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— 7§, is generated by v,5v,. So, we may replace v,&, by o"o,.
Then it is sufficient to prove the relations:

p*([o-,//]o-lz) = oo, 2([0-///]0-12) = i*([&30']2) ’
p*([”sf’s]"m) = o, and 2([”5’78]0”16) =0.
But these relations follow from (2.1Y, 2[¢""]=i.u, and 2[»,]=0.
Consider the case i=20. By Lemma 4.2, we have an exact
sequence :

0—>Z,PZ, > m(SUB):2)—>Z,— 0.
For the results #,(SU(3) : 2)={[p"V], i4&'}, it is sufficient to prove
the last relation 2[ p"V]=i,%, mod i,& of (4.1).

By the definition of z,,
»=E"p,€ EN{ILLEI’ 2., 80—12} <, 2¢, 8o

By (3.9) of [7],

<y 2, 86> +<80, p, 20> +<2:, 8o, >

=, 21, 80D +400 2, p, 20> +<{ps, 80, 20> =0

mod @oG,+80°G,,+2G,,. 2G,,=0 since G,,=Z,DZ,DZ,DZ,. 805G,
+400 2, p, 20> C2G,, : 2)=0 since G, =Z,. woG, is generated by
uE=n*p=nus, by Theorem 14.1 of [7]. Thus we have

=<, 2, o> = {u, 8c, 2> mod yuo .
Similarly, we have
w €<, 26, 80 = {1, 80, 21> .
By (3.7) of [7],
B € {7, {8a, 2t, 86>, 20>+, 8, {2, 80, 20>> .
By (3.10) of [7],
{2, 80, 26> C 800G, +-2G, = 0.
By the definition of p'V,
E=pVe E~{a", 2t,,, 8c,} C<{8c, 2¢, 8> .

Thus we have that {7, E~p'V, 2:> consists of Z and 7+ npo.
It follows from the relation E~{»,, p'V, 2:,} C —<5, E~p", 2¢>

”glf\ {"74: Plvy 2‘12} =T, mod {"74/1'50-”} +Ker (l':oo : 7’31 nd G17) .
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In Theorem 12.7 and Theorem 12.17 of [7] we see that Ker (E~: =5,
—G,,) is generated by v,o’oc,, and EE&. It follows that

ﬂgof\E*{'I]“ PIV» 2‘12}5/7’3 mod {"73/"40-137 E’} ’
and E*{"h» PIV’ 2"12} =y, mod {77311'40'13» g/} +27720(SS) .

Apply Theorem 2.6, then we have that there exists an element
PV such that
2LpV]=i,z, mod iE’,

where iy7.0,0,,=0. ‘

For the case /=22, we have an exact sequence :

0—>2Z,—> 7, (SUA4):2)—>Z,—0.
By Lemma 2.2,
2([2e5Jovsrey) = [205]02(very) = [24]0 = 0,

since E(2vc,)=2v.x,=0 by Theorem 12.7 of [7]. Thus the above
sequence splits.

§5. The homotopy groups =,(Sp(2)) for i<23

In this section we compute the groups ={(Sp(2)) and the results
are stated in the following

Theorem 5.1. The homotopy groups =(Sp(2)) for i<23 and
generators of their 2-primary components are listed in the following
table :

i= L2| 3 | 4| 5] 6 7 ] 8,9 10 11
n;(Sp(2))= 0 VA Z, Z, 0 VA 0 Zs+Zys Z,
gen. of 2-comp. ixts | Ta7s | 1473 [12¢] [v] ixEs

= 12 13 ! 4 | s { 16
7;(Sp(2))= Zy,+2Z, Zt+2Z, ZwstZios | 22 Z,+2Z,

gen. of 2-comp. | ixtty, ix73€s | [Vilovie, ixmatts [207] ‘[0/7714]

Lo madeoms, [vilevd,

i= 17 18 19

n;(Sﬁ(Z))_—"—! Zg"‘Zﬁ Zg+22+2315 Zg‘f‘Zz

gen. of 2-comp. [vileass [¢7], ixes 1403012, 157384
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= 20 21

7 (Sp(2, )= ZyvZyvZy AN A

gen. of 2-comp. Lvrdo010¥17 5 Tx71344013 Lo7014]s dx7atis

22 23

—

i Sp2Ne= Zag+Z;+ 23+ 2,

Lo LaPuld [o'sd

2+ 2+ 2,

Lo'mds LEC'] [ma6s]

| gen. of 2-comp.

