Linear transformations of Finsler connections

Dedicated to Professor J. Kanitani on his 70th birthday

By
Makoto Matsumoto

(Received Dec. 12, 1963)

We introduced, in a previous paper [1], a notion of a linear transformation of the tangent bundle B of a differentiable manifold M, which was a generalization of a notion of a transformation induced from the one of M. A Finsler connection is defined in a certain principal bundle Q, the base space of which is the total space B.

A theory of transformations of a Finsler connection by a linear transformation will be developed under a certain special condition. The paper [1] was devoted to the study of affine linear transformations, and we intend to treat a projective one. The present paper is written as necessary preparation for it. The terminologies and signs of the paper [1] will be used in the following without too much comment.

§ 1. Preliminaries

(1) Principal bundle \boldsymbol{Q}

In the first place, we recall the principal bundle Q, in which a Finsler connection is defined [1], [3].

Let $P(M, \pi, G)$ be the principal bundle of frames tangent to a differentiable manifold M of n dimensions. The group of structure is the full linear real group $G L(n, R)$, and an element g of G acts on P by $p \in P \rightarrow p \cdot g$, which is called a right translation R_{g} of P by g. The total space P is interpreted as the set of all admissible mappings $F \rightarrow B$, where F is a n-dimensional real vector space and
B is the total space of the tangent bundle $B(M, \tau, F, G)$ of the manifold M. Throughout the paper, we assume that $b \in B$ is a non-null tangent vector of M. Take a fixed base (e_{a}), $a=1,2, \cdots, n$, of F and denote by $\rho_{g}, g \in G$, the operation of g on F, namely, $\rho_{g}(f)=g_{b}{ }^{a} f^{b} e_{a}$, where $g=\left(g_{b}{ }^{a}\right), a, b=1,2, \cdots, n$, and $f=f^{a} e_{a}$.

The projection $\tau: B \rightarrow M$ gives an induced bundle $\tau^{-1} P=$ $Q(B, \vec{\pi}, G)$, the total space of which is defined by $Q=\{(b, p) \mid b \in B$, $p \in P, \tau(b)=\pi(p)\}$. Then the projection $\bar{\pi}: Q \rightarrow B$ and the induced mapping $\eta: Q \rightarrow P$ are given by $\bar{\pi}(b, p)=b$ and $\eta(b, p)=p$. A right translation R_{g} of P by $g \in G$ is transfered into Q, and we have a right translation \bar{R}_{g} of Q, which is defined by $\bar{R}_{g}(b, p)=\left(b, R_{g}(p)\right)$. Later on, we shall use the same latter R_{g}, instead of \bar{R}_{g}, for a right translation of Q. By a right translation of Q, a fundamental vector field $F(A)$ on Q corresponding to $A \in \hat{G}$ (the Lie algebra of $G)$ is induced, which is determined by $F(A)_{q}=L_{q}(A)$, where L_{q} : $G \rightarrow Q, g \rightarrow R_{g}(q)$.

2] Left translations of Q

We introduce a mapping

$$
L: G \times Q \rightarrow Q,(g,(b, p)) \rightarrow\left(p\left(g \cdot p^{-1} b\right), p\right) .
$$

Then, for a fixed element $g \in G$, we have a mapping $L_{g}: Q \rightarrow Q$, $q \rightarrow L(g, q)$, which is called a left translation of Q by $g \in G$. It is easily seen that L_{g} acts on $\eta^{-1}(p), p \in P$, transitively, $\eta^{-1}(p)$ being called the η-fibre on $p \in P$. If we take the identification $i: Q \rightarrow F \times P$, used in $[1, \S 2]$, the above L_{g} is expressed simply by $(f, p) \in$ $F \times P \rightarrow(g f, p)$.

Let $q \in Q$ be a fixed point and R_{q} be a mapping defined by $R_{q}: G \rightarrow Q, g \rightarrow L(g, q)$. By a mapping R_{q}, we can introduce the second fundamental vector field $E(A)$ on Q corresponding to $A \in \hat{G}$, which is defined by $E(A)_{q}=R_{q}(A)$. Since $\eta E(A)=0$ is obvious, we can say that $E(A)$ is tangent to η-fibre at any point of Q. Take the natural base $\left(\hat{g}_{b}{ }^{a}\right), \hat{g}_{b}{ }^{a}=\left(\partial / \partial g_{a}{ }^{b}\right)_{e}$, of \hat{G} and put $E_{b}{ }^{a}=E\left(\hat{g}_{b}{ }^{u}\right)$. Then the expression

$$
E_{b}^{a}(q)=p_{b}{ }^{i} p_{j}^{-1 a} b^{j} \frac{\partial}{\partial b^{i}}
$$

is easily derived, where $\left(x^{i}, b^{i}, p_{a}{ }^{i}\right)$ is the canonical coordinate of $q \in Q[1, \S 1]$.

(3) Characteristic field

The notion of the characteristic field γ on $Q[1, \S 1]$ is important for a theory of Finsler connections, which is simply a mapping $Q \rightarrow F,(b, p) \rightarrow p^{-1} b$. We shall find an expression of the differential of γ for the later use. Take following mappings:

$$
\begin{aligned}
& \xi: F \times P \rightarrow B,(f, p) \rightarrow p f \\
& \sigma_{f}: Q \rightarrow B,(b, p) \rightarrow p f \\
& K_{f}: P \rightarrow B, p \rightarrow p f
\end{aligned}
$$

Then it is clear that $\xi \circ i=\bar{\pi}$ and $\sigma_{f}=K_{f} \circ \eta$. Hence, if we take a tangent vector $X \in Q_{q}$ and $f=\gamma(q)$, the differential $\bar{\pi}$ is expressed by

$$
\begin{aligned}
\bar{\pi}(X) & =\xi \circ i(X)=\xi^{\prime}(\gamma(X), \eta(X))=\eta(X) \cdot f+p \cdot \gamma^{\prime}(X) \\
& =K_{f^{\circ}} \circ \eta(X)+p \cdot \gamma(X)=\sigma_{f}(X)+p \cdot \gamma(X) .
\end{aligned}
$$

Consequently we obtain

$$
\begin{equation*}
\gamma=p^{-1}\left(\bar{\pi}-\sigma_{f}\right), \quad q=(b, p), \quad f=\gamma(q), \tag{1.1}
\end{equation*}
$$

which is the desired equation.
It follows from (1.1) that

$$
\begin{aligned}
F(A) \gamma & =d \gamma F(A)=p^{-1}\left(\bar{\pi} F(A)-\sigma_{f} F(A)\right) \\
& =-p^{-1} \sigma_{f} F(A)=-p^{-1} \sigma_{f} L_{q}(A)
\end{aligned}
$$

Since we have $p^{-1} \sigma_{f} L_{q}(g)=g \cdot f, g \in G$, we obtain

$$
\begin{equation*}
F(A) \gamma=-A \cdot \gamma \tag{1.2}
\end{equation*}
$$

(4) Mapping $\boldsymbol{C}(\boldsymbol{f})$

In [1], we sketched a Finsler connection in Q, which was originally introduced by T. Okada [3]. In terms of a canonical coordinate, the connection is given by coefficients of connection of three kinds $[1, \S 1]$, namely, $F_{j}{ }^{i}\left(x^{i}, b^{i}\right), F_{j}{ }^{i} k_{k}\left(x^{i}, b^{i}\right)$, and $C_{j}{ }^{i} k\left(x^{i}, b^{i}\right)$. Among them, the last $C_{j}{ }^{i}{ }_{k}$ behaves as a (1,2)-tensor under a transformation of a canonical coordinate. By virtue of this property, we define a mapping C, which is given by

$$
C: F \times Q \rightarrow \hat{G}, \quad(f, q) \rightarrow C_{b}{ }^{a}{ }_{c}(q) f^{c} \hat{g}_{a}{ }^{b},
$$

where $C_{b}{ }^{a}{ }_{c}(q)=C_{j}{ }^{i}{ }_{k}\left(x^{i}, b^{i}\right) p_{i}{ }^{-1 a} p_{b}{ }^{j} p_{c}{ }^{k}$ and $\left(x^{i}, b^{i}, p_{a}{ }^{i}\right)$ is a canonical coordinate of $q \in Q$. For a fixed element $f \in F$, the mapping $C(f)$: $Q \rightarrow \hat{G}$ is derived from C. It follows from [1, (2.9)] that

$$
\begin{equation*}
\omega_{(p) f} \circ j_{f}\left(f_{1}\right)=C\left(f_{1}\right)_{(p f, p)}, \quad f, f_{1} \in F, \quad p \in P \tag{1.3}
\end{equation*}
$$

In $[1, \S 9]$, we used a \dot{v}-basic vector field $\dot{B}^{\eta}(f)$, which was defined by a mapping $\bar{\pi}_{\nu}^{-1}: b \in B \rightarrow(b, p) \in Q$ as $\dot{B}^{\prime \prime}(f)_{q}=\bar{\pi}_{p}^{-1} \circ p \circ j_{\gamma(q)}(f)$, where $q=(b, p)$. Since $R_{q}(g)=\bar{\pi}_{p}^{-1} \circ p(g \cdot \gamma(q))$, we have the relation

$$
\begin{equation*}
E(A)=\hat{B}^{v}(A \cdot \gamma), \tag{1.4}
\end{equation*}
$$

where $E(A)$ is the second fundamental vector field. $\bar{\pi} E(A)_{q}$, $q=(b, p)$, is vertical in B and is equal to $p(A \cdot \gamma)$, because $\bar{\pi} R_{q}(g)=$ $p(g \cdot \gamma(q)), g \in G$. Hence we see that $h^{h} E(A)_{q}=0$ (h-horizontal component), while $h^{v} E(A)_{q}=l_{q} \circ p(A \cdot \gamma)=B^{v}(A \cdot \gamma)_{q}$ (v-horizontal component), where l_{q} indicates a lift to $q \in Q$. We shall find the vertical component of $E(A)$. The p-induced form $\omega_{(p)}[1, \S 2]$ on F from the connection form ω of a Finsler connection is given by $\omega_{(p)}=\omega \circ i^{-1} \circ \chi_{p}$, where $\chi_{p}: F \rightarrow F \times P, f \rightarrow(f, p)$. It follows from $i^{-1} \circ \chi_{p}=\bar{\pi}_{p}^{-1} \circ p$, that $\omega \circ i^{-1} \circ \chi_{p} \circ j_{f}\left(f_{1}\right)=\omega\left(\dot{B}^{v}\left(f_{1}\right)\right)_{(p f, p)}$. Therefore the equation (1.3) gives $v B^{v}(f)_{q}=F\left(C(f)_{q}\right)$ (vertical component), and hence we see that $v E(A)=F(C(A \cdot \gamma))$, by virtue of (1.4). Consequently $E(A)$ and $\dot{B}^{\nu}(f)$ are expressed, with respect to a Finsler connection, as follows :

$$
\begin{align*}
& E(A)=B^{v}(A \cdot \gamma)+F(C(A \cdot \gamma)), \tag{1.5}\\
& \dot{B}^{v}(f)=B^{v}(f)+F(C(f)) .
\end{align*}
$$

It, however, is remarked that $E(A)$ and $\dot{B}^{v}(f)$ are defined without use of a Finsler connection.

