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§1. Introduction

The present paper is one of our series on the homotopy groups
of simple Lie groups, following from the previous paper [7].
We shall consider the homotopy groups =;(Sp(n)) of symplectic
groups Sp(n).
When i<{4n+1, the groups are stable and computed by Bott
[3]:
Z =37 (mod 8), i<4n+1,
7;(Sp(n)) = { Z, 1=4,5 (mod 8), i<4n+1,
0 i=0,1,2,6 (mod 8), i< 4n+1,

For almost stable cases i=4n+2, 4n+3, 4n+4, the following
results are obtained (Theorem 2.2).

Zocaniin for odd n,
ant2(S o
Tane(SP(1)) { Zgnio for even n,
7f4n+3(Sp(”)) = Zz )
Z, for odd n,
s (SB(m)) =
a1 (SP(1) { Z,PZ, for even n.

These results were already computed in [4], except the last one
which will be determined in §2 by use of secondary compositions.

For <23, the groups =;(Sp(1))==;(S*) and =;(Sp(2)) are de-
termined in [11], [6] and [7]. Then the following table of =;(Sp(n))
is established by the computation of the groups =;(Sp(3)), 17< ;< 23,
and #;(Sp(4)), 21<<i<24. The computation will be given in §3
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by the aid of lemmas in §4 and §5. Generators of the 2-primary

components are also given in §4.

In the table, the symbols oo, +

and an integer 7 indicate an infinite cyclic groups, direct sum and
The notations and terminologies in
[7], [6] and [11] will be used in the present paper.

a cyclic group Z, of order 7.

X 1 2 3 4 5 n>6
1 (0) (0) (0) (0) (0) (0)
2 (0) (0) (0) (0) (0) (0)
3 (o) (o) () () () ()
4 (2) (2) (2) (2) (2) (2)
5 (2) (2) (2) (2) (2) (2)
6 2.31 (0) (0) (0) 0) (0)
7 2 (o) (o) () (o) (o)
8 2 (0) (0) (0) (0) (o)
9 3 (0) (0) (0) (0) (0)
10 15 51 (0) (0) (0) (0)
11 2 2 (=) (=) (o) (o)
12 2+2 2+2 (2) (2) (2) (2)
13 12+3 4+2 (2) (2) (2) (2)
14 84+2+2 713 2.7! (0) 0) (0)
15 242 2 2 (o) (o) (o)
16 6 2+2 2 (0) (0) (0)
17 30 40 0 (0) o) (0)
18 30 71/2+2 3-71 9! (0) (0)
19 6+2 2+2 2 2 (o) ()
20 12+2+2 2+2+2 2+2 2+2 (2) (2)
21 12+242 32+2 12+2 6+2 (2) (2)
22 13242 | 44-5!42+2 | 111/120+2 111/2 2.11! (0)
23 2+2 2+2+2 2+2 2 2 (o)
24 2+2 2 (0)
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§2. Almost stable groups

Consider the following exact sequence associated with the
fibering (Sp(n+1), p, S*™*°, Sp(n)):

2.1), «—> 7;(Sp(n)) 2 7: (Sp(n+1)) Py, 7: (S™*?) A, i1 (Sp(n))-+,

where 7, (resp. py) is a homomorphism induced by the injection
(resp. the projection) and A is a boundary homomorphism. There-
fore we have isomorphisms

iy : i (Sp(n)) = =;(Sp(n+1)) for i<4n+1,
since we have =;,,(S"*)=0 for i<4n+1.
In this stable range the following results are well-known. (See
Bott [3].)
) 7u-2(Sp(n)) =0,
1) 7w (Sp(n) = Z,

2.2) i) 7. (Spn) ~ { Z,  for odd n,

0 for even n,
‘ Z,  for odd n,
iv) 71 (Sp(n)) = { 0 for even n

The following diagram is evidently commutative and exact :

7 anso(SU@N+1))
|
715 (SU@n+1)[Sp(n))
| A
Z = (8™ A i (SH)  —> wanra(SH(+1)) = O
i |
Zons (5™ 2 1 (SUE@NA1)) —> 740 (SU@n + 2))
l Dx
Zonsa(SU@+1)[Sp(n))
| A
7 ansa (SP(2)
|

¥
7T an+1 (S U(2n + ]-)) ’
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where 7,.,(SU@2n+1))=0 by [10], z.,.,(SU2n+1)/Sp(n))==
o (SU@n+1)/Sp(n)) = =,,.,(Sp(n))=Z, for odd » and =0 for
even #, ;. ,(SU@n+2))=0 and =, (SU2n+1)=Z by [3],
T2 (SU@n+1)) == Zpiy by [2], [10].

First we have that A, is an epimorphism and thus an iso-
morphism. It follows that A, A,, and i, are epimorphisms and
A, is a monomorphism. Thus we have that =,,..(Sp(x)) is cyclic,
and

Zconin for odd #,
7MM%W»%{ cant
Zanii for oven #.

We denote by 6,,., a generator of =, ,(Sp(n))=Z. Then
we have the following

Theorem 2.1. When n is odd, the generators of =,,(Sp(n))=Z,
and 7. (Sp(n))=Z, are 0,,_,0n,,_, and 0,,_,°n’,_, respectively, where
Nun—1 1S the gemerator of m,,(S" ")=Z,.

