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Introduction

Recentry A.V. Skorohod [ 4 ] gave a general treatment of the
branching process from a standpoint of the theory of Markov
processes. In this paper we shall apply this to discuss some
problems of a branching process which was studied by B. A. Se-
vast'yanov [ 3]. We shall discuss in particular the problem of
the extinction and some limiting property of the number of part-
icles. As for the latter our result corresponds to that of T.E.
Harris [ 1] in the case of age dependent branching processes.
In a recent book of Harris [ 2 ] this result was strengthened to
the almost sure convergence but in our case it seems difficult to
apply his arguments and we could not succeed in this point.

§1 Preliminaries

In general a branching process with particles of one type on
a locally compact separable Hausdorff space S is determined if
we are given a Markov process x,(P,, xeS) on S and a system of
branching measures (p.(x), II.(x,dy)).2, where p,(x), x ¢ S sati-
sfies

0<p(2)<1,  Ypu2)=1
and I7,(x, dy), x €S, y=(y1, Y2,-*¥n) € S” is a probability measure

1) Independently a quite similar idea was given by K. Ito at the seminar of
probability theory at Kyoto University.
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on S” which is symmetric (i. e. invariant under any permutation
of (y1,--+, ¥.)) for each x€S. Usually x, is a a,-subprocess of a
Hunt process x, (P,) on S=SU {A} ® with the property

P(x:_ €S, {<+00)=0 for every xeS®

and «, is a continuous non-increasing multiplicative functional of
%,. Intuitively a particle of our branching process starts a e S
according the law P, and when {=(® and x,.=x¢S, then it
branches into » particles v, ¥.,---, ¥, with probability p,(x) and
the position of these particles is determined by the law 7.(x, dy).
Each of these particles starts afresh and continues independently
the same motion. When x,_.= A then it remains A forever.
Now let S ={A}, S® =8 and S™ be the symmetrization
of S*. If at time ¢ the branching process consists of » particles
then they define a point in S™ and so it defines a stochastic

process X,(Pz; XeS= US<">) which is clearly a strong Markov

process on S with rlght contlnuous trajectories. In the sequel we
shall give our arguments in terms of this ‘large’ Markov process X,.
We set

(1.1) Z=n if X,eS®

(1.2) €.,=Sup {t;s[up Zu<+00} [€D)
ugfo,t)

(1.3) e.=inf {t<e., ; Z,=0}

Z, is nothing but the number of particles at time ¢ and é. and
en are called the explosion time and the extinction time respecti-
vely. Set also

(1.4) T=int{t; Z=Z)}
(1.5) To=T 1+ 07T, k=1, 2,

where T,=0 and @ is the usual shift operator.

2) A is the point at infinity when S is not compact and an isolated point oth-
erwise.

3) { is the terminal time of x,—process; C=inf{f; xi=A} (inf¢=+o0)

4) ¢ is the terminal time of x,—process.

5) For t>ew, we shall set x,=A.
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§2 The extinction problem of the Sevast’yanov model

The branching process discussed in Sevast’yanov [ 3] is the
following ;

(21) S=GcR":a bounded domain with a sufficiently smooth bo-
undary aG,

(2.2) %(P,, x¢G):the Brownian motion on G with 4G as an ab-
sorbing barrier (so we identify 0G with A) determined by the
diffusion equation

9% _ Dtu, (D>0: const.),

Jt
(2.3) x,: e~ —subprocess of z, (c>0: const),
(24) pn(x):pm Po:(), P1<1»
(2.5) 72, E)=3/x,2,,x) ©
Set
(2.6) Fie] = il P&, for 0<e<1

then it is clear that F[&] is strictly increasing and strictly convex
and

F[0]=0, F[1]=1.
We shall assume F'[1]<+ oo, then we have
(2.7) P (e.=+c0)=1 @,

By a fundamental result of Skorohod [4], for f(x)e C(G), 'f|<1,
if we define f(X), XeS by

FX)=1 if X=A4,
=f(xl)f(x2)'"f('rn) lf X:(xly xi,"'xn)es(n)

and if we set

6) xeg (x,x,,x)=1if (x,:-,x) €E
=0 otherwise
7) Without this assumption the explosion happens in general: if we set P:(ew
=+ 00)=ttew (1), 2¢G then ue (x)<1S Sle—_dFE—m<+co Cf. Marris [2] pp. 106-107.
N.Ikeda gave anether interesting proof of this fact. By the result given below we
see also uw (x)=u1 (x)=Ps(ea <+o0) when ye <1.
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w(t, 2)=T,f(x)=E, [f(X)], ¢G

then » satisfies the following non-linear differential equation,

(2. 8) Z=DidutoFlul—u), w0+, &)=f(z), ut, )| =1.