5 Condition of homogeneity
In $[1, \S 9]$, we discussed the complete integrability of infinitesimal affine transformation under the condition of homogeneity. This condition seems very essential for a theory of Finsler geometry [3], [4]. The definition of this condition is as follows. Let R^{+} be the set of positive numbers, and a mapping $R^{+} \times F \rightarrow F$ be such that $(z, f) \rightarrow z \cdot f$ (ordinary product), $z \in R^{+}, f \in F$. Then we introduce mappings [2, p. 174]

$$
\begin{aligned}
& h: R^{+} \times B \rightarrow B, \quad(z, b) \rightarrow z \cdot b=p\left(z \cdot p^{-1} b\right), \quad p \in \pi^{-1} \circ \tau(b), \\
& \bar{h}: R^{+} \times Q \rightarrow Q, \quad(z,(b, p)) \rightarrow(z \cdot b, p) .
\end{aligned}
$$

It is clear that $z \cdot b$ as thus defined does not depend on the choice of p. We denote by h_{z} (resp. h_{b}) the mapping $B \rightarrow B$ (resp. $R^{+} \rightarrow B$) obtained from the above h for a fixed $z \in R^{+}$(resp. $b \in B$). For the another mapping \bar{h}, the similar signs \bar{h}_{z} and \bar{h}_{q} are used.

Now, the condition of homogeneity is that a Finsler connection $\left(\Gamma^{v}, \Gamma^{h}\right)$ is invariant by every mapping \bar{h}_{z}, that is, $\bar{h}_{z} \Gamma^{\nu v}=\Gamma^{v}$ and $\bar{h}_{z} \mathrm{I}^{\text {h }}=\boldsymbol{\Gamma}^{h}$.

Let X be a tangent vector field to Q. If X satisfies the equation $\bar{h}_{z}(X)=z^{r} \cdot X$, then we say that X is positively homogeneous of degree r ($p . h .(r)$, for brevity) [4, p.7]. The same term is used for a differential form α on Q, if $\alpha \circ \bar{h}_{z}=z^{r} \cdot \alpha$. The following proposition will be easily verified [3].

Proposition 1. The condition of homogeneity is equivalent to one of the following three properties.

1. $F(A), B^{v}(f)$ and $B^{h}(f)$ are p.h.(0), (1) and (0) respectively.
2. $\omega, \theta^{\prime \prime}$ and θ^{h} are p.h.(0), (1) and (0) respectively.
3. $F_{j}{ }^{i}, F_{j}{ }^{i} k$ and $C_{j}{ }^{i}{ }_{k}$ are functions of p.h.(1), (0) and (-1) respectively with respect to variables b^{i}.

§ 2. Linear transformations

A linear transformation ρ of the total space B of the tangent bundle $B(M, \tau, G)$ is defined in [1], which is a transformation such that

1. \mathcal{P} is fibre-preserving.
2. \mathcal{P} is linear on each fibre.

By virture of the first property of \mathscr{P}, a transformation \mathcal{P} of the base manifold M is derived which satisfies the equation $\tau \circ \mathcal{P}=\underline{\rho} \circ \tau$. $\underline{\mathcal{P}}$ is called the projection of \mathscr{P}. On the other hand, \mathscr{P} gives naturally a transformation \mathscr{P}^{*} of P, which is termed the associated transformation with \mathscr{P}.

A linear transformation of P is by definition a transformation which commutes with every right translation. The following fact was proved in [1].

Proposition 2. Any linear transformation \mathscr{P}^{*} of P is associated with a linear transformation ρ of B, and the relation

$$
\begin{equation*}
\mathcal{P}^{*}(p) \cdot f=\varphi(p \cdot f), \quad p \in P, f \in F, \tag{2.1}
\end{equation*}
$$

is satisfied.
We have naturally a transformation $\overline{\mathcal{P}}$ of the total space Q of the induced bundle $\tau^{-1} P$ from a linear transformation \mathcal{P} of B, such that $\overline{\mathcal{P}}(b, p)=\left(\mathscr{P}^{\prime}(b), \mathscr{P}^{*}(p)\right) . \quad \overline{\mathcal{P}}$ is called the transformation induced from φ, or, for brevity, the linear transformation of Q. In the following, we shall use the same letter ρ for the induced one, in case there is no danger of confusion.

The notion of the deviation $\lambda: P \rightarrow G$ of a linear transformation \mathscr{P} is essential in our discussion. Let \mathcal{P}_{0} be the differential of the projection $\mathscr{P} . \mathscr{P}_{0}$ is obviously linear and then we have the associated \mathscr{P}_{0}^{*}. Then the mapping λ is defined by the equation

$$
\begin{equation*}
\varphi^{*}(p)=\varphi_{0}^{*}(p) \cdot \lambda(p) . \tag{2.2}
\end{equation*}
$$

If the projection \mathscr{P} is the identity transformation of M, \mathscr{P} is called a rotation. In this case, ρ^{*} coincides with the right translation R_{λ} by the deviation λ.

We proved in [1] that a fundamental vector field $F(A)$ and the characteristic field γ were invariant by the induced transformation \mathscr{P}. Another important property of \mathscr{P} is that the second fundamental vector field $E(A)$ is also invariant by ρ. In fact, we have first

$$
\begin{aligned}
\mathcal{P}^{\circ} L_{g}(b, p) & \left.=\mathcal{P}^{\prime}\left(p\left(g \cdot p^{-1} b\right), p\right)=\left(\mathcal{P}^{\prime} p\left(g \cdot p^{-1} b\right)\right), \mathscr{P}^{*}(p)\right) \\
& =\left(\mathscr{P}^{*}(p)\left(g \cdot p^{-1} b\right), \mathcal{P}^{*}(p)\right),
\end{aligned}
$$

where we made use of (2.1). On the other hand, we have

$$
\begin{aligned}
L_{g} \circ \mathcal{P}^{\prime}(b, p) & =L_{g}\left(\mathcal{P}^{\prime}(b), \mathcal{P}^{*}(p)\right)=\left(\mathcal{P}^{*}(p)\left(g \cdot \mathcal{P}^{*}(p)^{-1} \mathcal{P}(b)\right), \mathscr{P}^{*}(p)\right) \\
& =\left(\mathcal{P}^{*}(p)\left(g \cdot p^{-1} b\right), \mathcal{P}^{*}(p)\right),
\end{aligned}
$$

where we made use of the invariance of γ. Thus \mathcal{P} commutes with every left translation, from which it follows immediately that $E(A)$ is invariant by ρ.

Theorem 1. The necessary and sufficient condition for a transformation $\overline{\mathcal{P}}$ of Q to be linear is that the following three properties are satisfied.

1. $\overline{\mathcal{P}}$ commutes with every right translation.
2. $\overline{\mathcal{P}}$ commutes with every left translation.
3. The characteristic field γ is invariant by $\overline{\mathcal{P}}$.

Proof. We define, in the first place, transformation φ of B and φ^{*} of P as follows:

$$
\begin{array}{ll}
\mathcal{P}^{\prime}(b)=\bar{\pi} \circ \overline{\mathcal{P}}(q), & q \in \bar{\pi}^{-1}(b), \quad b \in B, \\
\mathcal{P}^{*}(p)=\eta \circ \overline{\mathcal{P}}(q), \quad q \in \eta^{-1}(p), \quad p \in P .
\end{array}
$$

It follows from the properties 1 and 2 that $\mathscr{P}^{(}(b)$ and $\mathscr{P}^{*}(p)$ are well defined, independent of the choice of q. Then $\overline{\mathcal{P}}$ is written by $\overline{\mathcal{P}}(b, p)=\left(\mathcal{P}^{\prime}(b), \mathscr{P}^{*}(p)\right)$. The property 3 means that $\mathcal{P}^{*}(p)^{-1} \mathcal{P}^{\prime}(b)=$ $p^{-1} b$, from which it follows that $q(b)=\mathcal{P}^{*}(p)\left(p^{-1} b\right)$, that is, (2.1). Further, by means of the property 1 , we see that p^{*} as thus defined commutes with every right translation of P. Consequently the theorem is established by virtue of Proposition 2.

§ 3. Transformation of a Finsler connection

We consider a Finsler connection (Γ^{v}, Γ^{h}) in Q, and $B^{v}(f)$ and $B^{h}(f)$ are v-basic and h-basic vector fields respectively. We discuss behaviours of $F(A), B^{\prime \prime}(f)$ and $B^{h}(f)$ under a linear transformation ρ. First, the following equations will be derived:

$$
\begin{align*}
& \mathscr{P} F(A)=F(A), \\
& \mathscr{P} B^{v}(f)=F\left(\mu_{\nu}(f)\right)+B^{v}(f), \tag{3.1}\\
& \left.\mathscr{P} B^{h}(f)=F\left(\mu_{h}(f)\right)+B^{v}\left(\mu_{l}^{\prime} f\right)\right)+B^{h}\left(\lambda^{-1} f\right),
\end{align*}
$$

where λ is the deviation of ρ, and μ_{v}, μ_{h} and μ will be defined in the following. It follows from (3.1) directly that the connection form ω, the v-basic form θ^{v} and the h-basic form θ^{h} subject to the following transformations:

$$
\begin{array}{lr}
\omega \circ \mathcal{P}=\omega+\mu_{v}\left(\theta^{v}\right)+\mu_{h}\left(\theta^{h}\right), \\
\theta^{\prime \prime} \circ \mathcal{P}= & \left.\theta^{\prime \prime}+\mu_{(}^{\prime} \theta^{h}\right), \tag{3.2}\\
\theta^{h} \circ \mathcal{P}= & \lambda^{-1} \theta^{h} .
\end{array}
$$

