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Introduction. In this article we shall study some properties
on periods of abelian differentials square integrable on open
Riemann surfaces. In §1 we shall show the relation of canonical
differentials defined in [4] and Ahlfors’ reproducing differentials
[2], which play a fundamental role in the theory of abelian
differentials. In §2 we shall prove a general periods theorem,
namely, let ') (=I',) be a Hilbert space of square integrable
analytic differentials and  be a set of cycles for which correspond-
ing reproducing differentials in 1, are linearly independent, then
Theorem 1 gives a necessary and sufficient condition in order that
given complex numbers should be the periods of a differential of
I', along 7. As its corollary we know the existence of three kinds
of normal differentials, in particular, normal differentials of the first
kind, for which in §3 some properties on corresponding Riemann
matrix are shown. Theorem 3 is partly identical with Oikawa’s
results in his unpublished paper studying normal differentials under
Ahlfors’ and Accola’s method.

§1
Let R be an arbitrary Riemann surface of genus g (0<{g<Coo)

* This paper was written while the author was a Temporary Member of the Courant
Institute of Mathematical Sciences, New York University. This Temporary Membership
Program is supported by the National Science Foundation under Grant NSF-GP-98.



60 Yukio Kusunoki

and {4,,B,}, .. and {C.},., .. ,(0<p<oo) be a canonical homo-
logy basis on R such that (i) any cycle in R is homologous to a finite
sum > (p,A,+4q,.B,)+ X r,C, where p,, q, and r, are integers;
(ii) the intersection numbers are characterized by A;xB;=3;,
A;xA;=B;xB;=0 for ¢,j=1,-,g; (ili) any dividing cycle is
homologous to a finite sum > 7,C,.

Let I', be the Hilbert space of analytic differentials square
integrable over R where the scalar product and norm are defined by

(1) @) =2 end. I8lE= @ 9).

For ¢=du+i*du, Vr=du’ +i*du' one can write

(1) (¢, ¥) = Di(du, du’)—iDg(du, *du’)

where Dy(du, du’)= S du N *du' = S (w.u,+u,u,)dxdy stands for the
R R

mixed Dirichlet integral. Let 1',, and 1',,, denote the subspaces
of 1', consisting of exact and semi-exact differentials respectively.
Now Virtanen’s decomposition theorem can be expressed ([4]) as

1‘a = 1‘ase @ l‘C ’ l‘ase = 1‘ae @ -l‘AB ’

where 1'¢, orthogonal complement of 1',,, is spanned by analytic
differentials {p.,} derived from generalized harmonic measures
associated with dividing cycles {C,} and 1',5 is spanned by semi-
exact canonical differentials {®,,, ®5,} such that Rep,,, Repg,
have no periods except along B, resp. A, where

(2) Reg qJAn:—ReS Pp,=1.
By Ap
ProprosITION 1. For any $€l',,, we have
(3) G pa)=i| &, @oes)=i| #.
JAy, Bn

Proor. Take an exhaustion of compact domains {R,} of R
such that each component of the boundary 9dR,, consists of a divid-
ing analytic curve. Then for ¢=du+i*du, p,,=du,,+i*du,, and
R,, containing the cycle A, we have by the period relation
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Dienlditgy, du)= — | *au+ | wyrdu.

An 9Rm

Since u,, is single-valued outside R,,, moreover canonical, it follows

that S u4,¥du—0 for m—co (cf. Lemma 4 [4]). Hence

ORm

Du(du,, du)= —S *du .

Ap
Analogously we have

(4) D(dis,, *du) = — Dydu, *dun,) = | du.
Ap

By (1’) we get therefore the first formula of (3), similarly the second
one. Q.E.D.

We recall [4] that for any ¢€ 1, and harmonic differential dU
with finite Dirichlet integral

(5) (b 9c)=—i| b DaU, *dec)= | dU,

where @, =doc, +i*doc,. (3), (4), (5) imply that our canonical
differentials ¢, , 95, and ¢, are identical, except constant factors,
with reproducing analytic differentials in 1',,, resp. 1', in the Ahlfors
sense [2] and du,,, dug, and deo., are also reproducing (real)
harmonic differentials in 1}, resp. I', under the Dirichlet norm.

