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Introduction

Recentry A. V. Skorohod [ 4 ] gave a general treatment of the
branching process from a  standpoint of the theory of Markov
processes. In this paper we shall apply this to discuss some
problems of a branching process which was studied by B. A. Se-
vast'yanov [ 3 ]. We shall discuss in  particular the problem of
the extinction and some limiting property of the number of part-
icles. As for the latter our result corresponds to that of T. E.
Harris [ 1 ] in the case of age dependent branching processes.
In a recent book of Harris [ 2 ] this result was strengthened to
the almost sure convergence but in our case it seems difficult to
apply his arguments and we could not succeed in this point.

§  1  Preliminaries

In general a  branching process with particles of one type on
a  locally compact separable Hausdorff space S  is determined if
we are given a Markov process x t (Px , xES) on S  and a system of
branching measures (p„(x), 11„(x,dy))„: 0 where p n (x ), x  e  S  sati-
sfies

0< p1(x )< 1 , 2p„(x ).1
n=o

and 17(x , dy), x  c S , Y = (Y i, Y2) • • • Yn) C S 4  is  a probability measure

1) Independently a quite sim ilar idea was given by K . Ito  a t th e seminar of
probability theory at Kyoto University.
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on S" which is symmetric (i. e . invariant under any permutation
o f (y„••-, y„)) fo r each x c S .  Usually x , is  a  at -subprocess o f  a
H unt process (P s )  o n  =S U {A } ( "  with the  property

P x (  _ES, co), 0  for every x E S ("

and  at is a  continuous non-increasing multiplicative functional of
xi . Intuitively a  particle o f  our branching process starts a c S
according the  law Pa  a n d  when t=C ( 4 )  a n d cS , then it
branches into n  particles y„ with probability p ( x )  and
the position of these particles is determined by the  law 17 „(x, dy).
Each of these particles starts afresh and continues independently
the  same m o tio n . When A  then it remains A  forever.

Now le t S(*) = {A} , 5 (1 - ) =S  and S o ) be th e  symmetrization
of S ". If  at time t  th e  branching process consists o f  n  particles
then they define a  p o in t in  S (") a n d  so it defines a  stochastic

process X t (P,; X  c S =uS ( )  which is clearly a  strong Markov
n=o

process on S  with right continuous trajectories. In the sequel we
shall give our arguments in terms of this 'large' Markov process X,.

We set

(1.1) Z ,= n  if X ,  S (")
(1.2) eco= sup {t ; sup Z.< + co} ( 5 )

ue[o,t)

(1.3) e,=inf  { t<e.;Z ,=0}

is nothing b u t th e  number of particles at time t  a n d  eo, and
a re  called the explosion time a n d  the extinction time respecti-

ve ly . Set also

(1.4) inf It ; Z1
(1.5) 71.= T„_i+ eT k _ iT , k= 1, 2,. •.

where T0 = 0 and O is the  usual shift operator.

2) 6  is the point at infinity when S  is not compact and an isolated point oth-
erwise.

3) is the terminal time of Tct—process ; it ; (in f0= +oo)
4) is the terminal time of x,—process.
5) For t>eco, we shall set
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§ 2  The extinction problem of the  Sevast'yanov model

The branching process discussed in Sevast'yanov [ 3 ] is the
following ;

(2 .1 ) S = G cl? ': a bounded domain with a  sufficiently smooth bo-
undary aG,

(2 .2 ) .X,(/-5„ x  E G): the Brownian motion on G  with aG as an ab-
sorbing barrier (so we identify aG with P )  determined by the
diffusion equation

(2.3)
(2.4)
(2.5)

Set

—
u

=D iu , (D>0 : const.),at
cct—subprocess of ; , (c>0 :const),

p 1(x )= p , 131<1,
r(x, E)=x,,,(x,x,•••,x) ( 8)

(2.6) F [e ] =  E  p ,  for 0<e<1
p 1

then it is clear that F [e ] is strictly increasing and strictly convex
and

F [0 ]= 0 , F [1 ]= 1 .

