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We introduced, in  a  previous paper [1 ], a notion of a linear
transformation of the tangent bundle B  of a  differentiable manifold
M , which was a  generalization of a  notion  o f a  transformation
induced from the one of M .  A  Finsler connection is defined in a
certain principal bundle Q , the base space o f which is the total
space B.

A theory of transformations of a Finsler connection by a linear
transformation will be developed under a certain special condition.
The paper [ 1 ]  was devoted to the study of affine linear trans-
formations, and we intend to treat a projective one. The present
paper is written as necessary preparation for it. The terminologies
and signs of the paper [ 1 ]  will be used in the following without
too much comment.

§  1 .  P re lim inaries

111
 

P rin c ip a l b u n d le  Q
In the first place, we recall the principal bundle Q , in which a

Finsler connection is defined [1 ], [3 ].
Let P(M, 7r, G) be the principal bundle o f frames tangent to

a differentiable manifold M  of n dimensions. The group of structure
is  the full linear real group GL(n, R), and an element g  o f G  acts
on P by p E P --->p•g, which is called a right translation Rg  o f P  by
g .  The total space P  is interpreted as the set of a ll admissible
mappings F—> B, where F  is  a n-dimensional real vector space and
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B  is  the total space of the tangent bundle B (M , r, F, G ) of the
manifold M .  Throughout the paper, w e assume that b E B is  a
non-null tangent vector of M .  Take a fixed base (ea ), a =1, 2, ••• , n,
o f F  and denote by pg , g EG , the operation o f g  on F ,  namely,
Pg (f ) - gba f  b e a  where g =( g b a), a, b= 1, 2, ••• , n , and f = f ae a .

The projection r :  B  M  gives an induced bundle 7-- iP  =
Q(B, G), the total space o f which is defined by Q= {(b, p)ibE B,
p E P, 7-(b)-- 7r( p )} . Then the projection :  Q  B  and the induced
mapping 97: Q  ->P are given by ft(b, p)= b  and y(b, p ) =p .  A  right
translation R g  o f P  by g E G  is  t r a n s fe re d  into Q , and we have a
right translation Pg of Q, which is defined by R g (b, p)=(b, R g (p)).
Later on, we shall use the same latter Rg ,  instead of R g , for a
right translation of Q .  By a right translation of Q, a fundamental
vector field F(A ) on Q corresponding to A E O (the Lie algebra of
G) is induced, which is determined by F (A), = L a (A ), where L :
G ->Q, g-->R g (q).

L e ft  translations of Q
We introduce a mapping

L : G x Q Q, (g, (b, p)) ,  (p(g•p - lb), p) .

Then, for a fixed element g E G , w e have a mapping Lg : Q
q --> L(g, q), which is called a le f t  translation of Q  by g E  G . It is
easily seen that Lg  acts on 97- 1 (p), p E P, transitively, To p )  being
called the 7/-fibre on p E P .  If we take the identification i: Q ----> FxP,
used in  [1 , §  2 ], th e  above L g  is expressed simply by (f , p) E
F x P - . ( g f ,  p).

Let q EQ be a  fixed point and R a  b e  a mapping defined by
: G -4 ), g  -> L (g , q ) . B y a  mapping R a ,  we can introduce the

second fundam ental v ector f ield E(A ) on Q  corresponding to A E 6,
which is defined by E ( A ) = R ( A ) .  Since 71E (A )- 0  is obvious, we
can say that E(A ) is tangent to 7/-fibre  at any point of Q .  Take
the natural base (kb " ) ,  k ba=(alagab) o f  6  and put E b a  E (k b a ) *

Then the expression

E b a (q ) =
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is easily derived , w here (x 1, b 1, Pa') is  the canonical coordinate of
q E Q  [1 , §1 ].

Characteristic field
The notion of the ch a ra cte r is t ic  field 7 on Q [1 , §1 ] is import-

ant for a theory of Finsler connections, which is sim ply a  mapping
Q -> F, (b, p)— p - 1 b. We shall find an expression of the differential
of 7 for the la ter u s e . Take following mappings :

:  F x P  B ,  ( f ,  p ) ->  p f  ,

Q  B ,  (b ,  p ) - › p f  ,
K f : P  B ,  p  f i f

Then it is clear that and Œf = K f oq. Hence, i f  w e take a
tangent vector X E Q , and f= 7 (q ), the differential it-  is expressed by

rt(X )  =  o i(X ) =  7 (X ), 97( X )) = 97(X). f+ p • 7 (X )
=  K f on(X)± p•7(X)= Œ f (X)+ p •7(X) .

Consequently we obtain

(1. 1)7  =  p - 1 (77-crf ) , q  =  (b ,  p ) ,  f  =  7(q) ,

which is the desired equation.
It follows from (1. 1) that

F(A )7 = d7F(A) = p - 1 (7--tF (A ) -0 -
f F (A ))

=  - p - 1 0-
f F (A )  =  -p - - 1 0-

f L ,(A ).

Since we have p - 1 0-
f L ,(g )=  g •f, g  E G, we obtain

(1.2)F ( A ) r y  = A•ry.

Mapping C (f )
In  [ 1 ] ,  w e sketched a  F in s le r  connection in  Q , which was

originally introduced by T . Okada [ 3 ] .  In  term s o f  a  canonical
coordinate, the connection is given by coefficients of connection of
three kinds [1 , § 1 ], namely, F i e(xe, be), F i e k (xe, b e), and  Ci e k (xe, be).
Among them, the last C/ k  behaves as a (1, 2)-tensor under a  trans-
formation o f  a  canonical coordinate. B y virtue of this property,
we define a  mapping C, which is given by

C : FxQ  -->  6, ( f, q )->  C b a c(q)f`
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where C,,a,(q)= bi)P,-1a.PajP,k and (.1c1, b ,  P a i )  i s  a  canonical
coordinate of q G Q .  For a fixed element f  E  F, the mapping C(f ) :
Q ->G is derived from C .  It follows from [1, (2. 9)] that

(1 . 3 ) co(p)fqf(f) = C(A)(pf,p), f ,  f i E F ,  p e P .

