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Introduction. In  th is  article we shall study some properties
o n  periods o f  abelian differentials square in tegrab le  on open
Riemann surfaces. In § 1 w e shall show the relation of canonical
differentials defined in  [4 ]  and Ahlf ors' reproducing differentials
[2 ] ,  w hich p la y  a  fundam ental ro le in  th e  theory o f  abelian
differentials. In  § 2 w e sh a ll p ro ve  a  general periods theorem,
nam ely, le t  r, ( P a ) b e  a H ilbert space of square integrable
analytic differentials and 7 be a set of cycles for which correspond-
ing reproducing differentials in  Po a r e  linearly independent, then
Theorem 1 gives a  necessary and sufficient condition in order that
given complex numbers should be the periods of a  differential of
170 a long y. As its corollary we know the existence of three kinds
of normal differentials, in particular, normal differentials of the first
kind, for w hich in  § 3 some properties on corresponding Riemann
m atrix  are  shown. Theorem 3  is partly  iden tical w ith  Oikawa's
results in his unpublished paper studying normal differentials under
Ahlfors' and Accola's method.

§1

Let R  be an arbitrary Riemann surface of genus g  (0 < g< 0 0 )

*  This paper was written while the author was a Temporary Member of the Courant
Institute of Mathematical Sciences, New York University. This Temporary Membership
Program is supported by the National Science Foundation under Grant NSF-GP-98.



60 Yukio Kusunoki

and {A n  , Bn } and p (0 < p < 0 0 )  be a canonical homo-
logy basis on R  such that (i) any cycle in R  is homologous to a  finite
sum E (p„A„±q„B„)+ E r„C„ where p n ,  qn  a n d  r ,  a re  integers ;
( i i )  the intersection numbers a re  characterized by A 1 x131 =8 13 ,
A i x A i —B i xf3 ; = 0  fo r  i, j=1, ••• , g  ;  ( i i i )  any dividing cyc le  is
homologous to a  finite sum

L et Pa  b e  the Hilbert space o f analytic differentials square
integrable over R  where the scalar product and norm are defined by

( 1 ) ( , Jr) q)112 == (65, Sb)

For go= du + i* du, * = du' +i* d u ' one can write

( 1') (55, DR(du, du')—  il),(du, *du ') ,

where DR (du, du')= du n *du /_  ( u x u„' +u u 'v )dx dy  stands for the

mixed Dirichlet integral. L et F a ,  and  [— 'ase denote the subspaces
of P a  consisting of exact and semi-exact differentials respectively.
Now Virtanen's decomposition theorem can be expressed ([4]) a s

r  a r ase r C  r a s e  ra e A B

where r c , orthogonal complement of 1 
e l s e ;  

is spanned by analytic
differentials {T} derived from generalized harmonic measures
associated with dividing cycles {C }  and is spanned by semi-
exact canonical differentials {(pA n ,  p a n }  such that Re q,

 A n , Re PB,,
have no periods except along 13„ resp. A „ where

( 2 ) Re sf qi A  = —  1?B n 1 .
B . A n

PROPOSITION 1. For any ybe l ' a s ,  we have

( 3  ) p i i n ) i y5 , (y6, q i i , n )  ==
Bn

PROOF. Take an  exhaustion of compact domains {R,a }  of R
such that each component of the boundary ali'm  consists of a divid-
ing analytic curve. Then for ¢)— du + i* du, q) A n = dtiA n +  i

*
dU A n  and

R,n  containing the cycle A n w e  have by the period relation
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DR .(du A n , *du+ Ç u  du .
A n B R y n

Since uA n  is single-valued outside R„„ moreover canonical, it follows

that uA .*du—>0 for m—>0.0 (cf. Lemma 4  [4 ]).  Hence
aRm -

DR(duAn, du)— *du.
An

Analogously we have

( 4 ) DR(duAn, *d u ) = — DR (du, * du A n ) = du .An

By (1') we get therefore the first formula of (3), similarly the second
o n e . Q. E. D.

We recall [4] that for any .1)E Fa  and harmonic differential dU
with finite Dirichlet integral

( 5 ) q)c,) = 61), D R (dU,*d(o, v ) =S  d U  ,

where q, =d o c , +i*dcoc ,. (3), (4), (5) imply that our canonical
differentials qiA n , p  and p c ,  are identical, except constant factors,
with reproducing analytic differentials in r a , resp. Fa  in the Ahlf ors
sense [2 ]  and duA n , du B n  a n d  ckoc ,  a re  also reproducing (real)
harmonic differentials in  FL resp. F, under the Dirichlet norm.