The proof is similar to that of Lemma 2 of [5], by use of

Bott’s periodicity Sp(co)=QSp(c0).
Consider the exact sequence (2.1), for i=4n+3:

j A
7 an s (SPID) X5 74015 (SP(n+1)) Py, s (STH) — 24s (SH(0)) —
> Tanr2(SP(H A1) —-e-
We have that z,,,,(Sp(rn+1))=0 by i) of @. 2)! T ant2 (SP(N) = Zpuomrr
for odd » and =Z2,,., for even n and =,,.,(Sp(n+1))=2Z.

Therefore the degree of the homomorphism p, is 2-2n+1)! for
odd n, 2n+1)! for even n and i, is trivial. That is,

2:(2n+1)! ¢4 for odd n,
Cr+1)! s for even n.

(2.3) mwmo={

Whence we have (for n: even)
Dx (04»%30"747:»%3) = Dx (04n+3)°"74n+3 = (27’!-‘-1)' Nan+s — 0
and Dx (04n4—3°"73n»|—3) = Dx (94” 1-3)0773” 3 T (2%4—1)' 773;:+3 =0,

for the generators 0,,,,°%,4; Of m,,,,(Sp(n+1)) and 04n+3°77in+3 of
Tmes(SPp(n+1)). Thus we have the following two exact sequences :
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0 —» 70010 (5*%) 2 40ea(SpR) — 0,

0 s 1y 5 (S71) 2 4y (D) 255 401 (SP0 1)) — 0,
where 7, (S™*) =, (S")=Z,, 7,0sl(SP A1) = {010 45°7001s} =2,
for even # and =0 for odd #. For odd #, obviously,

Zin+4(SP()) = Z, .
But for even n, we must determine the following extension :
0—Z,— z (Sp(M)) — Z,— 0.
Let » be even and A=Aq,,.,;, then

Ao(@n+1)! by10) = @n+1)! Ag,,yy
= APy (0in+s)
=0.
Sp(n+1) contains a subspace Sp(n)\ Je"** such that pISp(n)\)‘je’"’+ ’
A
(SP(”)\]e‘”+3, Sp(n)) — (S***, x¥) is a relative homeomorphism pre-

serving orientations.
Let f: S™*—Sp(n)\J e"*cSp(n+1) be a coextension of
A

@2n+1)!¢,,+,. Then f represents 6,,.,, since pof represents
D5 0nis=02n+1)'1¢,,.,. It follows from Proposition 1.8 of [11]
64n+3°"74n+3 = l* (a) , @€ — {A"4n+37 (2n+1)‘ bynt2s 774n+2} »

where 7 is the inclusion of Sp(n) into Sp(n+1).
We have

- {Al'4n+37 @n+1D)! typizs 7I4n+z} 020444
= Atyy52 {204+ tiizs Ninie 24,1}

by Proposition 1.4 of [11]

= A”4n+a°((2n + 1) !/2)"73':4'2
= 0 s

since (2n+1)! is divisible by 4. Therefore, 2a=ao2,,,,=0, for
even #, and the above sequence splits.
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Summarizing the above results, we have the following

Theorem 2. 2.

Zz-(2n+1)! fOV odd n,
an S =
i +2( P(”)) { Z(zm—m f07’ even n,
T 4n ‘S(Sp(n)) o~ Zz,
Z, for odd n,

Tans(SH()) = { 2.87, for even n.

§3. Computation of =7;(Sp(n)), i< 23

The groups =;(Sp(1))==;(S?, i< 23, are determined in [11]
and [6]. The groups =;(Sp(2)), i< 23, are determined in [7].

The groups =;(Sp(n)) are given in §2 for i<<4n+4. So, it
is sufficient to compute the groups =;(Sp(3)), 17<i<<23, and
7:(Sp(4)), 21<i<24. The computations will be done algebraically
by use of the exact sequences (2.1), and by the aid of Lemmas
3.1 to 3.6, which will be proved in the next section.

Lemma 3.1. The homomorphism A : 7, (S")—=,(Sp(2)) is an
epimor phism.

It follows from Lemma 3.1 and the exactness of (2.1), that
the sequence

0 — 7, (SP(3)) —> 711 (S") —> 7:6(SP(2)) —> 715 (SP(3))

is exact. =,(Sp(3))=2Z, by Theorem 2.2, =,(Sp(2))=Z,PZ, by
Theorem 5.1 of [7] and =,(S")=Z,. It follows

7, (Sp(3)) = 0.
From (2.1),, we have an exact sequence
719 (S™) —> 714 (SP(3)) —> 715 (SPH(4)) —> 715(S™) —> 7, (Sp(3)) = 0.
We have =,,(Sp(4))=Z, by Theorem 2.2, =,,(S®)=0 and =,{(S*)=Z,,.
It follows
75(SP(B)) = Zyyos = Zyury .

It follows from (2.1), that i,: =,(Sp(3)) —=,,(Sp(4)) is an
isomorphism, since 7,,(S"*)=#,(5"*)=0. Thus
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71a(SP(3)) = 7, (Sp(4)) = Z , (Theorem 2.2).