§ 2. General Periods Theorem

Let Iy, be any Hilbert space. Now let P,=F,{l'} be a
linear mapping of 1', into a complex vector space E such that

Pro=P=({ 0] &) v=0n

We note that the kernel of P, is a Hilbert space cI', while the
image of P,, say P,(l',), is in general not an /,-(Hilbert) space,
namely we can easily find such an example among hyperelliptic
surfaces.

We say a set of cycles y={v,},-, ... be admissible for L, if
the corresponding reproducing differentials o,; in 1', defined by

n=1,2, ..

(P, o,) = Syj(;b for all pe 1,
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are linearly independent (for any finite pair). o,;€ I, exist, because

S ¢ is a bounded linear functional on I',. Let
i
.16 = [0'7]] C FO

be a subspace of I', spanned by o,;, and {o7,;} be an orthonormal
system constructed by the Schmidt method :

3
(6) 0—‘:']‘=k=213jk0-7k (j=1,2,°").

We call the triangular matrix S,=S,{l';} =(s;,) with s;,=0 (7<k)
the matrix (mapping) associated with 1', and .

PROPOSITION 2. S,{L'} =(S,um) has the properties :

(1) $:>0;

(ii) S, are real if (oy;, oy,) are real for j, k=1,2,--;

111) DV Spnl’=I1P,||’< oo if there exists a ¢,€ 1, such that
P,p,=e, (unit vector in E with n-th component one).

(i), (il) are immediate consequences from the orthogonalization
process and (iii) follows easily from the following Theorem 1.
Now S, defines a linear mapping of E into itself such that

Sv HI S'y(a) = (Su%,, 5,0, +35,,0, ) ’

that is, S,(«) is the product of matrix (3;,) (bar stands for complex
conjugate) and the transposed vector ‘a of a=(«,, «,,--) €E. S,
is one-to-one by (i).

THEOREM 1. For given 1, and v= {y;} admissible for Iy, (I)
SyePy is a continuous linear mapping of I, onto the complex [,-
space® such that

1Sye Py, < NIl . pEL,.
(L) S,oP, is one-to-one on 'y and Py(L))=P,(I¢)=S7'(/,).
Proor. Let €1, and ¢’ be the orthogonal projection of ¢

onto I,. Then ¢’ can be written as ¢'= 315,05 with the Fourier
coefficients 8,, given by

1) This is just a complex vector space of dimenslon ¢ if 7 consists of g(<loo)
cycles,
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Hence by Parseval’s equality we have
221817 = 1ISye Py(@)IIZ, = 1I¢'1IP <M1l

which shows (I) except “onto” and P,(1')=S7'(/,)= {a; Sy(«@) € l,}.
Now let B* =(B%, 8%-.-) € [,, then there is an @ such that S,(a)=8*;

(7) B =31 sucty

Since > |8¥|*< oo,

(8) P =2 Bfo, e 151,

(9) B = @ o) = 2wl or.
k=1 Yk

Therefore by (7), (9) and (i) we have successively
[ or—an =124, le, a= P,
Yk

which implies S;'(/,) = P,(1'%) = P,(I',), hence they coincide. Since
any differential of 1%, orthogonal to every o,; is identically zero,
SyoP, is one-to-one on I%.