Set
(2.9 Zi= ‘ZIXE(X,‘“), EeB(G), X,=(X, X, @0 )eSE0
(2.10) M(t, x, E)=E/[ZF).
Then

u(t, @)= M f@)= [ M, 2, dy) f)=E 5 FX, )

satisfies the following parabolic differential equation
2.11) %%:Dzmm.u, u(0+,2)=F(z), u(t, x)|=0
where

(2.12) a=c(F'[1]-1)

In fact (2.11) follows from (2. 8) at once by putting u(¢, 2)= T,g(x)
where g(x)=17®, 0<2<1 and differentiating with respect to 2
and then putting 1=1.

Hence

M(t,x,E)=fEm(t, x, y)dy ©
with
(2.13) m(t, x, y)=¢e* pt, x, y)

where p(t, x, ) is the transition probability density of z,.
Now consider the eigenvalue problem :

(4+2) =0, ¢|=0
-G

and let

8) dy=the Lebesgue measure.
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0<2; <23 <23 <-++ and ¢y(x), @a(x),

be its eigenvalues and the corresponding normalized eigenfuncti-
ons. As is well-known ¢,(x)>0, xeG and

(2.14) ot @Y= 5 e o(@)ply)

and so from (2.13)

(2.15) mit, z, )= 5 e o(2)ply)
LEMMA 2.1

P.(Z—0 or Z—+oo when t—+o0)=1 for all xeG.

Proor Take a positive integer £>1. It is enough to show
that the probability that Z, takes the value of % infinitely often
is zero. Set

R=R,=inf{t;Z,=Fk} (inf ¢=+o0)
S\=R,+0r,T®

R,=S,+6s,R

S:=R,+0r, T

Then for x e G

P.(Z, takes k infinitely often)
=P, (N {R,<+o0})=lim PR, <+ )

Noting that for every x ¢ G
P(X, €3G)=1—c. f T dtfgp(t, xz, y)dy=a>0

we have
PR <)<1—P,(X;.€0G)<1—a
P(R;<)=E,(Pxr(T+0,R<0); R <o)
<E[(1- 1L PxR(X; €3G)); Ri<+oo]
<(1—a)l—a")

9) T is defined by (1.4).
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PR, <+ o0)<(1—a)l—a)""t =0 (n—o0).
Set
(2.16) u(2)=PL(Z—0)=Plea<+o) xeG
and call it the extinction probability.
THEOREM 2.1 (Sevast’yanov) u,(x) is the smallest solution of

2.17) uz)=h@)+ [ Frow) K@, &), 0<v<l

where

2.18)  h= P,(XT_EGG)=l—c.I:e"“dtjgp(t, xz, y)dy
(2.19)  K(x,E)=P(X,_cE)=c. f :e‘“‘dtJEp(t, z, y)dy, E<B(G).

ProOF ¢ Since

u(t,1)=Pues<t)=PAT<t, X, G+ [ | Flutt—s,v)]
X P(Teds, X,_edy)

by letting {—oco we obtain (2.17)
Now let v be any solution of (2.17). Set

(2.20) u® (2)=P(Z1,=0) 4V
then
(2.21) u®(x)=mx)+ E(Px(Zr, 1=0); Xr_€G)

<)+ E{[PXxr_(Z:-1=0)1°7; X;_€G)
=h(@)+ [ K@, dy)FTu> )]
Now u @ (x)=0<wv(x) and if u* P (x)<v(x) then
u® (z) <h(z)+ ~[GK(JU, ay)FLu“ (y)1<h(x)+ fGK(x,dy)F[v(y)]
=v(x).

Thus for every k, u® (x)<wv(x) and letting k—oo we have
u(x)<v(x).