We shall show (3.1). The first of (3.1) is obvious by [1, Prop. 2]. Next we have, by means of [1, Prop. 3],

$$
\begin{equation*}
\theta^{h}\left(\mathcal{P} B^{\nu}(f)\right)=0, \quad \theta^{h}\left(\mathcal{P} B^{h}(f)\right)=\lambda^{-1} f \tag{3.3}
\end{equation*}
$$

Further we show that

$$
\begin{equation*}
\theta^{v}\left(\mathscr{P} B^{v}(f)\right)=f \tag{3.4}
\end{equation*}
$$

In fact, it follows from the definition of $B^{\nu}(f)$ that

$$
\bar{\pi} \circ \mathcal{P} B^{v}(f)_{q}=\mathcal{P} \circ \bar{\pi} B^{v}(f)_{q}=\mathcal{P}(p f)=\mathcal{P}^{*}(p) f,
$$

where we put $q=(b, p)$. Therefore we obtain $h^{\prime \prime} p B^{v}(f)_{q}=l_{q^{\prime}}\left(p^{\prime} f\right)$, $q^{\prime}=\left(b^{\prime}, p^{\prime}\right)=\mathscr{P}^{\prime}(q)$. Thus (3.4) is a consequence of the definition of the form $\theta^{\prime \prime}$. Finally we introduce three mappings μ_{v}, μ_{h} and μ, which depend on the choice of $f \in F$, as follows :

$$
\begin{array}{ll}
\mu_{n}(f): Q \rightarrow \hat{G}, & q \rightarrow \omega_{(}^{\prime}\left(\mathcal{P} B^{v}(f)\right)_{q}, \\
\mu_{h}(f): Q \rightarrow \hat{G}, & q \rightarrow \omega^{\prime}\left(\mathcal{P} B^{h}(f)\right)_{q}, \tag{3.5}\\
\mu_{(}^{\prime}(f): Q \rightarrow F, & q \rightarrow \theta^{v}\left(\mathscr{P} B^{h}(f)\right)_{q} .
\end{array}
$$

Thus (3.1) is deduced from (3.3), (3.4) and (3.5).
Above mappings μ_{v}, μ_{h} and μ satisfy the equations

$$
\begin{align*}
& \mu_{v}\left(g^{-1} f\right) \circ R_{g}=a d\left(g^{-1}\right) \mu_{v}(f) \\
& \mu_{h}\left(g^{-1} f\right) \circ R_{g}=a d\left(g^{-1}\right) \mu_{h}(f), \tag{3.6}\\
& \left.\mu_{1}^{\prime} g^{-1} f\right) \circ R_{g}=g^{-1} \mu(f)
\end{align*}
$$

We shall prove the first of (3.6). If we put $\mathscr{P}^{\prime}\left(q^{\prime}\right)=q$, we see

$$
\begin{aligned}
\mu_{v}\left(g^{-1} f\right) \circ R_{g}(q) & =\omega \mathscr{P} B^{v}\left(g^{-1} f\right)_{q^{\prime} g}=\omega \mathscr{P} R_{g-1} B^{v}(f)_{q^{\prime}} \\
& =\omega R_{g-1}\left(\mathscr{P} B^{v}(f)\right)_{q}=\operatorname{ad}\left(g^{-1}\right) \omega_{(}^{\prime}\left(\mathcal{P} B^{\prime \prime}(f)\right)_{q}
\end{aligned}
$$

In like manner we can show the second. By making use of $\theta^{\prime \prime} \circ R_{g}$ $=g^{-1} \theta^{v}$, the third will be also verified.

An induced transformation \mathscr{P} is characterized by the three properties given by Theorem 1, and (3.6) is a direct result from the property 1. In the following, we discuss the behaviour of the differential of ρ arising from the properties 2 and 3.

The property 2 gives $\rho E(A)=E(A)$. If we put $q=\rho^{\prime}\left(q^{\prime}\right)$, it follows from (1.5) and (3.1) that

$$
\begin{aligned}
\mathscr{P} E(A)_{q^{\prime}} & =F\left(C\left(A \cdot \gamma\left(q^{\prime}\right)\right)_{q^{\prime}}\right)_{q}+F\left(\mu_{\nu}\left(A \cdot \gamma\left(q^{\prime}\right)\right)_{q}\right)_{q}+B^{\nu}\left(A \cdot \gamma\left(q^{\prime}\right)\right)_{q} \\
& =F\left(C(A \cdot \gamma(q))_{q^{\prime}}\right)_{q}+F\left(\mu_{\nu}(A \cdot \gamma(q))_{q}\right)_{q}+B^{v}(A \cdot \gamma(q)) q,
\end{aligned}
$$

where we made use of the invariance of γ. Thus $\rho E(A)=E(A)$ is expressed by

$$
\mu_{\nu}(A \cdot \gamma(q))_{q}=C(A \cdot \gamma(q))_{q}-C(A \cdot \gamma(q))_{q^{\prime}} .
$$

Since $A \in \hat{G}$ is an arbitrary element, the above equation gives

$$
\begin{equation*}
\mu_{v}(f)_{q}=C(f)_{q}-C(f)_{q^{\prime}}, \quad q=\mathcal{P}\left(q^{\prime}\right) . \tag{3.7}
\end{equation*}
$$

Next, we turn to the consideration of the property 3 of Theorem 1. It follows from the second of (3.1) and $\gamma \circ \rho=\gamma$ that

$$
\gamma B^{p}(f)_{q^{\prime}}=\gamma F\left(\mu_{r}(f)\right)_{q}+\gamma B^{v}(f)_{q}, \quad q=\mathcal{P}\left(q^{\prime}\right) .
$$

By virtue of (1.2), the first term of the right hand side is written in the form $-\mu_{v}(f)_{q} \gamma$. If we put $\left.\gamma^{a}\right|_{b} f^{b} e_{a}=\gamma \mid(f)$ (v-covariant derivative), then the above equation gives

$$
\mu_{v}(f)_{q} \gamma=\gamma\left|(f)_{q}-\gamma\right|(f)_{q^{\prime}} .
$$

This, however, is solely a consequence of (3.7), because $\gamma \mid(f)_{q}=$ $f+C(f)_{q} \gamma$. In like manner, from the third of (3.1), it follows that

$$
\begin{equation*}
\left.\gamma_{।}(f)_{q^{\prime}}=\gamma_{।}\left(\lambda^{-1} f\right)_{q}+\gamma_{।}\left(\mu_{\bullet}^{\prime} f\right)\right)_{q}-\mu_{h}(f)_{q} \gamma, \quad q=\mathscr{P}\left(q^{\prime}\right), \tag{3.8}
\end{equation*}
$$

where $\gamma_{1}(f)=\gamma^{a}{ }_{1 b} f^{b} e_{a}$ (h-covariant derivative).
Summarizing the above results, we can state that
Theorem 2. The tranformation of a Finsler connection by a linear transformation ρ of B is given by (3.1) or (3.2), where μ_{v}, μ_{h} and μ are defined by (3.5) and satisfy (3.6), (3.7) and (3.8).

If we take the fixed base $\left(e_{a}\right)$ of F and $\left(\hat{g}_{b}{ }^{a}\right)$ of \hat{G}, we may write

$$
\begin{aligned}
& \left.\mu_{v}\left(e_{a}\right)=\mu_{\nu>a}{ }^{b}{ }_{c} \hat{g}_{b}{ }^{c}, \quad \mu^{\prime} e_{a}\right)=\mu_{a}{ }^{b} e_{b}, \\
& \mu_{h}\left(e_{a}\right)=\mu_{h) a}{ }^{b}{ }_{c} \hat{g}_{b}{ }^{c} .
\end{aligned}
$$

Then (3.6) means that quantities

$$
\begin{align*}
& \mu_{y) j}{ }^{i}{ }_{k}=\mu_{\nu>b}{ }^{a}{ }_{c} p_{a}{ }^{i} p_{j}^{-1 b} p_{k}^{-1 c}, \\
& \mu_{h) j}{ }^{i}{ }_{k}=\mu_{h>b}{ }^{\circ}{ }_{c} p_{a}{ }^{i} p_{j}^{-1 b} p_{k}^{-1 c}, \tag{3.6'}\\
& \mu_{j}{ }^{i}=\mu_{b}{ }^{a} p_{a}{ }^{i} p_{j}^{-1 b},
\end{align*}
$$

are functions of x^{i} and b^{i} only, where $\left(x^{i}, b^{i}, p_{a}{ }^{i}\right)$ is a canonical coordinate. On the other hand, (3.7) and (38) are written

$$
\begin{align*}
& \mu_{v>b}{ }^{a}{ }_{c}(q)=C_{c}{ }_{c}^{a}{ }_{b}(q)-C_{c}{ }_{c}^{a}{ }_{b}\left(q^{\prime}\right), \\
& \gamma^{a}{ }_{\mid b}\left(q^{\prime}\right)=\gamma^{a}{ }_{\mid c}(q)\left(\lambda_{b}^{-1 c}(q)+\mu_{b}{ }^{c}(q)\right)-\mu_{h>b}{ }^{a}{ }_{c}(q) \gamma^{c}(q) .
\end{align*}
$$

It is remarked here that $\gamma^{a}{ }_{\mid b}=-D_{b}{ }^{a}[1, \S 7]$, where

$$
D_{b}{ }^{a}=D_{j}{ }^{i} p_{i}^{-1 a} p_{b}{ }^{j}, \quad D_{j}{ }^{i}=F_{j}{ }^{i}-b^{h} F_{k^{i}}{ }^{i} .
$$

The following fact will be immediately verified by Proposition 1 and (3.5).

Proposition 3. If a Finsler connection satisfies the condition of homogeneity, then μ_{v}, μ_{h} and μ are p.h. (-1), (0) and (1) respectively.

§4. Transformation of quasi-connection

We introduced, in $[1, \S 2]$, the quasi $-f$-connection I_{f} in the bundle P of frames of M induced from a Finsler connection in Q and a fixed element $f \in F$. The quasi-connection form $\omega_{(f)}^{*}$ is also given by [1, Theo. 1] In the following we shall find the expression of $\omega_{(f)}^{*} \circ \mathcal{P}^{*}$, corresponding to (3.2).

