On the branching process for Brownian particles with an absorbing boundary

By
Shinzo Watanabe

(Received Dec. 24, 1964)

Introduction

Recentry A. V. Skorohod [4] gave a general treatment of the branching process from a standpoint of the theory of Markov processes. In this paper we shall apply this to discuss some problems of a branching process which was studied by B. A. Sevast'yanov [3]. We shall discuss in particular the problem of the extinction and some limiting property of the number of particles. As for the latter our result corresponds to that of T.E. Harris [1] in the case of age dependent branching processes. In a recent book of Harris [2] this result was strengthened to the almost sure convergence but in our case it seems difficult to apply his arguments and we could not succeed in this point.

§ 1 Preliminaries

In general a branching process with particles of one type on a locally compact separable Hausdorff space S is determined if we are given a Markov process $x_{l}\left(P_{x}, x \epsilon S\right)$ on S and a system of branching measures $\left(p_{n}(x), \Pi_{n}(x, d y)\right)_{n=0}^{\infty}$ where $p_{n}(x), x \in S$ satisfies

$$
0 \leq p_{n}(x) \leq 1, \quad \sum_{n=0}^{\infty} p_{n}(x)=1
$$

and $\Pi_{n}(x, d y), x \in S, y=\left(y_{1}, y_{2}, \cdots y_{n}\right) \in S^{n}$ is a probability measure

[^0]on S^{n} which is symmetric (i. e. invariant under any permutation of (y_{1}, \cdots, y_{n})) for each $x \in S$. Usually x_{t} is a α_{t}-subprocess of a Hunt process $\tilde{x}_{t}\left(\tilde{P}_{x}\right)$ on $\bar{S}=S \cup\{\Delta\}{ }^{(2)}$ with the property
$$
\tilde{P}_{x}\left(\tilde{x}_{\xi-_} \epsilon S, \tilde{\zeta}<+\infty\right)=0 \quad \text { for every } x \in S^{(3)}
$$
and α_{t} is a continuous non-increasing multiplicative functional of \bar{x}_{t}. Intuitively a particle of our branching process starts $a \in S$ according the law P_{a} and when $t=\zeta^{(4)}$ and $x_{\zeta_{-}}=x \in S$, then it branches into n particles $y_{1}, y_{2}, \cdots, y_{n}$ with probability $p_{n}(x)$ and the position of these particles is determined by the law $\Pi_{n}(x, d y)$. Each of these particles starts afresh and continues independently the same motion. When $x_{\zeta_{-}}=\triangle$ then it remains \triangle forever.

Now let $S^{(0)}=\{\triangle\}, S^{(1)}=S$ and $S^{(n)}$ be the symmetrization of S^{n}. If at time t the branching process consists of n particles then they define a point in $S^{(n)}$ and so it defines a stochastic process $X_{t}\left(\boldsymbol{P}_{X} ; X \epsilon S=\bigcup_{n=0}^{\infty} S^{(n)}\right)$ which is clearly a strong Markov process on S with right continuous trajectories. In the sequel we shall give our arguments in terms of this 'large' Markov process X_{t}.

We set

$$
\begin{gather*}
Z_{t}=n \text { if } \quad X_{t} \in S^{(n)} \tag{1.1}\\
e_{\infty}=\sup \left\{t ; \sup _{u \in[0, t)} Z_{u}<+\infty\right\}^{(5)} \tag{1.2}\\
e_{\Delta}=\inf \left\{t<e_{\infty} ; Z_{t}=0\right\} \tag{1.3}
\end{gather*}
$$

Z_{t} is nothing but the number of particles at time t and \dot{e}_{∞} and e_{Δ} are called the explosion time and the extinction time respectively. Set also

$$
\begin{align*}
T & =\inf \left\{t ; Z_{t} \neq Z_{o}\right\} \tag{1.4}\\
T_{k} & =T_{k-1}+\theta T_{k-1} T, k=1,2, \cdots \tag{1.5}
\end{align*}
$$

where $T_{o}=0$ and θ is the usual shift operator.

