
J . Math. Kyoto Univ.
3-3 (1964) 363-368.

Corrections and supplement to th e  paper
"Reduction o f  models over a  discrete

valuation ring"

By

Hiroshi YANAGIHARA

(Communicated by Prof. Nagata, Feb. 5, 1964)

1. In this short note we shall correct a proposition given in  [1]

an d  rew rite , in  p art, th e  proof o f a  theorem depending on the pro-

position. Moreover we shall add some results on calculus of generalized
cycles on absolutely irreducible models over a  discrete valuation ring,
which wcre treated in  [1] .

We shall generalize th e  definitions o f products and intersections
of generalized cycles, which h ave  a  sense i n  [1] , whenever all the
components o f  generalized cycles dominate th e  same place of the
ground r in g . In  other words we shall define these calculus without any

restriction on generalized cyc les . T h en , making use of properties of
the operation p  defined in  [1] , we shall see that some important results
on calculus of generalized cycles in  [1 ] remain also true.

The notations and the terminologies are the same as those of [1] .

In  particular we shall fix a  ground ring o w ith the quotient field k,
the maximal ideal 13)=. ( n )  and the residue class field K .

2. A t first place we shall generalize the definition o f  a  product

of generalized cycles on absolutely irreducible models. L et M  and N
be two absolutely irreducible affine models over o, whose  affine rings
are o [x ]  and o  [y ] respectively. Then A = o [x] C )0 0  [y ] is the affine
ring of the affine model M x N .  Let P  and Q  be spots of M  and N
corresponding to the prim e ideals in  and n of o [x] and o  [y ] respec-
tive ly . If P  and Q  dominate the same place of the ground rin g  0,
P x  Q  is defined in  th e  sense o f  [1 ] an d  it is easy to see that the



364 H irosh i Y anagihara

components R 1 , •••, R , of Px Q correspond to the minimal prime ideals
h, •••, L of a= (ntC)1, 1011)A, and that the coefficient of R . in  P x  Q

is equal to l(R i /aR ; ) .  Therefore it is natural to give the same defini-
tion of Px Q  as above in the case where P  and Q  dominate diffierent
places of D . Let P  and Q  dominate o and k  respectively. Then the
minimal -prime ideals n,•••, rt: of (n, n)t) [y] correspond to the induced
spots of Q  over p, an d  it is  easily  seen  that a m inim al prim e ideal
of (m C)1, 1C)n)A  i s  a m in im al prim e ideal of (m®1, 1C)11;)A for
some i  and vice versa. T h i s  means that any component o f P x  Q  is
a component of E x Q ; for some induced spot 6):, and that, conversely,
any component o f Px Q ; is  a component of Px Q. Therefore it seems
to be significant to define a product of cycles on any absolutely irredu-
cible m odels over D  a s  follows. L e t  M  an d  N  be two absolutely
irreducible models over D. L et (P, In ) be a spot of the closed subset
M — M ,, of M  and  (Q , n ) a  spo t o f the open  subset N k  of N .  Let

•••, Q: b e  a l l  th e  induced spots of Q  over and  that n i i s  the
prime ideal of Q ; corresponding to Q. Then P  and Q ; dominate the
sam e p lace  t), and  hence P x Q ; is defind  in  th e  sense o f  [1 ] . I f
(R , I )  i s  a  component o f P x  Q ,  th en  it is  easy  to  see  th a t R  is  a
quotient ring of PC)0Q; and that the length /(R/(m®1, 1C)n i )R ) is

finite. T h e n  w e  p u t P x  Q =  E / (R / (m C )1 , 1C )n i)R ), w here R

runs over all the components of Px CY, and call this generalized cycle
the product of P  an d  Q . S im ilary w e can  define Px Q  in the case
where P  and Q  are in  M k  and N— N,, respectively.

PROPOSITION 1. L e t  M  an d  N  be tw o absolutely  irreducible
m odels ov er 0. L e t  (P,111) be in  M — M ,. ( re s p . in M k ) an d  (Q, n)
in  N k  (resp. in  N —  N ,,). T hen w e hav e

P  X  Q =  P  X  p (Q ) (resP . P  X  Q =  p (P ) X  Q )

on M  x N.

