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We introduced, in a previous paper [1], a notion of a linear
transformation of the tangent bundle B of a differentiable manifold
M, which was a generalization of a notion of a transformation
induced from the one of M. A Finsler connection is defined in a
certain principal bundle @, the base space of which is the total
space B.

A theory of transformations of a Finsler connection by a linear
transformation will be developed under a certain special condition.
The paper [1] was devoted to the study of affine linear trans-
formations, and we intend to treat a projective one. The present
paper is written as necessary preparation for it. The terminologies
and signs of the paper [1] will be used in the following without
too much comment.

§1. Preliminaries

(1] Principal bundle @

In the first place, we recall the principal bundle @, in which a
Finsler connection is defined [1], [3].

Let P(M, =, G) be the principal bundle of frames tangent to
a differentiable manifold M of n dimensions. The group of structure
is the full linear real group GL(n, R), and an element g of G acts
on P by pe P— p-g, which is called a right translation R, of P by
g. The total space P is interpreted as the set of all admissible
mappings F— B, where F is a n-dimensional real vector space and
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B is the total space of the tangent bundle B(M, =, F, G) of the
manifold M. Throughout the paper, we assume that b€ B is a
non-null tangent vector of M. Take a fixed base (¢,), a=1,2, -+, n,
of F and denote by p,, g€ G, the operation of g on F, namely,
P f)=8,"fe., where g=(g,°), @, b=1,2, .-, n, and f=f"¢,.

The projection +: B— M gives an induced bundle 7 'P =
Q(B, =, G), the total space of which is defined by Q= {(b, p)|b€ B,
peP, 7b)==(p)}. Then the projection #: @ - B and the induced
mapping 7: Q —P are given by z(b, p)=>0 and %(b, p)=p. A right
translation R, of P by g€ G is transfered into @, and we have a
right translation R, of @, which is defined by R, (b, p)=(b, R(p)).
Later on, we shall use the same latter R,, instead of R,, for a
right translation of @. By a right translation of @, a fundamental
vector field F(A) on @ corresponding to AeG (the Lie algebra of
G) is induced, which is determined by F(A),=L,A), where L,:
G—Q, g—R,(q).

[2] Left translations of @
We introduce a mapping

L: GXQ - Qr (g» (b) P)) g (p(g'p_]b)7 p) .

Then, for a fixed element ge G, we have a mapping L,: @ =0,
q— L(g, q), which is called a left translation of Q by geG. It is
easily seen that L, acts on »7'(p), p € P, transitively, 7 '(p) being
called the 5-fibre on pe P. If we take the identification i: @ — F X P,
used in [1, §2], the above L, is expressed simply by (f, p) €
FxP—(gf, p).

Let ge @ be a fixed point and R, be a mapping defined by
R,: G—>Q, g—L(g, q). By a mapping R,, we can introduce the
second fundamental vector field E(A) on @ corresponding to AegG,
which is defined by E(A),=R,(A). Since »E(A)=0 is obvious, we
can say that E(A) is tangent to 7-fibre at any point of @. Take
the natural base (§,%), £, = (9/dg,),, of G and put E,”= E(g,").
Then the expression

,, o vaps 0
E,(q) = p,'P; bjﬁ(l;
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is easily derived, where (xf, b, p,?) is the canonical coordinate of

€@ [1, §1].

[38] Characteristic field

The notion of the characteristic field v on @ [1, §1] is import-
ant for a theory of Finsler connections, which is simply a mapping
Q—F, (b, p)—p'b. We shall find an expression of the differential
of v for the later use. Take following mappings :

§ 1 FxP—B, (f,p)—pf,
o @ —>B, (b p)—pf,
K;: P—B, p—pf.

Then it is clear that £o/=# and o,=K,05. Hence, if we take a
tangent vector X € @, and f=1(q), the differential # is expressed by
(X)) = £0i(X) = EAX), 7(X) = #(X)-f+p-rX)

= Kpon(X)+pv(X)=0{X)+p-v(X).

Consequently we obtain

(1- 1) 7= p—l(ﬁ_o-f y 4= (b’ p) ’ f = 'Y(Q) »

which is the desired equation.
It follows from (1.1) that

F(Ayy = dyF(A) = p~(zF(A)—oF(A))
= —pTlo(A) = —pTlo L (A).

Since we have p~'oL,(g)=g-f, g€ G, we obtain
1.2) F(Ay = —A.vy.

4] Mapping C(f)

In [1], we sketched a Finsler connection in @, which was
originally introduced by T. Okada [3]. In terms of a canonical
coordinate, the connection is given by coefficients of connection of
three kinds [1, §1], namely, F;i(x%, b%), F;i(xi, b%), and C,i,(x7, b?).
Among them, the last C;?, behaves as a (1, 2)-tensor under a trans-
formation of a canonical coordinate. By virtue of this property,
we define a mapping C, which is given by

C: FxQ—G, (f,q)—Cla)f s,
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where C,”(q) = C;i(xi, b)p, " “p,7p.* and (x%, b%, p,?) is a canonical
coordinate of g€ Q. For a fixed element f€ F, the mapping C(f):
Q—G is derived from C. It follows from [1, (2.9)] that

(1.3) ool () = Clfiorn,  Fifi€F, peP.