From the last sequence, we have that p, : 7,,(Sp(4)) = 7 (S*)
is an epimorphism. Let [v,] be an element of =,(Sp(4)) such
that py[¥is]=vi € 75 (S”®:2) C7,(S*).  Obviously py ([¥is]ovis) =
vov,=vi;. v generates =, (S®)=Z,. It follows that the homo-
morphism p, in the following sequence is an epimorphism :

7 (Sp(4)) L 751 (S") —> 7., (SP(3)) —> 7., (Sp(4)) —> 7, (S™) = 0.
Thus we have
750 (SP(3)) = 7, (Sp(4)) = Z,PZ,  (Theorem 2.2).

Lemma 3.2. The image of A : 7,(S") = m,,(Sp(2)) is isomorphic
to Z,PpZ,.

Lemma 3.3. The image of A : 7,,(S")— =, (Sp(2)) is generated
by 4[o’a,,] and isomorphic to Z,.
In [7], we have obtained the results:

”20(Sp(2)) =7,PZ,DZ,,

o1 (SP(Z)) = Zaz@Zz = {[0-/0-14]’ i*’?aﬁﬂ} .
Then it follows from the exactness of (2.1), that the sequence
0-2,PZ,— z,(SPp(3) > Z,DZ,— Z,PZ,—0 1is exact, where
Z:PDZ,~==,(S") by [11]. Thus we have easily

T (81{7(3)) = Zw@Zz .
Lemma 3.4. The image of A : w,,(S*) — m,,(Sp(3)) is isomorphic
to Z,.

We have seen that py : =, (Sp(4)) ==, (S®)=Z, is an epimor-
phism. It follows from Lemma 3. 4 that we have an exact sequence

0 —> Z, — Z®Zs =5 w2, (SpA)) — Z, — 0 .

Thus =, (Sp(4)) is isomorphic to Z,PZ, or Z,,. U, =, (Sp4))=Z,,,
then iy, (Sp(3))=2(=,(Sp(4))). Then the injection homomorphism
iy : 7 (SP(3)) = 7, (Sp(5)) vanishes, since =,,(Sp(5))=Z,. The group
7, (Sp(5)) is generated by 0,093, (Theorem 2.1). In §2, we have
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seen that i, : 7, (5p(4)) — 7., (Sp(5)) is an epimorphism. We have
seen also that iy : 7, (Sp(3)) = =, (Sp(4)) is an isomorphism. Thus,
there exists an element a€ =,,(Sp(3)) such that i, (a)=6,07,, for
iy 7, (SP(3)) — 7, (Sp(5)). Consider the composition aoz,. Then
i (on,)=0,0n% =0, on the other hand iy : =, (Sp(3))— =, (Sp(5))
vanishes as stated above. Thus the assumption 7=, (Sp(4))=Z,.
leads us to the contradiction, and we have

7y (Sp4)) =~ Z,DZ, .

Consider the exact sequence (2.1),:

0 = m,(S*) — 75, (Sp(4)) — 7., (Sp(5)) Bt 75, (S") — 7, (Sp(4))
, K

L 2 (SHB)) .

The last homomorphism 7, is an epimorphism and its kernel
is isomorphic to Z, by the above discussion. Then the image of
Dy is isomorphic to Z,~Z,,/Z;, since 7, (S*)~Z,,. By Theorem 2.2,
7 (SP(8))=Z 111

It follows that

7’22(Sp(4)) == an/z = Z oosna00 +

Consider the exact sequence (2.1),:

. . A
723 (Sw) T Ty (Sp(3)) _Z_*_’ T 22 (Sp(4)) L T2z (Sls) T, (Sp(?’)) .

The group =,(S*) is isomorphic to Z,, [11] and the image of
the last homomorphism A is Z, by Lemma 3.4. Thus the cokernel
of i, is isomorphic to Z,=Z,,/Z,. Since =,(S")=Z,pZ, [11], it
follows that the sequence

(3 1) Zz@Zz - 7!'22(Sp(3)) —_ 2332640 —0

is exact.
Next consider the exact sequence (2. 1),:

755 (S™) — 7, (SP(2)) ik” 75 (SP(3)) — 74 (") — 7, (Sp(2)) .

The group =,,(S") is isomorphic to Z,, [11]. It follows from
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Lemma 3.3 that the cokernel of i, is isomorphic to Z,=Z,./Z,.
We have 7,,(Sp(2))=ZPZ,DZ, [7] and =,(S")=Z, [11].
Now apply

Lemma 3.5. The homomorphism A : 7z,,(S")—=,.(Sp(2)) is a
monomor phism.
Then we have an exact sequence

3.2) 0 —2, —Z,,,DZ,DZ, — =.,,(Sp3)) — Z;, — 0.

There exists an element of order 332640 =5280 x 63 in =,,(Sp(3))
by the exactness of (3.1), but the element cannot be divisible by
2 by the exactness of (3.2). Thus =, (Sp(3)) has a direct factor
isomorphic to Z,,,,. It follows from the exactness of (3.2)

7’22(51’(3)) = Z3325‘0€BZZ = le!/120®ZZ .

It follows immediately from the exact sequence 0=, (S5")—
25(SP(4)) = 7,5 (SP(5)) = 75 (S™) =0  that =,,(Sp(4))=Z,, where
7,5(SP(5))=Z, by Theorem 2. 2.