§ 2. General Periods Theorem

L et l' o = r a  b e  a n y  Hilbert space. N ow let P,— P,f r ol  be a
linear mapping of F, into a  complex vector space E  such that

Pv: Sb — > P h = ( LSb, L a), ...)  , 7 =  {7 n }

We note that the kernel of P ,  is  a Hilbert space =1-'0 w h ile the
im age of P y ,  say P ( r o) ,  i s  in  general not an /2-(Hilbert) space,
namely we can easily find such an  example among hyperelliptic
surfaces.

W e say  a set o f cycles 7= { 7 ; } ; , , 2 ,... be admissible for F, if
the corresponding reproducing differentials 0-  in  1', defined by

0, cry» = for a ll (1)E F,
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are linearly independent (for any finite pair). o - F e exist, because

cf) is  a bounded linear functional on F .  L e t
j

= E0- ,v1 ro
be a subspace of r o spanned by cry ] ,  and {0- }  be an orthonormal
system constructed by the Schmidt method :

( 6 ) =  E s iko - Tk (j =  1, 2, . )  .
k=--1

W e call the triangular matrix Sy —S,{F o}  =  (si k )  with s » = 0  ( j< k )
the matrix (mapping) associated with F ,  and 7.

PROPOSITION 2. S y fr ol = (s„,„„) has the properties:
(i) s„„> 0 ;
(ii) sn i „ are real i f are  real f o r j,k=1 ,2 , ••• ;
(iii) s..1 2 = I GP. I 2 < —  i f  there ex ists a jJ 5 E F 0 such that

Ph„= en  (u n it vector in  E  w ith n-th component one).

(i), (ii) are immediate consequences from the orthogonalization
process and (iii) follows easily from the following Theorem 1.

Now S, defines a linear mapping of E  into itself such that
S

Y dC; S Y (a ) (S11a1  7  S 21a 1+ s 22a 2 . . . )

that is, S,(ce) is  the product of matrix (si k )  (bar stands for complex
conjugate) and the transposed vector ta of a= (a i, C

; 7  • • • )  E  E .  ,S,
is one-to-one by (i).

THEOREM 1. For giv en P , and 7= {7 3 } adm issib le  f or F o ,  (I)
Sl oP, is  a  continuous linear m apping o f  F o o n to  the  complex
space" such that

IlSv0Py(0112 <  11(PII , (13 E

(II) S,..13 ,  is one-to-one on F  and Py(FO — Py(11 ) = S I T ( l2 ) -

PROOF. Let c¢ E r ,  and (Pt, be the orthogonal projection of q3,

onto F .  Then çb' can be written as gi= A , 0 - ,, with the Fourier
coefficients gn ,  given by

1 )  This is just a  complex vector space o f dimension q  i f  r consists o f q (< 0 0 )
cycles,
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R. = , = (4), (4a ) = kt i snk(56, Lk(1) •

Hence by Parseval's equality we have

E /3 .12 = I IS.y.Ey(0)1 = I .1/112 _<11q)112 •

which shows (I) except "onto" and Ey(1'0) =S-,71(/2)= ; S1 (a) G 2}
Now let ,8* —(41% E 12 , then there is an a such that S y(a)=0* ;

( 7  ) = Snka k
k =1

Since 1/3 t1 2<—,
( 8 ) c1)* -- E MG-.% E l'ô r o  2

( 9  ) = (0*, (4„) = Enk 0* •
k = 1

Therefore by (7), (9) and (i) we have successively

4,* =  k (k = 1, 2, •••) , e., =  P *  ,
'Yk

which implies Sy- V 2 ) = P (1 ') =P,(P 0 ), hence they coincide. Since
any differential o f r  orthogonal to every o- y ;  is identically zero,
5y 0P,, is one-to-one on

COROLLARY. Suppose si k  are all, except f inite numbers, real (or
pure im aginary ) and let P.,,O=a+i,8, ci) E 1'0 w h e re  a, )3 are real
vectors then there ex ist 0„ 5 .  E I such that

P41= Ph2= 4 .