[^1]
$\S 2$ The extinction problem of the Sevast'yanov model

The branching process discussed in Sevast'yanov [3] is the following ;
(2.1) $S=G \subset R^{N}$: a bounded domain with a sufficiently smooth boundary ∂G,
(2.2) $\tilde{x}_{t}\left(\tilde{P}_{x}, x \in G\right)$: the Brownian motion on G with ∂G as an absorbing barrier (so we identify ∂G with \triangle) determined by the diffusion equation

$$
\begin{gather*}
\frac{\partial u}{\partial t}=D \Delta u,(D>0: \text { const. }), \\
x_{t}: e^{-c t}-\text { subprocess of } \tilde{x}_{t} \quad(c>0: \text { const }), \tag{2.3}\\
p_{n}(x)=p_{n}, \quad p_{o}=0, \quad p_{1}<1, \tag{2.4}\\
\pi_{n}(x, E)=\chi_{k}(x, x, \cdots, x)^{(6)} \tag{2.5}
\end{gather*}
$$

Set

$$
\begin{equation*}
F[\xi]=\sum_{p=1}^{\infty} p_{n} \xi^{n}, \quad \text { for } 0 \leq \xi \leq 1 \tag{2.6}
\end{equation*}
$$

then it is clear that $F[\xi]$ is strictly increasing and strictly convex and

$$
F[0]=0, F[1]=1 .
$$

We shall assume $F^{\prime}[1]<+\infty$, then we have

$$
\begin{equation*}
\boldsymbol{P}_{x}\left(e_{\infty}=+\infty\right)=1^{(7)} . \tag{2.7}
\end{equation*}
$$

By a fundamental result of Skorohod [4], for $\hat{f}(x) \in C(G), f_{\|} \leq 1$, if we define $\hat{f}(X), X \epsilon S$ by

$$
\begin{aligned}
\hat{f}(X) & =1 & & \text { if } X
\end{aligned}=\Delta,
$$

and if we set

[^2]$$
u(t, x)=\boldsymbol{T}_{t} \hat{f(x)}=\boldsymbol{E}_{x}\left[\hat{f}\left(X_{t}\right)\right], \quad x \in G
$$
then u satisfies the following non-linear differential equation,
(2. 8) $\frac{\partial u}{\partial t}=D \Delta u+c(F[u]-u), u(0+, x)=f(x),\left.u(t, x)\right|_{x \rightarrow \partial G} 1$.

Set
(2. 9)

$$
\begin{gathered}
Z_{t}^{R}=\sum_{i=1}^{z_{t}} \chi_{E}\left(X_{t}^{(i)}\right), \quad E \in \boldsymbol{B}(G), X_{t}=\left(X_{t}^{(1)}, \cdots X_{t}^{\left(z_{t}\right)}\right) \epsilon S^{\left(z_{t}\right)} \\
M(t, x, E)=\boldsymbol{E}_{x}\left(Z_{t}^{F}\right) .
\end{gathered}
$$

Then

$$
u(t, x)=M_{t} f(x) \equiv \int_{G} M(t, x, d y) f(y)=\boldsymbol{E}_{x}\left(\sum_{i=1}^{z_{t}} f\left(X_{t}{ }^{(i)}\right)\right)
$$

satisfies the following parabolic differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=D \Delta u+a \cdot u, u(0+, x)=f(x),\left.u(t, x)\right|_{x \rightarrow \partial G}=0 \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
a=c\left(F^{\prime}[1]-1\right) \tag{2.12}
\end{equation*}
$$

In fact (2.11) follows from (2.8) at once by putting $\mathrm{u}(t, x)=\boldsymbol{T}_{t} \hat{g}(x)$ where $g(x)=\lambda^{f(x)}, 0<\lambda<1$ and differentiating with respect to λ and then putting $\lambda=1$.

Hence

$$
M(t, x, E)=\int_{E} m(t, x, y) d y^{(8)}
$$

with

$$
\begin{equation*}
m(t, x, y)=e^{a t} p(t, x, y) \tag{2.13}
\end{equation*}
$$

where $p(t, x, y)$ is the transition probability density of \tilde{x}_{t}.
Now consider the eigenvalue problem:

$$
(\Delta+\lambda) \varphi=0,\left.\quad \varphi\right|_{x \rightarrow \partial G}=0
$$

and let
8) $d y=$ the Lebesgue measure.