Consider the exact sequence (2.1),:

225 (SH(3)) 5 7,0 (SpA)) 2 7,0(5™) 2o 1 (SH3)) |

where 7,,(Sp(4))=Z, and =, (S")=Z.HZ,= {5, €s}. By use of
Lemma 5.3 in §5 we have Ap,=0, hence we know that
7,5(Sp(4))=Z, is generated by [5,], and that

(3.3) Ty e (SP(3)) — w5, (SpH(4)) is trivial.

By the isomorphism iy : =,,(Sp(4))==,,(Sp(5)), we see that
7,5 (Sp(5))=Z, is generated by i,[7;].
In the exact sequence (2. 1),:

72 (S%) —> 724 (SHB)) —> 7ol SHE) —> 7o (S) 2 7y (SPB))

we have =, (S®)=Z,= {3}, 7..(Sp(5))=Z, (Theorem 2. 2) =,,(Sp(6))
=0, 7, (S®)=Z,= {7123}» and 7, (Sp(d))=Z,= {i* [915]}- Therefore,
An,,=i,[7,], hence we have that Ag};=i,[7;]°9,, and =, (Sp(5))=Z,
is generated by i, [9s]o%.;.

Consider the homomorphism
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DxeA 05 (8") —> 7ot (SP(4)) —> 7 (S¥)

where 7, (S")=Z,= {+3} and =,,(S®)=Z,BZ,PZ,= {35, tis, 1:Es}-
We have Avi,=[v,;]ov%, since A : 7,(S*) — =,,(Sp(4)) is an epimor-
phism and since =,,(Sp(4): 2)=Z,,, is generated by [»,.]. Whence
Dy (AV2) =Dy ([¥s]ov2s) =v3s. Therefore =,,(Sp(4)) is isomorphic to
7.5 (S™) D7, (Sp(4)) [ 7.5 (S"), where 7., (S")=Z, and 7.,(Sp(4))/7.s(S™)
=z, (Sp(b))=7Z, by the exactness of the sequence:

35(S") —> 7, (SP(4)) — 7., (SP(5)) — 7., (S¥) = 0.

Thus =, (Sp(4))=Z,PZ,. One of its generators is [v,;]ovis. Let
a be another one such that pyu(a@)=0 (: =, (Sp(4)) = =, (S*)). Con-
sider the element [5,,]c%,,=a+x[v]evis. Since iy[P5]on,==0
in 7,(Sp(5)), we have [v,]on, € 7.(Sp(4)). Applying p,, we have

Py ([Dls]o"]:n) = Uit
= i, by Lemma 6.3 of [11]

= py(@)+xvi5.
Therefore x=1, and
a = [ﬁls]c"’hs + [915]01}%8 .

The exact sequence (2. 1),

22 (SH(4)) 25 7,0 (S™) — 74 (SP3)) —> 7 (SH®))
is reduced to the exact one:
0—Z,— Z,BZ,DZ, — m,(Sp3)) — 0,
by the above discussion and by (3.3). Thus we obtain
7, (Sp3)) = Z,PZ,.

8§ 4. Generators

In this section we shall study the generators of the 2-primary
components of =;(Sp(n)), <23, and prove the lemmas used in the
previous section.

We omit those of =;(Sp(1)) and =;(Sp(2)), as they are already
stated in [11], [6] and [7].
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It follows easily from (2.2) that

7, (Sp(n)) = {ixe} = Z for n>1,
7,(Sp(n)) = {iun}=Z, for n>1,
7s(Sp(n)) = {iym3} = Z, for n>1,

7, (Sp(n)) = {ix0;, = ix[1201} =2 for n=2.

Consider the exact sequence (2.1),:

0 (SP@) LE 7, (S) — w10 (SB(2)) —» 71 (SB3) = 0.

We have that =,,(S")= {¢,,} =Z and =,,(Sp(2))=Z,, by (2.2). There-
fore =, (Sp(3)) is generated by [5!:,], that is,

70 (Sp(n)) = {ixb,, = i[5!} =Z for n>3.

Next, =,(Sp(2):2)=Z, is generated by [v,] by Theorem 5.1 of
[7]. Restricting our considerations to the 2-primary components,
we may consider as (cf. Lemma 2.3 of [7])

4.1 Aw=1[»], and A(Ex)=[v]Jea for acm;(S:2).

Consider the exact sequence (2.1),:

5(S") 2 7, (SP@) —> 1 (SHB)) — ma(S™) > 71 (SP()) —>
e (SpB3) = Z,

where =,,(S")={n}}=Z,, 7.,(S")={n,}=Z, by [11], =,.(Sp(2))=
{i*:u’sv i*17384}g22€522, ”11(Sp(2)) = {i*ea} =Zz by Theorem 5.1 of
[7]. We have

(4' 2) A7’11 = i*ss )
since 1,7, (Sp(2))=0. By this relation, we have
Anh = A(pn)onn=1i3Em, = iyns,, by (7.5) of [11].

Hence ”12(Sp(3)) = {0110"711 = i*,”':;} =Z,,
and 7 (Spm)) = {iwwss} = Z,  for n>3.

