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1 .  When a group G  acts on a ring R  inducing a group o f automo-

phisms, then we can speak of G-invariants in R .  Let us denote the

set of G-invariants in R  by 10(R ). Our particular interest lies in the

case where R  is a finitely generated (commutative) ring over a field K
and the action of G  on R  is such that 1 )  the automorphisms are K-
isomorphisms and 2 )  X, EGfgK is a finite K-m odule fo r every fE R .
In this case, let J .,  •••, f ,  b e  a set of generators o f R  over K  and

choose a linearly independent base fi, •••, f „ o f I , ( S , , , ( f ) g K ) .  Then

f „] and the action of F  on R  is characterized by the

representation o f G  defined by the module Thus, in order

to observe 10 (R ) , we may assume that

(1) G  is a matric group contained in G L (n , K ), and

(2) R =K [f i, . . . ,  f „] and, for every g E G , the automorphis of R
defined by g  is induced by the linear transformation

(1- gr
Under the circumstance, the following results are known:

L em m a 1. I  (R ) is f initely  generated if  ev ery  rational represen-
tat io n  o f  G  is com pletely  reducible o r i f  G  is  a f in ite  g roup , hence
i f  G  h a s  a  n o rm al  subgroup  N  o f  f in i t e  in d e x  su c h  th at e v e ry
rational represen tation  o f  N  is com pletely  reducible.
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In the general case, there are some examples of a pair of G  and
R such that IG (R ) is not finitely generated.

L em m a 1. 2 . I f  G  i s  the  sm allest algebraic  s e t  i n  GL(n, K)
am o n g  th o se  co n tain in g  G ,  th e n  G  i s  a  g ro u p  w h ic h  ac ts  o n  R
n atu rally  an d  IG(R)=

L em m a 1. 3. I f  K ' i s  a  r i n g  con tain ing  K , th e n , u n d e r a
n atu ral ex ten sio n  o f  th e  ac tion  o f  G  o n  ROKK' such  that ev ery
elem ent o f  K ' is  G -inv ariant, w e  hav e  L(ROKK') -=1(R)(DK K'.

By virtue o f Lemmas 1.2, 1.3, above, we see that, in asking finite
generation o f IG(R), fundamental is the case where G  is an algebraic
group with universal domain K .  But, such an assumption does not
bring us any simplicity in  our treatment. Therefore we shall not
assume that G  is an algebraic group, but assume the assumptions (1 )

and (2 )  above.

Furthermore, rational representations of G  which we meet in our

treatment are rather special, and therefore it is good enough to under-

stand by a rational representation o f G  a representation obtained in
the following manner;

Let R* be the polynomial ring over K  in indeterminates X1, •••,
Then G  acts on R* as defined by

(X i  y g r )  for each gEG.

Let M  and N be G-stable finite K-modules contained in R* such that

N c  M  M /N  defines a rational representation of G .  Rational represen-
tations we shall meet with in this paper are those o f this type.

2 .  We call G  a reduc tiv e  g roup  i f  every rational representation of
G  is completely reducible. It is known that

L em m a 2. 1 . I f  G  is an  algebraic group, th e n  (i) in  the charac-
teristic  z ero  case , the reductivity is  equ iv alen t to  the condition th at
th e  rad ic al i s  a  to ru s  a n d  ( i i )  in  th e  c as e  o f  characteristic
th e  reductivity is  e q u iv ale n t  to  th e  c o n d itio n  t h a t  t h e  connected

t
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com ponent Go o f  th e  identity  o f  G  is  a  torus and f urtherm ore the
in d e x  [G: Go] is  p r im e  to p.

Thus the class o f reductive groups is not very small in the charac-
teristic zero case, but is very sm all in the positive characteristic case.

Thus, in view  of the known counter-example to the 14-th problem of
Hilbert, the following consequence o f Lemma 1. 1 is rather satisfactory
in the characteristic zero case and is very unsatisfactory in the positive
characteristic case:

L em m p . 2 . 2 . In  th e  characteristic z ero case, 1 ,(R ) is f initely

generated  i f  t h e  rad ic al o f  t h e  sm allest algebraic group  in
G L (n ,K ) am ong those containing G , i s  a  to ru s : in  the positive
characteristic  case , IG ( R )  is  f in ite ly  g en erated  i f  t h e  connected
com ponent of  th e  identity  o f  G  is  a  torus.

3 .  Let us denote by P m  from now on the polynomial ring over K  in
m  indeterminates X i , •••,

Let p  b e  a rational representation o f G .  I f  p(G).gGL (m , K) ,
then we define an action of G  on P m  by

(X ]..--)-p(g)(X i for every g E G.

Un) U.)
This is called the action of G  on P m  defined by p.