In  [1, § 9], w e used a j)-basic v ector f ield f 3"(f ), which was
defined by a mapping 7T;i: b G B->(b, E Q as 13"(f ),=.77;i0polg ,o (f ) ,

where q=(b , p ) .  Since R a (g)=77-;'op(g•7(q)), w e have the relation

(1. 4) E (A ) = Pv(A •7),

where E ( A )  i s  the second fundamental vector field. ,ff-E (A ),,
q= (b, p ) ,  is  vertical in B  and is equal to p(A •7), because fiR a (g )=
p(g•7(q)), g E G .  Hence we see that hhE(A ),= 0 (h-horizontal com-
ponent), while h"E(A ) a = i a op(A• y)= B "(A  • 7), (v-horizontal compo-
nent), where la indicates a lift to q E Q .  We shall find the vertical
component of E ( A ) .  The p-induced form a  § 2] on F  from
th e  connection form co o f  a  Finsler connection is given by
cocio=cooi-1 '0X where X  : F - > F x P ,  f - > ( f ,  p ) .  It follows from

P
i-lox  p = 7;7' op, that co Oi - 1 0 X p O if (A )= CO( l j y ( f i ))(pf , p). Therefore the
equation (1. 3) gives v P " ( f ) ,=F ( C ( f ) , )  (vertical component), and
hence w e see that v E (A )= F(C (A •y )), by v irtue o f (1. 4). Con-
sequently E (A )  and P " ( f )  are expressed, with respect to a Finsler
connection, as follows :

(1.5)E ( A )  =  B " ( A • y ) + F ( C ( A . 7 ) ) ,
(1. 6)È ( f )  =  B v (f ) +F ( C ( f ) ) .

It, however, is remarked that E (A ) and P v ( f )  are defined without
use of a Finsler connection.

C o n d itio n  o f  homogeneity
I n  [1, § 9], we discussed the complete integrability of infini-

tesimal affine transformation under the condition of homogeneity.
This condition seems very essential for a theory of Finsler geometry
[3 ] ,  [4 ] .  The definition of this condition is  a s  fo llow s. Let R 4

be the set of positive numbers, and a mapping R +x F - >F  be such
that ( z ,  f ) -  z  - f  (ordinary product), z E R +, f E  F .  Then we intro-
duce mappings [2, p. 174]
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h : x B B , ( z , b ) z•b p (z  • p 'b ) , p c 7r - 1 0T(b) ,
h : R+ xQ — > Q , (z , (b, p)) (z•b, .

It is clear that z •b  as thus defined does not depend on the choice
of p .  We denote by hz  (resp. hb ) the mapping B —  (resp. R -F —.13)
obtained from the above h  fo r  a  fixed z  E R+ (resp. b E  B ). For
the another mapping h, the similar signs hz  and  h ,  are used.

Now, the condition of homogeneity is that a Finsler connection
(r", 1 )  i s  invariant by every mapping hz ,  that is , -he r  17 and
hzr h = r h .

Let X  be a tangent vector field to Q .  I f  X  satisfies the equa-
tion hz (X )— zr•X , then we say that X  is positively homogeneous of
degree r (p .h .( r) , fo r  brevity) [4, p. 7]. The same term is used
fo r  a  differential form a on  Q , i f  aoh z = z r . a .  The following
proposition will be easily verified [3].

Proposition 1. The condition of homogeneity is equivalent to
one of the following three properties.

1. F(A ), B "(f )  and B h (f )  are p.h.(0), (1) and (0) respectively.
2. co, 0 ' and Oh are p.h.(0), (1) and (0) respectively.
3. F i i k  and C / b  a re  functions o f  p.h.(1), (0 ) and ( - 1 )

respectively with respect to variables bi.

§  2 .  Linear transformations

A  linear transformation p  of the total space B  of the tangent
bundle B(M, T, G) is defined in [1], which is a transformation such
that

1. p  is fibre-preserving.
2. p  is linear on each fibre.

By virture of the first property of p, a transformation P  of the
base manifold M  is derived which satisfies the equation T o p  =  (parr.

93' is called the projection of p. On the other hand, p gives naturally
a transformation q)* o f P ,  which is termed the associated trans-
formation with p.

A  linear transformation of P  is by definition a transformation
which commutes with every right translation. The following fact
was proved in [1].
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Proposition 2. Any linear transformation p* of P is associated
with a linear transformation p  o f B, and the relation

(2. 1) =  q 3 (  p . f ) ,  P E P ,  f E F ,

is satisfied.
We have naturally a transformation qi of the total space Q of

the induced bundle 7.- P  from a linear transformation p  of B, such
that ep (b , p )= ((0 ) , 4 (p ) ) .  (7-i  is called the transformation induced
from  p , or, for brevity, the linear transformation of Q .  In the
following, we shall use the same letter p  for the induced one, in
case there is no danger of confusion.

The notion of the deviation X: P of a linear transformation
is essential in our discussion. Let p c b e  the differential of the

projection p .  p, is obviously linear and then we have the associated
4 .  Then the mapping X is defined by the equation

(2. 2) P*(P)=94(P).X(P).

If the projection p  is  the identity transformation of M, p is called
a rotation. In  th is  case, p *  coincides with the right translation
R , by the deviation X.

We proved in [ 1 ]  that a  fundamental vector field F (A ) and
the characteristic field 7 were invariant by the induced transforma-
tion p .  Another important property of p  is that the second fund-
amental vector field E (A ) is also invariant by p .  In fact, we have
first

pok(b, =  p ( p ( g .p - b ) ,  p )  =  ( p ( p ( g .p - 1b)), p*(p))

=  (q ,* (p )(g .p - ib),,e ( p ) ) ,

where we made use of (2. 1). On the other hand, we have

Lep(b, p ) =  Lg (p(b), p*(p)) (p * (P )(g •p * (p ) - 1 p(b)), p*(p))
(p*(p)(g-p - lb), p*(p)),

where we made use of the invariance of y. Thus p  commutes
w ith every left translation, from which it follows immediately
that E(A ) is  invariant by p.
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Theorem 1. The necessary and sufficient condition for a trans-
form ation cp of  Q to be linear is that the follow ing three properties
are satisfied.