Consider the exact sequence :
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0 = 7,(S") — 7, (SP(2) : 2) — 7, (Sp(3) : 2) —> 7, (S : 2)
Ly i (S52) — m(Sp(3) % o =

It follows from the above discussion that the last homomorphism
b« is trivia. We have that =,(Sp(2):2)= {[20']} =Z,,, =.,(Sp(2))
= {[v.]ovyy, txn .} =Z,PZ, by Theorem 5.1 of [7] and =,(S":2)
={v,}=Z,. So we have

7713(817(3)) = {i*"’albt} =27,
since Av,, =[v,]ov,, by (4.1).
As the order of Av, is 4, we have, by Theorem 2.2,
7’14(5‘0(3) . 2) = {[4V11]} = Zaz .
Here note that, for suitable choice of [4v,],

4.3) ix[207] = 2[4v,],
315A o =[4v,]. mod 2[4v,].
The exactness of the sequerce
0 = m4(S") — 715(Sp(2)) —> m:15(Sp(3)) —> =15(S") = 0,
where =,(Sp(2))= {[¢/7..]} =Z,, implies that

75(SP3)) = {ixlo™n.} = Z,.
Consider the exact sequence (2.1),:
15 (Sp(4)) — 15 (S*) —> w1, (SP(3)) — 7., (Sp(4)) = 0,
where 7, (Sp(3))=2Z,., and =;(S"®)= {¢,;} =Z. Whence we have

71'.5(517(4)) = {015 = [2‘7' 1'15]} =7,
So wis(Sp(m)) = {ix0s = 15 [2:T o} = Z  for n>4.

In the exact sequence (2.1),:

() 2 71 (S2)) — 71(5p(3)) —> 7,(S™) = 0,

we have that =, (Sp(2))= {[’)7]“’%0’ [0'/7714]°"715} =7Z,PZ, and A(¥F)=
[v,}ov3, for the generator v} of =,(S"). It follows that
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”IG(SP(3)) = {l* [°J7714]°"715} =7Z,.

Consider the exact sequence (2.1),:

18 (Sp(z)) —> g (Sp(‘?’)) > T (Su) A" 7‘17(517(2)) - 7517(817(3)) —>

where =,(Sp(2))=Z,,, m(S")=Z.,, 7’17(Sp(2):2): {[”7]0"-10} and
7s(S":2)= {0} by [7] and [11].

We have Ao, = [V7]°‘710 by (4' 1)'
The exactness of (2.1),:
715(S") = Z,, — 71, (SP(3)) — 71, (Sp(4)) = 0

implies that =,,(Sp(3)) has no 5-components. Thus the above
homomorphism A is an epimorphism. This proves Lemma 3. 1.
Since Ao, is of order 8, we have that =,(Sp(3):2)=Z, is
generated by [8a,,].
It follows easily from the exact sequence (2.1),:

715 (Sp(4) 1 2) —> w5(S:2) = {1} — 7 (SP(3)) = 0

that =,,(Sp(4):2)=Z,,, is generated by [v,].
In the exact sequence (2.1),:

715 (SP(3)) — 71(S") — 7s(Sp(2) : 2)

where 7,,(S")= {p,,, .} =Z,PZ,, we have

(4.4) AP, +E&,) = A(y,0,) by Lemma 6.4 of [12]
= &0y by (4.2)
=0

Hence =,,(Sp(3))==,(Sp(4))=Z, are genarated by [#,0,].

Consider the exact sequence (2.1),:

(5 25 1o (SPAY) s 710(SPB)) —> 710(S™) o (SHA))
e m(SB()) = 0.
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It follows that =,,(Sp(5)) is generated by [9!:,], since =,(Sp(4))
=7, by Theorem 2.2. And we have

(4 5) Any = l* ["7110'12]

for the generator %, of =,(S"), since =,(Sp(5))=Z7 implies the
triviality of i,z ,(Sp(4)). Thus

71'19(Sp(n)) = {i*em = l* [9' "19]} =7, f07’ n 2 5.

Next consider the homomorphism A : 7z, (S")—,,(Sp(2)), where

71'21(5” :2): {O-uvmy 7711/"12} and ﬂzo(Sp(z)): {[p7]OO.lou17’ i*/_l'sv i*”3/"40_13}'
To prove Lemma 3.2 it is sufficient to show the following two
relations :

A(oyp,,) = [1)7]00'10u” ,
A7) = UL TR

The first relation is easily obtained by (4.1). Since we have
A ;) =14C,m,, by (4.2), we shall show

UCaphis = 1373/8,0 15 in  7,,(5p(2))

in order to prove the second relation.
By Theorem 14.1 of [11] we have &u=nuo. As the kernel
of E=: m,,(S*:2)—(G"":2) is &, we obtain

Gy Captyy == 14 7)318,0 1, mod 7,& in  7,,(Sp(2)).
Here i,&=0 in =,(Sp(2)). This shows the above relation.

In the exact sequence (2.1),:

715(S") — 720 (SP(2)) I, 7 (SP3) L5 (8" 2 i (S52)),

we have that p*(["?u”lz] 0719) = 71,0157 19 = vh+94€.=3+0.  So, con-
sidering 7, (Sp(2))= {47}, we see that

”zo(sp(3)) = {i*/j’ay ["7110'12]07719} == ZzEBZz .
We have also

”2(»(Sp(4)) - {i*7l3, l* [7]”0-12]0,']19} = Zz@Zz s

which follows from the exactness of the sequence (2.1),:
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7 (5 2 710 (SP(3)) —> 720 (SHA)) —> (S = 0,

since A(¥is)= A(v,)ov,, Cm,(Sp(3))ov,, =0 for a generator »i; of
7, (S™).