We have first from [1, (2.3)]

$$
\begin{equation*}
\theta_{(p) f}^{\nu} \circ j_{f}=\text { identity } . \tag{4.1}
\end{equation*}
$$

Next, if we denote by $\theta_{(f)}^{h}$ and $\theta_{(p)}^{h}$ the f-induced and p-induced forms from the h-basic form $\theta^{h}[1, \S 7]$, then the equations

$$
\begin{equation*}
\theta_{(r)}^{h}=\theta, \quad \theta_{(p)}^{h}=0, \tag{4.2}
\end{equation*}
$$

will be obtained, where θ is the basic form on P [5]. In fact, it follows from $\tau \circ \bar{\pi} \circ i^{-1}=\pi$ that

$$
\begin{aligned}
& \theta_{(f) p}^{h}=\theta^{h} \circ i^{-1} \circ \chi_{f}=p^{-1} \circ \tau \circ \bar{\pi}^{-} \circ i^{-1} \circ \chi_{f}, \\
& \theta_{(p) r}^{h}=\theta^{h} \circ i^{-1} \circ \chi_{p}=p^{-1} \circ \tau \circ \bar{\pi} \circ i^{-1} \circ \chi_{p} .
\end{aligned}
$$

Since $\tau \circ \bar{\pi} \circ i^{-1} \circ \chi_{f}=\eta$ and $\tau \circ \bar{\pi} \circ i^{-1} \circ \chi_{p}=$ constant, we obtain (4.2). Next, we shall show that

$$
\begin{equation*}
\omega_{(p)}=\omega_{\left(p^{\prime}\right)}+\mu_{v}\left(\theta_{\left(p^{\prime}\right)}^{v}\right), \quad p=\mathscr{P}^{*}\left(p^{\prime}\right) . \tag{4.3}
\end{equation*}
$$

Observing that $\chi_{p}(f)=\left(f, \mathscr{P}^{*}\left(p^{\prime}\right)\right)=\left(1, \varphi^{*}\right) \circ \chi_{p^{\prime}}(f), f \in F$, we get

$$
\omega_{(p)}=\omega \circ i^{-1} \circ \chi_{p}=\omega \circ i^{-1} \circ\left(1, \varphi^{*}\right) \circ \chi_{p^{\prime}}=\omega \circ \mathcal{P} \circ i^{-1} \circ \chi_{p^{\prime}},
$$

and substitution of (3.2) gives

$$
=\left(\omega+\mu_{v}\left(\theta^{v}\right)+\mu_{h}\left(\theta^{h}\right)\right) \circ i^{-1} \circ \chi_{p^{\prime}} .
$$

Thus, we have (4.3) from the second of (4.2).
Now, it follows from the definition of $\omega_{(f)}^{*}$ that

$$
\begin{aligned}
\omega_{(f) p}^{*} \circ \mathcal{P}^{*} & =\omega_{(f))^{\circ}} \circ \mathcal{P}^{*}-\omega_{(p) f^{\circ}} \circ j_{f^{\prime}} \circ \theta_{(f f) p}^{v} \circ \mathcal{P}^{*} \\
& =\left(\omega \circ i^{-1} \circ \chi_{f}\right)_{p^{\circ}} \mathcal{P}^{*}-\omega_{(\mathcal{P}) f^{\circ}} j_{f^{\prime}} \circ\left(\theta^{\prime \prime} \circ i \circ \chi_{f}\right)_{p} \circ \mathcal{P}^{*} \\
& =\left(\omega \circ \mathcal{P} \circ i^{-1} \circ \chi_{\cdot f}\right)_{p^{\prime}}-\omega_{(\mathcal{P}) f^{\prime}} \circ j_{f^{\circ}} \circ\left(\theta^{\prime \prime} \circ \mathcal{P}^{\prime} \circ i^{-1} \circ \chi_{f}\right)_{p^{\prime}},
\end{aligned}
$$

where we put $p=\mathscr{P}^{*}\left(p^{\prime}\right)$. Substituting from (3.2) and making use of (4.2) and (4.3), we obtain

$$
\begin{aligned}
& \left.=\omega_{(f) p^{\prime}}+\mu_{v}\left(\theta_{(f) p^{\prime}}^{v}\right)+\mu_{h}\left(\theta_{p^{\prime}}\right)-\omega_{(p) f^{\circ}} j_{f^{\prime}} \circ \theta_{(f) p^{\prime}}^{v}-\omega_{(p) f^{\circ}} \circ j_{f^{\prime}} \circ \mu^{\prime} \theta_{p^{\prime}}\right) \\
& \left.=\omega_{(f) p^{\prime}}^{*}+\mu_{v}\left(\theta_{(f) p^{\prime}}^{v}-\theta_{\left(p^{\prime}\right)}^{v} \circ j_{f^{\prime}}^{\circ} \theta_{(f) p^{v}}^{v}\right)+\mu_{h}\left(\theta_{p^{\prime}}\right)-\omega_{(p) f^{\prime}}^{\circ} j_{f^{\circ}} \circ \mu_{1}^{\prime} \theta_{p^{\prime}}^{\prime}\right) .
\end{aligned}
$$

Consequently, by virtue of (4.1) and (4.3), we have finally

$$
\begin{equation*}
\omega_{(f)^{\circ}}^{*} \mathcal{P}^{*}=\omega_{(f)}^{*}+\mu_{h}(\theta)-C\left(\mu^{\prime}(\theta)\right)_{\bar{\varphi}_{\bar{K}_{f}}}, \tag{4.4}
\end{equation*}
$$

where we put $\bar{K}_{f}: P \rightarrow Q, p \rightarrow(p f, p)$.
As an application of (4.4), we consider the particular case where \mathcal{P} is a rotation. In this case, from [1, (6.3)], we see

$$
\begin{equation*}
\mathcal{P}^{*}=R_{\lambda}+F(\Lambda), \tag{4.5}
\end{equation*}
$$

where \mathcal{P}^{*} is the differential and Λ is the λ-form of a rotation $[1, \S 6]$. Hence we have, by means of $[1,(2.6)]$ and [1, Theo. 1],

$$
\omega_{(f)^{*}}^{*} \mathcal{P}^{*}=\operatorname{ad}\left(\lambda^{-1}\right) \omega^{*}{ }_{(\lambda f)}+\Lambda .
$$

Therefore we obtain

$$
\begin{equation*}
\left.a d\left(\lambda^{-1}\right) \omega^{*}{ }_{(\lambda f)}-\omega^{*}{ }_{(f)}=\mu_{h}(\theta)-C\left(\mu_{(}^{\prime} \theta\right)\right)_{\bar{\varphi}}^{\bar{K}_{f}}, ~ \Lambda . \tag{4.6}
\end{equation*}
$$

This equation is the relation satisfied by μ_{h} and μ for the case of rotation.

Gathering these results we have

Proposition 4. The transformation of a quasi-f-connection form $\omega^{*}{ }_{(f)}$ induced from a Finsler connection by a linear transformation is given by (4.4), corresponding to (3.2). In the case of a rotation, we have (4.6).

§ 5. Induced Finsler connections

Let (Γ^{v}, Γ^{h}) be a Finsler connection in Q. Then a linear transformation \mathscr{P} gives a new pair of distributions $\mathcal{P}\left(\mathbf{\Gamma}^{\prime \prime}, \mathbf{\Gamma}^{h}\right)=\left(\bar{\Gamma}^{v}, \bar{\Gamma}^{h}\right)$. This new pair satisfies the condition of a Finsler connection [1, §1], as is easily verified. We call this new connection the induced Finsler connection from ($\mathrm{I}^{1 \nu}, \Gamma^{h}$) by ρ.

Proposition 5. If a Finsler connection satisfies the condition of homogeneity, the same is true for the induced connection by a linear transformation.

In order to prove this, it is enough to show that the mapping \bar{h}_{z}, as introduced in 5 of $\S 1$, commutes a linear transformation ρ. The commutability is obvious from the linearity of \mathcal{P}.

Thus, we can say that any linear transformation preserves the condition of homogeneity.

Proposition 6. The connection form $\bar{\omega}$, the v-basic form $\bar{\theta}^{\prime \prime}$, and etc. of the induced connection are given by

$$
\begin{array}{ll}
\text { (1) } \bar{\omega}=\omega \circ \mathcal{P}^{-1}, & \text { (4) } \bar{F}=F \\
\text { (2) } \bar{\theta}^{v}=\theta^{v} \circ \mathcal{P}^{-1}, & \text { (5) } \bar{B}^{v}=\mathscr{P} B^{v} \\
\text { (3) } \bar{\theta}^{h}=\theta^{h}, & \text { (6) } \bar{B}^{h}=\mathscr{P} B^{h}(\lambda) . \tag{5.1}
\end{array}
$$

Proof. Since the h-basic form θ^{h} and fundamental vector fields are defined independent of a Finsler connection, the equations (3) and (4) are obvious.
(1): $\bar{\omega} \circ R_{g}=\omega \circ \mathcal{P}^{-1} \circ R_{g}=\omega \circ R_{g} \circ \mathcal{P}^{-1}=a d\left(g^{-1}\right) \omega \circ \mathcal{P}^{-1}=a d\left(g^{-1}\right) \bar{\omega}$,

$$
\bar{\omega}(F(A))=\omega \circ \mathscr{P}^{-1}(F(A))=\omega F(A)=A,
$$

$$
\bar{\omega}(\bar{\Gamma})=\omega \circ \mathcal{P}^{-1}(\mathcal{P} \Gamma)=\omega(\Gamma)=0 .
$$