We denote by [@] an element of ={(Sp(2)) such that p,[a]=
€ (S and, for i==T, [&]€ = (Sp(2): 2).

The following relations hold :
(6.1)  2[v]Jov,, = iy, 4[207] = iy, 8[o'o,] = xiyu'o,

and 8[p" 1= iy,
Since X(Sp(2))=A:, is an element of order 12, we have from
Lemma 2.3 isomorphisms

7{(Sp(2) : p) = w{S'XS* : p) = w(S"p) B=AS": p)
for odd prime p>5 and all i.
For 3-primary components, we quote from [8] the following
isomorphisms :
7(Sp(2) : 3) = =(B(3) : 3)

Then the results in Theorem 5.1 on the odd components follow
immediately from the following table :

for all 7,

(5.2)
i i= 1,2,3,4,5,6,7,8,9| 10 | 11,12,13 | 14 [15,16| 17 | 18
2 p-comp. of =:(S%), p>5 0 Zs 0 Z;| 0 |Zs| Zs
3 p-comp. of n,(S"), p=>5 0 0 0 Zs 0 0| Z
| 3~comp. of =.(B(3)) 0 Z, 0 Zy| O 0| Z
19,20,21 | 22 | 23
0 Zy| 0
i 0 Zs T
- 0 Zy | O
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The table is given by Chapter XIII of |[7], [3] and Theorem
3 of [8].

The exact sequence (2.1) associated with the bundle (Sp(2), p,
S'=Sp(2)/S?) induces the following exact sequence :

(5.3) 0 - Coker (A : #7,,— 73 25 74(Sp(2) : 2) — Ker (A : =7
-7z )—0, for i >7.

By concerning the table (3.1) and ii) of Proposition 3.2, we
have

Lemma 5.2. i). The homomorphisms A : =z}, — =} are epimor-
phisms for i=17, 8,9, 10, 15, 16, 17 and 23. For the other values
of i, 6< i< 23, we have the following table:

i= 11 12 13 14 18 19
Coker. 4 zZ, Zz-ngz Zy+ Zr;ﬂ Z, | Z, | Zy+2Z,
rep. of gene. & L3y M3€s €, N3ty W € 13012, N3€4

i= 20 21 22
Coker. 4 Z,+2Z, Z4+Z, Z, 7
rep. of gene. H3s T3la013 W05 Nally w

ii). The homomorphisms A :zi— =% . are monomorphisms for
i=8,9,11,12 and 19. For the other values of i, 1< i< 23, we have
the following table :

i= 10 13 4 | 1 16 17 18
Ker. 4 Zy Z, Zy Z, Zy+2Z, Zg Zg
generators Vq % 20’ 0'7a o', V3 V7019 {7

= 20 I 21 | 22 23
Ker. 4 272‘777 7 Zg Zg+ 2+ Z, Z,+Z,+ 27, o
generators VeO10V17 0014 07, 0V, 076y 0’1y, EC’, 176 '

We consider ={Sp(2):2) by dividing into three cases.
Case 1; i=8,9,11,12 and 19. For these values of 7, it follows
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from the exactness of (5.3) and ii) of Lemma 5.2 that =,(Sp(2):2)
is isomorphic to the cokernel of A: z],,— =} under the injection
homomorphisms i,. Then Theorem 5.1 is obtained by i) of
Lemma 5. 2.

Case 2: i=10, 15, 16, 17 and 23. For these values of 7, it
follows from the exactness of (5.3) and i) of Lemma 5.2 that
z{Sp(2):2) is isomorphic to the kernel of A:=7—=?_, under the
projection homomorphisms p,. So, Theorem 5.1 is established for
these values of 7, by ii) of Lemma 5.2 and (2.1).

Case 3: i=13, 14,18, 20, 21 and 22. We have to determine
the extension (5.3). We remark that, by Lemma 2.3, we may
consider that the sequence (5.3) is induced from the homotopy
exact sequence associated with an S°-bundle over S’ having the
characteristic class As,=v".