Here we refer to important special cases. For canonical basis
{An , Bn }  and {C,} we know by (3), (5) that

(10)
Cr An  —  i P A t i  f  ( 7 13 t ,

Cr
C y  =  iP c ,

for ro
a s e

for l'a

and (.Cr Aj Cr A O, ( ( r . rip  Cr k )  and (crc i , crc k )  are real, but (crA i ,  cr,k )  are
not necessarily real ; moreover, {C,}i= {C, e ;  o    i s
admissible for l ' a   and {A } ,  {B }  are admissible for F .  In  fac t,
let {co i } denotes any one of the systems icrAil, 1'7 .0 and frc,il
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(C;  E {C,}'), then {co i }  are linearly independent in  the real field,
hence for finite number o f real x ;  the quadratic form

E  x i x i DR (Re w i ,  Re 0)1) = DR(  X j6  )i) >

is positive definite, i.e.

det (1),(Re co i ,  Re w ) ) > 0

Noting that (co y , co ; ) = DR (R e (Di , Re  c o i )  (=real) we find easily that
Iwi l  are linearly independent in the complex field.

V ir ta n e n  [ 7 ]  observed first the case Po = f a  , 7 =  {A n } on
Riemann surfaces of parabolic type (where l' a = — else r A B ) •  For
general surfaces, I  [4 ]  treated the case F 0 = F , 7 =  { C , } '  and Saino-
uchi did independently the case 1: ,= r

a s e ,  7 —  {An } in his recent paper
[ 6 ] .  While in the case where ry contains mixed basis it is generally
difficult to decide whether 7  is admissible or not. For instance if
R  is closed o r  parabolic surface of finite genus g ,  F a =  AB =

ErT11. ,° '8 in =i ,• • • ,  g  reduces g-dimensional. If R  is a bordered surface
with p  contours, { A ,  B „, „_ i  , •, g ;v=i,•••, p-i is  admissible for Po =

Pas= r ,  and P  g iv e s  a  one-to-one mapping o f  P0 = 1V  to
(2g + p —1)-dimensional vector space by (II) (Ahlfors [1]).

§  3 .  Normal D ifferentials

Hereafter we fix the canonical basis {A n , / 3 }  once for all and
define a Hilbert space VA by

r =  195 E l' a „ A n (1 ) = 
0

, n  = 1, 2, ...}

i. e .,  the kernel o f  P f r 7ase, {A O .  Let F A  b e  the orthogonal
complement of F  in I' a s e  •  

Obviously

ra , F°
A r A rA B .

Every differential of is by definition uniquely determined
by its A-periods. Moreover among differentials of

 r a s e
 having the

same A-periods with 4) E r a s e  the orthogonal projection of cf) onto
F A  has the minimum norm.

PROPOSI T I O N  3 .  FA =  [ TAn ] =  [° - An] (n =1, „
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This is  an immediate consequence of Proposition 1.
Since fo r  general surfaces FA  does not necessarily coincide

with LA B ,  we must confine ourselves to the space r A  to achieve
the complex normalization about A-periods. N ow we take r o =

ase , 7 —  { A }  then r o'= F A  b y  Proposition 3  and S = ( 5 m )  is real.

For q,„ E =8 „,„+i( )  hence by Corollary o f Theorem 1
A m n

w e have the following theorem [8].

THEOREM 2. There exist normal dif ferentials o A n  E  A  such that

„ç) A n —  
8,nn( m ,  n = 1 ,  •  • •  ,  g )  .

A m

The
 0 A  can be w ritten by  (8) as

) A n  =  E smno-/A„, = E S tnn( E s m ic rA ,) ,

where (s,n „) is a real matrix  associated with r a s e  
and  {A, } f o r  which

(12) E  I sm . I  = II.AI1 2 <co •

For the following purposes we note that

(13) s„,„ =  Re b„,„ , where b,n „= GJAm •
B .

To see this, let A n  b e  the orthogonal projection qi, n  to  r A  , then
it can be written as

(14) o = ,

w here b m n = (P °
B n  ° J A,n )  = (PB  n ,  a fAm )  = — G j A m =  —  E

B n B n i e = 1  
Sm k  A k

hence (13) holds. Now set

B j 
Ct)A k =  C r  jk +  j k (j, k  =1, •• • ,g) ,

f r  =  œ i k )  7 T  =  ( T i k )  •

W e say an (infinite) quadratic form E is  convergent if
for given E > 0  there exists an integer N  such that '2  i&iaii1 <&
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fo r  m > n > N .  N ow  ou r Riemann m atrix  has th e  following
properties.