PROOF. By th e  definition, Px Q  an d  EX p (Q )  h ave  th e  same
components. L et (R , I ) b e  one of these compontents. Then R  domi-
nates D. L e t  (Q ',  n ')  be the induced spot of Q dominated by R  and
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Ili  th e  prim e ideal o f Q ' corresponding to Q . Then we can easily
see that

/(R/m01, 10n0R)=/(R/(InC)1, 1®(7r, tt i ) )R )

=  i((P/m 0 ,4'/(7r, Ili) ) 0 ,

w h ere  t is  the prime ideal of P/m0<„Q7 (7r, n 1 )  corresponding to the
maximal id ea l I  of R .  By Lemma 2  in  [1] , the righ hand side of
the above equality is equal to

f(R/ ( i nED1, 1011')R)/(P/m)/(Q7(7r, n))

= l(R  { 01101, 10n9R ) p(Q  ; Q ').

This means that the coefficient of R  in  P x  Q  is equal to that of
PX p(Q ). q.e.d.

R e m a rk :  Let (0*, p * ) be a ground ring extension of (0, P), and
let P  a n d  Q  be as the above proposition. Then, using Propositions I
and 5 in  [1] , we can easily see that do* /0(P x  Q) = (Jo* / o(P) x  ow o(Q).

I n  other w ords, w e can rem ove th e  restriction that X  x  Y  is well
defined in Proposition 1 i n  [1] .

3 .  Let M  be an  absolutely irreducible model over 0. Let P  be
a spot in  the closed subset M -1 1 1 , of M  and Q  a spot in the open
subset M,, of M .  L e t (R , I )  be a  component of M ( P ) n M ( Q ) .  Let
us put C =R O D R  and b= b (C ). If rn and rt are the prime ideals of
R  corresponding to P  and Q, then r=  (f(:)1 , b )0  is  a minimal prime

ideal o f  (ni01, 1®n, b )0 .  Let be the quotient ring Of', of C with

respect to and we denote the multiplicity e(bb/(mC)1, 1(pri)C) by
io(R; P Q ) .  W e  s h a l l  d e f in e  th e  intersection o f  P  a n d  Q  by

P • Q — io (R ,;  P • Q)R i , w here R1, • •., R .  a re  a l l  the components of

M ( P ) n m ( Q ) .  It is evident to see that P • Q = Q - P .  This definition
is  a  natural generalization of the definition given in  [1] .

PROPOSITION 2. L e t M  b e  an ab so lu te ly  irred uc ib le  m o d e l o v er

0 .  L e t P  and Q  b e  sp o ts  in  M — M , an d  M , re sp ec tiv e ly . T h en  an y

com ponent R  o f  P • Q  i s  t h a t  o f  P•p (Q ) and the coefficient of R
P • Q  is equal to that of P•p(Q ).
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PROOF. The first assertion is easily seen from the definition of
P Q .  Let the notations be as the above. Then the coefficient of R

in P Q  is  equ a l to  e(bC/(mC)1, 1 Ø n )).  U s in g  L e m m a  8  and

Lemma 10 in [1] , we see that this value is equal to E e(bC/43,,)/(CT,
h - 1

gm ® 1, 1® (ir, n ))t13„), where 43h runs over all the minimal prime

divisors o f (nt(1)1, 1 Ø n ) =  (m 01 , 1)0(7c, n)) . - -t .  In  fact it is easily
seen that these prime ideals have the same co ran k . Now put rt = 13

h

(1 ( 1 0 R )  and Q = R 1 1 . Then V„ is a minimal prime divisor of (m 01 ,
1Øn) a n d  we can see that

1(8)(7r, rt))0q3„)

=1((q3,1(n01, 1011)0TA)e(7EQW nqh)

(cf. the proof of Proposition 1). L te tt:„  •••, n ,  be a ll the different

members among n;, •••, n;. Then we have

e ( b 0 /  (m 0 1 , l iO n ) )

= E  e (bC /Th)1(C13h1 (mC)1, 10n0 Cq3h) e(rcQ/rtq,)
h = i

e(b0/1301(0$,/ (m 0 1 , 1 0 1 1 )  0 $ h )  e (Q / n Q )}
i=1 n n

= E  e (b0/ (m5-<, 1, 1 - ->: ,) C)e(n .Q:1116))J=1.

=Z io (R ; P •  (4 )  •  t t (Q ;

The right hand side o f this equality is equal to the coefficient of R

in P•p (Q ). q.e.d.

COROLLARY. L e t  M  he an absolutely  irreducible  m odel ov er

s u c h  th a t  M  h as  o n ly  o n e  generating  s p o t  P o o v e r p. T hen  w e

hav e  the  e q u ality  Po •Q =Po •p (Q )  f o r  an y  s p o t  in  t h e  open subset

M , of  M .