W e call G  a sem i-reductive group if the following is tru e : If p
is  a rational representation o f G  which defines an action on Pm (m
being such that p (G ) g .G L (m ,K )) such that (0  i s  G-stable

and ( ii)  X , modulo S i,,X ,K  is  G-invariant, then there is a polynimial
F E I 'm  w h ich  is  G-invariant, monic in  X i and of positive degree in
X,.

Since the action of G  preserves the degree of every homogeneous
form, the condition on F  above may be replaced by the condition to
be a G-invariant homogeneous form of positive degree which is monic
in X,.

For algebraic linear groups, it was conjectured by D. M umford
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that if the radical is  a torus then the group is semi-reductive. As will
be shown below, this conjecture is equivalent to the following, which
we like to call M umford Conjecture:

M umford Conjecture. I f  G  is  a connected semi-simple algebraic
lin e ar g ro u p , th e n  G  is sem i-reductive.

To the writer's knowledge, Mumford Conjecture has been solved
only in a very special case where characteristic is 2 and G= SL (2, K );
it was done by M r. Tadao Oda! )

The purpose of the present note is  to  show

M a in  Theorem. I ( R )  is  f in ite ly  g e n e rate d  i f  G  is sem i-re-
ductive.

Let us indicate here how to prove the equivalence of Mumford
conjecture w ith the case of an algebraic group whose radical is  a torus.
The key lemma is:

Lemma 3 .  1 .  L e t N  be a norm al subgroup o f  G .  I f  bo th  N
an d  G/N are  sem i-reductiv e, then G  is also sem i-reductiv e.

P r o o f  Let p  b e  a rational representation o f G  as stated in the

definition of semi-reductivity. Then the restriction p '  of p  on N  is  of
the same type, whence there is a homogeneous form FE Pm  of positive

degree such that F  is monic in  X , and N-invariant under the action

of N  defined by p'. Consider the G-module M =  g E G  Fg K . The action

o f G  on M  is really  an action of G / N . Let M *  b e  M r1E12X ;P.,
and let F1, •••, F , be a base of M * .  Then, since M =F K +M * , since
any power of X , is  G-invariant module t h e  semi-reductivity
o f G /N  implies the existence of a homogeneous form F *  in  F, F1,
•••, F , of positive degree such that (i) it is m onic in F  and ( i i )  it is
G-invariant. F *  is  a homogeneous form of positive degree in X,, •-•,
X „ ,. Since F iE / J , 2 X J P„, and since F  is m onic in X ,, we see that
F *  is monic in X , .  Thus G  is semi-reductive.

Now the equivalence said above is proved easily by the fact that
finite groups and tori are all semi-reductive.

1 )  To be published in this issue.
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4. Before proving our main theorem , we like to give a remark on
our formulation of Mumford Conjecture. M omford's formulation was
stated in projective space. N am ely, i f  p  i s  a rational representation

of G  and if p (G )Ç _G L(in , K ), then an action of G  on P m  is defined,
which defines an action of G  on the projective space S '  of dimension

m - 1 .  The condition proposed by Mumford is  that if a point PE S " 2 - 1 -

is  G -invarinat, th en  th e re  is  a G-stable hypersurface in  Sm- '  which

does not go through P.
I f  this condition is stated in Pm ,  then, choosing coordinates o f P

to  be (1, 0, •••, 0), it can be stated as follows:
I f  2'1 2 X ,1 ( i s  G-stable (hence, X 1 m odulo Ei, 2 X1 K  i s  G-semi-

invariant), then there is a G-semi-invariant homogeneous form F which
is  monic in X , and of positive degree.

Proposition 4 . 1 . I f  the abov e condition is satisf ied by  G, then

G  is sem i-reductive.
P ro o f .  Let p be as in  the definition o f sem i-reductiv ity . Then

there is a homogeneous form F  as in the above condition. Since X i

is  invariant modulo .2.;i 2 X1K under the action of G , any power of Xi
is  G-invariant modulo the ideal generated  by f 1, 2 X 1 K .  Therefore
that F  is  G-semi-invariant implies that F  is  G-invariant.

T h e  converse of Proposition 4 . 1  is  a lso  tru e  u n d er the usual
definition o f  rational representations and w as  p ro v ed  b y  M r. M.

M iy a n ish i. The proof w ill be given at the end of th is article as an

appendix.

5. A  reductive group is obviously a semi-reductive group, hence our
main theorem includes the corresponding result for reductive groups.
A s for the proof, that special case is m uch sim pler than  the semi-
reductive case. In o rd er to  com pair these cases, let us begin with
glance at the reductive case.

The following two are key lemmas to prove our main theorem for
reductive groups:

Lemma 5. 1. A .  L e t 0 b e  a  G-homomorphism f ro m  R  o n to  a
ring  R ' .  I f  G  is  reduc tiv e , then  IG (R ')=0 (IG (R ))•
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Lemma 5. 2. A .  I f  G  is reductiv e , then f o r  any  h i , ••• , h ,  in
IG(R), w e hav e  ( I i h i R ) n i ( R ) - -- -  sih,(L(R)).