10) The proof is essentially the same as that of [3].
11) Ty is defined by (L5).
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COROLLARY u,(x) is the smallest solution of

(2.22) Diu=c.(u—F[u]), 0<u<l, u(x)|a=1
X—0G

THEOREM 2.2 (Sevast'yanov) If we set
(2.23) a=a—Di=c(FT1]-1)—Da,

then if a<0, u(x)=1 while if a>0, u,(x)<1 for all x € G.
ProOF We shall give here a proof somewhat different from
that of [3].
Suppose a<0 and we shall prove any solution x of (2.22) is
u=1. Setting v=1—u we have

Ddv=c-f(1—v), vLG=0, 0<v<l1
where
A&)=FLE1-¢.
Since v(x)>0,
Dav=cf(1-v)= —c(f(1)—{1~-v))> —cf (1w
and so |
DAv+av>0.
Note also that, since f(¢) is strictly convex, if v(x)>0 then
Ddv(x)+a-v(x)>0.
Now

[ o@Da(@)+a-v@)Idw=—Di [ pi@y(@)da+a [ p(@w@)ds
=a [ gi(@)u(a)d

and so if f pi(x) o(@) dz>0, then a f pi(@) (x) dz>0. But this is

impossible since a<0. Sof ¢o(x) v(x) dx=0 and therefore v(x)=0.

Suppose a>0. Take B, 0<pB<1 such that
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" c+Day
Next take >0 such that ¢ maxe,(x)<é&. Set w(x)=1—0d¢,(x) then
%G

<1 and take & 0<é<1 such that F'[1-€]>8F'[1]

ha)+ [ K, dy)Flaw=1- [ K, dy)1-Flu()]]
—1_ f Kz, dy)[F[1]-F[w(»)]]
—1— f K(x, dy)F[p,](1-w(»))

<1—-BF'[1] 5LK(J:, ay) () o 1>p,>w(y)>1—¢

_q1_qa¢F'T1] S Fp1>F[1-e]>pFT1
=1-pS 0. pi(2) b FELLD
=1_‘3%5' oi(x)<1—0d¢p(x)=w(x).

Let u ® (x) be defined by (2.20) then «® (x)=0<w(x) and by
(2.21) if u*V(x)<w(x) then u® (r)<w(x). So u® (xr)<w(x)
for every k and u,(x)=lim « ® (x)<w(x)<1.

Thus if >0 (2.22) has at least two solutions; #=1 and «,(x)
but we can show there is no other solution. This fact will be
needed in §3

LEMMA 2.2 Let a>0 then the equation (2.22) has just two
solutions ; u=1 and u,(x).

ProoF Setting v=1-—u, (2.22) is equivalent to

(2.24) Ddv=c.f(1—-v), 0<v<]l, v|=0
where
(2.25) f&=F[&]—-¢.

Since f(£)<0 any solution » of (2.24) is superharmonic and so if
v(x)=0 for some xeG then »=0.

Now let v be a solution of (2.24) such that »(x)>0 for all
xeG. Set v,=1—u,, then v, and v satisfy

Day, —cf(1—v,)=0
Dday—cf(1—v)=0
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and so
L{D(Avl.v— A0 v)—cLF(L—v). v—F1—0). v, ]} do=0
Noting
f (o v—dv. )dz=0

we have
[ ra—vw—ra-vpi1dz
_ [ (fO—fA—v@) _ f)—fl—vi(2))
- f T e e Jv (@)w(x)de
=0.

But since v(x)<v,(x), v(x).v,(x)>0 and f (§) is strictly convex we
must have

FO—fA—v(@) _ fO—fA-v(@)

v(x) v,(x)

and so v(x)=v,x) a.e. Therefore wv(xr)=v,x).

§3 Limiting properties of Z, and Z”.
In this section we shall assume

a>0 and F'[1]<+4oo.

Set
f o x)dz
3.1 AE)y=-2%_ _  EeBQG).
IG¢1(x)dx
It is clear that
3. 2) A-M= f Adz)M(t, z,.)=eA.
G
In the sequel we shall prove that ?E converges in a certain

sense to the non random distribution A(E).

THEOREM 3.1 For E, Fe B(G)
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(3. 3) ELZ7 ZL)
— {cF”[l ] f:e‘““duIGE’m(Zﬁ VE(ZE,) Aldx)+ JEEx( Zf)A(dx)}(m)

COROLLARY
(3.4) E(Z° Zg:s):em'“%ﬂ fEsol(x)dfogm(x)dx

x [ go@nda( L%(x)dx) “1(1+0(e )
where
3. 5) d=aA D(—21,)>0.
O(e™®) is independent of s.