1. (Ti. commutes w ith every  right translation.
2. cr. commutes w ith every  lef t translation.
3. The characteristic field y is  invariant by (7).

Proof. W e define, in  th e  first place, transformation q )  of B
and p *  of P  as follows :

p (b) = (,(Ti(q) , q G 77- 1 ( b ) ,  b E B,
cp*(p) = nofP(q) , q  E  97- 1 (p ) , pEP .

It follows from the properties 1 and 2  that q ( b )  and cp*(p) are
well defined, independent o f the choice of q. Then cp is written
by (p(b, p)=(q:Kb), p * ( p ) ) .  The property 3 means that p*(p) - 1 p(b)—
p - 'b , from which it follows that cp(b)=p*(p)(p - lb), that is , (2.1).
Further, by means of the property 1, we see that p* as thus defined
commutes w ith  every righ t translation of P .  Consequently the
theorem is established by virtue of Proposition 2.

§ 3. Transformation of a F in s le r  connection

We consider a  Finsler connection (P", P h ) in  Q , and B "( f )  and
Bh(f) are v-basic and h-basic vector fields respectively. We discuss
behaviours of F(A ), B y (f) and B h(f ) under a linear transformation
p .  First, the following equations will be derived :

pF (A ) = F(A ) ,
(3. 1) P B "( f )= R ib ,( f ) )+B " ( f ) ,

PB h (f )= F (P h ( f ) )+B v (ti<f ))+B h (X - i f ) ,

where X i s  the deviation of t p ,  and tc„, g h  a n d  p, will be defined
in the following. It follows from (3.1) directly that the connection
form co, the v-basic form 0" and the h-basic form Oh subject to
the following transformations :

( , 93  =  ( 6 ±/.6 ,,(ev )+117,( 0 4 ) ,

(3.2)0 " o p  
°hop = x- oh
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W e  s h a ll  show (3. 1). T h e  f ir s t  o f  (3 .  1 )  is  obv ious by
[ l ,  Prop. 2 ] .  N ext we have, by means o f [ 1 ,  Prop. 3],

(3.3)O h ( q ) B " ( f ) )  =  O, O h(q)B h(f )) =

Further we show that

(3. 4) ev (PB "(f )) f •

In fact, it follows from the definition of B " ( f )  that

o p B " ( f ) q  =  p o f e B v ( f ) , ,  =  p ( p f )  =  q ( p ) f ,

where we put q = (b , p ) .  Therefore we obtain h" )B"( f ), = 1 q i(p' f ),
q' —(11 , ) -  p ( q ) .  T hus (3 .4) is a consequence of the definition of
the form  O". F inally w e in troduce three m appings p„„ ph and p,

which depend on the choice of f  E F ,  as follows :

,(f ) :  Q —> Ô , q --> co(pB "( f )),. ,
(3.5)P h ( f ) :  Q -

6
 q  ->  N (q ) 13h ( f ) L

,u(f) : Q — > F, q 0"(q)Bh(f)),.

Thus (3. 1) is deduced from (3. 3), (3. 4) and (3. 5).
Above mappings p v ,  ph  and p  satisfy the equations

,u,„(g - 1  f)ok  =  a d ( g - 1 ),u„(f) ,
(3. 6) p ,(g -tf )o R g ad(g - 1 ),uh (f )  ,

g - 1  f ) .R , = g - 1
1u(f ) .

W e shall prove the first of (3. 6). I f  w e put q, (qt)= q, we see

,u„(g -  f ) .R  g (q) = (0q,B"(g - - tf ) q
,
 g = copR g ,B "(f ),,,,

= coR g 1 (q3Bv(f)) q  = ad (g - 1 )(0(q)B"( f)) q

In like manner we can show the second. By m aking use of 0" oRg

= g - 1 0" , the third will be also verified.
An induced transformation 93 is characterized by the three pro-

perties given by Theorem 1 , and (3 . 6) is  a direct result from the
property 1. In  the follow ing, we discuss the behaviour of the
differential of (7) arising from the properties 2  and 3.

The property 2  gives pE (A) = E (A ) .  I f  w e  put q = q,(q'), it
follows from (1 . 5) and (3. 1) that
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p E (A ) a
, =  F (C (A •7 (0 )e ) a +F(tk i,(A •7 (q i)),),+B "(A •7 (q ')),

=  F (C (A•7(q)) a
, )a +F(p„(A•7(q)) a ) a +B"(A•y(q))q

where we made use of the invariance of 7. Thus p E (A )= E (A )
is expressed by

p„(A• 7(q)) q  =  C(A•y(q)) q —C(A•y(q)) q
, .

Since A E Ô  is  an arbitrary element, the above equation gives

(3. 7) p a (f)a  = C (f) a — C(f) a
, , q  =

Next, we turn to the consideration of the property 3  of Theo-
rem 1. It follows from the second of (3 .1 ) and 7 .9 )= 7  that

7B"( f) a
, = (1.1„( f))a +7B"( f) a , q  =  (XV) .

By virtue o f (1 .2), the first term of the right hand side is written
in  th e  form  —p,v ( f ) q 7. I f  w e put 7 a  b f b e a  =  7 1 (f )  (v-covariant
derivative), then the above equation gives

Pv( f ) q 7  =  7 1 ( f ) q - 7 1 ( f ) e

This, however, is solely a consequence o f (3. 7), because 7 1 ( f ) q =
f + C ( f ) a 7 .  In like manner, from the third of (3 .1), it follows that

(3. 8) 71( = 710c i f)q + 71(t6(f ))q — P h ( f ) "  q  =  P (q ' ) ,

where 71(f ) =7 a ibf b ea (h-covariant derivative).
Summarizing the above results, we can state that

Theorem 2. The tranformation o f  a  Finsler connection by a
linear transformation (7, o f B  is given by (3. 1) or (3. 2), where
IL„ and ,c6 are defined by (3. 5) and satisfy (3. 6), (3. 7 ) and (3. 8).