In [1,89], we used a s-basic vector field B'(f), which was
defined by a mapping ;" : b€ B—(b, p) € Q as B'(f),=7; o pjvaS)s
where ¢=(b, p). Since R,(g)==,'op(g-v(q)), we have the relation

(1.4 E(A) = B'(A-),

where E(A) is the second fundamental vector field. #zFE(A),,
g=(b, p), is vertical in B and is equal to p(A-v), because zR,(g)=
p(g-v(q)), g€ G. Hence we see that #"E(A),=0 (k-horizontal com-
ponent), while Z’°E(A),=1,0p(A-v)=B"(A-v), (v-horizontal compo-
nent), where /, indicates a lift to g€ Q. We shall find the vertical
component of E(A). The p-induced form @, [1, §2] on F from
the connection form e of a Finsler connection is given by
o p=woi~'oX , where X : F—>FxP, f—(f, p). It follows from
i~oX =7, op, that @oi "X of £)=o(B"(f))ss . Therefore the
equation (1.3) gives vB*(f),=F(C(f),) (vertical component), and
hence we see that vE(A)= F(C(A-v)), by virtue of (1.4). Con-
sequently E(A) and B'(f) are expressed, with respect to a Finsler
connection, as follows:

(1.5) E(A) = B'(A-7)+F(C(A-v)),
(1.6) B'(f) = B'(f)+F(C(Y)).

It, however, is remarked that E(A) and B’(f) are defined without
use of a Finsler connection.

5] Condition of homogeneity

In [1, §9], we discussed the complete integrability of infini-
tesimal affine transformation under the condition of homogeneity.
This condition seems very essential for a theory of Finsler geometry
[3], [4]. The definition of this condition is as follows. Let R*
be the set of positive numbers, and a mapping R*xF—F be such
that (z, f)—z-f (ordinary product), z€ R*, f€ F. Then we intro-
duce mappings [2, p. 174]
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h: R*xB— B, (2 b)—z:b=p(z-p7'b), pe = 'or(d),

h: R*XQ—Q, (2, (b p)—(2:D, p).

It is clear that z-b as thus defined does not depend on the choice
of p. We denote by %, (resp. #,) the mapping B— B (resp. R*— B)
obtained from the above % for a fixed z€ R* (resp. b€ B). For
the another mapping %, the similar signs %, and %, are used.

Now, the condition of homogeneity is that a Finsler connection
(I, 1) is imvariant by every mapping h,, that is, 1™ =1" and
Lt =1",

Let X be a tangent vector field to Q. If X satisfies the equa-
tion i, (X)=2z"-X, then we say that X is positively homogeneous of
degree v (p.h.(r), for brevity) [4, p.7]. The same term is used
for a differential form a on , if aokh,=z".a. The following
proposition will be easily verified [3].

Proposition 1. The condition of homogeneity is equivalent to
one of the following three properties.

1. F(A), B(f) and B*(f) are p.h.(0), (1) and (0) respectively.

2. o, ¢ and 0" are p.h(0), (1) and (0) respectively.

3. Fji, Fji, and Cj, are functions of p.h.(1), (0) and (—1)
respectively with respect to variables bi.

§2. Linear transformations

A linear transformation @ of the total space B of the tangent
bundle B(M, =, G) is defined in [1], which is a transformation such
that

1. ¢ is fibre-preserving.

2. o is linear on each fibre.

By virture of the first property of ¢, a transformation # of the
base manifold M is derived which satisfies the equation Top=gpor,
® is called the projection of @. On the other hand, ¢ gives naturally
a transformation ®* of P, which is termed the associated trans-
formation with .

A linear transformation of P is by definition a transformation
which commutes with every right translation. The following fact
was proved in [1].
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Proposition 2. Any linear transformation ¢* of P is associated
with a linear tramsformation ¢ of B, and the relation

(2°1) ¢*(p)'f:¢(p°f)’ pGP, fGF,

is satisfied.

We have naturally a transformation @ of the total space @ of
the induced bundle +'P from a linear transformation @ of B, such
that @(b, p)=(pb), P*(p)). @ is called the transformation induced
from @, or, for brevity, the linear transformation of . In the
following, we shall use the same letter @ for the induced one, in
case there is no danger of confusion.

The notion of the deviation A : P—G of a linear transformation
@ is essential in our discussion. Let @, be the differential of the
projection @. ¢, is obviously linear and then we have the associated
@¥. Then the mapping M is defined by the equation

2.2) P P)=PE( )M D) .