ProoF Since there is no essential difference we shall prove
for the simplicity the case E=F=G. First fix s>0 and set

u(t,x; A, p)=E (A7 p%+s) 0<a<], O0<p<l.
Since
()= B Ex ()= BB ()= T.fi) 2 ¢G
where
Ax)=2E(p¢*) G,

u satisfies the Skorohod equation :

9 =Dt o(FLu]—u), w0+, 2)=1E™), uho)| =1

(3. 6)
Set

wlt, @5 )= B Zprtive) = ult, @3 2,) |

A A=1

Differentiating both sides of (3.6) with respect to A and then
putting i=1 we obtain

@ 1) L= Diut+ o(PLo]— s, ,(0+,2)= Epe™), 1(42)| =0

12) EA(-)=§GEx( D A(dx)
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where
U(x)= E(p"t+)

Set

a3 = B2 =ty 2 1)

n=

Differentiating both sides of (3.7) by g and then putting pg=1
we obtain

(3. 8) S8 Diuto(F (1] DitscF (11 EAZ)EA o),
us(0+, )= E(Z)), u2(tylei: 0.

Now we expand u,(t, x) and EJ(Z,)E,(Z,,,) in terms of eigenfunc-
tions ;

3. 9) ut, ©)= 3 @)y (a)
where

(3.10) f)= f slt, @) p(2)dz
and

(3.1D) E{2)E{Z.)= T Do)
where

(3.12) ()= | EAZ)EZ.)o(n)dz.

Substituting (3.9) and (3.11) into (3.8) we have for i=1,2, -
(3.13) J&)=—Da f(t)+c(F'T1]1-1) f()+cF'[1]g(?)
=(a—D)fi(H)+cF"[1]gt), f(0+4)=¢“ " fg¢5(x)dx.
We can easily solve (3.13) and obtain
(3.14)  fut)=elPMt
X [ f;ew-mvu 1] g(w)du-+ e@-2s f () dx}.

So we have calculated u.(f, x) in the form (3.9) with f,(f) given
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by (3.14). Integrating both sides of (3.9) by A(dx) we obtain
(3. 3) for the case E=F=0G.

Now Corollary follows easilly from the formula

E(Z)= 3, e« f p(@)dz (@), 1>0, Ee BG).

Set
w=2,
e
and
we= _ 20 EcBG)
T e"A(E) )

THEOREM 3.2 (Mean convergence of W, and W?P) There
exists a random variable W>0 such that for every x e¢G

(3.15) E[(W.—W)*]=0(e™)
and further for every E e B(G)
(3.16) E[(Wi—-W)]=0(e™).

Proor From (3.4) we have
EW W)= o xaydz [ p(@)da+06*)
[24 G G

where O(e™®) is independent of s. Hence

E,[(W] — W) ]=0(e™).
In this formula taking E=F=G we see that Wzl[il:n' W, exists
and letting F=G and s—o we see

E[(W! —W)1=0(™).
Now take #>0 and fix it. Then
EL(Wiu— W)= i EAEXL(WE-W)D)
1

ez:zu

E( 3} ExOL(Wi—WYD)
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+ B 3 BXCIWE — W1 ExQLWE—W])
ix)
“IA L, X =(XD, X9 X),

It is easy to see that E,(Wf—W)=0(e "®*) where O(-) is
independent of x. So we have

| L| <O(e~2PC=E(Z,F)
Since there exists C>0 such that m(u, x, y) <Cgp,(y) we have

L= | mtw, 2, DELWE— W) dy
(4 G

<CE,[(Wi—W):]=0(e™)

and the proof was complete.

THEOREM 3.3 For every xe¢G
(W>0)=(epn=+0)
modulo P,—null set.

Proor It is clear (W>0)C(ea=+ ) and so it is enough
to prove

P (W>0)=P(ep=+ )
equivalently
P (W=0)=P,lep<+)=u,x)

First it is easy to see that w(x)=P.(W=0) satisfies the equation
(2.17) and so the equation (2.22). On the other hand since
W=Lim. W,

t—oo

E(W)=lmE(W)=p(a) [ _o(@)dz>0

and so #(x)<l. Then by Lemma 2.2 wu(x)=u,(x).

COROLLARY Let {t,} be any sequence such that f e <4 oo

n=1

then
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B
Pm< ?” —A(E) when n—»oo]eA=+oo>=1
¢

n

for every x ¢ G and E ¢ B(G).
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