W e shall assume F'[1] < + 00, then we have

(2.7) 00)=1 (7)•

By a  fundamental result of Skorohod [4], for j(x)c C (G),' 1,
if we define f(X ), X  c S by

if X = ,
=f(x8)f(x2) - 1(xn) if X-- =-(xi,

and if we set

6) -LE  (x,x,•••,x)=-1 i f  (x,•••,x)
=0 otherwise

7) Without this assumption the explosion happens in general : i f  w e se t P x (e «.
de=-1-09) u .  (x ) ,  x c G  then u « , (x )< 1 = .-< - k o o  C f. Harris [2 ] pp. 106-107.e

N. Ikeda gave another interesting proof o f this fact. By the result given below we
see also u « , (x )= I i i  (x )= P w (e A  < ± c > o )  when u. <1.
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u(t, x)= 7 7, f (x ) ,  Ex  [1 (X ,)], X E G

then u satisfies the following non - linear differential equation,

(2. 8) au =D4u-l-c(F[u]—u), u(0+ , x)=f(x), u(t, x)! =1.
x—.bGat

Set
zt

(2. 9) Zi'= E x,,(X, ( t) ), E c B(G), X,=(Xt ( 1 )  ,•••X, ( zt ) )c S ( z t)

(2.10) M(t, .x, E)=EVZn.

Then
z,

u(t, x)=M,f(x),=_ M(t, x, dY)f(Y)= E.( E f(Xt a ) ))
G t=1

satisfies the following parabolic differential equation

(2.11)
au 

 =D4u+a•u, u(0-1-,x) , f(x ), u (t, x )I =0at x_.aG

where

(2.12) a=c(F '[1 ] —1)

In fact (2.11) follows from (2. 8) at once by putting u(t, x )=T ,g (x )
where g(x ) ,  2f ( x)  , 0 <2 <1 and differentiating with respect to  2
and then putting 2=1.

Hence

M (t ,x ,E )=  E m(t, x, y)dy ( 8 )

with

(2.13) m(t, x, y)=ea p(t, x, y)

where p(t, x, y) is the transition probability density of x t .
Now consider the eigenvalue problem :

 

(z1+ 2)y0=0, go I =0
x—,aG

and let

   

8) dy=the Lebesgue measure.

 



Branching process f or Brownian particles. 389

O<2, <2 2 <2 3 .._••• and 9 1(x), 9 2(x),•••

be its eigenvalues and the corresponding normalized eigenfuncti-
o n s . As is well-known yai (x)>O, xcG and

0 0

(2.14) pu, x, e l ) k t t 91
(

X )9 i ( Y )

and so from (2.13)

(2.15) m(t, x, y).= e(Ct.DAi)t9i (X )9 i (y )

LEMMA 2.1
P .(Z - 40 or Z--H- 00 when t--*-1- 00) =1 f or all xcG.

PROOF Take a positive integer k > 1 . It is enough to show
that the probability that Z takes the value of k  infinitely often
is zero. Set

R--= = inf ft ; =
S i = R i +OR i T ( 9 )

R 2 = S i +Os,R
S2= R2+ OR2 T

(inf g3=- +00)

Then for x c G

   

P. (Z  takes k infinitely often)
=P . (n {Rn <+00})=-:iimPx(R.<+œ)

n—.co

Noting that for every x c G

P x (X T _ aG)=1—c. dt p(t, x, y)dy
0 G

we have

P.(R i <00)_<.1—P.(X - r _caG).1— a
P.(1?2<00)=E.(PxR1(T+0,R<00);  R1<00)

< E .[(1 —  11 PA(X2—E aG)); R1<+001i.1
<(1—a)(1—ak)

9 )  T  is defined by (1.4).
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/3 ,(R n <-1-00)(1—a)(1—ak ) ' —>0 (n--309).

Set

(2.16) ui(x)=Px(4—>0)=P.(eA<+00) x e G

and call it the extinction probability.