Thus all of conditions satisfied by a connection form hold for $\bar{\omega}$ and hence we have (1).
(5): $\mathscr{P} B^{v} \in \bar{\Gamma}^{v}$,
$\bar{\pi} \circ \mathcal{P} B^{v}(f)_{q}=\mathcal{P} \circ \bar{\pi} B^{v}(f)_{q}=\mathcal{P}(p f)=\mathcal{P}^{*}(p) f$,
where $q=(b, p)$.
(2): $\theta^{v} \circ \mathscr{P}^{-1}(\bar{F})=\theta^{\prime \prime}(F)=0$,
$\theta^{v} \circ \mathcal{P}^{-1}\left(\bar{\Gamma}^{h}\right)=\theta^{v}\left(\Gamma^{h}\right)=0$,
$\theta^{v} \circ \mathcal{P}^{-1}\left(\bar{B}^{v}(f)\right)=\theta^{v} B^{v}(f)=f$.
(6): $\bar{\omega}\left(\mathcal{P} B^{h}(\lambda f)\right)=\omega B^{h}(\lambda f)=0$,
$\bar{\theta}^{\prime \prime}\left(\mathcal{P} B^{h}(\lambda f)\right)=\theta^{\prime \prime} B^{h}(\lambda f)=0$,
$\bar{\theta}^{h}\left(\mathscr{P} B^{h}(\lambda f)\right)=\theta^{h} \circ \mathcal{P} B^{h}(\lambda f)=\lambda^{-1} \theta^{h} B^{h}(\lambda f)=f$.
Thus all of equations of (5.1) are obtained.
From (3.1), (3.2) and (5.1), we have the concrete expressions of $\bar{B}^{v}(f)$ and etc. as follows:

$$
\begin{align*}
& \bar{B}^{n}(f)=F\left(\mu_{v}(f)\right)+B^{v}(f), \tag{5.2}\\
& \left.\bar{B}^{h}(f)=F\left(\mu_{h}(\lambda f)\right)+B^{v}\left(\mu_{1}^{\prime} \lambda f\right)\right)+B^{n}(f), \tag{5.3}
\end{align*}
$$

$$
\begin{align*}
& \bar{\omega}=\omega-\mu_{v}\left(\theta^{\prime \prime}\right)-\left(\mu_{h}-\mu_{v} \mu\right)\left(\lambda \theta^{h}\right), \tag{5.4}\\
& \left.\bar{\theta}^{v}=\theta^{\prime \prime}-\mu^{\prime} \lambda \theta^{h}\right) . \tag{5.5}
\end{align*}
$$

By virtue of these equations, we can write down expressions of new coefficients of connection as follows:

$$
\begin{align*}
& \bar{F}_{j}{ }^{i}=F_{j}{ }^{i}-\mu_{k}{ }^{i} \lambda_{j}{ }^{k}, \tag{5.6}\\
& \bar{F}_{j}{ }_{j}{ }_{k}=F_{j}{ }^{i}{ }_{k}-\mu_{h \nu l}{ }_{j} \lambda_{k}{ }^{l}+C_{j}{ }^{i}{ }_{l} \mu_{h}{ }^{l} \lambda_{k}{ }^{h}, \\
& \bar{C}_{j}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{k}-\mu_{\nu \nu k}{ }^{i}{ }_{j} .
\end{align*}
$$

§ 6. Various conditions

A Finsler connection as above treated is very general, even if the condition of homogeneity is imposed. T. Okada [3] introduced various conditions satisfied by a Finsler connection, in order to derive the euclidean connection due to E. Cartan. In the following we consider those conditions.

Condition F: A Finsler connection is said to satisfy the condition F if $\sigma_{f} \mathrm{C}^{{ }^{h}}{ }_{q}=H_{b}$ holds, where $q=(b, p), f=\gamma(q)$, the mapping σ_{f} was defined in 3 of $\S 1$, and H_{b} is the non-linear connection induced from the Finsler connection.

Proposition 7. The condition F is equivalent to one of following equations:

$$
\begin{align*}
& \sigma_{f} B^{h}{ }_{q}=\bar{\pi} B^{h}{ }_{q}, \quad f=\gamma(q), \tag{6.1}\\
& \gamma B^{h}(f)=0 . \tag{6.2}
\end{align*}
$$

Proof. (6.1) is clear. (6.2) is easily obtained from (1.1) and (6.1).

It follows from (6.2) that the classical expression of the condition F in terms of coefficients of connection is

$$
\begin{equation*}
D_{j}^{i}=F_{j}^{i}-b^{k} F_{k}{ }^{i}{ }_{j} \equiv 0 \tag{6.3}
\end{equation*}
$$

Now, if a Finsler connection satisfies the condition F and the induced connection by a linear transformation \mathcal{P} does so, then we say that the transformation ρ preserves the condition F. This term will be used, in the following, for other conditions.

Proposition 8. The necessary and sufficient condition for a linear transformation ρ to preserve the condition F is that the equation

$$
\begin{equation*}
\mu_{h) b}{ }_{c}^{a} \gamma^{c}=\left.\gamma^{a}\right|_{c} \mu_{b}{ }^{c} \tag{6.4}
\end{equation*}
$$

is satisfied.
Proof. It follows from (5.3) and (1.2) that

$$
\left.\gamma^{\prime}\left(\bar{B}^{h}(f)-B^{h}(f)\right)=-\mu_{h}(\lambda f)+\gamma B^{\prime \prime}\left(\mu^{\prime}, \lambda f\right)\right) .
$$

Since the det. $\left(\lambda_{b}{ }^{a}\right)$ does not vanish, we obtain (6.4) at once.
Condition \boldsymbol{C}_{1} : A Finsler connection is said to satisfy the condition C_{1} if $\sigma_{f} \Gamma^{v}{ }_{q}=0, f=\gamma(q)$.

Proposition 9. The condition C_{1} is equivalent to one of following equations :

$$
\begin{align*}
& \sigma_{f} B^{v}{ }_{q}=0, \quad f=\gamma(q), \tag{6.5}\\
& \gamma B^{v}(f)=f . \tag{6.6}
\end{align*}
$$

This is easily verified by means of (1.1). From (6.6) we have the classical expression of the condition C_{1} in terms of coefficients of the connection as follows :

$$
\begin{equation*}
b^{k} C_{k^{2}}{ }_{j}=0 . \tag{6.7}
\end{equation*}
$$

As for the preservation of the condition C_{1}, we have from (5.2) and (1.2)

Proposition 10. The necessary and sufficient condition for a linear transformation \mathcal{P} to preserve the condition C_{1} is that the equation

$$
\begin{equation*}
\mu_{v>b}{ }^{a}{ }_{c} \gamma^{c}=0 \tag{6.8}
\end{equation*}
$$

is satisfied.
To introduce an another condition, we recall the mapping \bar{h}, by means of which the condition of homogeneity is defined in 5 of $\S 1$. If we denote by \hat{z} the tangent vector $(d / d z)_{z}$ to R^{+}, then a tangent vector $\bar{h}_{q}(\hat{z})$ is obtained. Thus we have a vector field $\bar{h}(\hat{z})$ on Q. This vector field is equal to the second fundamental vector field $E\left(\sum_{a} \hat{g}_{a}{ }^{a}\right)$, because, if we take a one-parameter group $z \delta=\left(z \delta_{a}{ }^{b}\right)$ of the group G, we see $z \delta \cdot f=z \cdot f$ for any $f \in F$. Therefore it follows from (1.5) that

$$
\begin{equation*}
\bar{h}(\hat{z})=B^{v}(\gamma)+F(C(\gamma)), \tag{6.9}
\end{equation*}
$$

and hence $\bar{h}(\hat{z})$ is contained in $Q^{\prime \prime}{ }_{q}+\mathbf{I}^{w}{ }_{q}$, the h-horizontal component being equal to zero.

Condition \boldsymbol{C}_{2} : A Finsler connection is said to satisfy the condition C_{2} if $\bar{h}(\hat{z})$ is v-horizontal at every point.

From (6.9) we obtain at once
Proposition 11. The condition C_{2} means that $C(\gamma)$ vanishes, that is,

$$
\begin{equation*}
C_{j}{ }^{i}{ }_{k} b^{k}=0 . \tag{6.10}
\end{equation*}
$$

The next proposition is a consequence of (5.4) and (6.9).
Proposition 12. The necessary and sufficient condition for a linear transformation \mathcal{P} to preserve the condition C_{2} is that the equation

$$
\begin{equation*}
\mu_{v) c}{ }_{b}^{a}{ }_{b} \gamma^{c}=0 \tag{6.11}
\end{equation*}
$$

is satisfied.
§ 7. Torsions and curvatures of the induced connection
We shall find torsions and curvatures of the induced connection $\left(\bar{\Gamma}^{j}, \bar{\Gamma}^{h}\right)$. To do this, we shall make use of brackets of two of $F(A), B^{v}(f)$ and $B^{h}(f)$. In $[1, \S 1]$ formulas of those brackets are given in the case where A and f are fixed elements. However, if A and f are function on Q, those formulas become more complicated. It is well known that

$$
[f X, g Y]=f g[X, Y]+f \cdot X(g) \cdot Y-g \cdot Y(f) \cdot X
$$

where X and Y are vector fields and f and g are functions. Making use of this, we obtain the following expressions of brackets.
(7.1) $\quad\left[F(A), F\left(A^{\prime}\right)\right]=F\left(\left[A, A^{\prime}\right]\right)+F\left(F(A) A^{\prime}\right)-F\left(F\left(A^{\prime}\right) A\right)$,
(7.2) $\left[F(A), B^{v}(f)\right]=B^{v}(A f)+B^{v}(F(A) f)-F\left(B^{v}(f) A\right)$,
(7.3) $\left[F(A), B^{h}(f)\right]=B^{h}(A f)+B^{h}(F(A) f)-F\left(B^{h}(f) A\right)$,
(7.4) $\left[B^{v}(f), B^{v}\left(f^{\prime}\right)\right]=F\left(S^{2}\left(f, f^{\prime}\right)\right)+B^{v}\left(S^{1}\left(f, f^{\prime}\right)\right)+B^{v}\left(B^{v}(f) f^{\prime}\right)_{\left[f, f^{\prime}\right]}$,
(7.5) $\quad\left[B^{v}(f), B^{h}\left(f^{\prime}\right)\right]=-F\left(P^{2}\left(f^{\prime}, f\right)\right)-B^{v}\left(P^{1}\left(f^{\prime}, f\right)\right)-B^{h}\left(C\left(f^{\prime}, f\right)\right)$

$$
+B^{h}\left(B^{v}(f) f^{\prime}\right)-B^{v}\left(B^{h}\left(f^{\prime}\right) f\right)
$$

$$
\begin{align*}
{\left[B^{h}(f), B^{h}\left(f^{\prime}\right)\right]=} & F\left(R^{2}\left(f, f^{\prime}\right)\right)+B^{v}\left(R^{1}\left(f, f^{\prime}\right)\right)+B^{h}\left(T\left(f, f^{\prime}\right)\right) \tag{7.6}\\
& +B^{h}\left(B^{h}(f) f^{\prime}\right)_{\left[f, f^{\prime}\right]}
\end{align*}
$$

where the subscript $\left[f, f^{\prime}\right]$ means, for an example, $W\left(f, f^{\prime}\right)_{\left[f, f^{\prime}\right]}=$ $W\left(f, f^{\prime}\right)-W\left(f^{\prime}, f\right)$, and $S^{2}, S^{1}, P^{2}, P^{1}, C, R^{2}, R^{1}$ and T are torsions and curvatures, and are written, for an example,

$$
\begin{aligned}
& S^{2}\left(f, f^{\prime}\right)=S_{c d}^{2} f^{c} f^{\prime d}=S_{b . c d}^{a} f^{c} f^{\prime d} \hat{g}_{a}{ }^{b}, \\
& P^{1}\left(f, f^{\prime}\right)=P_{c d}^{1} f^{\prime c} f^{d}=P_{c}{ }_{c}{ }_{d} f^{\prime c} f^{d} e_{a} .
\end{aligned}
$$