THEOREM 3. 1 ° )  7 -  is.  sy m m etric and positiv e def inite; more
precisely , f or any  f inite o r inf inite num bers o f  complex numbers

e2 ,••• not simultaneously zero

E  j ` r i j > °

prov ided that the quadratic form  is convergent.
2°) (multiplication in the obvious sense) where S 7  is

a triangular real m atrix  associated w ith 
:1 a 3 e

 an d  {A, } .

3
0

) i f  V A =  T a e , equivalently  F A = F A B ,  then 0-  is symmetric.

PROOF. From (10), (11)

E S m k O JA m = E sm k  E S 1q i A ,
B j 1=1 B j

= E sm k sm ;  .

The series on the right-hand side is absolutely convergent by
(12 ) and Schwarz' inequality. This formula shows 2 ° )  and the
symmetry of T. On the other hand

T f i e =

(15)

iv-,,m:0 m=1
(
C

A P  
° )

A k )  = (
l i M

_ Am,
H

1
= E sm J s k i k  .

Hence we have

( a) A j )  (13A k ) =-- T j k

consequently for any finite pair ••• 4= (0, • •• , 0)

.icoAv i  - I-  •  •  •  + : 11 ° ) A v t . ,
 12 = C J T 1. J > o .

Now let !2 =  Ê C cA  ( n = 1 ,  2, • ••) and quadratic form E
be convergent, then for g iven  > 0

nn112 = j T i j <  8 (m > n > N ) .

Therefore there is an n e  ' A  such that 11f-2n- 1 2 11- 0  (n.—. co) and
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110
 = lim 1 12 .H2 =  E  j T j  >  0.

If th e  last quadratic form vanishes, 12=0 and since 12„ converge
to n , uniformly on every compact set on R , we have

o = 1-2 =iirn S-2„ ( j  = 1, 2, ...).

Next we prove 3
0

)• B y  (13), (15)

Œik = — E (Re bmk) Re ( T A =  E  (Re b„, k )(Im b„, ; )
B j

=  E  Eb,,,kb,n; — b ink b .;-2 i Im

Hence the symmetry of is equivalent to the condition

E  Im  (b m i b„,k ) 0.

On the other hand we have by (14)

P nBk) =  E  bmi bmk

Therefore i f  l ' A = I ' A B , th en  90B ;  —</YL. PB k = p l k a n d  we know
(q3 1.1, P73k ) =(PB .0  PB ,)  are real. Q. E. D.

REMARK. In case of r Œ jk  are given by

1= 1/m  E  bm i bm k  = — D(duB i , *d a )  •'- 2 711 2
where E  bm k eA n , = ditBk+i*det"

B k  •

For the sake of convenience we reformulate a result contained
in the above proof as follows.

PROPOSITION 4. L e t  {an }  be given complex numbers f o r which
E  co r i ;  i s  convergent, then there exists in  17 A  a unique differential
n  with A-periods {a n }, which is expressed as

(16)1 2 =  E anwAnH a l  2 E  “1(7k3r13 < 0 0 ,

and the convergence is uniform on every com pact set on R.

It is desirable that every differential (13 E TA  can be written as
(1 6 ). Of course it is true in case of finite genus. As for general
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case we know E  2 s n k a k
 Do for a- P.„(1)) while by (15) E

k 1
means the interchange of above summation. I have no answer
about this problem. Here we shall give only some criteria about
the convergence of hermitian form J =  E

a) Since .7- 1‹ ,ri eri i , J is convergent if

E I ail -O r i i =  E I a i I la, A i  <E x )

(c f . P i [6], [7]).
b) As T  (or s15 )  are complicatedly dependent on the structure

of R, the following criterion by geometric quantities seems to be
useful.

PROPOSITION 5 .  L e t X(7) denote the  extremal length o f  curve
family homologous to a cycle 7. Then J is convergent if

(17) E  i l \A(B i ) < 00 .

PROOF. We note [3 ] that for CO E " a

(

1 8 )
7

(') < X(7)11°)112  •

On account of symmetry of 715 it suffices to treat the case of

real ce i • Applying (18) for (0=S -2,T= a 1 , 7=B;  w e  have

7n,

I E I 2<
i=n

 

1 2 Z
B

2 <x(13;)1147112 .

   

Multiplying by la ;  a n d  summing from j= n  to m, then

E lE aerji <1147 2  ai l ./x(B .,) .

Since 110.11= ( a 1a i Ti i ) 112 w e have our conclusion.

Kyoto University and
Courant Institute of Mathematical Sciences,
New York University
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