If the projection @ is the identity transformation of M, @ is called
a rotation. In this case, @* coincides with the right translation
R, by the deviation A.

We proved in [1] that a fundamental vector field F(A) and
the characteristic field v were invariant by the induced transforma-
tion . Another important property of @ is that the second fund-
amental vector field E(A) is also invariant by @. In fact, we have
first

poLy(b, p) = P{p(g-p7'), p) = (P{p(g-p~'D)), P*(P))
= (P*(p)g-p™'0).P*(P)),
where we made use of (2.1). On the other hand, we have
Lopb, p) = L), p*(p)) = (P*(p)(&-P*(5) (b)), P*(p))
= (p*(p)(g-p7'0), P*(D)),

where we made use of the invariance of . Thus @ commutes
with every left tramslation, from which it follows immediately
that E(A) is invariant by .



Linear transformations of Finsler conmnections 151

Theorem 1. The necessary and sufficient condition for a trans-
formation @ of Q to be linear is that the following three properties
are satisfied.

1. @ commutes with every right translation.

2. P commutes with every left translation.

3. The characteristic field v is invariant by .

Proof. We define, in the first place, transformation ¢ of B
and @* of P as follows:
pb) = mop(q), qe€='(b), beB,
P p) = n°P(q), q€n(p), pEP.

It follows from the properties 1 and 2 that @{b) and @*(p) are
well defined, independent of the choice of g. Then @ is written
by @b, p)=(pb), »*(p)). The property 3 means that @*(p) 'p(b)=
p~'b, from which it follows that @(b)=@*(p)(p~'b), that is, (2.1).
Further, by means of the property 1, we see that ¢* as thus defined
commutes with every right translation of P. Consequently the
theorem is established by virtue of Proposition 2.

§3. Transformation of a Finsler connection

We consider a Finsler connection (I'Y, ['*) in @, and B“(f) and
B"( f) are v-basic and /k-basic vector fields respectively. We discuss
behaviours of F(A), B'(f) and B*(f) under a linear transformation
@. First, the following equations will be derived :

pF(A) = F(A),
CRY PB'(f) = F(u(f))+B"(f),
PBH(f) = F(u( f))+ B"(w )+ B"M'f),

where A is the deviation of o, and u,, g, and x will be defined
in the following. It follows from (3. 1) directly that the connection
form ©, the v-basic form 6" and the /A-basic form 6* subject to
the following transformations :

wop = @+ 1, (0") + (0% ,
(3.2) Gop = 0"+ u0"),
Grop = AOn
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We shall show (3.1). The first of (3.1) is obvious by
[1, Prop. 2]. Next we have, by means of [1, Prop. 3],

(3.3) (@B (f)) =0, @(pB*f)) =r"f.
Further we show that
(3.4) & (pB*(f)) = f.

In fact, it follows from the definition of B”(f) that

7opB*(f)q = pomB"(f)y = P(bf) = »*(D)f

where we put g=(b, p). Therefore we obtain A"PB'(f )e=L{,(0f),
g =, p)=p{q). Thus (3.4) is a consequence of the definition of
the form 6’. Finally we introduce three mappings g,, p, and g,
which depend on the choice of f€ F, as follows:

lu'n(f) . Q g G y 44— Q)((PB"(f))q ’
(3.5) w(f): @ —>G, g—o@Bf)),,
wf): Q—>F, q—0(pB"(f)),.

Thus (3.1) is deduced from (3. 3), (3.4) and (3.5).
Above mappings p,, u, and p satisfy the equations

w & f)oR, = ad(g "\ f),
(3.6) (& )R, = ad(g N f),
wg )R, = g '\ f).

We shall prove the first of (3.6). If we put @{g’)=¢q, we see

187 )R, (q) = epB" (g~ f)yg = @PR,\B"(f)y
= 0R, (PB*(f))e = ad(g (@B (f)), -

In like manner we can show the second. By making use of 6"oR,
=g7'¢", the third will be also verified.

An induced transformation ¢ is characterized by the three pro-
perties given by Theorem 1, and (3.6) is a direct result from the
property 1. In the following, we discuss the behaviour of the
differential of ¢ arising from the properties 2 and 3.

The property 2 gives pE(A)=E(A). If we put ¢g=9p(¢), it
follows from (1.5) and (3.1) that
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PE(A)y = F(C(A%q))e)e+ F (1 A+v(q"))a)e+B"(A+7(q"))q
= F(C(A%(9)e")a+F(#(A+7(q))e)e+ B"(A-¥(q))q

where we made use of the invariance of v. Thus @E(A)=E(A)
is expressed by

A v(@))g = C(A+¥%q))s— C(A7(q))q’ -

Since A€ G is an arbitrary element, the above equation gives

(8.7 1 fla =C(f)a=C(fle» ¢ =P(q).

Next, we turn to the consideration of the property 3 of Theo-
rem 1. It follows from the second of (3.1) and yop =« that

YB' () =vF (2 )a+7B(f)e, a = Pq).