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \text { and } \varphi_{1}(x), \varphi_{2}(x), \cdots
$$

be its eigenvalues and the corresponding normalized eigenfunctions. As is well-known $\varphi_{1}(x)>0, x \epsilon G$ and

$$
\begin{equation*}
p(t, x, y)=\sum_{i=1}^{\infty} \quad e^{-D \lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y) \tag{2.14}
\end{equation*}
$$

and so from (2.13)

$$
\begin{equation*}
m(t, x, y)=\sum_{i=1}^{\infty} \quad e^{\left(a-D \lambda_{i}\right) t} \varphi_{t}(x) \varphi_{i}(y) \tag{2.15}
\end{equation*}
$$

Lemma 2.1

$$
\boldsymbol{P}_{x}\left(Z_{t} \rightarrow 0 \text { or } Z_{t} \rightarrow+\infty \text { when } t \rightarrow+\infty\right)=1 \text { for all } x \epsilon G .
$$

Proof Take a positive integer $k \geq 1$. It is enough to show that the probability that Z_{t} takes the value of k infinitely often is zero. Set

$$
\begin{aligned}
R & =R_{1}=\inf \left\{t ; Z_{t}=k\right\} \quad(\text { inf } \phi=+\infty) \\
S_{1} & =R_{1}+\theta_{R_{1}} T^{(9)} \\
R_{2} & =S_{1}+\theta_{S_{1}} R \\
S_{2} & =R_{2}+\theta_{R_{2}} T
\end{aligned}
$$

Then for $x \epsilon G$

$$
\begin{aligned}
& \boldsymbol{P}_{x}\left(Z_{t} \text { takes } k \text { infinitely often }\right) \\
= & \boldsymbol{P}_{x}\left(\cap\left\{R_{n}<+\infty\right\}\right)=\lim _{n \rightarrow \infty} \boldsymbol{P}_{x}\left(R_{n}<+\infty\right)
\end{aligned}
$$

Noting that for every $x \in G$

$$
\boldsymbol{P}_{x}\left(X_{T_{-}} \in \partial G\right)=1-c . \int_{0}^{\infty} e^{-c t} d t \int_{G} p(t, x, y) d y \geq \alpha>0
$$

we have

$$
\begin{aligned}
& \boldsymbol{P}_{x}\left(R_{1}<\infty\right) \leq 1-\boldsymbol{P}_{x}\left(X_{\left.r_{-} \epsilon \partial G\right) \leq 1-\alpha}\right. \\
& \boldsymbol{P}_{x}\left(R_{2}<\infty\right)=\boldsymbol{E}_{x}\left(\boldsymbol{P}_{X_{R_{1}}}\left(T+\theta_{T} R<\infty\right) ; R_{1}<\infty\right) \\
& \quad \leq \boldsymbol{E}_{x}\left[\left(1-\prod_{i=1}^{k} \boldsymbol{P}_{X_{R_{1}}\left(X_{r_{-}} \epsilon\right.}\left[\left(X_{0} G\right)\right) ; R_{1}<+\infty\right]\right. \\
& \quad \leq(1-\alpha)\left(1-\alpha^{k}\right)
\end{aligned}
$$

[^3]$$
\boldsymbol{P}_{x}\left(R_{n}<+\infty\right) \leq(1-\alpha)\left(1-\alpha^{k}\right)^{n-1} \rightarrow 0(n \rightarrow \infty) .
$$

Set

$$
\begin{equation*}
u_{1}(x)=\boldsymbol{P}_{x}\left(Z_{t} \rightarrow 0\right)=\boldsymbol{P}_{x}\left(e_{\Delta}<+\infty\right) \quad x \in G \tag{2.16}
\end{equation*}
$$

and call it the extinction probability.
Theorem 2.1 (Sevast'yanov) $u_{1}(x)$ is the smallest solution of

$$
\begin{equation*}
v(x)=h(x)+\int_{G} F[v(y)] K(x, d y), \quad 0 \leq v \leq 1 \tag{2.17}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{x}=\boldsymbol{P}_{x}\left(X_{r-\epsilon} \hat{\partial} G\right)=1-c . \int_{0}^{\infty} e^{-c t} d t \int_{G} p(t, x, y) d y \tag{2.18}\\
& K(x, E)=\boldsymbol{P}_{x}\left(X_{r-} \epsilon\right)=c . \int_{0}^{\infty} e^{-c t} d t \int_{E} p(t, x, y) d y, E \in \boldsymbol{B}(G) . \tag{2.19}
\end{align*}
$$