I f  w e take the fixed base (ea )  of F  and (gb a )  of 6, we may
write

1-6v(e a )  =  P o a b  g b e  7 P ( e a )  =  P a b eb

I-6h(ea) =  l l 'h)ab egb c  •

Then (3. 6) means that quantities

=  P V)b a c P a i P i l c  7

(3. 6') p h v  ik p h) b a c  pa  ip i  b p i ;  ,

p b a P a w i b  ,
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are functions o f x i  and b i  only, where (xi, b i, p a t )  i s  a  canonical
coordinate. On the other hand, (3. 7) and (3 8) are written

(3 . 7 ') li'v)ba,(4) =  Cc a b(q) — Cc a b ( g ' ) ,

(3. 8') rya b (q ') ,c (q ) (X ;" (q )+ t t  (q ) )  —  h ) b a c (q)7` (q) .

It is remarked here that 7a  I b =  Db a [1, § 7 ] ,  where

D ba = 13 .0 7 ` a p , 1 , D 1
1 =  F 1

1 —bhF fr
1 .

The following fact will be immediately verified by Proposition 1
and (3. 5).

Proposition 3. I f  a  F i n s l e r  connection satisfies the condition
o f  homogeneity, then thy , Ph  an d  ,th are p.h.(-1), (0) and ( 1 )  respec-
tively.

§ 4. Transformation of quasi-connection

We introduced, in  [1, § 2], th e  quasi-f-connection rf  in  the
bundle P  of frames o f M  induced from a  Finsler connection in
Q  an d  a  fixed element fE  F .  The quasi-connection form w ( P) is
a lso  g iven  by [1, Theo. 1 ]  In  the following we shall find the
expression of co(P) op *, corresponding to (3. 2).

We have first from [1, (2. 3)]

(4.1) 0 ( ;) . f . j f  = identity.

Next, if  we denote by 0(
1
)=, and O„',) th e  f-induced and p-induced

forms from the h-basic form Oh [ 1 ,  §  7], then the equations

(4.2)0 (";.) O, 0 ( ;',) = O,

will be obtained, where 0  is  the basic form on P  [5 ]. In  fa c t , it
follows from 7.07-70i - 1 t h a t

=  eh oi - - 1  ox f  =  p - i ° T o  oi - oX f  ,

=- Oh oi - ' ox p  = p-i orrof f -oi - 1 0Xp

Since Tc,77, 0i - 1  oXf  =97 and  T0ri-c,i - 1 0 X p  constant, w e obtain (4. 2).
Next, we shall show that

(4. 3) co(p) =  6 )(p/) + Pv( 0 "(pi)) , p  = - P * (13 / ) •
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Observing that X p ( f )= ( f ,  q )* (p ') )=  (1, p * )0 X ;(f ) ,  f  E F, we get

co,p )  =  woi - 1 0Xp c o o i - '0(1, cp*)0Xp , coopoi - icA p /

and substitution of (3. 2) gives

(co ± .

Thus, we have (4. 3) from the second of (4. 2).
Now, it follows from the definition o f co*f , that

co(*r , o y *  =  co,D p op* — co( p ) f oj f 00( ; ) 2 ,0q)*

o - 1 oXf )p op* — co( p ) f oj f 0(0" oi 0 Xf  )p op*

=  (co op o i  1 oXf ); — co( p ) f oi f o(0" op o ' oXf ) ;

where we put p = q )* (p ') .  Substituting from (3. 2) and making use
of (4. 2) and (4. 3), we obtain

=  W(f) p '  i tZ „ ( 0 ( ; ) , , )  P h (O p , )  C O (p ) f O i f O O J )7 , ,  (1 ) ( ) f  O ff  0 J U K O »

=  ( 4 )2/  thi,(0(';)„, — 6) ( 7/) 01f  0 0( ?;) » /) ±  P h (O p /) — Ct)( p) f Oif  I k ( e p l )

Consequently, by virtue o f (4. 1) and (4. 3), we have finally

(4.4)0 . ) * (  f )  op * o)*( f ) ± tb,(0) - C(P(0)), R f  ,

where we put R f : P - Q ,
As an application of (4. 4), we consider the particular case

where p  is a rotation. In this case, from [1, (6. 3 )], we see

(4.5)( I ) *  =  R, + F (A) ,

where p *  is  the differential and A  is  the X-form  of a rotation
[1, 6 1  Hence we have, by means of [ 1, (2. 6)] and [1, Theo. 1],

co*( f ) o p *  =  ap, - 1 )o)*(v )  -I- A

Therefore we obtain

(4. 6) ad(X-1)co* -  co*,f )  =  p,,(0) -  C(p(0)),-,k 1  - A

This equation is the relation satisfied b y ph and for the case of
rotation.

Gathering these results we have
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Proposition 4. The transform ation  of a  quasi-f-connection
form  co*( f )  induced from a Finsle r  connection by a linear transfor-
mation is given by (4. 4), corresponding to (3. 2). In the case of a
rotation, we have (4. 6).

§ 5. Induced F in s le r  connections

Let (r, Fh) be a Finsler connection in Q . Then a linear trans-
formation y  gives a  new pair of distributions p (r" , r")— (ii' , rh).
This new pair satisfies the condition of a Finsler connection [1, §
as is easily verified. W e call th is new  connection the induced
Finsler connection from (1', Ph) by y.

Proposition 5 .  I f  a  F ins ler connection satisfies the condition
o f  homogeneity, the same is true fo r th e  induced connection by a
linear transformation.