Consider the exact sequence (2.1),:

70 (%) 2 7 (SPA)) —> 70 (SPE)) —> -

Where 7[21(519) = {77‘129} ng and 7Ty (Sp(4)) = {i* [7]110-12]07719 5 i*,l_l‘s} .
We have A(nls)=i4[7101.]oms by (4.5). Thus

7[20(8[)(5)) = {1*7“—"3} =7,

and 2 (SH(R)) = {i4010m0 = iy} = Z,,  for n>5.
By Theorem 2.1 we have
7 (SP(B)) = {ixnmd =2,
since 7,6, = us7,. Hence we have
0 (Sp(n)) = {ix0yonis = iyn 2} =Z,,  for n>5.

For A: 7,(S")— =, (Sp(2)) and py : 7,,(Sp(2)) = 7, (S") we have
p*A(gll) = v08, by (4 1)
= E%'"o0,,
= 4(o’o,)
€ 7, (S7:2)
So we obtain, by the exactness of (2.1),,

Aé‘u = 4[0-/0-14] or

by Lemma 9.2 of [11]
by Lemma 5.14 of [11]

AL, = 4[0-/0-14]+i*773/_1'4 .
In either case, A¢,, is of order 8 in =,,(Sp(2)).
Assume that A&, =4[c’c,]+iuwm.m,, then we have
75 (SP(3):2) = {iy[0/00, |} = Z,.

But this contradicts that =,,(Sp(5)) is generated by 8,092 =i,n.7,.

Whence we have A{,,=4[¢’c,,] and have proved Lemma 3. 3.
Easily we have

T (SP(3) 12) = {[oJo-u]» i*"]aﬁlx} == Z4®Zg .
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We shall prove Lemma 3.4. We obtain by use of (4.3)
A(20y5) =2[4v,Jooy, = [207]o0,.
We have that
Di([207]00,) = pu(2[070]) = 2070,
Hence we get, in =,,(Sp(2)),
[20"]eoy, =2[0"s,,]  mod {iynsu,, 8[o'o, 1},

since the kernel of p,: 7,(Sp(2))— =, (S") is generated by iyn.z,
and 8[o’o,,]. So in =, (Sp(3))

[20-/]“714 =2 [0'/0'14] mod i*773/;4 .

Thus the order of Aoy is 4.
Consider the homomorphism :

7722(8 3) ——‘> T (SP(B) 3) __’ T (Su . 3) .

The last homomorphism p, is already known to be isomorphic.
By Proposition 13.6 and Theorem 13.9 of [11] we have that

7,(S®:3) = {a,(15)} = Z, and =,(5§":3) = {8,(11)} =Z
We have
D+ (A(,(15))) = (px(Avs))oct,(14), since @,(15) is a suspension
element

C 71, (S 1 3)ox,(14)
= {a,(11)c,(14)} by Proposition 13.6 of [11]
= {38,(11)} by Lemma 13.8 of [11]
=0.

Thus A(a,(15))=0. As nZI(Sp(B)) has no 5-components, we have
proved Lemma 3. 4.
Consider the exact sequence (2. 1)3:

725(S™ 2)—>7r~1(SP(3) 2) — 7, (Sp(4) : 2) X 2n(S°:2),
where =, (Sp(3):2)=Z,BZ,={[0/0.,]), isxnt}. 7n(S®)=Z,= {¥is}.
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We have known in §3 that p, is an epimorphism and the order of
the image of A is 4. It follows that =, (Sp(4):2)=Z,PZ, is
generated by [v,]ov,, and i.7.7,.

Next we shall prove Lemma 3.5. We have, for p, : 7,,(Sp(2))
— 75, (ST,

A0 = pyAoy, 20, 70} (see page 141 of [117])
C pslAcy, 20y, 75} by Theorem 5.2 in 5
C {psAayy, 2v,, 7y} by Proposition 1.2 of [11]
= {»0%, 2017, N2} by (4.1)
> {vioigins 2ta0, 720} by Proposition 1.2 of [11]
= {07934, 2030, 7o} by (7.19) of [11]
> o' {vhs, 20y, 720} by Proposition 1.2 of [11]
> '€, by (6.1) of [11].

We have puA0'=0"¢, mod 71(S")on, = {o'0,, +0'E,,, &}, By
(10.23) of [11] we have xg,,=8&. The kernel of E*: #,,(S":2)
—m,,(S°:2) is generated by o’p, and ¢’,. So we have .,
=&,+ao’v,+bo’E,, where a,0=0,1. Thus we obtain

pxA0 = o7&, +x("D,, + 0’6,,)+ ¥(&+ ao’'v,, +bo’¢,,),

where x,y=0,1. Apply the boundary homomorphism A : z,,(S")
—,,(S*) to the above equality, where A(E,)=v§==0 and A(d¢’&,,)
=A(0’5,,)=0 by Proposition 3.2 of [7], and Ap,A0=0. It follows
that A0'=[0"6, ]+ x([¢'5, ]+ 076, ])=[0"¢.] or [o/5,].