Proof ${ }^{(10)}$ Since

$$
\begin{aligned}
& \quad u(t, x) \equiv \boldsymbol{P}_{x}\left(e_{\Delta}<t\right)=\boldsymbol{P}_{x}\left(T<t, X_{r_{-}} \epsilon \partial G\right)+\int_{0}^{t} \int_{G} F[u(t-s, y)] \\
& \times \boldsymbol{P}_{x}\left(T \epsilon d s, X_{r-} \epsilon d y\right)
\end{aligned}
$$

by letting $t \rightarrow \infty$ we obtain (2.17)
Now let v be any solution of (2.17). Set

$$
\begin{equation*}
u^{(k)}(x)=\boldsymbol{P}_{z}\left(Z_{T_{k}}=0\right)^{(11)} \tag{2.20}
\end{equation*}
$$

then

$$
\begin{align*}
u^{(k)}(x) & =h(x)+\boldsymbol{E}_{x}\left(\boldsymbol{P}_{X_{T}}\left(Z_{r_{k-1}}=0\right) ; X_{r_{-}} G\right) \tag{2.21}\\
& \left.\left.\leq h(x)+\boldsymbol{E}_{x}\left[\boldsymbol{P}_{X_{-}\left(Z_{k-1}\right.}=0\right)\right]^{z_{T}} ; X_{T_{-} \epsilon} G\right) \\
& =h(x)+\int_{G} K(x, d y) F\left[u^{(k-1)}(y)\right]
\end{align*}
$$

Now $u^{(0)}(x)=0 \leq v(x)$ and if $u^{(k-1)}(x) \leq v(x)$ then

$$
\begin{aligned}
& u^{(k)}(x) \leq h(x)+\int_{G} K(x, d y) F\left[u^{(k-1)}(y)\right] \leq h(x)+\int_{G} K(x, d y) F[v(y)] \\
& =v(x) .
\end{aligned}
$$

Thus for every $k, u^{(k)}(x) \leq v(x)$ and letting $k \rightarrow \infty$ we have

$$
u_{1}(x) \leq v(x) .
$$

[^4]Corollary $u_{1}(x)$ is the smallest solution of

$$
\begin{equation*}
D \Delta u=c .(u-F[u]), 0 \leq u \leq 1,\left.u(x)\right|_{x \rightarrow \partial \theta}=1 \tag{2.22}
\end{equation*}
$$

Theorem 2.2 (Sevast'yanov) If we set

$$
\begin{equation*}
\alpha=a-D \lambda_{1}=c\left(F^{\prime}[1]-1\right)-D \lambda_{1} \tag{2.23}
\end{equation*}
$$

then if $\alpha \leq 0, u_{1}(x) \equiv 1$ while if $\alpha>0, u_{1}(x)<1$ for all $x \in G$.
Proof We shall give here a proof somewhat different from that of [3].

Suppose $\alpha \leq 0$ and we shall prove any solution u of (2.22) is $u \equiv 1$. Setting $v=1-u$ we have

$$
D \Delta v=c \cdot f(1-v),\left.\quad v\right|_{\partial G}=0, \quad 0 \leq v \leq 1
$$

where

$$
f(\xi)=F[\xi]-\xi .
$$

Since $v(x) \geq 0$,

$$
D \Delta v=c f(1-v)=-c(f(1)-\mathrm{f}(1-v)) \geq-c f^{\prime}(1) v
$$

and so

$$
D \Delta v+a v \geq 0
$$

Note also that, since $\mathrm{f}(\xi)$ is strictly convex, if $v(x)>0$ then

$$
D \Delta v(x)+a \cdot v(x)>0 .
$$

Now

$$
\begin{aligned}
\int_{G} \varphi_{1}(x)[D \Delta v(x)+a \cdot v(x)] d x & =-D \lambda_{1} \int_{G} \varphi_{1}(x) v(x) d x+a \int_{G} \varphi_{1}(x) v(x) d x \\
& =\alpha \int_{G} \varphi_{1}(x) v(x) d x
\end{aligned}
$$

and so if $\int_{G} \varphi_{1}(x) v(x) d x>0$, then $\alpha \int_{G} \varphi_{1}(x) v(x) d x>0$. But this is impossible since $\alpha \leq 0$. So $\int \varphi_{1}(x) v(x) d x=0$ and therefore $v(x) \equiv 0$.