By virtue of (1.2), the first term of the right hand side is written
in the form —p(f),y. If we put +*|,f%,=v|(f) (v-covariant
derivative), then the above equation gives

E gt = 1= (e -

This, however, is solely a consequence of (3.7), because v|(f),=
f+C(f)ey. In like manner, from the third of (3.1), it follows that

(3.8)  Y(Ne=r AT e+l Ne— el Ny, = Pd),

where v,(f)=v",,%, (h-covariant derivative).
Summarizing the above results, we can state that

Theorem 2. The tranformation of a Finsler connection by a
linear transformation @ of B is given by (3.1) or (3.2), where u,,
wy, and p arve defined by (3.5) and satisfy (3.6), (3.7) and (3. 8).

If we take the fixed base (e,) of F and (g,") of G, we may
write

B€s) = mnd’&y s pled) = wley,
wi€s) = a8y -
Then (3.6) means that quantities
ik = Moy e D' DT DR S
(3.6 Bi'e = tws Da' DT DV,
Kt = Dby,
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are functions of x¢ and &' only, where (x¢, 0%, p,?) is a canonical
coordinate. On the other hand, (3.7) and (3 8) are written

(3.7) P’ q) = C(@)—C. (e,

(3.8) Y16(@) = V1 DA (@) + 14,(@) — H4p" (@)¥(q) -

It is remarked here that +*,=—D,” [1,§7], where
D,* = Dyip"°py’, Dj = Fji—b"Fy;.

The following fact will be immediately verified by Proposition 1
and (3.5).

Proposition 3. If a Finsler connection satisfies the condition
of homogeneity, then p,, 1, and p are p.h(—1), (0) and (1) respec-
tively.

§4. Transformation of quasi-connection

We introduced, in [1, §2], the quasi-f-connection I'; in the
bundle P of frames of M induced from a Finsler connection in
Q and a fixed element f€ F. The quasi-connection form o is
also given by [1, Theo. 1] In the following we shall find the
expression of @ op* corresponding to (3.2).

We have first from [1, (2.3)]

4.1) 00,07, = identity.

Next, if we denote by 6% and 6., the f-induced and p-induced
forms from the A-basic form 6* [1, § 7], then the equations

4.2) 0% =0, 65 =0,

will be obtained, where @ is the basic form on P [5]. In fact, it
follows from Tozoi~'=x that

0(%1’ = Hhoi_lon = p‘lo'roﬁoi_loxf,

0(’;” = Ohoz"loxp = p"o'roﬁoi_loxp .

Since Tomoi~'oX,=7 and Tomoi 'eX,=constant, we obtain (4.2).
Next, we shall show that

4.3) Opy = O+ B O p), P = PH(P).
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Observing that X (f)=(f, * ()=, ¢*)oX (f), fEF, we get
Ocpy = 0i 10X, = woi~lo(1, PF)oX s = wopoiTioX 1,
and substitution of (3.2) gives
= (0 + (0" + 15,(6%))0i 10X, 1

Thus, we have (4.3) from the second of (4.2).
Now, it follows from the definition of ¥, that

0, ,0P* = @4 p0P* — w4 0] 00, 0p*
— (010X, )pop* — g0 o(B 00X, ) o
= (woq)oi“on)p/—a)(p)fojfo(ﬂ"o¢oi"oX,f)p/ ,

where we put p=@*(p’). Substituting from (3.2) and making use
of (4.2) and (4. 3), we obtain

= @z, + 1S 05p) + 140 ) =@y 0] 0075y — @y po] g0 16 1)

= a)?})p/ + 1,005 — 9(:/)°jf° Ofrp)+ l“h('gl,’) - Q’(P)f"jf" /"(‘91/) .
Consequently, by virtue of (4.1) and (4.3), we have finally
(4.4) ¥ pop* = ¥+ 11,(0) — C(/‘”w))@?, )

where we put K,: P—Q, p—(pf, p).
As an application of (4.4), we consider the particular case
where @ is a rotation. In this case, from [1, (6.3)], we see

(4.5) p* = R\+F(A),

where @* is the differential and A is the A—form of a rotation
[1, §6]. Hence we have, by means of [1, (2.6)] and [1, Theo. 1],

w*(f)°¢* = ad()\“l)“’*(xf)‘FA .
Therefore we obtain
(4. 6) ad(\ "o —o% 5y = 11(0)— C(0))or, — A .

This equation is the relation satisfied by #, and # for the case of
rotation.
Gathering these results we have
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Proposition 4. The transformation of a quasi-f-connection
form o* ., induced from a Finsler connection by a linear transfor-
mation is given by (4.4), corresponding to (3.2). In the case of a
rotation, we have (4. 6).