In order to prove this, it is enough to show that the mapping
hz , as introduced in  El of § 1 , commutes a linear transformation
p .  The commutability is obvious from the linearity of y.

T hus, w e can  say that any linear transformation preserves
the condition of homogeneity.

Proposition 6. The connection form (7), the v-basic fo rm  0",
and etc. of the induced connection are given by

( 1 ) (.7-) =  CO , (4 )  F  =  F  ,

(5. 1) (2) 0" = Or'op' , ( 5 )  B " =  p B "

( 3 )  0h Oh , (6) ijh =  pBh(X).

Proof. Since the h-basic form Oh and fundamental vector fields
are defined independent of a Finsler connection, the equations (3)
and (4) are obvious.

(1) : (7)0Rg  =  coep - 'oR g  =  cooRg op - i ad(g - 1 )(Dop - i =  ad(g - 1 )(7),

(-5 (F (A )) =  p - i(F (A )) =  (0 F (A ) =  A ,
(70 )  =  c o o p - i (p r )  =  . ( r) = O.

Thus all of conditions satisfied by a  connection form hold for -c-0
and hence we have (1).
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(5 ) : p 1 3 1' E ,
fropBV( f )q = q)0 B "( f ) , = p ( p f )  p * ( P ) f ,

where q=(b , p).

(2) : Ov op - 1 (F ) = 0 "(F)  = 0
0"09, - 1 (P h) =  0"(P ) =  0
01 op - 1 (171"(f ))= 0"B "(f )= f .

(6) : 6-5(pBh(X f))—  coBh(X f) = O,
0"(T13h(X f))= 0"B h(X f) = O,
Oh(q,Bh(X f)) = Oh opBh(X  f) = X - ThBh(X  f) = f .

Thus all of equations of (5. 1) are obtained.
From (3. 1), (3. 2) and (5. 1), we have the concrete expressions

of B v ( f )  and etc. as follows :

(5.2)B  h (  f )  =  F ( 1 „ (  f ) ) +  By( f )  ,
(5.3) -A V )  F(1-bh(V ) ) — B "(P<X f ))+B h ( f ) ,

(5.4)( T )  =  co — p„(0") — (tiv, — p„,(k)(X0"),
(5.5)0 "  =

By virtue o f these equations, we can write down expressions of
new coefficients of connection as follows :

(5. 6) F  =  F  — ,

(5. 7) F j i  k F j i  k j X k l  C  iphix e
(5. 8) C j i  k =  C  k —  k t  j •

§ 6 .  Various conditions

A  Finsler connection a s  above treated is very general, even
if the condition of homogeneity is imposed. T . Okada [3 ]  intro-
duced various conditions satisfied by a  Finsler connection, in order
to derive the euclidean cDnnection due to E. Cartan. In the fol-
lowing we consider those conditions.

Condition F :  A  Fin sle r connection is said to satisfy the con-
dition F  i f  a i rrh g — Hi,  holds, where q=(b , p), f =7 ( q ) ,  the mapping
0-  was defined in o f  § 1, and H ,  i s  the non-linear connection
induced from the Finsler connection.
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Proposition  7 . The condition F  is equivalent to one of follow-
ing equations

(6. 1) reBhq , f  =  ry(q) ,
(6. 2) 713h( f) = O.

Proof. (6. 1) is  clear. (6. 2) is easily obtained from (1. 1) and
(6. 1).

It follows from (6. 2) that the classical expression of the con-
dition F  in terms of coefficients of connection is

(6. 3) D11 = O.

Now, if a Finsler connection satisfies the condition F  and the
induced connection by a linear transformation q, does so, then we
sa y  th a t  the transformation y  preserves the condition F .  This
term will be used, in the following, for other conditions.

Proposition 8. The necessary and sufficient condition for a
linear transformation y  to preserve the condition F is that the equation

(6. 4) tbh)bac7c 7a  I ,-/Lbe

is satisfied.

Proof. It follows from (5. 3) and (1. 2) that

7(B h ( f ) — B h (f ) ) 1, h ( x f ) + 7 13 "(p/x f )) •

Since the det. (Xb a )  does not vanish, we obtain (6. 4) a t once.

Condition C 1 : A  Fin s le r connection is said to satisfy the con-
dition C , i f  Œf r  a =0 , f = 7 (q ) .

Proposition  9 . The condition C, is equivalent to one of follow-
ing equations:

(6. 5) ŒfB", O,f  =  y ( q )  ,

(6. 6) 713v(f) f •

This is easily verified by m eans o f (1. 1). From (6. 6) we have
the classical expression of the condition C, in terms of coefficients
of the connection as follows :
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(6. 7) bkCk.; =  0 .

A s fo r the preservation of the condition C1 ,  w e have from
(5.2) and (1.2)

Proposition 10. The necessary and sufficient condition for a
linear transformation p  to preserve the condition C , is  th a t the
equation

(6. 8) Pv)ba r7 c  =

is satisfied.
To introduce an another condition, we recall the mapping h,

by means of which the condition of homogeneity is defined in
of § 1. If we denote by 2  the tangent vector (dIdz) z  to  R +, then
a tangent vector 14(2) is obtained. Thus w e have a vector field
11(2) on Q .  This vector field is equal to  the second fundamental
vector field E (E  k - „a), because, if  w e take a  one-parameter group

z8 = (z8,b) of the group G, we see 2 8 .f =z • f  for any f e F .  Therefore
it follows from (1. 5) that

(6. 9) h(2) =  B" (7) F (C(7)) ,

and hence di(2) is contained in Q ",+1"',, the h-horizontal component
being equal to zero.

Condition C2 : A  Finsler connection is said to satisfy the con-
dition C , i f  h(2) is v -horiz ontal at every point.

From (6. 9) we obtain at once

Proposition 11. The condition C , means that C (7) vanishes,
that is,

(6. 10) Ciikbk =  0 .
The next proposition is  a  consequence of (5. 4) and (6. 9).