Suppose $\alpha>0$. Take $\beta, 0<\beta<1$ such that
$\beta \cdot \frac{c+D \lambda_{1}+\alpha}{c+D \lambda_{1}} \leq 1$ and take $\varepsilon, 0<\varepsilon<1$ such that $F^{\prime}[1-\varepsilon] \geq \beta F^{\prime}[1]$ Next take $\delta>0$ such that $\delta \max _{x, G} \varphi_{1}(x) \leq \varepsilon$. Set $w(x)=1-\delta \varphi_{1}(x)$ then

$$
\begin{aligned}
& h(x)+\int_{G} K(x, d y) F[x(y)]=1-\int_{G} K(x, d y)[1-F[w(y)]] \\
& =1-\int_{G} K(x, d y)[F[1]-F[w(y)]] \\
& =1-\int_{G} K(x, d y) F^{\prime}\left[p_{y}\right](1-w(y)) \\
& \leqq 1-\beta F^{\prime}[1] \delta \int_{G} K(x, d y) \varphi_{1}(y) \quad\left(\because 1>p_{y}>w(y) \geq 1-\varepsilon\right. \\
& \left.=1-\beta \frac{c \cdot F^{\prime}[1]}{c+D \lambda_{1}} \delta . \varphi_{1}(x) \quad \therefore F^{\prime}\left[p_{y}\right] \geq F^{\prime}[1-\varepsilon] \geq \beta F^{\prime}[1]\right) \\
& =1-\beta \frac{c+D \lambda_{1}+\alpha}{c+D \lambda_{1}} \delta . \varphi_{1}(x) \leq 1-\delta \varphi_{1}(x)=w(x) .
\end{aligned}
$$

Let $u^{(k)}(x)$ be defined by (2.20) then $u^{(0)}(x)=0 \leq w(x)$ and by (2.21) if $u^{(k-1)}(x) \leq w(x)$ then $u^{(k)}(x) \leq w(x)$. So $u^{(k)}(x) \leq w(x)$ for every k and $u_{1}(x)=\lim \underset{k \rightarrow \infty}{u^{(k)}}(x) \leq w(x)<1$.

Thus if $\alpha>0$ (2.22) has at least two solutions; $u \equiv 1$ and $u_{1}(x)$ but we can show there is no other solution. This fact will be needed in §3

Lemma 2.2 Let $\alpha>0$ then the equation (2.22) has just two solutions ; $u \equiv 1$ and $u_{1}(x)$.

Proof Setting $v=1-u$, (2.22) is equivalent to

$$
\begin{equation*}
D \Delta v=c . f(1-v), \quad 0 \leq v \leq 1, \quad v \mid=0 \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
f(\xi)=F[\xi]-\xi . \tag{2.25}
\end{equation*}
$$

Since $f(\xi) \leq 0$ any solution v of (2.24) is superharmonic and so if $v(x)=0$ for some $x \varepsilon G$ then $v \equiv 0$.

Now let v be a solution of (2.24) such that $v(x)>0$ for all $x \epsilon G$. Set $v_{1}=1-u_{1}$, then v_{1} and v satisfy

$$
\begin{aligned}
& D \Delta v_{1}-c f\left(1-v_{1}\right)=0 \\
& D \Delta v-c f(1-v)=0
\end{aligned}
$$

and so

$$
\int_{G}\left\{D\left(\Delta v_{1} \cdot v-\Delta v \cdot v_{1}\right)-c\left[f\left(1-v_{1}\right) \cdot v-f(1-v) \cdot v_{1}\right]\right\} d x=0
$$

Noting

$$
\int_{G}\left(\Delta v_{1} \cdot v-\Delta v . v_{1}\right) d x=0
$$

we have

$$
\begin{aligned}
& \int_{G}\left[f\left(1-v_{1}\right) v-f(1-v) v_{1}\right] d x \\
= & \int_{G}\left[\frac{f(1)-f\left(1-v_{1}(x)\right)}{v(x)}-\frac{f(1)-f\left(1-v_{1}(x)\right)}{v_{1}(x)}\right] v_{1}(x) v(x) d x
\end{aligned}
$$

$$
=0
$$

But since $v(x) \leq v_{1}(x), v(x) \cdot v_{1}(x)>0$ and $f(\xi)$ is strictly convex we must have

$$
\frac{f(1)-f(1-v(x))}{v(x)}=\frac{f(1)-f\left(1-v_{1}(x)\right)}{v_{1}(x)} \quad \text { a.e. }
$$

and so $\quad v(x)=v_{1}(x)$ a. e.. Therefore $v(x) \equiv v_{1}(x)$.