We have also (7.1), $\cdots,(7.6)$ (with bars) for the induced connection.
Substituting first from (5.2) and (5.3) into (7.2) and (7.3) (with bars), we have, by direct calculation

$$
\begin{align*}
& F(A) \mu_{v}(f)=-\left[A, \mu_{v}(f)\right]+\mu_{v}(A f) \\
& F(A) \mu_{h}(\lambda f)=-\left[A, \mu_{h}(\lambda f)\right]+\mu_{h}(\lambda A f) \tag{7.7}\\
& \left.\left.F(A) \mu_{l}^{\prime} \lambda f\right)=-A \mu^{\prime}(\lambda f)+\mu_{n}^{\prime} \lambda A f\right)
\end{align*}
$$

We may, however, expect that those equations are automatically satisfied. In fact, by means of (3.6'), we obtain easily that

$$
F_{b}{ }^{a}\left(\mu_{\nu \nu d}{ }^{c}{ }_{e}\right)=-\delta_{b}{ }^{c} \mu_{\nu \nu d}{ }^{a}{ }_{e}+\delta_{d}{ }^{a} \mu_{v \nu b}{ }_{e}{ }_{e}+\delta_{e}{ }^{a} \mu_{v j d}{ }^{c}{ }_{b},
$$

which shows that the first of (7.7) holds. In similar manner, remaining equations are verified.

Next, substituting in (7.4) (with bars) from (5.2), we obtain

$$
\begin{equation*}
\bar{S}^{1}\left(f, f^{\prime}\right)=S^{1}\left(f, f^{\prime}\right)+\mu_{v}(f) f^{\prime}{ }_{[f, f]} \tag{7.8}
\end{equation*}
$$

and moreover

$$
\begin{aligned}
\bar{S}^{2}\left(f, f^{\prime}\right)+\mu_{\nu}(& \left.\bar{S}^{1}\left(f, f^{\prime}\right)\right)=S^{2}\left(f, f^{\prime}\right)+\left[\mu_{v}(f), \mu_{\nu}\left(f^{\prime}\right)\right] \\
& +F\left(\mu_{v}(f)\right) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]}+B^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]} .
\end{aligned}
$$

This equation will be rewritten, by virtue of (7.8) and (7.7), in the form

$$
\begin{gather*}
\bar{S}^{2}\left(f, f^{\prime}\right)=S^{2}\left(f, f^{\prime}\right)-\mu_{v}\left(S^{1}\left(f, f^{\prime}\right)\right)+B^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]} \tag{7.9}\\
-\left[\mu_{v}(f), \mu_{v}\left(f^{\prime}\right)\right] .
\end{gather*}
$$

It will be convenient to use $\dot{B}^{v}(f)$, instead of $B^{v}(f)$, in (7.9) and in the following, because $\dot{B}^{\prime \prime}(f)$ is defined without use of a connection. We have already deduced the equation (1.6), and hence we obtain

$$
B^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]}=\dot{B}^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]}-F(C(f)) \mu_{\nu}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]},
$$

and substitution of (7.7) gives

$$
=\dot{B}^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]}+\left[C(f), \mu_{v}\left(f^{\prime}\right)\right]_{\left[f, f^{\prime}\right]}-\mu_{v}\left(C(f) f^{\prime}\right)_{\left[f, f^{\prime}\right]} .
$$

Observing that $C(f) f^{\prime}{ }_{\left[f, f^{\prime}\right]}=-S^{1}\left(f, f^{\prime}\right)$ from the definition of the torsion S^{1}, we have from (7.9)

$$
\begin{align*}
\bar{S}^{2}\left(f, f^{\prime}\right)=S^{2}\left(f, f^{\prime}\right) & +\dot{B}^{v}(f) \mu_{v}\left(f^{\prime}\right)_{\left[f, f^{\prime}\right]}-\left[\mu_{v}(f), \mu_{v}\left(f^{\prime}\right)\right] \\
& +\left[C(f), \mu_{v}\left(f^{\prime}\right)\right]_{\left[f, f^{\prime}\right]}
\end{align*}
$$

The similar process is applied to (7.5) and (7.6), and then we obtain
(7.10) $\quad \bar{C}\left(f^{\prime}, f\right)=C\left(f^{\prime}, f\right)-\mu_{\nu}(f) f^{\prime}$,
(7.11) $\left.\left.\quad \bar{P}^{1}\left(f^{\prime}, f\right)=P^{1}\left(f^{\prime}, f\right)-C\left(f, \mu_{1}^{\prime} \lambda f^{\prime}\right)\right)+\mu_{h}\left(\lambda f^{\prime}\right) f-B^{v}(f) \mu^{\prime} \lambda f^{\prime}\right)$,

$$
\begin{align*}
\bar{P}^{2}\left(f^{\prime}, f\right) & =P^{2}\left(f^{\prime}, f\right)-S^{2}\left(f, \mu^{\prime}\left(\lambda f^{\prime}\right)\right)-\mu_{\nu}\left(P^{\prime}\left(f^{\prime}, f\right)\right) \tag{7.10}\\
& \left.+\left[C\left(\mu^{\prime}, \lambda f^{\prime}\right)\right), \mu_{v}(f)\right]-\left[C(f), \mu_{h}\left(\lambda f^{\prime}\right)\right] \\
& \left.-\left[\mu_{h}\left(\lambda f^{\prime}\right), \mu_{v}(f)\right]+\mu_{v}\left(\dot{B}^{v}(f) \mu_{,}^{\prime} \lambda f^{\prime}\right)\right) \\
& \left.+\ddot{B}^{\prime \prime}\left(\mu^{\prime} \lambda f^{\prime}\right)\right) \mu_{\nu}(f)-\ddot{B}^{v}(f) \mu_{h}\left(\lambda f^{\prime}\right)+B^{h}\left(f^{\prime}\right) \mu_{v}(f),
\end{align*}
$$

$$
\begin{align*}
& \left.\bar{T}\left(f, f^{\prime}\right)=T\left(f, f^{\prime}\right)+\mu_{h}(\lambda f) f^{\prime}{ }_{\left[f, f^{\prime}\right]}-C\left(f^{\prime}, \mu^{\prime}, \lambda f\right)\right)_{\left[f, f^{\prime}\right]}, \tag{7.13}\\
& \left.\left.\bar{R}^{1}\left(f, f^{\prime}\right)=R^{1}\left(f, f^{\prime}\right)-P^{1}\left(f^{\prime}, \mu_{,}^{\prime}, \lambda f\right)\right)_{\left[f, f^{\prime}\right]}-\mu_{,}^{\prime}, \lambda T\left(f, f^{\prime}\right)\right) \tag{7.14}\\
& \left.\left.\left.-B^{h}\left(f^{\prime}\right) \mu^{\prime} \lambda f\right)_{\left[f, f^{\prime}\right]}+B^{v}\left(\mu^{\prime}, \lambda f\right)\right) \mu^{\prime}, \lambda f^{\prime}\right)_{\left[f, f^{\prime}\right]}, \\
& \left.\left.\bar{R}^{2}\left(f, f^{\prime}\right)=R^{2}\left(f, f^{\prime}\right)-P^{2}\left(f^{\prime}, \mu_{1}^{\prime} \lambda f\right)\right)_{\left[f, f^{\prime}\right]}+S^{2}\left(\mu(\lambda f), \mu_{1}^{\prime} \lambda f^{\prime}\right)\right) \tag{7.15}\\
& -\mu_{\nu}\left(R^{1}\left(f, f^{\prime}\right)\right)+\mu_{v l}\left(P^{1}\left(f^{\prime}, \mu^{\prime}, \lambda f\right)\right)_{\left[f, f^{\prime}\right]} \\
& +\left(\mu_{v} \mu-\mu_{h}\right)\left(\lambda T\left(f, f^{\prime}\right)\right)-B^{h}\left(f^{\prime}\right) \mu_{h}(\lambda f)_{\left[f, f^{\prime}\right]} \\
& \left.\left.+\mu_{\nu}\left(B^{h}\left(f^{\prime}\right) \mu_{,}^{\prime} \lambda f\right)\right)_{\left[f, f^{\prime}\right]}-B^{v}\left(\mu^{\prime}, \lambda f^{\prime}\right)\right) \mu_{;}(\lambda f)_{\left[f, f^{\prime}\right]} \\
& \left.\left.\left.+\mu_{v} B^{\nu}\left(\mu^{\prime}, \lambda f^{\prime}\right)\right) \mu^{\prime} \lambda f\right)\right)_{\left[f, f^{\prime}\right]}-\left[\mu_{h}(\lambda f), \mu_{h}\left(\lambda f^{\prime}\right)\right] \\
& \left.-\left[C\left(\mu^{\prime}, \lambda f^{\prime}\right)\right), \mu_{h}(\lambda f)\right]_{\left[f, f^{\prime}\right]} .
\end{align*}
$$

It is obvious that (7.10) is equivalent to (5.6)
For the case of a projective transformation of an ordinary connection in the bundle P of frames, it is usual that the connection is assumed to be symmetric. On the other hand, the condition of symmetry of a Finsler connection is defined as follows.

Condition of symmetry: A Finsler connection is said to be symmetric if the torsion T vanishes.