COROLLARY. Suppose s;, are all, except finite numbers, real (or
pure imaginary) and let Pyp=ca+if3, pe 'y where , B are real
vectors then there exist ¢,, G, €1y such that

P‘Y¢’1=ay Pyd)z:B-

Here we refer to important special cases. For canonical basis
{4,, B,} and {C,} we know by (3), (5) that

%4, = 'Pa,> %, Ps, for I'y= 1,

O¢cy = —iq)Cv for I'y=1,

(10)

and (o4;, 04,), (98;, 5,) and (o;, oc,) are real, but (04;, o5,) are
not necessarily real; moreover, {C,}'={C,€ {C,}; oo, ==0} is
admissible for I',, and {A4,}, {B,} are admissible for I',,,. In fact,
let {®;} denotes any one of the systems {o,,;}, {o5;} and {o;}
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(C;e {C.}), then {w;} are linearly independent in the real field,
hence for finite number of real x; the quadratic form

D x:2,Dp(Re »;, Rew;) = Dp(X] x,0;) >0
is positive definite, i.e.
det (Dy(Re ;, Re ®;))>>0

Noting that (¢;, ®,)=Dg(Re®;, Rew;) (=real) we find easily that
{®;} are linearly independent in the complex field.

Virtanen [7] observed first the case I',=I,, y=1{4,} on
Riemann surfaces of parabolic type (where I',=I,,=145). For
general surfaces, I [4] treated the case I',)=1'¢, v= {C,}’ and Saino-
uchi did independently the case 1',)=1",,., v= {A4,} in his recent paper
[6]. While in the case where v contains mixed basis it is generally
difficult to decide whether v is admissible or not. For instance if
R is closed or parabolic surface of finite genus g, I';=1'45=
[64,.95,1u=1... o reduces g-dimensional. If R is a bordered surface
with p contours, {A,, B,, C.},._1 .. giv-1,.., ,-1 iS admissible for I';=
I's=04z P and P, gives a one-to-one mapping of I')=1) to
(2g +p—1)-dimensional vector space by (II) (Ahlfors [1]).

§3. Normal Differentials

Hereafter we fix the canonical basis {A,, B,} once for all and
define a Hilbert space I'Y by

F?Q:{(i)el‘asm S (l):O’ n=1,2, "'})
An

i.e., the kernel of P,{l'..}, v={A,}. Let 1', be the orthogonal
complement of I'% in I',,,. Obviously
-FaeCFOACJ-‘ase) [‘AC[‘AB‘
Every differential of 1', is by definition uniquely determined
by its A-periods. Moreover among differentials of I',;, having the

same A-periods with ¢€1',,, the orthogonal projection of ¢ onto
I', has the minimum norm.

PrOPOSITION 3. L'y =[®4,]1=[o4,] n=1,--,g),
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This is an immediate consequence of Proposition 1.

Since for general surfaces 1', does not necessarily coincide
with I'y5z, we must confine ourselves to the space 1, to achieve
the complex normalization about A-periods. Now we take I',=
I'ser v=14,}, then I'/=1", by Proposition 3 and S,=(s,,,) is real.

For @, €1, g —®p,=9,,,+1i( ) hence by Corollary of Theorem 1
Am
we have the following theorem [8].

THEOREM 2. There exist normal differentials o4, € I'y such that
| on=8.  ma=1-.g.
Am
The o4, can be written by (8) as
(11) O = S St = 2 S 2w, )
where (S,..) 1S a real matrix associated with 1',,, and {A,} for which
(12) 23 Smnl* = [l g, |*<Tloo
For the following purposes we note that
13) Swn— —Reb,,,  where b,,— —i L =

To see this, let @}, be the orthogonal projection Pz, to I'y, then
it can be written as

(14) Phy = 22 0una,
where  b,,,=(Ps,, o4,) = (Ps,> oh,) = —i SB lay = —SB ;smk(i‘)Ak,
hence (13) holds. Now set
@ S . —|—i ks
SBJ. Ak 7" T (]’k:]-) ""g)’

o= (0y), T= (Tia) -
We say an (infinite) quadratic form >} &E;a;; is convergent if

for given €>>0 there exists an integer N such that | éf,-?,-aij|<e
="
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for m>n_">N. Now our Riemann matrix has the following
properties.

THEOREM 3. 1°) 7 is symmetric and positive definite; more
precisely, for anmy finite or infinite numbers of complex numbers
&, &, - not simultaneously zero

2 §£§j7ff >0

provided that the quadratic form is convergent.