Namely, the first lemma enables us to assume th a t  f
,
 • • • , f „  are

algebraically independent. Then the second lemma, shows that IG(R)
is  a graded Noetherian ring, and w e see easily  that 10 (R ) is fin itely
generated, by virtue o f a  well known lemma which will be recalled
later.

For semi-reductive groups, we have the, following adaptions of

the above lemmas:"
Lemma 5. 1. B .  W ith  the sain e  notations as above, if  G  is semi-

reductive, then, f o r  every  elem ent x  o f  10 ( R ') ,  there  is a pow er x '

o f  x  such  that x `E O (IG ( R ) ) .  Consequently, 1 0 (R ')  is integral ov er
0 ( I0 ( R ) )  in  th is case.

Lemma 5. 2. B .  A ssume that G is sem i-reductive. T hen f o r any
li i , • • • ,h s E I G ( R ) ,  ev ery  e lem en t o f  ( E i h , R ) n L ( R )  i s  nilpotent
m odulo S i lt ; ( IG (R )) .

Proof  o f  L em m a 5. 1. B . L e t  y  b e  an element o f R  such that
0 ( y ) = x .  Set EgEGygK, a= 0- 1 (0 ),  N = M  n a . I f  x = 0, then the

assertion is obvious, and we assume that x  O. Since x  is  G-invariant,

w e have yg— y N  for every g G G .  Therefore, letting y i , • • •, y. be
a linearly independent base of N , we see that, by virtue of the semi-
reductivity of G , there is a G-invariant element F  of K [y ,y i ,•••, y ni]

which is monic and of positive degree, say t ,  in y, and homogeneous
in  y, yi , • • , y . .  T h en  0 (F)  = x 'E 0 ( / , ( R ) ) .  Th is  completes the

proof of Lemma 5. 1. B.

Proof  o f  L em m a 5. 2. B .  W e shall m ake use of induction argu-
ment on s  without fixing R .  Let o  be the natural homorphism from

R  onto R /h i R .  Let x  b e  an arbitrary element o f  c s ih i lo n k (R ) .
Then 0 ( x )  is  in  E i2 c h 1 ) o ( R )  no(IG(R)), whence by induction on

s ,  w e  se e  th a t th e re  is  a  natural number t  such  that 0 (x i)  is  in

2 (1 1  IG (15 (R)) . This m e a n s  th a t  x i L ih iF ,  w ith  Fi E R  and

F2, • • • , E 0- 1 (h (sb  (R )) . By Lemma 5.1.B, there is a natural number

2 )  W e do not need Lemma 5 .2 .B  in our proof of the main theorem. See .§8 below.
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u such that (75(R) Eyb(IG (R ) )  .  Then, considering 2 "  instead of x ',
w e  m a y  assume t h a t  F s e IG (R ) (if s>  1). T h e n  x'—h.,FsE

( I i -ih iR )n h (R ), and x'— h,P, is nilpotent modulo _1 h (R)) ,
which implies the assertion. Therefore we have only to pi-ove the case

Where s= 1. In this case, .x=h i x ' with x 'E R  and x ' is  G-invariant

modulo 0 : hi R .  Let a  b e  the natural homorphism R--->R/ (0 : R )
T h e n  (x ') IG(6(R)), whence there is a natural number t  such that
(x " ) E  (IG (R )) .  Let z E/G (R )  b e su ch  th a t a (z ) ( x " )  .  Then

2 =  //Ix"— //I z E  hi ( I G ( R ) ) .  This completes the proof of Lemma 5.2.B.

W e reca ll h e re  the lemma on  graded Noetherian ring refered

above:
Lemma 5. 3. A ssum e th at  a rin g  A  is  su c h  th at  ( i )  i t  is  the

direct sum  o f  submodules Ao, A1, ••• , • • •  an d  (ii) A iA i g A i + .; f o r
ev ery  possib le  pair (i, j). I f  t h e  id e al .L'i i ,71; h a s  a  f inite basis,
then A  is f initely  generated ov er A o .

6 .  Let be the homomorphism from P„ onto R  su c h  th a t (X ; )= f ;
for every i  and let f b e  the kernel o f 0. W e shall prove here the
main theorem in the case where f  is  a homogeneous ideal. Since P„
is  Noetherian, w e can  use induction argument on the largeness of f.
Thus we assume that i f  f ' is  a G-stable homogeneous ideal of P„ and
contains f  properly, • then A (P , ,g )  is finitely genenated.

Lemma 6. 1. Under the circum stance, if  I) is a g raded  G-stable
ideal * 0  o f  R , then  IG (R)/(V11G(R)) is finiterly generated.
' P ro o f .  By assumption, /G(R/I)) is finitely generated. By Lemma
5. 1. a  h (R /0 ) is integral over h (R )/ (t )n i -G (R ) ) .  These two facts
show the result.