Proposition 12. The necessary and sufficient condition for a
linear transformation q  to  p re s e rv e  the condition C , i s  t h a t  the
equation

(6.11) Oca b7 e  =  0

is satisfied.
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§ 7. Torsions and curvatures o f th e  induced connection

We shall find torsions and curvatures of the induced connection
(r", rh). To do th is, w e shall m ake use o f brackets o f two of
F(A ) , B y ( f )  and B h ( f ) .  In  [1, § 1] formulas o f those brackets
are given in the case where A and f  are fixed elements. However,
if  A  and f  are function on Q , those formulas become more com-
plicated. It is well known that

[f X , = f g[X , 1 1 ]+ f -X (g)•Y  —  g•Y (f )•X  ,

where X  and Y are vector fields and f  and g are functions. Making
use of this, we obtain the following expressions of brackets.

(7. 1) [F (A), F (Ai)] = A '1)+ F(F(A )A ')—  F (F (A ')A ) ,
(7.2) [F(A ) , B v ( f ) ] = B y (A f )+B "(F(A )f ) — F(H (f )A ) ,
(7. 3) [F(A ), B h (f  ) ] =  B h(A f )+B h(F(A )f )— F(B h(f )A ),
(7. 4) U3v(f), B "(r)1 = F(s 2 (f , f '))+B "(S 1(f, f ) ) + B " ( B " ( f ) f ' ) [ f , f , [ ,
(7. 5) EB "(f), B h (r)] = —  F(P 2 ( f ' ,  f ) ) — B " (P 1 ( f i ,  f ) ) — B h (C (r, f ) )

+B h(B "(f )f ')— B "(B h(f ')f ),
(7. 6) [B h(f ), B h(f ')] = F(R 2 (f ,  f ') )+B u (R 1 (f ,  r) ) +B h (T (f , f '))

+ B h (B h (f ) f  ')[ f ,

where the subscript [ f ,  f ' ]  means, for an example, w ( f ,  f i ) r f , f/ i=
W (f , f ')—  W ( f ', f ), and S 2 , S ', P 2 , P', C, R 2 ,  R ' and T  are torsions
and curvatures, and are written, for an example,

,S 2 ( f , f / ) ,S 2  fc  f/ d ,S1,7 c d fc f/el g a b ,
p i( f ,  f t )  Pia f / c f d  pead r f d e a

We have also (7. 1), ••• , (7. 6) (with bars) for the induced connection.
Substituting first from (5. 2) and (5. 3) into (7. 2) and (7. 3)

(with bars), we have, by direct calculation

F(A )ta( f )  = — EA, 1-b,(f)i+ 1 - 6 (A f ) ,
(7. 7)F  (A ) h (x  )  = — EA, ihh(Xf)i+ PAN) ,

F (A )X f ) =  — A [6 (X f )+ ,< X A f).

We may, however, expect that those equations are automatically
satisfied . In fact, by means of (3. 6'), we obtain easily that
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F b a  (1-4 0cl e  e) — be il'Od a  e +  8 da ttzobc e ±  8 , a  Pod'.

which shows that the first o f (7. 7) holds. In  similar manner, re-
maining equations are verified.

Next, substituting in (7. 4) (with bars) from (5. 2), we obtain

(7.8)f ' ) =  S i (f ,  f ')+P v ( f ) f '[f ,f - ]

and moreover

g 2( i ;  f ')+/-k v (g l ( f ,  f ') ) =  S 2 ( f ,  f i ) + EI-6 v ( f ) ,  1 ( f ) ]

+ F ( P y ( f ) ) ( f ') [ f , f , i + B " ( f ) ( f ') [ f , f l •

This equation will be rewritten, by virtue o f (7. 8) and (7. 7), in
the form

(7.9)S 2 ( f ,  f ' )  =  S 2 ( f •  f ') -  Pv (S i(f , f '))+B r(f )14 ,,(f ')[f ,f 1

- D , v (f ), Pv (f ')] •

I t  will be convenient to use È " ( f ) ,  instead o f B " ( f ) ,  in (7. 9) and
in the following, because P " ( f )  is defined without use o f a  con-
nection. We have already deduced the equation (1. 6), and hence
we obtain

B y (f ) ( f ) [ f , f i i  =  E v ( f ) ( f ) [ 1 , 1 ] — F(C (f ))iav (f % f ,f '] ,

and substitution of (7. 7) gives

= itv ( f ' )] f , f 1 - 1 4 C ( f ) f ') [f ,1 ] •

Observing that C ( f ) f ' [ f , f /] —  S l ( f ,  f ')  from the definition of the
torsion S 1 ,  we have from (7. 9)

(7. 9') S 2 ( f ,  f ') = S 2 ( f ,  f ') + P v ( f ) p ,,,(r ) r f , f 1] — [1-tv (f ), Pv(f i )]

+EC(f ), ih,,(P i rf , f i i  •

The similar process is applied to (7. 5) and (7. 6), and then we
obtain

(7 . 1 0 ) C ( f ' •  f )  = C ( f ',  f ) - 1 6 ( f ) . r  •

(7 . 1 1 ) P 1( f '  f )  =  1 3 1 ( f ,  f ) — C ( f ,  i l l ,k r) ) +P h ( k r) f — P r ( f ) f t:X .r) ,
(7 . 1 0 ) P 2 ( f ',  f )  =  P 2( f ' ,  f ) — S 2 ( f , f ) )

+ EC (14 (X f ' ) ) ,  v (f )] -  EC(f), Ph(Xf')]
Lah(X.r), ity (f  )] +16.(b v ( f  )/-6(Xf))

+ P v (P/sX .r)),(4.(f) — P"(f  )tah(X f  ')+B h (f ')I-4(f ) •
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(7 . 1 3 ) T (f , f ') T (f , f ')+1-1,h(x f )f if f , f /i — C (f '•  til,x f))[f ,
(7.1 4 ) R 1(f ,  f ') f ')— Pl(f ', li,X f ))[."-,f11 - 1 X T ( f , f ' ))