In either case we have proved Lemma 3.5. Assume that,
x=0, then, A¢’=[¢"€,]. Consider the exact sequence (2.1),:

4.6)  7u(S™) —> mn(SH2)) —> 7 (SHB3)) PE (ST,

where 75’24(Sll)gzs@22v 71'2«1(811 12)= {0/"72:” 0-11”%8}7 T3 (SP(Z))QZZ@ZZ
DZ,={[0" ], [/1.]°Cs, [V,]oo37} and py is trivial by Lemma
3.5.

We have A(0'n,5) = [07€ Jon,, by the assumption
= [0-/"714]0815
A((TUV%B) = ["'7]"0-10”%7 by (4 1) .
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Therefore =,,(Sp(2))/An, (S")=Z, and =,,(Sp(3))=Z,. But this con-
tradicts to the result obtained in §3. Therefore x=1, i.e.,

AY = [o'p,,].

Now it is obvious that =,,(Sp(3):2)=Z,,PZ, is generated by
ix[p”] and i,[07€,].

It follows from Lemma 3.4 that =,,(Sp(4) : 2)=Z,,, is generated
by [4o].

Since Av,,=[v;]Jov,, is of order 2 in the exact sequence

2 (SP(E)) 25 ,0(S™) — mn(SH4)),

we have that =, (Sp(5):2)=Z,,, is generated by [2v,].

In the exact sequence (4.6) we have that A(60'7,)=[0"5,]o,,
and A(o,vi)=[»,]oow3. It follows immediately that ,,(Sp(3))
=7,67Z, is generated by i,[o’w,] and i, [o77,,]°&;.

The generators of =,,(Sp(4)) and =, (Sp(5)) are already stated
in §3.

8§5. Boundary homomorphism and secondary composition

Let Y be a CW-complex with a base point y,. Let S*"Y=YXS"
the reduced join of Y and the unit #-spheres S” and let E*Y=YXE”",
where E” is the unit n-cube bounding S*-'.

For topological pairs (A4, B, a,) and (C, D, ¢,), we denote by
z(A, B; C, D) the set of the homotopy classes of maps f: (A4, B, a,)
—(C, D, c,).

We have the following exact sequence for an arbitrary topologi-
cal space X and its subspace A with a base point «,, as usual:

oo — 7(§™Y, X)B—» z(E™'Y, S"Y ; X, A)»i»n’(S”Y, X)—>een,

Let p: X—B be a fibre map with a fibre A=p"'(b,), b,€ B.
Then p induces isomorphims p, : #(E""'Y, S"Y; X, A)=#(S"*'Y, B)
for all »>0.

Define a boundary homomorphism A : z(S""'Y, B)— =(S"Y, A)
by the commutativity of the following diagram :
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. ) .
e {S™ Y, X)E H(E"NY, ™Y X, A) > 2(S"Y, A) X n(S"Y, X) —---

ﬁ*\; Illlp* A
z(S*"'Y : B)

For this A, we have the following

Theorem 5.1. Let Z be a CW-complex with a base point z,.
Then A(aoER)=AaoB for a€ »(S™'Y, B) and Be€ »(S"Z, S*Y).

This theorem is, as it were, a generalization of (2.2) in [7],
but the proof is easy and omitted.

We shall prove the following theorem, which is the purpose of
this section.

Theorem 5.2. Assume that aocEB=Boy=0 for a€ »(S*'Y, B),
Be n(S"Z,S"Y) and vy € =(S"W, S"Z), where Y, Z, W are CW-com-
plexes with base points. Then we have
Ala, EB, Ev}, C{Aq, 8, 9} .
Proof. We denote by Ext («) an extension of a: S"'Y\ JCS"+'Z

HB
—B and denote by Coext(y) a coextension of ¢: S""'W—

S*1y\J CS™Z.
B

By Proposition 1.7 of [11], any element of {«, EB, Ev}, can
be represented as Ext (a)oE (Coext (v)). By Theorem 5.1 we obtain

A (Ext (@) E(Coext (7)) = A (Ext (a))oCoext (7).

We have a commutative diagram, by naturality,

A
z2(S"™'YuCS™'Z, B)—> #(S"YUC(CS"Z, A)
i;"l i;“l
A
z(S"™'Y, B) —— =(S"T, A),
where i, and ¢, are inclusions: S*""'Y—->S""'Y\JCS"'Z and
HB
S"Y—>S”Y\ﬂj CS"Z respectively. Therefore
i¥A (Ext (@) = A (if (Ext (@)))

= A (Ext (@)0i))
= A (@)
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by the definition of the extension. This shows that A(Ext (@)) is
an extension of A«, that is,

A (Ext (@)o E (Coext (7)) = Ext (Aa)oCoext (v).
Therefore we have
A{a, EB, Ev}, c {Aa, B, v},

since the indeterminacy subgroups of the right hand side include
those of the left hand side. g.e.d.

We shall prove the following special lemma which has been
used in the previous sections.