First consider the case i=13. By Lemma 5.2, we have an
exact sequence

0->2Z,PZ,— =Sp2):2) > Z,— 0.

For the result =, (Sp(2):2)={[v,]ovi, txm,}, it is sufficient to
prove the first relation of (5.1): 2[v,]ov,,=iy&. €& € {V, 2y, v} by
the definition of &. Then it follows from Theorem 2.1

2[”7]°V10 = [2”7]0”10 = i*el .

For the case i=14. We have an exact sequence

0= Z,—> w(Sp(2):2) L 2,0,

where the first Z, is generated by i,z and the second by 2¢’.
We have p,(2[207])=40"=120"=p*([12¢,]°c’). It follows

2[20") =[12¢,]0o0” mod iyp’ and 4[20"]=[12:,]cEc” mod 2i.u’ .
By the definition of ¢, and by (7.14) of [7],

+ E*y = 2¢,€ 2{ys, 8y, Ec’},.
We have also

E*{Y, 4¢, 0"} C {205, 44y, 2E0’}, C 2{v;, 8¢y, Eo’},.
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It follows =+ E*xw' =E*{Y, 44, 6"} mod {vs&,, vs7}. Since {v:&;, vsbs}
is complementary to the image of E*: » (S*)—=,(S°) and since
the kernel of E* is generated by &p,, and v'§;, we have

+u = {V, 4¢5, 0’} mod {Epyy, VE} .
Applying Theorem 2.1, we have
4[20'1 =[12¢,JcEc” =i’ mod 20, .
This proves =,(Sp(2):2)={[20"]}=Z,; and 4[2¢"]= +i "
For the case /=18, we have an exact sequence :
0—Z,— m(Sp(2):2) > Z,— 0.

where Z, is generated by i,&, and Z, by ¢,. By Theorem 2.1, we
have

8[?7] = [§7]°8L136 i*{”/: o 8‘17}1
We have, by (7.4) and (5.5) of [7],

{95, Co» Busks = {ns, 486, 20} = {ms, mips, 2012}
= {53, ty, 20,3, = {4vs, @y, 205},
= {2v5, 285, 20,7} = {2v5, 0, 20}
5 0.

Note that the equality holds, since these secondary compositions
have the same indeterminacy 27zls(Ss)zZs. Then it follows that
8[£,]=0, and the above sequence splits.

Consider the case 7=20. We have an exact sequence :

0= Z,BZs— wn(Sp(2): 2) 225 2,0,

where Z,0Z, is generated by iu7, and iyn.p0,, and Z, by v,o,v,,.
Obviously, pu([v.o]ovi)=v,0wwi. E2ow,)=20,,=0 by (7.20) of
[7]. Then it follows from Lemma 2.2 '

2A[voip]ov) = [v.]o(2v1,) = [v,]00 = 0.

This shows that the above sequence splits.
Consider the case i=21. We have an exact sequence :

0 — Z,BDZ,— #n(Sp(2): 2)'_1’i> Z,—0,
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where Z,©Z, is generated by i,u'co, and i,7,%, and Z, is generated
by o’o,,. In the proof of the case ;=14 we have an element [2¢7]
such that p,[20"]=2¢" and i,u'= +4[2¢"]. Thus

p*([ZG"]oo‘“) = 20’0, = p*(2[0,0-14])

and i p'o,=4[20 ]oa,,.
It follows that

8[0'/0'14] = j:l.*lu,’O'“ mod 41‘*72’31 y 41’*7521 = 0 .
Therefore we have 8[o’c,|= +i,u'o,,, and
”21(Sp(2) : 2) = {[0"0'14]’ i*"?aﬁ%} = Z,DZ,.

Consider the case i=22. We have an exact sequence, by
Lemma 5. 2,

0= 7, — wal(S62): 2) 25 202,82, 0,

where Z, is generated by i,z and Z,PZ,PZ, by p”, ¢’p,, and '€,
First we prove that the relation
2[0'/’714] = 2[0-/814] =0
holds for suitable choice of [¢’p,] and [¢’€,]. p([o791]00s)=
o'n,0s=0"9,+0’€, by Lemma 6.4 of [7]. Thus we may choose
[o/5,,] such that if [6’€,] is given then
[0";‘;14] = [0_/614]"'[0—,’714]00'15 .