§5. Induced Finsler connections

Let (I, I'*) be a Finsler connection in €. Then a linear trans-
formation ¢ gives a new pair of distributions @1, 1'*)=(L", I'%).
This new pair satisfies the condition of a Finsler connection [1, §1],
as is easily verified. We call this new connection the induced
Finsler connection from (1, I'*) by .

Proposition 5. If a Finsler connection satisfies the condition
of homogeneity, the same is true for the induced connection by a
linear transformation.

In order to prove this, it is enough to show that the mapping
h,, as introduced in (5] of §1, commutes a linear transformation
@. The commutability is obvious from the linearity of ¢.

Thus, we can say that any linear transformation preserves
the condition of homogeneity.

Proposition 6. The connection form @, the v-basic form 07,
and etc. of the induced connection are given by

(1) ® = wop™, (4) F=F,
(5.1) (2) 0" =00p, (65) B"= pB",
(3) " = 0, (6) B"= @B"(\).

Proof. Since the /-basic form 6" and fundamental vector fields
are defined independent of a Finsler connection, the equations (3)
and (4) are obvious.

(1): @oR, = wop 'oR, = woRop~' = ad(g "wop™ = ad(g )@,
@(F(A)) = wop™(F(A)) = @F(A) = A,
a(I") = wop™'(pl') = (L) = 0.
Thus all of conditions satisfied by a connection form hold for @
and hence we have (1).
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(5): @B’el”,
7zopB*(f), = Po=B"(f)s = P(pf) = P¥(H)f >
where g=(b, p).
(2): o Y(F)=0"(F)=0,
@ o (I%) = 0'(1") = 0,
0o (B(f)) = O'B"(f) =
6): @(@BH\f)) = ©B'\f) =0,
0" (pB*(\f)) = 6'B*(\f) = 0,
P(PBHNS)) = OPopBHNF) = N0 BHLF) = f.
Thus all of equations of (5.1) are obtained.

From (3.1), (3.2) and (5.1), we have the concrete expressions
of B’(f) and etc. as follows:

(5.2) B f) = F(m{f)+B"(f),

(5.3) B*f) = F(m,(\f))+ B (X)) +B'(f),
(5.4) ® = ®— @,(0")— (1, — 2,L)N0"),

(5.5) 0" = 0"— pAo") .

By virtue of these equations, we can write down expressions of
new coefficients of connection as follows:

(5.6) Fj=Fji—mint,
(5.7 F e = Fie— i M+ Cilym! M
(5 8) Cjik - Cjik_/l'v)kij .

§ 6. Various conditions

A Finsler connection as above treated is very general, even
if the condition of homogeneity is imposed. T. Okada [3] intro-
duced various conditions satisfied by a Finsler connection, in order
to derive the euclidean connection due to E. Cartan. In the fol-
lowing we consider those conditions.

Condition F: A Finsler connection is said to satisfy the con-
dition F if o/"*,=H, holds, where q¢=(b, p), f=v(q), the mapping
o, was defined in (3] of §1, and H, is the non-linear connection
induced from the Finsler connection.
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Proposition 7. The condition F is equivalent to one of follow-
ing equations :
(6.1) o/B* = zB*, f=(a),
(6.2) ¥vB*(f)=0.

Proof. (6.1) is clear. (6.2) is easily obtained from (1.1) and
(6.1).

It follows from (6.2) that the classical expression of the con-
dition F in terms of coefficients of connection is

(6.3) D;i = Fi—b*F,i;=0.

Now, if a Finsler connection satisfies the condition F and the
induced connection by a linear transformation ¢ does so, then we
say that the transformation ¢ preserves the condition F. This
term will be used, in the following, for other conditions.

Proposition 8. The necessary and sufficient condition for a
linear transformation @ to preserve the condition Fis that the equation
(6. 4) /U’h)bar')’c = 7a|r/'['bc

is satisfied.

Proof. It follows from (5.3) and (1.2) that

VB f)=BXf) = —mMf)+yB (W Af)).
Since the det. (A,*) does not vanish, we obtain (6.4) at once.

Condition C,: A Finsler connection is said to satisfy the con-
dition C, if o,I";=0, f=q(q).

Proposition 9. The condition C, is equivalent to one of follow-
ing equations :
(6.5) oB =0, f=v9),
(6.6) vB(f) = f. ‘
This is easily verified by means of (1.1). From (6.6) we have

the classical expression of the condition C, in terms of coefficients
of the connection as follows:
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(6.7) b*Cyt; = 0.

As for the preservation of the condition C,, we have from
(5.2) and (1.2)

Proposition 10. The necessary and sufficient condition for a
linear transformation @ to preserve the condition C, is that the
equation

(6.8) tor’ oy =0

is satisfied.