§ 3 Limiting properties of \boldsymbol{Z}_{t} and \boldsymbol{Z}_{t}^{R}.

In this section we shall assume

$$
\alpha>0 \quad \text { and } \quad F^{\prime \prime}[1]<+\infty .
$$

Set

$$
\begin{equation*}
A(E)=\frac{\int_{F} \varphi_{1}(x) d x}{\int_{G} \varphi_{1}(x) d x} \quad E \in \boldsymbol{B}(G) . \tag{3.1}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
A \cdot M_{\iota}=\int_{G} A(d x) M(t, x, .)=e^{\alpha t} A \tag{3.2}
\end{equation*}
$$

In the sequel we shall prove that $\frac{Z_{t}^{E}}{Z_{t}}$ converges in a certain sense to the non random distribution $A(E)$.

Theorem 3.1 For $E, F \in B(G)$

(3. 3) $\boldsymbol{E}_{\Delta}\left(Z_{t}^{R} Z_{t+s}^{E}\right)$

$$
=e^{\alpha t}\left\{c F^{\prime \prime}[1] \int_{0}^{t} e^{-\alpha u} d u \int_{G} \boldsymbol{E}_{x}\left(Z_{u}^{F}\right) \boldsymbol{E}_{x}\left(Z_{u+s}^{F}\right) A(d x)+\int_{E} \boldsymbol{E}_{x}\left(Z_{s}^{F}\right) A(d x)\right\}^{(12)}
$$

Corollary

(3.4) $\quad \boldsymbol{E}_{A}\left(Z_{\iota}^{F} Z_{t+s}^{F}\right)=e^{2 \alpha t+\alpha s} \frac{c F^{\prime \prime}[1]}{\alpha} \int_{E} \varphi_{1}(x) d x \int_{F} \varphi_{1}(x) d x$

$$
\times \int_{G} \varphi_{1}{ }^{3}(x) d x\left(\int_{G} \varphi_{1}(x) d x\right)^{-1}\left(1+\mathrm{O}\left(e^{-\delta \ell}\right)\right)
$$

where
(3. 5)

$$
\grave{\delta}=\alpha \wedge D\left(\lambda_{2}-\lambda_{1}\right)>0
$$

$O\left(e^{-\delta t}\right)$ is independent of s.
Proof Since there is no essential difference we shall prove for the simplicity the case $E=F=G$. First fix $s \geq 0$ and set

$$
u(t, x ; \lambda, \mu)=\boldsymbol{E}_{x}\left(\lambda^{z_{t}} \mu^{z_{t+s}}\right) \quad 0<\lambda<1,0<\mu<1
$$

Since

$$
\boldsymbol{E}_{x}\left(\lambda^{z_{t}} \mu^{z_{t+s}}\right)=\boldsymbol{E}_{x}\left(\lambda^{z_{t}} \boldsymbol{E}_{X_{t}}\left(\mu^{z_{s}}\right)\right)=\boldsymbol{E}_{x}\left(\lambda^{z_{t}} \prod_{i=1}^{z_{t}} \boldsymbol{E}_{x_{t}}^{(i)}\left(\mu^{z_{s}}\right)\right)=\boldsymbol{T}_{t} \hat{f(x)} \quad x \in G
$$

where

$$
f(x)=\lambda \boldsymbol{E}_{x}\left(\mu^{z_{s}}\right) \quad x \in G,
$$

u satisfies the Skorohod equation:
(3. 6) $\frac{\partial u}{\partial t}=D J u+c(F[u]-u), \quad u(0+, x)=\lambda \boldsymbol{E}_{x}\left(\mu^{z}\right), u(t, x) \mid \underset{x \rightarrow \partial \theta}{ }=1$.