Since 2[¢'%,,]=0, we have 2[¢’5,,|=2[0’¢,]. Let a be an element
of the secondary composition {[¢7/7,,], 2t:s, vis}:. We have

0/614 € a’o {7]14 y 245, st}l
C {0-/"714) 2"15» V%s}l DP*{["""M], 2”15» V%s}z .

{67145 20,5, v3s}, is a coset of o'y, 0Ex}t+nlsov}s which is generated
by 0-/77140-15:0,’:’14“‘0',814» 0-,77%41’%6:0» 1“'7”?6e 72'390”19=0v V?”fnz’%é‘xs“%ﬁ

=0 and 7,&pis=Emv36=0. Thus
by = 0’6+ x(0'D,,+07E), x=0or 1

Set [0/814] =0+ x([o'/ﬂu] oo;), then ﬁ*[O'/rSM] =d’¢,. We have
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2[0'¢,] € {[o/n1,], 2015, vis}i02¢,,

= —[o'9,]eE{2¢t,,, vi4, 2t} by Proposition 1.4 of [7]
0= —[o'n,]onwis

€ —[o"n.]oE{2¢,,, vi4, 20} by Corollary 3.7 of [7].

Thus 2[0’¢,]=0 mod G, where G=[0"5,JoEz,(S")02¢,,=2[0"7,,]
oEr,(S"*)=0. We have proved the required relation:

2[o’p, ] = 2[¢’¢,] =0.
Next, by the definition of p”,

p*{[Zcr’], 16"147 0'14}1 C {p*[ZO"], 16‘14» 0'14}1
= {20'/, 161’14) 0-14}1
C 2{0-/’ 81’14) 20—14}1 92PH = Zp*[:o,/] .

Thus {[207], 16¢,, o,,},=2[p”] mod G, where G is generated by
147, [207]ep,y, [207]&, and [¢'9,]co,. It is easy to see that
4G=0. Then we have

8[P”] = 4{[20-/]’ 161’147 0'14}1 .
By the definition of %/,

1 2 € iy {ps 4oy, 4ok

C {i*/‘,v 4u,,, 4o},

= +{4[20"], 4¢,,, 40},

C £{[2¢7], 16¢,,, 40},

D> x{[20"], 16¢,,, o,,},04¢,,

= 8[p"].
Thus 8[p”"]==x1i,% mod [206"|om}s + = (Sp(2))edo;. 7, (SPH(2))eda,,
=47, (Sp(2) : 2)oo;=0. [20"]o=}s is generated by [2¢"]-5, and

[207]<&,, which are in i,z}, and of order at most 2. Then we
have

8[p"1=iu® mod 2iy7},, ie., 8[p"]= xim.
By these relations and the exactness of the last sequence, we have

(Sp(2):2) = {[p"], [o'%u], L0761} = Z,,DZ,DZ, .
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The homotopy groups 7,(SU(4)) for i< 23

We shall prove the following theorem mainly by use of the
known results given in the previous sections.
From the fibering SU(4)/SU(2)=SU(4)/S*=5°x S’, we have the
following exact sequence :

(6.1)

e o e fS) s SU@Y) L S D i ST) — e iS)) —> oo

We denote by [@a®dB] an element of =(SU(4)) such that
Pyl aPBl=aPBe z{S*)P=,(S") and if i>>7 and aPLBE =iP~! then
[a®B] e 7(SU4): 2).

Theorem 6. 1.

The homotopy groups = (SU4)) for i< 23 and

generators of thair 2-primary components ave listed in the follow-

ing table.
i= 12| 3 4| 5 | 6 7 8 9
n;(SU4))= 0 VA 0 A 0 VA Zs+Z, Z,
gen. of 2-comp. x€3 [24] [72D6er] | [vsDnq] | [vsPrslons
im 10 | 1 12 13 14
|
n;(SU(4))== Zs+Z,+ 2735 Z, Z+Zys Z, Zy6+Zy+ Z1os
gen. of 2-comp.| [vi], [vsnE] [v2] [o”] [v7dovie [7se6Da’], [v2]ovy,
1= 15 16
I,(SU(4))—5— Zs+Zz+Zg Za+Zz+Zz+Zg+Zg+Zg3

gen. of 2-comp.