To introduce an another condition, we recall the mapping %,
by means of which the condition of homogeneity is defined in [5]
of §1. If we denote by 2 the tangent vector (d/dz), to R*, then
a tangent vector /4,(2) is obtained. Thus we have a vector field
h(2) on Q. This vector field is equal to the second fundamental
vector field E(az g.%), because, if we take a one-parameter group

286=(298,%) of the group G, we see z6-f=z.ffor any f€ F. Therefore
it follows from (1.5) that

(6.9) h(z) = B'(y)+F(C(7)),

and hence %(2) is contained in @",+1",, the k-horizontal component
being equal to zero.

Condition C,: A Finsler connection is said to satisfy the con-
dition C, if h(z) is v-horizontal at every point.
From (6.9) we obtain at once

Proposition 11. The condition C, means that C(y) vanishes,
that is,

(6.10) C;idt=0.
The next proposition is a consequence of (5.4) and (6.9).

Proposition 12. The necessary and sufficient condition for a
linear tramsformation ¢ to preserve the condition C, is that the
equation

(6° 11) /l'll)cab'yc = O

is satisfied.
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§7. Torsions and curvatures of the induced connection

We shall find torsions and curvatures of the induced connection
(", 1'%). To do this, we shall make use of brackets of two of
F(A), B*(f) and B*f). In [1,81] formulas of those brackets
are given in the case where A and f are fixed elements. However,
if A and f are function on @, those formulas become more com-
plicated. It is well known that

L/X, gY] = fglX, Y1+ f-X(g)-Y—g-Y(f) X,

where X and Y are vector fields and f and g are functions. Making
use of this, we obtain the following expressions of brackets.

(7.1) [F(A), F(A)] = F(LA, AD+F(F(A)A)—F(F(A)A),

(7.2) [F(A), B'(f)] = B(Af)+ B (F(A)f)—F(B(NA),

(7.3) LF(A), BM(f)] = BAf)+BXF(A)f)—F(B"()A),

(7.4) [B°(f), B(f")] = F(S*(f, f)+B"(S'(f, )+ B (B ()f s, 11>

(7.5) [B(f), BXf] = —F(P(f', N—B(P(f, /H—BHC(S', )
+BXB (f)f)—B"(Bf)f),

(7.6) [B"(f), B(f")] = F(R*(f, f)+B(R'(f, f)+BT(f, [)
+BHBY ) s r1s

where the subscript [ f, /] means, for an example, W(f, f')i,, ;1=

W(f, f)—W(f’, f), and S% S?, P* P', C, R*, R' and T are torsions

and curvatures, and are written, for an example,

SAS ) =S%aff" =Slcaf [8" s
P(f, f)=Plaff*=P af"fle,.
We have also (7.1), -+, (7. 6) (with bars) for the induced connection.

Substituting first from (5.2) and (5.3) into (7.2) and (7.3)
(with bars), we have, by direct calculation

F(Apf) = =LA p{)]+nlAS),
(7.7 FAmNf) = =LA )]+ mlNAS) 5
F(AuXSf) = —ApNf)+prNAS).

We may, however, expect that those equations are automatically
satisfied. In fact, by means of (3.6’), we obtain easily that
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F ba(lu'v)dce) = - Bbclu’v)dae + Bdalu’v)bce + Brza/l'u;'dcb ’

which shows that the first of (7.7) holds. In similar manner, re-
maining equations are verified.
Next, substituting in (7.4) (with bars) from (5.2), we obtain

(7.8) S'(f, ) = S )+l D 't

and moreover

S f, )+ mlSf 1)) = S )+ ) il F)]
+F (ol f Nl 1z, o1+ B (el iy, 11 -

This equation will be rewritten, by virtue of (7.8) and (7.7), in
the form

(7.9) S S, f) = S S, f) =S (f, ') +B' (Nl [ iz, 71
=Ll 1), 8]
It will be convenient to use B?(f), instead of B’(f), in (7.9) and
in the following, because B’(f) is defined without use of a con-
nection. We have already deduced the equation (1.6), and hence
we obtain

B ()l iy, 1 = Bl s, i1 —FC Nl F)is 15
and substitution of (7.7) gives

= Bl £, 1+ LCC) 8l PVt 1= A CCOF g 1

Observing that C(f)f"i; ,n=—S(f, f’) from the definition of the
torsion S°, we have from (7.9)

(1.9 SAS F=S(F, )+ B (Ol s o1~ Ll £)r 16l F7)]
+LCCH)s 1 ) i 111 -

The similar process is applied to (7.5) and (7.6), and then we
obtain

(7.10) C(f", )= C(f", N—ulNf,
(7.11)  P(f, f) = P'(f', )=C(f, BN+ M f =B (Huhf),
(7.10)  PX(f", f) = Pf", )—Sf, b)) —plP'(f, 1))
+LCWS)), )1 =LCS)s sAS )]
~ L"), ol )1+ B (NS ")
+ B (N f Nl ) =B M)+ BH ) f)
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(7.13)  T(f, ') = T(fs f)+mNOF 'tr 1= CFs M Dir 71,
(7.14)  R'(f, f) = R(f, f)=P(f", uM iy ;1 —uwNT(f, £7)
= BH [N )iy, 1+ BN g, 1
(7.15)  R*(f, f') = R*(f, f)—P(f's 6N is 1+ SHuOF), N7
— (RS [+ P(f', 6N Dis, 11
+ (oo — Y NT(S, £) = BH )il M g, 1
+ i B YN Nis, 71— B AT N 1M s, 1
+ B NN, 71— Lis )y M)
—[C(/ﬁihf/))’ /-%(Xf)][f,f’] .