2°) T=1S,-S, (multiplication in the obvious sense) where S, is
a triangular real matrix associated with I',,, and {A,}.

3°) if I'%Y=1,., equivalently U',=1 45, then o is symmetric.

Proor. From (10), (11)

m
—_ @l / —
'rjk‘—zsmks Im oy, = ZsmkEssz Rep,,
m Bj m =1 Bj

(15)
= ; smksmj .

The series on the right-hand side is absolutely convergent by
(12) and Schwarz’ inequality. This formula shows 2°) and the
symmetry of . On the other hand

N

’ N
— 11 / /
(©47, ®a) = lim ( Smi® Am> 2 Su%,,) = 22 i -
N> 1 n=1 m

m=
Hence we have
(G)Aj: Q)Ak) = ‘Tjk ’

consequently for any finite pair (£, -+, &,)==(0, -+, 0)

||g1mA.vl+ +EnmAv II*= Zlfiz:j’rv;vi>0 .
”n ij=
Now let 2,= En} §w,;, (n=1,2,--+) and quadratic form E}Ef,-rr,.j
i=1

be convergent, then for given &€ >0

192, ~ QI = 3} EEm; <& (m>n>N).

i j=n4

Therefore there is an Q€ l', such that ||Q2,—Q||—0 (#— o) and
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191 = lim [|Q,]I* = X £&;7,; = 0.

If the last quadratic form vanishes, Q=0 and since Q, converge
to Q uniformly on every compact set on K, we have

0={, o=tim SAjﬂn= g (=12).

npoo

Next we prove 3°). By (13), (15)

o=~ 5 (Reby) || Re o, = — 31 (Re by)Im by,)
= - 2 [bmkbmj_ I;kam]_Zl Im (bm]l;mk):l/zl'Z .
Hence the symmetry of o is equivalent to the condition
zm] Im (bypibmi) = 0.
On the other hand we have by (14)

(¢%j> ?r;?k) = 2 bmjl_)mk .

Therefore if 1',=1,5, then @u;=@%;, ¢z, =9y, and we know
(%, Ph)=(Ps;» Pp,) are real. Q.E.D.

REMARK. In case of I'y=1",5, o; are given by
1 bob. — 1 d % 7
Oip= ”‘Elm ; miOme = ? D( Upj,y duBk) .
where S bk, = diig, +i*dilg, .
For the sake of convenience we reformulate a result contained

in the above proof as follows.

ProposiTION 4. Let {a,} be given complex numbers for which
2T, is convergent, then there exists in 'y a unique differential
Q with A-periods {a,}, which is expressed as

(16) Q=>a0, , |[|Qf=22aamr;<w,
and the convergence is uniform on every compact set on R.

It is desirable that every differential ¢ € 1'y, can be written as
(16). Of course it is true in case of finite genus. As for general
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case we know 3| 31s,,0,*<(oo for a= P,(¢) while by (15) 3 a,,r;
" k=1
means the interchange of above summation. I have no answer
about this problem. Here we shall give only some criteria about
the convergence of hermitian form J= >} a,a;7,;.
a) Since 73;< 775, J is convergent if
S| Vir =320 |a [|@4;]| <oo
(cf. [5], [6], [7D.

b) As ;; (or s;;) are complicatedly dependent on the structure
of R, the following criterion by geometric quantities seems to be
useful.

PROPOSITION 5. Let My) denote the extremal length of curve
family homologous to a cycle v. Then J is convergent if

(17) S VMB;) <leo .
Proor. We note [3] that for wel’,
(18) [ o] <2l

On account of symmetry of 7;; it suffices to treat the case of

real «;. Applying (18) for 0=Q7= éa;wm, v=B; we have

i=n

| Sama <], x| <ME0z

Multiplying by |@;| and summing from j=# to m, then
| 2 agaer; | <3N a;l | 2T ar;, | < ||\QZ"||IZ |a; |V M(B;) -
i,j=n" J i =n
Since llﬂzbllz(ﬁaiafr,.j)‘/z we have our conclusion.
i, j=n
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