[vs®n7]o0s, [0714]

[¢sDurd, [vsPsl, Lo'nuadoms, [valovis, [vs@®nylees

1=

17

18

i (SU))==

Zy+ 2o+ Zo+ 2+ Zs

Zy+Zy+Zy+ 255+ 2,

gen. of 2-comp.

[videoi, [¥E]ovdy, [vemses ], [vs@nrlous

[£71, CvsDnqdoosvis, [vsnats]

1=

19

20

21

m:(SU(4))=

Zo+Zy+ 2,

Zy+Z,+ Zys

Ziet+2Z,

gen. of 2-comp.

[0 ]0012, [vsTs]ovie

LotV], [viJeoiovsn

[o014], (15862 ]
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i= 22 23

7;(SU(4) )= Zw+Zy+Zo+ Zy+ Z o5 Zy+ Zo+Z,+ Z,+ Z,+ 2,
gen. of 2-comp.| [p"], [vsrsDer ], [0'V1], [07€14] :(S@jh]mw’ Lot Lot LECT)

71€8

We have the following relations:

(6.2) 2005] = ix&;, 200" = dyp,, 20y ]ov, = i4€,
8["7586690'/] = i*/"/’ 2[”569717]‘30-3”15 = 0,&;,
200" Joo, = 2[wsfs] = i4psTias 2[p"V] = iy,
8[0-,0-14] = iyp'oy, and 8[9//] = l*ﬁ, .
Consider the bundle SU(4)/Sp(2)=S°. Since the order of its

characteristic class Ay,=1i,7, is 2, we have, by Lemma 2.3, iso-
morphisms

7(SU(4): p) = 7 (S*XSp(2): p) = ={(S": p) B ={Sp(2) : p)

for odd prime p. Then the results for odd components follow
immediately from the tables (4.2) and (5. 2).

From (6.1) we have the exactness, for i_>7, of the following
sequence :
(6.3) 0— Coker (A: %, Dl — =})

; *
LN 7a{SU4): 2)—‘b—> Ker(A: 7P =l — =} )—0.

Obviously, the above A is the sum of the A’s of (4.3) and

(5.3). Then the following lemma follows from Proposition 3. 2.

Lemma 6.2. 1i). For the case i=38,9,10, 15,16, 17 and 23, the
homomorphisms A : =3, D=l —=} are epimorphisms. For the other

values of i, 1< i< 23, we have the following table of the cokernel
and representatives of their gemerators.

i= 1n | 12 ‘ 13 ‘ 14 | 18 ‘ 19 ‘ 20 ‘ 21 ‘ 22
coker. 4= | z, | zo | z | z | z. | =z Z, Z, Z
rep. of gene. €3 U3 ¢ 1’4 & U303 M3 1oy 14

ii). The kernels of the homomorphisms A :=ziPx]— =},
7<i< 23, and their gemerators are listed in the following table:
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s 8 9 10 1 ‘ 12 ‘ 13 14
Ker. 4= Zs Z, Zy+Zg Z, Z, Z, Zs+2Z,
generators vsDnr | (vsDna)ens | vemd, ve V2 a” 1z 7566D0’, V3
i= 15 16
Ker. 4= Zs+2Z, Zs+ 2+ 2,4 Z,+ Z,
generators (vsDn7)008, 0’714 {sDur, vsPs, 0724, v3, (vsD7r)oes
i= - 17 18
Ker. A= Zs+ Zo,+ 2,4+ Z, Zs+ Zy+ Z,
generators V1010, V8, Vslls€a, (VsD77) 0 tg {7y Vslistts, (V50sDT7)ovys
i= 19 | 20 21
Ker. 4= Z,+Z, Z,+2Z, Zs+2Z,
generators v5Cs» VsTslis OV, vi010v17 0014, 75€6D2K7
i= 22 | 23
Ker. 4= Zg+Z4+Zz+Zg Zs‘l‘Zg“I‘Zz‘I‘Zz‘l‘Zz
generators 0y vskgDEr, 0'viy, 0'€y (1sPur)o016, Vséss 0" tt1s, EC’, 748

The results for /<7 in Theorem 6.1 are verified without
difficulties from the exactness of (6.1), so we omit the proof.