Therefore, by virtue o f Lemma 5. 3, i f  there is such  an ideal f)
(not containing 1 ) as above so that t) n h (R )  has a finite basis, then
we see the finite generation o f h (R ).

A s a particu lar case, w e  have the case o f  an integral domain.
Namely, i f  h  i s  a homogeneous element o f  h (R )  an d  if R  is an
integral domain, then hR n IG (R ) =  h  (h (R )). The same reasoning is
applied i f  there is a homogeneous element h  of positive degree which
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is not a zero-divisor.
Next we consider the case where R  is  n o t an integral domain.

Let be a homogeneous element o f IG(R) of positive degree. Set
a =  : h R. I f  a =  0 , then w e fin ished already, and w e  assume that
(1* ( 1 .  Then, by Lem m a 6 . 1 , both I G (R )/ (hR nIG (R )) and /G(R )/
(a FlIG(R )) are finitely generated. Therefore there is a finitely gene-
rated subring A  of J ( R )  such that IG(R)/ (h R n IG (R ))—  (h R  n A )
and su ch  th a t IG(R) / (a n h ( R ) )  A / (a n A ) .  S in c e  / G ( R /a )  i s  a
finite module o ver A gar - 1 A ) , ther are elements Ci , • ••, c ,  of R  such
th a t /G (R /a) is  generated  by these  c; modulo a as an A g a rlA )-
m odule. W e like to  show that I G (R )  is then generated by c i h  over
A .  Since c , modulo a are G-invariant, we see that ch  are G-invariant.

Conversely, let x  be any element of h ( R ) .  Then there is an element
a of A  such that x — aE h R . Let r  be such  that x — a=h r ( rE R ) .
Since h r is  G-invariant, we see that r modulo a is G-invariant, whence
th e re  is  an element b  of 'A c i su ch  th a t r — b E a . T h e n  hr= hbE
A [hc i , ••• , hc t i , this completes the proof, provided that the kernel f

of qS is homogeneous.

7. Now we consider the general case. W e adapt the notation in §6

without assuming that f is homogeneous. The induction argument is
also adapted, considering all G-stable ideals of P „ .  Then we need a
different proof only in the case w here / G (R )  i s  an integral domain
(for, othewise, take an element h o f / G (R )  which is a zero-divisor in
'G (R), and adapt the proof just above). In th is case, 1G (R) is integral
over L(P.)/ (far,(p,o). Since the resu lt in  §6  includes the case

w here f= 0, we see that I G (P„) is finitely generated, hence the integral
dependence implies that L ( R )  is finitely generated. Thus the proof
of the main theorem is completed.

8. W e like to add a rem ark here. A s was rem arked in  a  footnote,
we did not use Lemma 5. 2. B .  What we remark here is that Lemma
5. 2. B has the following meaning:

Consider the case w here G  i s  a semi-reductive algebraic group
acting on an affine variety V  with affine ring R .  Let W  be the affine
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variety defined by the affine ring 'G (R ). T h en  th e re  is  a one to one

correspondence between closed orbits on V and points on W  in such

a way that if the orbit o f PE  V is closed and corresponds to  P' EIV,

then the local ring of P '  is  the set o f G-invariants in the local ring

of P.
I f  we define a relation—such that P — Q  (P ,Q E V )  if and only

if the closures of the orbits of P  and Q meet, then we see that -- is

an equivalence relation and each equivalence class contains unique

closed orbit. If the class of P  contains a closed orbit Q G , then the

set of G-invariants in the local ring of Q is contained in that of P.
In particular, if G  is  a linear algebraic group and if H  is  a semi-

reductive algebraic subgroup o f G, then G/H is  affine.

The proof of the above statement can be given quite simiarly as

in our lecture notes on the 14th problem of Hilbert a t  Tata Institute
of Fundamental Research (that was for the case of reductive groups.)

APPENDIX

The converse of Proposition 4. 1.

W e sh a ll p ro v e  h e re  the converse o f  Proposition 4. 1 above.
Assume that a rational representation p  of G is  of the form

t a)0  p'

where t  is  of degree 1. Let in  be the degree of p . Then we consider
a representation r = tE ,  E  being the unit m atrix o f degree in. Then
r ( g )  is  in the cener of G L ( m ,K )  for every g E G , and therefore p r '

gives a rational representation of G (not in the restricted sense above,
bu t in the usual sense). B y the semi-reductivity of G , th e re  is  a
homogeneous form F  in P m  of positive degree such that it is monic in
X , and G-invariant under the action of G  defined by pr - 1 . Then F  is
semi-invariant under the action of G  defined by p .  This proves the

converse of Proposition 4. 1.