- B h (f 01.6 ( X f)[/- , fii + Pv(I-
(
x1))1-

(
x f ') [ f , / ] ,

( 7 .  1 5 )  R 2 (f ,  f t ) — r)— P2(f i, iil,x f ))[., , ,f 1i +SA lb(xf), k ti,X f i ))
—1- (R  1 (f , P',x f ))rf , fii

+ (fLat — it-0 (x  T ( f ,  f ') ) — B h(f /),ah(x f )[f ,f 1

+ tb,( 13 h(f ')A 'sx f ))[ f , f l — Pv (iilsx f ')),.,,(x f )[f ,f ']

+1.6,A W .x .r) ) f ) ) [, ,, f
,i — Eph(x f ), Ph(x f ')]

— Cgibisx f ')), A h(x1)1r f , f ii •

It is obvious that (7. 10) is equivalent to (5. 6)
For the case of a projective transformation of an ordinary

connection in the bundle P  o f fram es, it is usual that the con-
nection is assum ed to be sym m etric. O n the other hand, the
condition of symmetry of a Finsler connection is defined as follows.

Condition of symmetry : A  Fin s le r connection is said to be
symmetric if the torsion T  vanishes.

From [ 1 ,  (1. 3)], w e see that T  i s  coefficient of h-component
of the h-torsion form. Since the above condition
means that F f ik  is symmetric with respect to subscripts. It follows
from (7. 13) that

Proposition 13. The necessary and sufficient condition for a
linear transformation p  to preserve the condition of symmetry is
that the equation

(7. 16) tbh(X f )f rf ,f 1— C(/', =

is satisfied.

In terms of components, the equation (7. 16) is written by

(7. 16')I d  [bXd d  C [ b a  d P e
d X c 1 ' = 0  .

§ 8. Infinitesimal linear transformations

Let q3, be a 1-parameter quasi-group of linear transformations
and let X  be the infinitesimal transformation of q . A s  has already
been shown, a linear transformation is characterized by the three
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properties of Theorem 1 , and hence X  is such that

(8. 1) i x F(A )= O ,
(8. 2) x E(A ) = O ,
(8, 3) = O ,

where T x  indicates the Lie derivative with respect to X.
Ey making use of these equations, we shall find the expression

of X  in terms of canonical coordinate (x i, bi, p a i). I f  we take the
base (ga b) of the Lie algebra 6  and put F a b— F(4b) and E a b=E (4b),
then we have

F a b =  pai  aE a b — pazp-iibbi  a ,=  P.Va biea .
aPbi abi

By putting
.X =

a a+x(,) +xai 
 a  

.,
axi abi apa,

the equation (8. 1), that is, [X , F(A )] = 0 gives

axia x ( i )  —  o  ,  axai
ap a i ap a i aPb'

From (8. 2) and (8. 3) we deduce similarly that

axi axa ia X ( i )  _  x x - ( i )  x a tp iiab i
abi abi ab,

It follows from  these equations that X i  and X/ = X a i p y ' are
functions of xi only, and X " )  is equal to X i ibi. Therefore we have

.(8.4)X  =  X i ( x )   a X / ( x ) b '  
 a  + X ii(x )p   a 

a )
axi abi apaz

We consider the special case where p , are induced transforma-
tions from the projection (Pt. In  th is case deviations X, are the
unit e E G  and we obtain easily X i i=aX i/ax j= X i, ;  . I f  we use the
letter Y, instead of X , then it follows from (8. 4) that

a . .  a .
(8. 5) Y = Yi(x) + 17 ( .1P +  .  -pa / .

axi abi a
5
pai

On the other hand, if (p, are rotations, we have Xv= 0 , because
projections (P, are reduced to the in d e n tity . Since a rotation p*
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is expressible by (x i, p a i) ,  (x i, x i ip a i )  [1, (3. 6)], we see that x i ip a i
d o , o p a i . Hence, if  w e use the letter Z , instead of X , then

we obtain
a a (8. 7) Z  

abi apai

where 9.7 G Ô is  the tangent vector of the curve X, at e E G.
It is obvious that a general X  is  the sum of the induced part

Y and the rotation part Z , and hence we conclude that

P ro p o s itio n  1 4 .  The inf initesim al transformation X  o f a  1 -
param eter quasi-group o f  linear transformations is w ritten as the
sum  of the induced part Y and the rotation p art Z , where Y and
Z  are given by (8. 5) and (8. 6) respectively.

§ 9. T h e  L ie  derivative o f  a  F in s le r  connection

Let X be the infinitesimal transformation as treated in the last
section. The L ie derivative i x a  of a form a  o n  Q  with respect
to the X  is defined by

. 1 ,= —kceoPt — a) •i+ o  t

Hence, from (3. 2), we can derive directly the following formulas :

= v„( 0 ") + vii(Oh ) ,
(9. 1) i x e v  =  v(Oh ) ,

i x e h =

where 2,„ and vh are tangent vectors of curves ,a„, and ph t in  G  at
e G G, and 2, is the tangent vector of the curve in  F  a t the origin.

On the other hand, for a tangent vector field U on Q , the Lie
derivative !t,,U  is defined by

Tx U =1,im li(U — Uopt ).