PROOF. By the definition, the components of P o -Q  are the induced

spots of Q  over p. On the other hand, since P o is  the unique gene-

rating spot over p, all the induced spots of Q  are specializations of Po.

Therefore the components o f P o . p ( Q )  are the induced spots of Q over
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The corollary is a direct conseqtence o f this fact and Proposition
2. q.e.d.

4 .  In  th is  section w e sh a ll correct some points in [1] . First
Proposition 2 in §2 o f  [1 ] should be read as follows:

PROPOSITION 2  in  [1] . Let M  be an absolutely  irreducible m odel
ov er 0. L e t 0 *  be  a g ro u n d  ring ex tension o f  0  and let X  and Y

be generaliz ed cycles in M  s u c h  th at  X • Y  is  w e ll d e f in e d . T h e n
any  com ponent o f  * / 0 (X . Y )  i s  a  com ponent o f  o 0 4 /(X )•d o v o (Y )

and the coef f icien1 o f  R* in  ao * /0 (X •Y )  is  e q u al to  th at  o f R* in
do/o(X ) • ap*/0( Y) .

In  fac t a  component o f  c o /o (X )  •do*/0(Y) m ay no t appear in
1o*/0(X- Y ) .  T h e  proof need not be corrected.

H ere w e shall rem ark that the restriction on X  and  Y  in  this
Proposition 2  can be removed, i f  we understand X • Y  as in § 3 . The

first assertion is verified withaut any modification. As to the second,

let R  b e  the component of P Q  su c h  th a t  R *  i s  a component of

c o * /0 (R ) . Then R  is  a component of P p ( Q )  and the coefficient of

R  in P Q  is equal to  that of P p ( Q )  by Proposition 2  in § 3 . There-
fore the coefficient of R * in ovvo(P•Q ) is equal to that of ao*/o(P • p(Q)),

w h ic h  is  the coe ffic ien t o f R *  in  do* /0(P) • au* /o(P(Q )) = do* /0 (P)
-p (o v v o (Q ))  by Proposition 2  in  [1] . S ince w e have already seen
that R *  is a component of api/o(P) •po*/,(Q), we see that the coefficient

of R *  in 60470(P•Q) is equal to that of ovvo(P) • ao*/0(Q).

Using Proposition 2  in  [1] , we proved Theorem 2  in  [1 ] . How-
ever the results of Theorem 2 need not be changed. For it is enough,
in the proof o f Therem 2, to correct the last part (the part from the

9-th line to the 16-th line in p. 146) as follows:

Let P  and Q  be components o f X  and Y respectively such that
R  is  a component o f p ( P )  •  p ( Q ) .  I f  P* and Q *  are components of

P  and Q  over o *  respectively such that p(P*) • p (Q *) h as R *  as a

component, the coefficient c  of R *  in p(P*) • p(Q *) is equal to that of

p (P * •Q * )  by Proposition 8. On the other hand, from the fact that
R  is  a proper component of p ( P ) • p ( Q )  and from Proposition 2, it is
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'easy to see that the coefficient c , of R *  in 00470(a (P) • p(Q)) is equal
to that of do*/o(p(P))60/o(p(Q ))= p(do*/o(P)) • p(ao*/0(Q )). Therefore
c  is equal to C l . N e x t  w e  show that c  is  equal to  the coefficient of

R *  in crolv o(p(P Q)) = p(ao*/o(P • Q)). For this, it is enough to show

that any component S *  of ere v o(P) • cory ,(Q ) having R *  as a speciali-
zation  is  a  component o f  c o * / 0 (P • Q ) . I f  S *  is  n o t  a  component
cre / o (P • Q ) , there exists •a component SP o f  po*/0(P • Q) which is a
generalization of S *  but not equal to S * . T h e n  th e re  e x is t  spots S

and S ,  in M ( P )  nm(Q) such that R  i s  a component o f p ( S ) ,  and

such that S *  and sp are components of S  and S , over 0*  respectively.
From  th is, w e easily see that there exists a component R ,  o f p(S i)

which is a generalization o f  R .  This m eans that R --= R 1 an d  hence
S * = S i*, a contradiction. Therefore the coefficient of R * in do*/0(P•Q))

is equal to that o f cre/o(p(P) • p (Q )).
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