We shall compute the 2-primary components. We see that
the above lemma, the exactness of (6.3) and the relations (6. 2)
imply the results for the 2-primary components in Theorem 6. 1.
So, it is sufficient to prove the relation (6. 2).

The first, second, sixth and seventh relations in (6.1) follow
immediately from the corresponding relations in (4.1). The third,
eighth and ninth relations in (6.1) follow from (5.1). From the
second relation of (5.1), we have

4[207] = i p’ (in 7,(SU4))).

Since py[207]=px(2[7:6:P0”]), we have 2[ 7,60 ]=[20"] mod i’
It follows the fourth relation 8[#,&;Pc" ] =1,
It remains to prove fifth relation



248 Mamoru Mimura and Hirosi Toda

2[“5 SV 7]7100.61)15 = i*83 .
We have

2Lws D nyJoowis = [vs B 9 10200,5 = [vs D 9 ]ovon
and [vs @7, Jov,=[13] mod 2[.}],
since pu([vsDn, Jovey) = viPnw,=vi. It follows
2Ly @ n:Joowis = [¥5]oo,.
By Theorem 2.6, we have
[v3]oow € ixE*{ny, v§, o1} .
By Proposition 1.2 ard (7.19) of [7], we have
E{n,, v, o} CHms, v5, 00h D s, w6, ve00h = {255 ves 2000161
and {65 ver 209016}2 C {75y 206, Tovishs D M55 206, VeTovich: -

The indeterminacy is 9,0Ex}+ 75300+ 7hooevis. 750 E 75 =25027%
=n,02¢0m50=2n5073,=0, by Theorem 10.3 of [7]. #iz00,={E0 .}
=0 by Theorem 7.1 and Lemma 10.7 of [7]. #§o0,w,s= {vsn:Tv:e}
= {v(Ec' 95+ 5+ E)ueb =0 by (7.4), (5.9), (7.17) and (7.18) of [7].
It follows that

2 —
E{"]u Vs, 0'12} = {"/5» 2"5» 1’60-9“16}1
and this consists of a single element. We have
V50 gV1s =— {v%, 26y, x921,1}1 mod V57sllg »

since H(vgywis) = H{»2, 2ty,, v}1},=v5 and the kernel of E is generated
by vsnems, (cf. Theorem 7.7 of [7]). Then

VeTgVis € {V%» 2"12’ V%z}
since E(vymyw,)=0. By Proposition 1.5 of [7],

{"75a 21’5) VGG'QVle}l( € {"75’ 2”6) {Vg, 21’12’ 9%2}})
€ {{7]5» 2us, Vg}; 20y, st} + {"75» {2"5» ”%’ 2‘12}» VES} .

Here we have that {7, 2:, v} consists of the element & by (6.1)
and Theorem 7.1 of [7]. By Corollary 3.7 of [7], we have
0= g2 € {24, vi, 2t} and hence {2¢, v, 20} =27,,(S°). So, we have

{"]5> 2”6) lJ6‘7'9’)16}1 € {85’ 2"13» V%s} + {"]5’ 2« U¥3} .
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By the definition of &, & € {&, 2u,,, v};}. We have also 0€ {z;, «, 0}
C {ns, 20, v35}. It follows
& = {n,, 2¢,, veoovis  mod G,

where G = 9,om,(S%) + 7thoviy =105 =0. By concerning the be-
havior of E in Theorem 10.5 of [7], we have

& = E*{’h’ 21’5) Vso'sl"ls} .
Therefore we have proved that
[ngoo'u = i*E*{"lm 2‘5: X)5‘7'8’)15} :i*gs .

This completes the proof of Theorem 6. 1.

§7. Problems

In the previous computations it seems that the following two
problems are true.

Problem 7.1. Is the following diagram commutative?

7{S?) —> m1(S")

A A
7’;’—1(53) 7l’i+1(53)
N, R /
\E % H

7i4:(S°) «

This is surely true for the suspension elements in z;(S°).
Problem 7.2. Let an element & of =,S°) satisfy the relations
2¢ =0 and Aa =0,

where A is the boundary homomorphism for the bundle SU(3)/S®
=S®  Does there exist an element [&] of ={SU(3)) and an element
B of =(S® such that

Pl =, iB=2[a]l and H(B) = a?
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