From [1, (1.3)], we see that T is coefficient of h-component of the h-torsion form. Since $T_{j}{ }^{i}{ }_{k}=F_{j}{ }^{i}{ }_{k}-F_{k}{ }^{i}{ }_{j}$, the above condition means that $F_{j}{ }^{i}{ }_{k}$ is symmetric with respect to subscripts. It follows from (7.13) that

Proposition 13. The necessary and sufficient condition for a linear transformation ρ to preserve the condition of symmetry is that the equation

$$
\begin{equation*}
\left.\mu_{h}(\lambda f) f^{\prime}{ }_{\left[f, f^{\prime}\right]}-C\left(f^{\prime}, \mu^{\prime}, \lambda f\right)\right)_{\left[f, f^{\prime}\right]}=0 \tag{7.16}
\end{equation*}
$$

is satisfied.
In terms of components, the equation (7.16) is written by

$$
\mu_{i) d}{ }^{a}{ }_{[b} \lambda_{c]}{ }^{d}-C_{[b}{ }^{a}{ }_{d} \mu_{e}{ }_{e}^{d} \lambda_{c]}{ }^{e}=0 .
$$

§ 8. Infinitesimal linear transformations

Let \mathcal{P}_{t} be a 1-parameter quasi-group of linear transformations and let X be the infinitesimal transformation of $\mathscr{\rho}_{t}$. As has already been shown, a linear transformation is characterized by the three
properties of Theorem 1, and hence X is such that

$$
\begin{align*}
& \mathscr{L}_{X} F(A)=0, \tag{8.1}\\
& \mathscr{L}_{X} E(A)=0, \tag{8.2}\\
& \mathscr{L}_{X} \gamma=0, \tag{8.3}
\end{align*}
$$

where \mathscr{L}_{X} indicates the Lie derivative with respect to X .
Ey making use of these equations, we shall find the expression of X in terms of canonical coordinate ($x^{i}, b^{i}, p_{a}{ }^{i}$). If we take the base $\left(\hat{g}_{a}{ }^{b}\right)$ of the Lie algebra \hat{G} and put $F_{a}{ }^{b}=F\left(\hat{g}_{a}{ }^{b}\right)$ and $E_{a}{ }^{b}=E\left(\hat{g}_{a}{ }^{b}\right)$, then we have

$$
F_{a}{ }^{b}=p_{a}{ }^{i} \frac{\partial}{\partial p_{b}{ }^{i}}, \quad E_{a}{ }^{b}=p_{a}{ }^{i} p_{j}^{-1} b b^{j} \frac{\partial}{\partial b^{i}}, \quad \gamma=p_{i}^{-1 a} b^{i} e_{a} .
$$

By putting

$$
X=X^{i} \frac{\partial}{\partial x^{i}}+X^{(i)} \frac{\partial}{\partial b^{i}}+X_{a}^{i} \frac{\partial}{\partial p_{a^{i}}{ }^{i}},
$$

the equation (8.1), that is, $[X, F(A)]=0$ gives

$$
\frac{\partial X^{i}}{\partial p_{a}{ }^{j}}=\frac{\partial X^{(i)}}{\partial p_{a}{ }^{j}}=0, \quad \frac{\partial X_{a}{ }^{i}}{\partial p_{b}{ }^{j}}=\delta_{a}{ }^{b} p_{j}^{-1 c} X_{c}{ }^{i} .
$$

From (8.2) and (8.3) we deduce similarly that

$$
\frac{\partial X^{i}}{\partial b^{j}}=\frac{\partial X_{a}{ }^{i}}{\partial b^{j}}=0, \quad \frac{\partial X^{(i)}}{\partial b^{j}}=X_{a}{ }^{i} p_{j}^{-1 a}, \quad X^{(i)}=X_{a}{ }^{i} p_{j}^{-1 a} b^{j}
$$

It follows from these equations that X^{i} and $X_{j}{ }^{i}=X_{a}{ }^{i} p_{j}^{-1 a}$ are functions of x^{i} only, and $X^{(i)}$ is equal to $X_{j}^{i} b^{j}$. Therefore we have

$$
\begin{equation*}
X=X^{i}(x) \frac{\partial}{\partial x^{i}}+X_{j}^{i}(x) b^{j} \frac{\partial}{\partial b^{i}}+X_{j}^{i}(x) p_{a}^{j} \frac{\partial}{\partial p_{a}^{i}} \tag{8.4}
\end{equation*}
$$

We consider the special case where \mathcal{P}_{t} are induced transformations from the projection $\underline{\varphi}_{t}$. In this case deviations λ_{t} are the unit $e \in G$ and we obtain easily $X_{j}{ }^{i}=\partial X^{i} / \partial x^{j}=X^{i}{ }_{, j}$. If we use the letter Y, instead of X, then it follows from (8.4) that

$$
\begin{equation*}
Y=Y^{i}(x) \frac{\partial}{\partial x^{i}}+Y_{, j}^{i} b^{j} \frac{\partial}{\partial b^{i}}+Y_{, j}^{i} p_{a}{ }^{j} \frac{\partial}{\partial p_{a}{ }^{i}} \tag{8.5}
\end{equation*}
$$

On the other hand, if $\mathcal{\rho}_{t}$ are rotations, we have $X^{i}=0$, because projections $\underline{\mathscr{P}}_{\boldsymbol{t}}$ are reduced to the indentity. Since a rotation \mathscr{P}^{*}
is expressible by $\left(x^{i}, p_{a}{ }^{i}\right) \rightarrow\left(x^{i}, \lambda_{j}{ }^{i} p_{a}{ }^{j}\right)[1,(3.6)]$, we see that $X_{j}{ }^{i} p_{a}{ }^{j}=$ $\left(d \lambda_{j}^{i} / d t\right)_{t=0} p_{a}{ }^{j}$. Hence, if we use the letter Z, instead of X, then we obtain

$$
\begin{equation*}
Z=\eta_{j}{ }^{i} b^{j} \frac{\partial}{\partial b^{i}}+\eta_{j}{ }^{i} p_{a}{ }^{j} \frac{\partial}{\partial p_{a}{ }^{i}}, \tag{8.7}
\end{equation*}
$$

where $\eta \in \hat{G}$ is the tangent vector of the curve λ_{t} at $e \in G$.
It is obvious that a general X is the sum of the induced part Y and the rotation part Z, and hence we conclude that

Proposition 14. The infinitesimal transformation X of a 1parameter quasi-group of linear transformations is written as the sum of the induced part Y and the rotation part Z, where Y and Z are given by (8.5) and (8.6) respectively.

§ 9. The Lie derivative of a Finsler connection

Let X be the infinitesimal transformation as treated in the last section. The Lie derivative $\mathscr{L}_{X} \alpha$ of a form α on Q with respect to the X is defined by

$$
\mathscr{L}_{X} \alpha=\lim _{t \rightarrow 0} \frac{1}{t}\left(\alpha \circ \mathcal{P}_{t}-\alpha\right) .
$$

Hence, from (3.2), we can derive directly the following formulas:

$$
\begin{align*}
& \mathscr{L}_{X} \omega=\nu_{v}\left(\theta^{v}\right)+\nu_{h}\left(\theta^{h}\right), \\
& \mathscr{L}_{X} \theta^{v}=\nu\left(\theta^{h}\right), \tag{9.1}\\
& \mathscr{L}_{X} \theta^{h}=-\eta \theta^{h},
\end{align*}
$$

where ν_{v} and ν_{h} are tangent vectors of curves $\mu_{v t}$ and $\mu_{h t}$ in G at $e \in G$, and ν is the tangent vector of the curve μ_{t} in F at the origin.

On the other hand, for a tangent vector field U on Q, the Lie derivative $\mathscr{L}_{X} U$ is defined by

$$
\mathscr{L}_{X} U=\lim _{t \rightarrow 0} \frac{1}{t}\left(U-U \circ \mathscr{P}_{t}\right) .
$$

Then, from (3.1), it is easy to see that

$$
\begin{align*}
& \mathscr{L}_{X} F(A)=0, \\
& \mathscr{L}_{X} B^{v}(f)=-F\left(\nu_{\nu}(f)\right), \tag{9.2}\\
& \mathscr{L}_{X} B^{h}(f)=-F\left(\nu_{h}(f)\right)-B^{v}(\nu(f))+B^{h}(\eta f) .
\end{align*}
$$

We can deduce from (9.2) a system of differential equations satisfied by the vector field X. To do this, we remember that $\mathscr{L}_{X} U=[X, U]$. Since the decomposition of X with respect to a Finsler connection is written as $X=F(\omega(X))+B^{v}\left(\theta^{v}(X)\right)+B^{h}\left(\theta^{h}(X)\right)$, it follows from the third equation of (9.2) that

$$
\begin{aligned}
& {\left[F(\omega(X))+B^{v}\left(\theta^{v}(X)\right)+B^{h}\left(\theta^{h}(X)\right), B^{h}(f)\right]} \\
& \quad=B^{h}(\omega(X) f)-F\left(B^{h}(f) \omega(X)\right)-F\left(P^{2}\left(f, \theta^{v}(X)\right)\right)-B^{v}\left(P^{1}\left(f, \theta^{v}(X)\right)\right) \\
& \quad-B^{h}\left(C\left(f, \theta^{\prime \prime}(X)\right)\right)-B^{v}\left(B^{h}(f) \theta^{v}(X)\right)+F\left(R^{2}\left(\theta^{h}(X), f\right)\right) \\
& \quad+B^{v}\left(R^{1}\left(\theta^{h}(X), f\right)\right)+B^{h}\left(T\left(\theta^{h}(X), f\right)\right)-B^{h}\left(B^{h}(f) \theta^{h}(X)\right),
\end{aligned}
$$

where we made use of (7.3), (7.4) and (7.5). Therefore the third equation of (9.2) is equivalent to the following:

$$
\begin{align*}
& B^{h}(f) \omega(X)=-P^{2}\left(f, \theta^{\prime \prime}(X)\right)+R^{2}\left(\theta^{h}(X), f\right)+\nu_{h}(f), \\
& B^{h}(f) \theta^{\prime}(X)=-P^{1}\left(f, \theta^{v}(X)\right)+R^{1}\left(\theta^{h}(X), f\right)+\nu(f), \tag{9.3}\\
& B^{h}(f) \theta^{h}(X)=-C\left(f, \theta^{\prime \prime}(X)\right)+T\left(\theta^{h}(X), f\right)+\omega(X) f-\eta f .
\end{align*}
$$

In an entirely similar way we deduce from the second equation of (9.2) that

$$
\begin{align*}
& B^{v}(f) \omega(X)=S^{2}(\omega(X), f)+P^{2}\left(\theta^{h}(X), f\right)+\nu_{v}(f) \\
& B^{v}(f) \theta^{v}(X)=S^{1}(\omega(X), f)+P^{1}\left(\theta^{h}(X), f\right)+\omega(X) f \tag{9.4}\\
& B^{v}(f) \theta^{h}(X)=C\left(\theta^{h}(X), f\right)
\end{align*}
$$

(9.3) and (9.4) are differential equations satisfied by the X, because, if we put $\theta^{v}(X)=X^{a} e_{a}$, we have $B^{v}(f) \theta^{v}(X)=\left.X^{a}\right|_{b} f^{b} e_{a}$ (v-covariant derivative) and $B^{h}(f) \theta^{h}(X)=X^{a}{ }_{1 b} f^{b} e_{a}$ (h-covariant derivative).