Then, from (3. 1), it is easy to see that
T,,,F (A ) = O,

(9. 2) B " ( f ) =
x l3 h ( f )  =  — F (v h ( f) ) —  B " (v ( f))+  B h (lif)
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We can deduce from (9. 2) a  system o f differential equations
satisfied by the vector field X .  To do this, we remember that

=  [X , 1 1 ]. Since the decomposition o f X  w ith respect to  a
Finsler connection is written as X =  (@(X))+ Bv(09"(X))+ Bh(Oh(X)),
it follows from the third equation of (9. 2) that

[F(0)(X))+B"(0"(X))+Bh(Oh(X)), B"( f)]
= Bh(c)(X)f)— F (Bh( f)co(X))— F (13 2 ( f , 0"(X)))— B"(13 1 ( f , 0" (X )))

—Bh(C(f, 0"(X)))—B"(Bh(f)8"(X))+F(R 2(0h(X), f))
+B"(Ri(Oh(X), f))+Bh(T(Oh(X), f))—Bh(Bh(f)Oh(X)) ,

where we made use of (7. 3), (7. 4) and (7. 5). Therefore the third
equation o f (9. 2) is equivalent to the following

B h ( f ) ( 6 (X ) 9"( X)) + R 2(Oh (X ), f) + vh( f)
(9. 3) Bh( f)9"(X) = f , 0"(X))+ Ri(Oh(X), f ) + v( f)

Bh( f)Oh(X) = — C( f , 0"(X))+ T (Oh(X), f)+co(X)f . —97f .

In an entirely similar way we deduce from the second equation of
(9. 2) that

B"(f)co(X) = S 2 (co(X ), f)+ 1 3 2 (Oh (X ),  f )+ 1)0(f)
(9. 4) B"(f)0"(X) = Si(co(X), f)+.13 1 (Oh(X), f)+co(X)f, ,

B"(f)Oh(X) = C(Oh(X), f) .

(9. 3) and (9. 4) are differential equations satisfied by the X , because,
if we put 0"(X)= Xae a , we have B"( f )0" (X)= X a

 b fhea  (v-covariant
derivative) and Bh( f)0"(X)— Xa l„fbea (h-covariant derivative).

On the other hand, the first equation o f (9. 2) does not give
differential equations, but we obtain

F(A)co(X )+[A, co(X )] =  O,
(9. 5) F (A )0 "(X )+  A • (X ) =  o ,

F(A)Oh(X)+ A•Oh(X) =  O,

which do not contain derivatives of components of X.

P r o p o s it io n  15. T he inf initesim al transform ation X  o f  a  1-
param eter quasi-group o f  linear transform ations has to  satisf y  a
system  o f  dif ferential equations (9. 3) an d  (9. 4), an d  moreover a
system  of  algebraic equations (9. 5).
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We shall, finally, find Lie derivatives of torsions and curvatures
of a Fins ler connection. In (9. 2), A E 6  and f  E F are fixed elements,
while, if  A  and f  are  functions on Q , we can easily derive from
(9. 2) that

I x F ( A )  F ( A ) ,
(9. 6) i x B "(f )= — F( 1 ( f ) )+B " ( ix f )

ix B h ( f )  =  - F()h ( f ) ) - B "(v (f ))+B "(97 f ) + B h (ix f ) •

Next, it follows from the Jacobi identity that i x [U , V] =  [i x U, V]
+ LU, i x n ,  where U  and V are vector fields on Q.

Now, if f  and f '  are  fixed elements o f F ,  we obtain from
(7. 4) that

EB"(f), -1 3 '( f ') ] =  R S V , f ') ) +  B y (S 1(f , f '))  •

By operating i x  on the above equation and using (9. 6), we have
by direct calculation that

(9 . 7) ix ,S1(f , f ' )  =  - v v (f )f /r f ,f i]
(9.8)i x . S 2 ( f ,  f ')  = v v (S 1( f ,  f ') ) +B y ( f i ) v .( f ) [ f ,1 ] •

The similar way leads us to the fo llowing:

(9.9)f )  =  — n C ( f ' f )+C (n f ',  f ) - 1 3 v (f )n f ' +v v ( f ) f '

(9 . 1 0 ) f )  = v ( f ') )+P l(n f ,  f )+B " ( f ) v ( f )
+v (C (f ', f ) ) - u h ( f ') f

(9 . 1 1 ) ix P 2(f ',  f )  =  S 2(f , v ( f 1)) +F 2 (97f 1, f )+13r(f )v h (f i)
— B h (r)v v (f )+v v (P l (f ', f ))+v h(C (f ', f ) ) ,

(9 . 1 2 ) I x T ( f , f ') T(n f, v(f))tf , ,yf[f,

f ' ) ,

(9.13) i x R i ( f , f ')  =  13 1 (f ', v ( f ) ) tf ,f 1 +R 1(97f ,
+ B h (f ')v (f )r f ,f l+v ( T ( f ,  f ') ) ,

(9 . 14 ) R 2 ( f , f ')= P 2( f ', 1)(f ))rf ,f 1+R 2(nf , f  i ) [ f ,  1 4 1

B h ( f i ) v h ( f )E f , f ' ]  V v(1? f ') )+v h (T ( f ,  f ') )  •

Proposition 1 6 .  Lie derivatives of torsions and curv atz res o f
a Finsler connection with respect to the infinitesimal transformation
X  of a1-param eter quasi-group o f linear transformations are given
by (9. 7), ••• , (9. 14).
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It will be convenient to write those equations in  terms of a
canonical coordinate, and we obtain

(9. 7') xSIk —

(9 . 9 ') ix C J i k = vok i i
(9. 10') =  9 1' C  j i k +  I'S ki  1 2 7  9 1 i l P  k —  h ) j i  k+  1 1  k

(9 . 1 2 ')  I X TT5 l i T  j i  k 71E/ T 1
Id +  V [ j 1 C I kl

(9 . 1 3 ') i x R f i k T  k + L' I j i P  A i  1+ R l i  + 1'[11 la]

Above equations give Lie derivatives of torsions, and the following
equations do that of curvatures :

(9. 8') ix S  k l =  V v m jS k r n  1+  ) 1,Ak i l i

(9.11') i x P i f k r  =  97k m P j f m i v o m i j P k n i t  v h)rn i i C h m i

k +  h )k i  j1 I
(9 . 1 4 ')  Ix R ; fkr = I1[km Ri!,./1+ 1" [km 1 3  j i• l ] m ±  v)mi  JR km  1+  h ) m i  j T  km  1

+ PI] •

In  the case  where X  i s  th e  induced Y , those equations will be
written somewhat simple, for the infinitesimal deviation vanishes.
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