TH EO RE M  2 .1  (Sevaseyanov) u 1(x ) is  the smallest solution of

(2.17) v(x)=h(x)-F F L v ( Y ) i l q x ,  dy), 0<y<1
G

where

(2.18) hx = P x (X T _EaG)=1—c. e- "dt0 p(t, x, y)dy
G

(2.19) K(x,E)=P x (XT _EE)=.c. e- "dt E p(t, x, y)dy, EEB(G).

PROOF ( 1 0 )  Since

u(t,x)=-P x (eA < t)= P x ( T<t, XT _EOG)+ F[u(t—s, y)]0 G

X  Px (T Eds, XT-EdY)

by letting t—>oo we obtain (2.17)
Now let y  be any solution of (2.17). Set

(2.20) u(k)(x)=P x (ZT,=0) ( 1 1 )

then
(2.21) u ( ' ) (x)=h(x)d- E.(Pxr(Zr 5 _i=0); X T _EG)

<h(x)+E.(CPxr_(Zk_i=0)] z r ; XT _EG)

=h (x)+ K(x, dy)F[u ( k- 1 )  (y)]
G

Now u (')(x ) ,---0<y(x) and if u ') (x )< y (x ) then

u(k)(x)<h(x)-F $K(x, dy)F[u (c- 1 )  (y )]< h (x )±  , K(x,dy)F[v(y)]

=v(x).

Thus for every k, u(k)(x)<v(x) and letting k—>oo we have
v(x).

10) The proof is essentially the same as that o f [3 ].
11) T k  is defined by (1.5).
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COROLLARY u 1(x) is  the smallest solution of

(2.22) Illu=c.(u—F[u]), 0<u<1, u(x)I =1
2c—obG

THEOREM 2.2 (Sevast'yanov) I f  we set

(2.23) a= a — c (P[1]-1)— D2,

then if  a <0, u 1(x)=1 while if  a>0, u1(x)<1 for all x  G.
PROOF We shall give here a proof somewhat different from

that of [3].
Suppose a <0 and we shall prove any solution u  of (2.22) is

u =1. Setting v=1—u we have

D4v=c•f(1—v), vl =0, 0<v<1
OG

where

f (e)=F[e] — e.
Since v(x)>O,

Div=cf(1-v) ,  —c(f(1)—f(1-v))> —cfr(1)v

and so

Div-Fav>0.

Note also that, since f ( )  is strictly convex, if v(x)>0 then

alv(x)d- a.v(x)> O.

Now

G
goi(x)[D4v(x)+a-v(x)]dx= ,i(x)v(x)dx+ a  p(x)v(x)dx

a p 1(x ) v(x) dx
G

and so if fço i (x) v(x) dx > 0, then a f  p1(x) v(x) dx> O. But this is
G G

impossible since a < O. Sof p 1(x) v(x) dx= 0 and therefore v(x)=0.

Suppose a > O. T a k e  p, o < p <1 such that
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c+D2 i+a <1 and take &, 0<8<1 such that F' [1 - 6]> i3F' [1]c+ D21 —

Next take 5> 0 such that 5 maxço,(x)<&. Set w(x)=1 - 6501(x ) then

h (x )+  If(x , dy )F [x (y )]=1—  f , K(x, dy)[l—F[w(y)]]

=1— f K(x, dy)[F[1]—F[w(y)]]

=1— fK(x, dy)P[py] (1— w(y))
G

1 1 3 F  E li f  , K(x, dy)501(y) (... i > p y > w ( y ) > e

p  c.F'[1] 3  (  x \ P - T P A > P c i — E j _ p F l i ] )
c+DÀ,
c+D2A+ ac +  ço1(x)<1-350 1 (x).--w(x).

Let u (x ) be defined by (2.20) then u ( 0  (x )= 0 <  w (x ) and by
(2.21) if u 1 (x )< w (x )  then u (k )(x )_ w (x ).  So u (x)_<w(x)
for every k and u1(x)=1im um (x)<w (x)<1.