On the other hand, the first equation of (9.2) does not give differential equations, but we obtain

$$
\begin{align*}
& F(A) \omega(X)+[A, \omega(X)]=0 \\
& F(A) \theta^{n}(X)+A \cdot \theta^{v}(X)=0 \tag{9.5}\\
& F(A) \theta^{h}(X)+A \cdot \theta^{h}(X)=0
\end{align*}
$$

which do not contain derivatives of components of X.
Proposition 15. The infinitesimal transformation X of a 1parameter quasi-group of linear transformations has to satisfy a system of differential equations (9.3) and (9.4), and moreover a system of algebraic equations (9.5).

We shall, finally, find Lie derivatives of torsions and curvatures of a Finsler connection. In (9.2), $A \in \hat{G}$ and $f \in F$ are fixed elements, while, if A and f are functions on Q, we can easily derive from (9.2) that

$$
\begin{align*}
& \mathscr{L}_{X} F(A)=F\left(\mathscr{L}_{X} A\right) \\
& \mathscr{L}_{X} B^{\prime \prime}(f)=-F\left(\nu_{\nu}(f)\right)+B^{v}\left(\mathscr{L}_{X} f\right), \tag{9.6}\\
& \mathscr{L}_{X} B^{n}(f)=-F\left(\nu_{h}(f)\right)-B^{v}(\nu(f))+B^{n}(\eta f)+B^{h}\left(\mathscr{L}_{X} f\right) .
\end{align*}
$$

Next, it follcws from the Jacobi identity that $\mathscr{L}_{x}[U, V]=\left[\mathscr{L}_{X} U, V\right]$ $+\left[U, \mathscr{L}_{X} V\right]$, where U and V are vector fields on Q.

Now, if f and f^{\prime} are fixed elements of F, we obtain from (7.4) that

$$
\left[B^{\prime \prime}(f), B^{\prime \prime}\left(f^{\prime}\right)\right]=F\left(S^{2}\left(f, f^{\prime}\right)\right)+B^{\prime \prime}\left(S^{1}\left(f, f^{\prime}\right)\right)
$$

By operating \mathscr{L}_{X} on the above equation and using (9.6), we have by direct calculation that

$$
\begin{array}{ll}
(9.7) & \mathscr{L}_{X} S^{1}\left(f, f^{\prime}\right)=-\nu_{v}(f) f^{\prime}{ }_{\left[f, f^{\prime}\right]}, \tag{9.7}\\
(9.8) & \mathscr{L}_{X} S^{2}\left(f, f^{\prime}\right)=\nu_{v}\left(S^{1}\left(f, f^{\prime}\right)\right)+B^{v}\left(f^{\prime}\right) \nu_{v}(f)_{\left[f, f^{\prime}\right]} .
\end{array}
$$

The similar way leads us to the following :

$$
\begin{align*}
& \text { (9.9) } \quad \mathscr{L}_{X} C\left(f^{\prime}, f\right)=-\eta C\left(f^{\prime}, f\right)+C\left(\eta f^{\prime}, f\right)-B^{v}(f) \eta f^{\prime}+\nu_{v}(f) f^{\prime}, \tag{9.9}\\
& \text { (9.10) } \mathscr{L}_{X} P^{1}\left(f^{\prime}, f\right)=S^{1}\left(f, \nu\left(f^{\prime}\right)\right)+P^{1}\left(\eta f^{\prime}, f\right)+B^{v}(f) \nu\left(f^{\prime}\right) \\
& +\nu^{\prime}\left(C\left(f^{\prime}, f\right)\right)-\nu_{h}\left(f^{\prime}\right) f
\end{align*}
$$

(9.11) $\mathscr{L}_{X} P^{2}\left(f^{\prime}, f\right)=S^{2}\left(f, \nu\left(f^{\prime}\right)\right)+F^{2}\left(\eta f^{\prime}, f\right)+B^{v}(f) \nu_{h}\left(f^{\prime}\right)$ $-B^{h}\left(f^{\prime}\right) \nu_{v}(f)+\nu_{v}\left(P^{1}\left(f^{\prime}, f\right)\right)+\nu_{h}\left(C\left(f^{\prime}, f\right)\right)$,
(9.12) $\mathscr{L}_{X} T\left(f, f^{\prime}\right)=T\left(\eta f, f^{\prime}\right)_{\left[f, f^{\prime}\right]}+C\left(f^{\prime}, \nu(f)\right)_{\left[f, f^{\prime}\right]}-B^{h}\left(f^{\prime}, \eta f_{\left[f, f^{\prime}\right]}\right.$ $-\nu_{h}(f) f^{\prime}{ }_{\left[f, f^{\prime}\right]}-\eta T\left(f, f^{\prime}\right)$,

$$
\begin{align*}
\mathscr{L}_{X} R^{1}\left(f, f^{\prime}\right)= & P^{1}\left(f^{\prime}, \nu(f)\right)_{\left[f, f^{\prime}\right]}+R^{1}\left(\eta f, f^{\prime}\right)_{\left[f, f^{\prime}\right]} \tag{9.13}\\
& +B^{h}\left(f^{\prime}\right) \nu(f)_{\left[f, f^{\prime}\right]}+\nu\left(T\left(f, f^{\prime}\right)\right) \\
\mathscr{L}_{X} R^{2}\left(f, f^{\prime}\right)= & P^{2}\left(f^{\prime}, \nu(f)\right)_{\left[f, f^{\prime}\right]}+R^{2}\left(\eta f, f^{\prime}\right)_{\left[f, f^{\prime}\right]} \tag{9.14}\\
& +B^{h}\left(f^{\prime}\right) \nu_{h}(f)_{\left[f, f^{\prime}\right]}+\nu_{\nu}\left(R^{1}\left(f, f^{\prime}\right)\right)+\nu_{h}\left(T\left(f, f^{\prime}\right)\right)
\end{align*}
$$

Proposition 16. Lie derivatives of torsions and curvatı.res of a Finsler connection with respect to the infinitesimal transformation X of a 1-parameter quasi-group of linear transformations are given by (9.7), \cdots, (9.14).

It will be convenient to write those equations in terms of a canonical coordinate, and we obtain

$$
\mathscr{L}_{X} S_{j^{j} k}=-\nu_{v)\left\{j^{i}{ }_{k]},\right.},
$$

$$
\mathscr{L}_{X} C_{j}{ }^{i}{ }_{k}=\nu_{v) k}{ }^{i}{ }_{j}
$$

$$
\left(9.10^{\prime}\right) \quad \mathscr{L}_{X} P_{j}{ }^{i}{ }_{k}=\nu_{l}{ }^{i} C_{j}{ }^{l}{ }_{k}+\nu_{j}{ }^{l} S_{k}{ }^{i} l+\eta_{j}{ }^{l} P_{l}{ }^{i}{ }_{k}-\nu_{h) j}{ }^{i}{ }_{k}+\left.\nu_{j}{ }^{i}\right|_{k},
$$

(9.12') $\left.\mathscr{L}_{X} T_{j}{ }^{i}{ }_{k}=-\eta_{l}{ }^{i} T_{j}{ }^{l}{ }_{k}+\eta_{[j}{ }^{l} T_{l}{ }^{i}{ }_{k]}+\nu_{[j}{ }^{2} C_{k]}{ }^{i}{ }_{l}-\nu_{h)}{ }^{j}{ }^{i}{ }_{k]}-\eta_{[j}{ }^{i}{ }^{i} k\right]$,
(9. 13') $\mathscr{L}_{X} R_{j}{ }^{j}{ }_{k}=\nu_{l}{ }^{i} T_{j}{ }^{l}{ }_{k}+\nu_{[j}{ }^{l} P_{k]}{ }^{j}{ }_{l}+\eta_{[j}{ }^{l} R_{l}{ }^{i}{ }_{k]}+\nu_{[j] k]}{ }^{i}{ }^{k}$,

Above equations give Lie derivatives of torsions, and the following equations do that of curvatures:

In the case where X is the induced Y, those equations will be written somewhat simple, for the infinitesimal deviation $\eta_{j}{ }^{i}$ vanishes.

REFERENCES

[1] M. Matsumoto : Affine transformations of Finsler spaces, J. Math. Kyoto Univ., 3-1 (1963), 1-35.
[2] M. Matsumoto : A global foundation of Finsler geometry, Memo. Coll. Scie., Univ. Kyoto, Ser. A, 33-1 (1960), 171-208.
[3] T. Okada : A formulation of Finsler connections with use of the fibre bundles, the graduation thesis, Kyoto Univ.
[4] M. H. Akbar-Zadeh : Les espaces de Finsler et certaines de leurs généralisations, Ann. scient. Éc. Norm. Sup., 3° série, 80 (1963), 1-79.
[5] K. Nomizu : Lie groups and differential geometry, Math. Soc. Japan, 1956.

$$
\begin{align*}
& \left.\mathscr{L}_{X} S_{j}{ }^{i}{ }_{k l}=\nu_{\nu) m^{i}}{ }_{j} S_{k}{ }^{m}{ }_{l}+\nu_{\nu)}\right)\left.{ }_{k}{ }^{i}{ }_{j}\right|_{l]}, \\
& \mathscr{L}_{X} P_{j}{ }^{i} \cdot k l=\eta_{k}{ }^{m} P_{j}{ }^{i} \cdot m l+\nu_{k}{ }^{m} S_{j}{ }^{i} \cdot m l+\nu_{v) m}{ }^{j}{ }_{j} P_{k}{ }^{m}{ }_{l}+\nu_{h) m}{ }^{i}{ }_{j} C_{k}{ }^{m}{ }_{l} \\
& -\nu_{v>) l}{ }^{i}{ }_{j \mid k}+\left.\nu_{h) k}{ }^{j}{ }_{j}\right|_{l}, \\
& \left.\mathscr{L}_{X} R_{j} \dot{i}_{k l}=\eta_{[k}{ }^{m} R_{j} \cdot{ }^{\dot{ }}{ }_{m l]}+\nu_{[k}{ }^{m} P_{j} \cdot{ }^{i} \cdot l\right] m+\nu_{\nu) m}{ }^{i}{ }_{j} R_{k}{ }^{m}{ }_{l}+\nu_{h) m}{ }^{i}{ }_{j} T_{k}{ }^{m}{ }_{l} \\
& +\nu_{k)\left[{ }^{i}{ }^{i} \mid l\right]} \text {. }
\end{align*}
$$