Lemma 5.3. For the homomorphisms A : m,(S%®) — =,,(Sp(5)),
iy 7a(SPA) > wa(SP5)) and py: wn(SPA)) — 74(S™), we have
Dadx' A (735) = 75
Proof. The following diagram is commutative :

I

7,1 (S%) 'é’ 7,5 (Sp(5)) —_ Tx (Sp(4)) &k" 755(S™)

ﬂ | s h |4 |

o (5%) 2 72, (SH(B)/SH(3)) ~:—> 25 (SP(4)[SP(3)) — 7,5(S™),

where Sp(4)/Sp(3)=S" and A in the lower sequence is the boun-
dary homomorphism for the bundle (Sp(6)/Sp(3), p,S*=Sp(6)/Sp(5)).
we remark that the above two injection homomorphisms are
isomorphisms since ,,(S*)=7=,,(5*)=0. Sp(5)/Sp(3) is a bundle
over S with a fibre S*. Then there is a cellular decomposition
Stue®ve* of Sp(5)/Sp(3) such that the class of the attaching map
of €® is a=A(t,) (A: 7,(S*) =7, (S”®)). Furthermore Sp(6)/Sp(3)
has a cellular decomposition Sp(5)/Sp(3)ve**ve* .- such that the
class of the attaching map of ¢ is A (i) € 7,,(Sp(5)/Sp(3)).

Here we consider the homotopy groups of dimension up to 24.
Then we may consider that

Sp(5)/Sp(3) = S* \;/ e and Sp(6)/Sp(3) = S* \wj e\ Je”.

Aty

We see in §2 and §3 that A: #,(5")—=,(Sp(4)) and
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Dy 1 75 (SP(4)) — 7., (S*) are epimorphisms. It follows that A : 7z,((S™)
—7,(S®) is an epimorphism -and a=A(:,) is a generator of
715(S)=Z,,.

We see also in §2 and §3 that A: 7,,(S®)— #,,(Sp(5)) is an
epimorphism and py7,.(Sp(5))=67,,(S*) = {2v, .} =~Z,. It follows
DA ()= x2v, for the above A:,,. Then we have that Ae, is a
coextension

Ac,, = Coext (£2v,) € 7, (S"\J ")

of £2v,. Since E": 7,(S°)—=,4(S"®) is an isomorphism, there
exists an element (generator) @ of #,(S°) such that E“a’=«.
S‘S\j ¢ is homotopy equivalent to 10-fold suspension S‘°(85U ¢°)

of Ss\je Thus we may consider that S“"’\je“"‘—S”(Ss\je")
Smce a’o(+2v,) € 27,,(S°)=0, there exists a coextenswn
Coext (£2v,) € m,(S*ve’)
of +2v,. Then we have
Ay, = Coext (£2v,,) = E" Coext (+2v,)+ 1,8
for some element B€ #,,(S") and the injection 7: S*C S‘s\aj e®,

since Coext (+2v,) and E"(Coext (+2v,)) are both coextensions of
the same element +2v,,.
Now consicer A7,,. Then

A”.ha = (A523)°7722
= (E" Coext (& 2v,)+148)o7,,
=E" (CoeXt (£2v,)0m,5) +iy (Bon,,)
€ EViy{a, £2v, ,},+i4x(Bon,) by Proposition 1.8 of [11].

« and v; generates =,(S°)=Z,, and =,(S°:2)=Z,. Thus there is an
odd integer ¢ such that fa=+v,. Then, by (6.1) of [11],

{a» :|:21)8, ’711}1 = {C(, :!:Ztus, "711}1

= {xta, 2v,, g, }, mod G
= {1"5y 2”37 7]11}1
=& mod G,

where G=aoEm,,(S*: 2)+ m,,(S*: 2)on, = {0"on,} =0 (cf. [11]). We
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have obtained
Agyy = i* (615 + 607]22) .

Next consider about 8. Assume that 8¢ E*z,(S")=2m,,(S™).
Then B€o+27,,(S*) and we have by Proposition 8.1 of [11]

S¢*=0 in S®\J .
g
Note that in S¢*=0 in S®\J " \J ¢*, y=E"Coext(+2v,), since it is
o vy
a 10-fold suspension of S*\/e’\/e®, o'=Coext (£2v,). Then it is
< %
verified without difficulty that
qu =i: 0 in Sl5 \/ 619 \J 823
@ Aty
and Sq"H™(Sp(6)/Sp(3); Z,) 0.
Similarly we have S¢*H"(Sp(6)/Sp(3); Z,)=0 if B € E’x,(S")=27,,(S™).
The projection homomorphisms
bx 2 HI(Sp(6)/Sp(3) 5 Z,) — HI(Sp(6); Z.)

are isomorphisms for :=15 and 23 since H*(Sp(6); Z,)=H*(Sp(3); Z,)
QH*(Sp(6)/Sp(3); Z,) and H®*(Sp(3);Z,)=0, By Corollary 13.5 of
[1]1,
S¢*(v)) =b3"%v,,
where v, and v, are generators of H™(Sp(6);Z,)=Z, and
H*(Sp(6);Z,)=Z,, and b%'* is the coefficient of o, in the ex-
pression
Ex% oo xzxs e Xg = B:'m(o'u Yy 012)5‘73‘73"'0‘12 mod 2.
Thus S¢*(v,)=v, and Sq¢"H™(Sp(6)/Sp(3);Z,)==0. By the above
discussion, we have obtained
B=o0o, mod 2m,(S").
Since 2m,y, (Sls)°"/22 =TT (Sls)"z"hz =0,

Ay = l* (&s+ /8°"722)
=iy (Eis+015m20)

= i*pw . q.e.d.

Kyoto University
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