Set

$$
u_{1}(t, x ; \mu)=E_{x}\left(Z_{t} \mu^{z_{t+s}}\right)=\frac{\partial}{\partial \lambda} u(t, x ; \lambda,)| |_{\lambda=1}
$$

Differentiating both sides of (3.6) with respect to λ and then putting $\lambda=1$ we obtain
(3. 7) $\frac{\partial u_{1}}{\partial t}=D \Delta u_{1}+c\left(F^{\prime}[v]-1\right) u_{1}, u_{1}(0+, x)=\boldsymbol{E}_{x}\left(\mu^{z s}\right), u_{1}(t, x) \mid \underset{x \rightarrow \partial G}{ }=0$
12) $\boldsymbol{E}_{A}(\cdot)=\int_{G} \boldsymbol{E}_{\mathrm{x}}(\cdot) A(d x)$
where

$$
v(x)=\boldsymbol{E}_{x}\left(\mu_{t+s}^{z_{t}}\right)
$$

Set

$$
u_{2}(t, x)=\boldsymbol{E}_{x}\left(Z_{t} Z_{t+s}\right)=\left.\frac{\partial}{\partial \mu} u_{1}(t, x ; \mu)\right|_{\mu=1}
$$

Differentiating both sides of (3.7) by μ and then putting $\mu=1$ we obtain

$$
\begin{gather*}
\frac{\partial u_{2}}{\partial t}=D \Delta u_{2}+c\left(F^{\prime}[1]-1\right) u_{2}+c F^{\prime \prime}[1] \boldsymbol{E}_{x}\left(Z_{t}\right) \boldsymbol{E}_{x}\left(Z_{t+s}\right), \tag{3.8}\\
u_{2}(0+, x)=\boldsymbol{E}_{x}\left(Z_{s}\right), \quad u_{2}(t, x) \mid=0 .
\end{gather*}
$$

Now we expand $u_{2}(t, x)$ and $\boldsymbol{E}_{x}\left(Z_{t}\right) \boldsymbol{E}_{x}\left(Z_{t+s}\right)$ in terms of eigenfunctions;

$$
\begin{equation*}
u_{\mathrm{\Sigma}}(t, x)=\sum_{i=1}^{\infty} f_{i}(x) \varphi_{i}(x) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i}(t)=\int_{G} u_{2}(t, x) \varphi_{i}(x) d x \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{E}_{x}\left(Z_{t}\right) \boldsymbol{E}_{x}\left(Z_{t+s}\right)=\sum_{i=1}^{\infty} g_{i}(t) \varphi_{i}(x) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i}(t)=\int_{G} \boldsymbol{E}_{x}\left(Z_{t}\right) \boldsymbol{E}_{x}\left(Z_{t+s}\right) \varphi_{i}(x) d x \tag{3.12}
\end{equation*}
$$

Substituting (3.9) and (3.11) into (3.8) we have for $i=1,2, \cdots$

$$
\begin{gather*}
f_{i}^{\prime}(t)=-D \lambda_{i} f_{i}(t)+c\left(F^{\prime}[1]-1\right) f_{i}(t)+c F^{\prime \prime}[1] g_{i}(t) \tag{3.13}\\
=\left(a-D \lambda_{i}\right) f_{i}(t)+c F^{\prime \prime}[1] g_{i}(t), \quad f_{i}(0+)=e^{\left(a-D \lambda_{i}\right) s} \int_{G} \varphi_{i}(x) d x .
\end{gather*}
$$

We can easily solve (3.13) and obtain

$$
\begin{align*}
& f_{i}(t)=e^{\left(a-D \lambda_{i}\right) t} \tag{3.14}\\
& \quad \times\left\{\int_{0}^{t} e^{\left(a-D \lambda_{i}\right) u} c F^{\prime \prime}[1] g_{i}(u) d u+e^{\left(a-D \lambda_{i}\right) s} \quad \int_{G} \varphi_{i}(x) d x\right\} .
\end{align*}
$$

So we have calculated $u_{2}(t, x)$ in the form (3.9) with $f_{i}(t)$ given
by (3.14). Integrating both sides of (3.9) by $A(d x)$ we obtain (3.3) for the case $E=F=G$.