It is obvious that (7.10) is equivalent to (5. 6)

For the case of a projective transformation of an ordinary
connection in the bundle P of frames, it is usual that the con-
nection is assumed to be symmetric. ‘On the other hand, the
condition of symmetry of a Finsler connection is defined as follows.

Condition of symmetry: A Finsler connection is said to be
symmetric if the torsion T vanishes.

From [1, (1.3)], we see that T is coefficient of Z-component
of the k-torsion form. Since T, =F;,—F}’;, the above condition
means that F}?, is symmetric with respect to subscripts. It follows
from (7.13) that

Proposition 13. The necessary and sufficient condition for a
linear tramsformation @ to preserve the condition of symmetry is
that the equation

(7.16) MO 1, 1= CUs M Mg 1 = 0
is satisfied.

In terms of components, the equation (7.16) is written by

(7.16") a1’ —Cu’aps N =

§8. Infinitesimal linear transformations

Let o, be a 1-parameter quasi-group of linear transformations
and let X be the infinitesimal transformation of @,. As has already
been shown, a linear transformation is characterized by the three
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properties of Theorem 1, and hence X is such that

(8.1) 2xF(A) =0,
(8.2) 2xE(A) =0,
(8.3) Exy =0,

where 2, indicates the Lie derivative with respect to X.

Ey making use of these equations, we shall find the expression
of X in terms of canonical coordinate (xf, %, p,). If we take the
base (g,?) of the Lie algebra G and put F,?=F(g,?) and E,2>=E(g.}),
then we have

. a ; .0 .
Fab = az_'_ ) Eab = a‘ _Ibb] —, = ;lab’ -
b by D.'Ds b 7 b e
By putting
.0 5 0 .0
X=X 4+ X = +X, ,
ox? ob? ap,
the equation (8.1), that is, [ X, F(A)]=0 gives
OXT _0XT _ o, 25X
ops 9P, opy’

From (8.2) and (8.3) we deduce similarly that
0Xi _ X, _ 0 oXw

ob’ b Y

= X5, XD = X7

It follows from these equations that X¢ and X=X, p;'* are
functions of x? only, and X is equal to X;¥’/. Therefore we have

d
ap

(8. 4) X = X&) -0+ X2 -0+ X H(x)p.

oxi obi p

We consider the special case where @, are induced transforma-

tions from the projection ®:. In this case deviations A, are the

unit e€ G and we obtain easily X;i=0Xi/dx’=X¢;. If we use the
letter Y, instead of X, then it follows from (8.4) that

0

: 0 -
Y = Yi(x)—+Y¢ b
(8.5) (x) ax‘,—i-Y,,b b

L0
Yipi-0.
Y

On the other hand, if ¢, are rotations, we have Xi=0, because
projections ®, are reduced to the indentity. Since a rotation ¢*
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is expressible by («%, p,*)—(x%, A;ip,7) [1, (3. 6)], we see that X;ip,/=
(dn;ildt),-,p.’. Hence, if we use the letter Z, instead of X, then
we obtain

(8.7) Z = b0 tyipi

b gt

a

where 7€ G is the tangent vector of the curve A, at e€G.
It is obvious that a general X is the sum of the induced part
Y and the rotation part Z, and hence we conclude that

Proposition 14. The infinitesimal transformation X of a 1-
parameter quasi-group of linear transformations is written as the
sum of the induced part Y and the rotation part Z, where Y and
Z are given by (8.5) and (8.6) respectively.

8§9. The Lie derivative of a Finsler connection

Let X be the infinitesimal transformation as treated in the last
section. The Lie derivative £y of a form @ on @ with respect
to the X is defined by

2yt = lim L (aop,— ).
t>0 f

Hence, from (3.2), we can derive directly the following formulas:
Lyo = v (0")+v(0"),
.1) £,0° = %0,
I —
where v, and v, are tangent vectors of curves u,, and g, in G at
¢ € G, and v is the tangent vector of the curve z, in F at the origin.

On the other hand, for a tangent vector field U on @, the Lie
derivative £,U is defined by

¢ U = lim %(U— Usp,) .