Thus if a>0 (2.22) has at least two solutions; ua- _--1 and u 1 (x )
but we can show there is no other solution. This fact will be
needed in §3

LEMMA 2.2 Let a>0 then the equation (2.22) has just tw o
solutions; u=1 and u,(x).

PROOF Setting v=1 — u, (2.22) is equivalent to

(2.24) D4y-=c1(1—v), 0<v<1, vi=0

where

(2.25) f (e) = FEC — e.

Since f(E) < 0 any solution v of (2.24) is superharmonic and so if
v(x)=0 for some xEG then v=0.

Now let v be a solution of (2.24) such that v(x)>0 for all
xeG . Set v1=1—u 1 , then v, and v satisfy

cf(1— v1) = 0
D.dy — cf(1—y) ,  0
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and so

f {D(4vi.v— ,,v. v1)—c[f(1 —v1). v—f(1—v). v11 dx=0
G

Noting

5(4v1. v - 4v. v 1 )dx=0
G

we have

f [f(1—v1)v—f(1—v)vi]dx
G

, . r  1.f(1)—A1— vi(x)) f (1)—f(1 ]  vi (x)v(x)dx
J G v(x) vi(x)

=0.

But since v(x)_v i (x), v(x).v 1 (x )>0 and f (e) is strictly convex we
must have

f ( 1 ) — f ( 1— v(x))  _  f( 1 ) — f ( 1 — vi(x)) 
v (x) vi(x)

and s o  v(x)=v i ( x )  a. e.. Therefore v(x):=7v1(x ).

a.e.

§ 3  Limiting properties of Z, and Zr.
In  this section w e shall assume

a > 0  a n d  F"[1]<-1-00.

Set

(3. 1)
(Sol x)dx

A E )—  fr E
J o401(x)dx

E c B(G).

It is clear that

(3. 2) A •M .  fA(dx)M (t, x,.)=eatA.
G

Z g  In the sequel we shall prove that ' converges in a certainZ,
sense to the non random distribution A(E).

T H E O R E M  3 .1  For E, FE B(G)
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(3 . 3 )  EA(zr zr_Es)
}(12)

{ c F " [ 1 ]  oe' d u  E a ,fi,j)Z ( Z : +s) A(dx)-1-- EE,(Zr)A (dx)
G

COROLLARY

(3 .4 ) E.,(Zr Zr+s)=e2ati-aR  CF"[1]
a E  

1(X)d X 1 (x )d x

X  f (X)d X ( G yo i (x)dx) - 1  (1+ 0 (e - '`))

where

(3. 5) .6=a A  D(2 2 -2 1 )>0.

0(e - " )  is independent of  s.

P R O O F  Since there is no essential difference we shall prove
for the simplicity the case E =  F = G . First fix s>0 and set

u ( t ,x ;  2 , p ) = E x (Àzttizt+s) 0<1<1, 0<te<1.

Since
zt

E(2 z rttz t+s) , -_Ex(2z tExt(ttzs)).= Ex(2 z tllEP,) (1-2z8 ) )= T t f (x )  x  c  G

where

f (x )= 1 E (s )  x  c  G ,

u  satisfies the Skorohod equation:

au(3 . 6 )  -a-F = Diu+ c(F[ul—u), u (0 +,  x)=ÂE(izs), u(t,x)1=1.
x-BG

Set

ui(t, x ; [0= E.(Zttt z  t+s)= a
a
2 u(t, x ;

Differentiating both sides o f (3. 6) w ith respect to  A  and then
putting 2= 1 we obtain

au, ( 3 .  7 )  =Dluid-c(F[v ]-1)ui, u ,(0 ± ,x )= E x(p '), tti(t x )I  = 0at 9

12) E A( • )=  G E x (•)A (dx )
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v(x)=Ex(tt z '+s)

