (4. 5)

where e , and e , are constant vectors. W e have taken the additive
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integration constants equal to zero, because they may be absorbed
into g  in  th e  equation (4. 6). e ,  and e ,  satisfy the condition
<ei , 6, 1> = 81»  (i, .1=1,2), according to the first equation o f  (4. 5).
Putting (4. 6) with (4. 8) in the fourth equation o f (4. 5), we get

g(r) =  g(r)e„( 4 . 9 )

where e, is a constant vector orthogonal to e, and e2 . By further
putting (4. 6) with (4. 8) and (4. 9) in the second equation of (4. 5),
we have

g "  = &/(y  — A+ aC" I 4C ) , Et =  sign (n — A+ aC/2 I 4C) , (4. 10)

and <e„ e 3 >=6 '.  I f  we gather the above results, the imbedding
functions in the present case become

z = leN/C {sin (t I k)e, + cos (t I k)e,} + g(r)e„

where g(r) is subject to the condition (4. 10).

(ii) The case a=k - 2 > 0 .  This case may be treated in the
same way as in case (i), and the result is as follows :

z  = {sinh (t I k)e, + cosh (t k)e,}  + g(r)e„

where g(r) satisfies the equation (4. 10) and the constant vectors
ei  are subject to

<e„ e 1 > = — <e,, e,> =1, <e3, e,> =
<ei, e1> = 0,( i  j)

(iii) The case a = 0 .  This case is slightly different from the
above two. The integration o f (4. 7) gives, apart from the additive
constants,

f  = t 2a1 +ta 3 ,

where a, and a, are constant vectors, which are subject to the
following conditions according to the first equation o f (4. 5) :

<a2, a 2> 1, <a, , al > <a1 , a 3> 0 •

Here let us introduce a constant vector a, which satisfies

<a„ 1, <a 2 , ci,> <a„ a,> =  0.
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g ( r)  in  (4. 6) may be expressed linearly in  term s o f a i . Then,
from the fourth equation o f (4. 5) we have

g (r)  = g i (r)a, —(VC/2)a„

where we have omitted the additive constants, because they can be
removed by a translation in the enveloping space E 3 . According
to the second equation o f (4. 5), g ,  satisfies

= 2VC(A — 77)/C' ,

where C '.+ 0  for the space V2 under consideration, i.e. the non-flat
V. in which A = A (r) and C= C(r) hold. Here introduce the vectors
ei  defined by

e i =  a 1 +c e , / 2 ,  e2 = a 2 , e 3 =  a i — a,I2 ,

and they satisfy the conditions

<e„ e 1> = <e„ e 2> = — <e„ e 3> =1 ,
<ei , e i > = 0,( i  j) .

Expressing the above result in terms of ei ,  we are led to

z  = [{(t 2 — 1) \ /  + g  ,(r)}  2 ]e  + t e ,+[{ (t 2  + 1) \ / -e + g 1 (r)}12]e 3 .

I f  we summarize the results in  th is  section, the following
theorem is obtained.

Theorem  5. The stationary imbedding o f  V2 is giv en by  one
of the following :

(i) ds 2  = (d21 2  +(d25 )2  + 6' (dz 6 )2  ,
24 = 1?-\ / -C sin (t I k) , 2 .5 = k \/ C  cos (t I k) , z 6 = g(r) ,
6 ' =  sign (71— A—PC' I 4C) , g ' 2  = &'(97— A—PC/ 2 1 4C) , k  O.

(ii) d5.2  = (d 2 4 )2  (d  2 5 )2  + (d 2 6 )2

24 = k V e  sinh (t I k) , z 5 = le N/C  cosh (t I k) , z 6 = g(r) ,
E' = sign (97—A+ k 2 C/2 I 4 C ) , g ' 2  = E'( 37 —A + le2 C/ 2 I 4 C ) , k  +0  .

(iii) ds 2 = (dz 4 )2  + (d 25 )2  — (dz5 )2  ,
24 =  {vC (t 2 —1) + g(r)}  /2 , 25  = t ,
2.6 =  {Y U (t 2 + 1) + g(r)} /2 , g ' = \  /C  (A— n)I C' .
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From this theorem and (2. 1), we obtain the imbedding func-
tions for the s.s. space of class two, in  which A = A(r) and C=C(r)
h o ld . When the functional forms of A and C are given concretely,
this theorem enables us to diagram the surface V, imbedded in a
pseudo-Euclidean space E3 . Such a  d iagram  w ill be usefu l in
physical applications.
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