Then, from (3.1), it is easy to see that
£LF(A) =0,
9.2) £xB"(f) = —F(.(f),
£xBMf) = —FEl()—B'((f)+BHnf).
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We can deduce from (9.2) a system of differential equations
satisfied by the vector field X. To do this, we remember that
2,U=[X, U]. Since the decomposition of X with respect to a
Finsler connection is written as X=F(o(X))+ B*(¢"(X))+ B¥ 0% X)),
it follows from the third equation of (9.2) that

[F(e(X))+B"(0'(X))+ BX0%(X)), B f)]
= BHo(X)f)—F(B*(f)(X))—F(Pf, 0"(X))—B"(P'(f, "(X)))
—BXC(f, 0(X)))—B" (B f)0"(X))+ F(R*(0(X), f))
+ B (R0 X), 1)+ BXTOX), f))—B*B" f)INX)),

where we made use of (7.3), (7.4) and (7.5). Therefore the third
equation of (9.2) is equivalent to the following :

B'(fio(X) = —P*f, (X)) +R(OX), f)+vf),
9.3)  BH)0(X) = —P'(f, (X)) +R(0(X), /)+¥(f),
BH IO X) = —C(f, 0'(X)+ T(0M(X), f)+o(X)f—nf .

In an entirely similar way we deduce from the second equation of
(9. 2) that

B'(fle(X) = S (X)), f)+P*O"X), f)+»f),
9.4) B'(f)0"(X) = S(e(X), ) +P(0"(X), f)+o(X)f,
B'(f)onX) = C(0(X), f).

(9. 3) and (9. 4) are differential equations satisfied by the X, because,
if we put 0"(X)=X",, we have B"(f)0"(X)=X?|,f%e, (v-covariant
derivative) and B* f)0"(X)=X"*, f%, (h-covariant derivative).

On the other hand, the first equation of (9.2) does not give
differential equations, but we obtain

F(A)o(X)+[A o(X)] =0,
(9.5) F(A)0(X)+A-60"(X) =0,
F(A)M(X)+A-0M(X) =0,

which do not contain derivatives of components of X.

Proposition 15. The infinitesimal transformation X of a 1-
parameter quasi-group of linear transformations has to satisfy a
system of differential equations (9.3) and (9.4), and moreover a
system of algebraic equations (9.5).
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We shall, finally, find Lie derivatives of torsions and curvatures
of a Finsler connection. In (9.2), A€ G and f€ F are fixed elements,
while, if A and f are functions on @, we can easily derive from
(9. 2) that

LyF(A) = F(2xA),
9.6) 2B (f)=—F@Ef)+B"2xf),

ExBHf) = —FElf)=B(f)+Bnf)+B*Lxf).
Next, it follows from the Jacobi identity that 2,[U, V]=[24U, V]
+[U, £4V], where U and V are vector fields on Q.

Now, if f and f’ are fixed elements of F, we obtain from
(7.4) that

[B(f), B(fN] = F(S*(f, )N+ B(S(f, f).

By operating £, on the above equation and using (9.6), we have
by direct calculation that

9.7 2SS = =D s
9.8) 2SS f) = 2SS SN+B (S WL s 11+

The similar way leads us to the following :

9.9) exC(f, f) = —aC(f', )Y+ Cnf's [)=B(fIonf +vLN)f,
(9.10) L P'(f', ) = S'(f, S N+P(nf", [)+B (S S)
+u(C(f", D=2l S,
9.11) L, P f7, f) = Sf, (S N+FP(af’, £)+B () f)
—B*( W £)+v (P, F)+v(Cf ) s

9.12) LTS, ) = TOfs s 1+ C A Dis, 1 — B fir, o1

—Vh(f)f,[f,f/]_7]T(f’ ),
(9.13) LxR'(f, f) = P'(f", "( s, s+ R Sy s 1

+ B W s, 1+ TS )
9.14) LxR*(f, 1) = P(f', (s, s+ R 0 S5 s, o1

+ B S s, 1+ 2 (RS ) +vl(TCS, £)) .

Proposition 16. Lie derivatives of torsions and curvatives of
a Finsler connection with respect to the infinitesimal transjformation
X of a 1-parameter quasi-group of linear transformations ave given
by (9.7), -+, (9.14).
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It will be convenient to write those equations in terms of a
canonical coordinate, and we obtain

9.7 E£xSie= —vorifa

9.9)  LxCila = vy

(9.10") 23 Pji, = viClu+vi S+ ni ' Pre—vpiie+vi s,

(9.127) 24 Tjik = —n/ jlk + n[j,Tlik] + V[jlck]il S O k[P B
(9.13) xR/, = v/ T} +vi;/Pevs+ 0/ Rim v

Above equations give Lie derivatives of torsions, and the following
equations do that of curvatures:

(9.8)  2£xSii = You' ;S Yot

(9.11) L4 Pis = " "P il + 7S it + Yo i P 1+ Viom i CE™)
Vot jiet Vil

(9.14) 2R = nia"Riimn + 21" P iiitm + Yo iR 14 Y iom i T

+ Vst ji1 -

In the case where X is the induced Y, those equations will be
written somewhat simple, for the infinitesimal deviation #;# vanishes.
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