Set

u2(t,x)=Ex(ZtZt+3)= a
a
p  tti(t, x  ; p) =11

Differentiating both sides of (3 .7 ) b y  p  and then putting p=1
we obtain

auo(3. 8)
at

- , D iu +c ( P [1 ]- 1 ) u 2 +cF"[1 ]E x (Z)Ex(Z + 0,

u2(0+ , x) , u 2 ( t , x ) 1  = 0.
al-4bG

Now we expand u 2 (t, x ) and E(Z ,)E(Z , + s )  in terms of eigenfunc-
tions ;

(3. 9)

where

(3.10)

and

(3.11)

where

(3.12)

u2(t, x)-= :Éi f (x )ç (x )

f i(t)= u2(t, x) ço,(x)dx
G

E x (Z )E (Z ,,) ,  c
i É  g(t)ç (x )

g,(t) ,  Z ( Z ) E x (Z ,)ço,(x )dx .

Substituting (3.9) and (3.11) into (3.8) we have for i= 1,2,• ••

(3.13) A V ), — D2, ft (t)+ c(F/[1]-1)f (t)+ cF"[11g,(t)

= (a — D2,) PO+ cF"[11g,(t), f(0+  )= 0 - "i"  o yo,(x)dx.

We can easily solve (3.13) and obtain

(3.14) f i (t)=e ( a- "i"

X j‘ e@i- - "ou cF"[1]g i (u )d u +e - Dxos
0 jo,(x)dx} .

where

So we have calculated u 2 (t, x ) in the form (3. 9) with j 1 ( t)  given
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b y  (3.14). Integrating both sides of (3. 9) b y A(dx) we obtain
(3. 3) for the case E=F-=G.

Now Corollary follows easilly from the formula
-

Ex(Z r)=  E e( a- " i )  f yoi (x)dx t>0, EE  B(G).t-,

Set

and

Z,"W t= e '

W r=  E B(G).etA(E)

THEOREM 3. 2 (Mean convergence of  TV, an d  W r )  There
exists a  random variable W>0 such that f o r every x c G

(3.15) Ex[(VV,—W)2]=0(e-")

and further f o r every E c B(G)

(3.16) E[(W r— W )2]=0(e-').

PROOF From (3.4) we have

WEA ( cF'a'[1]Tvr r+s)--  f,çois(x)dx f G çoi(x)dx(1+0(e(-"))

where 0(e - " )  is independent of s. Hence

EA1(W wr+g)2i=0(e - ').

In this formula taking E = F = G  we see that W=1.i.m. W, exists

and lettingletting F = G  and s--›00 we see

EA [( W — W)2 ]=0(e - 8 ` ).

Now take u> 0 and fix it. Then

—147)9}

e
E x (  ExT[(W  —  W Y])- a =
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e
! „ „  Exc 2 ExT[ wr — Tv] E x [ W—— W ])

i*J
= I l+ h , (X;2,

It is easy to see that E x (147 r— W )=0(e - p( x2- Ài") where 0 ( - )  is
independent of x . So we have

112 1 < 0(e -2D(n2- xot)L(z. 2)

Since there exists C> 0 such that m(u, x , y ) , C y 0 1 ( 3 1 )  we have

L .  
 e 2 G

M ( 1 4  x,Y )Ey[(Wr — W)2 ]dy

<C'EA [(wr — w)2],0(e—')
and the proof was complete.

THEOREM 3.3 F o r  every x € G

(W >0)= (eA
-=-+ co)

modulo Px —null set.

PROOF It is clear ( W> 0)g. (eA  = + co) and so it is enough
to prove

Px (W >0)=Px (e,d- co)

equivalently

P x (W =0)=P x (e,<+00)=-u,(x )

First it is easy to see that u(x )=P x(W =0) satisfies the equation
(2.17) and so the equation (2.22). On the other hand since
W=1. i. m. Wt

E x (W) ,  limEx(Wt)= so i(x ) f  i( x )d x > 0
t—.co G

and s o  u (x )< 1 . Then by Lemma 2 . 2  u(x) , u,(x).
CO

COROLLARY L et IQ be any sequence such that E e t  < +  CO
n = 1

then
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- - - 3 A ( E )  when n—> co e , ,  +  0 0 )

f o r every x  G  and E  B(G).
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