Now Corollary follows easilly from the formula

$$
\boldsymbol{E}_{x}\left(Z_{t}^{F}\right)=\sum_{i=1}^{\infty} e^{\left(a-D \lambda_{i}\right)} \int_{E} \varphi_{i}(x) d x \varphi_{i}(x), \quad t>0, E \in \boldsymbol{B}(G) .
$$

Set

$$
W_{t}=\frac{Z_{t}}{e^{\alpha t}}
$$

and

$$
W_{\iota}^{E}=\frac{Z_{\iota}^{E}}{e^{a t} A(E)}, \quad E \in B(G)
$$

Theorem 3.2 (Mean convergence of W_{t} and W_{t}^{E}) There exists a random variable $W \geq 0$ such that for every $x \in G$

$$
\begin{equation*}
\boldsymbol{E}_{x}\left[\left(W_{t}-W\right)^{2}\right]=O\left(e^{-\delta t}\right) \tag{3.15}
\end{equation*}
$$

and further for every $E \in \boldsymbol{B}(G)$

$$
\begin{equation*}
\boldsymbol{E}_{x}\left[\left(W_{t}^{R}-W\right)^{2}\right]=O\left(e^{-\delta t}\right) . \tag{3.16}
\end{equation*}
$$

Proof From (3.4) we have

$$
\boldsymbol{E}_{A}\left(W_{t}^{E} W_{t+s}^{F}\right)=\frac{c F^{\prime \prime}[1]}{\alpha} \int_{G} \varphi_{1}^{3}(x) d x \int_{G} \varphi_{1}(x) d x\left(1+O\left(e\left(^{-\delta t}\right)\right)\right.
$$

where $O\left(e^{-\delta t}\right)$ is independent of s. Hence

$$
\boldsymbol{E}_{A}\left[\left(W_{t}^{F}-W_{t+\delta}^{F}\right)^{2}\right]=O\left(e^{-\delta t}\right) .
$$

In this formula taking $E=F=G$ we see that $W=l_{i \rightarrow \infty}$ i.m. W_{t} exists and letting $F=G$ and $s \rightarrow \infty$ we see

$$
\boldsymbol{E}_{A}\left[\left(W_{\iota}^{E}-W\right)^{2}\right]=O\left(e^{-\delta t}\right) .
$$

Now take $u>0$ and fix it. Then

$$
\begin{aligned}
& \boldsymbol{E}_{x}\left[\left(W_{u+\iota}^{E}-W\right)^{2}\right]=-\frac{1}{e^{2 \alpha u}} \boldsymbol{E}_{x}\left\{\boldsymbol{E}_{X u}\left[\left(W_{t}^{E}-W\right)^{2}\right]\right\} \\
= & \frac{1}{e^{2 \alpha u}} \boldsymbol{E}_{x}\left(\sum_{i=1}^{z_{u}} \boldsymbol{E}_{X_{u}}^{(i)}\left[\left(W_{t}^{E}-W\right)^{2}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{e^{2 \alpha u}} \boldsymbol{E}_{x}\left(\sum_{\substack{i, j=1 \\
i \neq j}}^{z_{u}} \boldsymbol{E}_{X_{u}^{(i)}}\left[W_{t}^{E}-W\right] \boldsymbol{E}_{X_{u}^{()}}^{(j)}\left[W_{t}^{E}-W\right]\right) \\
= & I_{1}+I_{2}, \quad X_{u}=\left(X_{n}^{(1)}, X_{u}^{(2)}, \cdots, X_{u}^{\left(z_{u}\right)}\right)
\end{aligned}
$$

It is easy to see that $\boldsymbol{E}_{x}\left(W_{t}^{E}-W\right)=O\left(e^{-D\left(\lambda_{2}-\lambda_{1}\right) t}\right)$ where $O(\cdot)$ is independent of x. So we have

$$
\left|I_{2}\right| \leq O\left(e^{-2 D\left(\lambda_{2}-\lambda_{1}\right) t}\right) \boldsymbol{E}_{x}\left(Z_{u}{ }^{2}\right)
$$

Since there exists $C>0$ such that $m(u, x, y) \leq C \varphi_{1}(y)$ we have

$$
\begin{aligned}
& I_{1}=\frac{1}{e^{2 \alpha u}} \int_{G} m(u, x, y) \boldsymbol{E}_{y}\left[\left(W_{t}^{E}-W\right)^{2}\right] d y \\
& \leq C^{\prime} \boldsymbol{E}_{A}\left[\left(W_{t}^{E}-W\right)^{2}\right]=O\left(e^{-\delta t}\right)
\end{aligned}
$$

and the proof was complete.
Theorem 3.3 For every $x \in G$

$$
(W>0)=\left(e_{\Delta}=+\infty\right)
$$

modulo $\boldsymbol{P}_{x}-$ null set.
Proof It is clear $(W>0) \subseteq\left(e_{\Delta}=+\infty\right)$ and so it is enough to prove

$$
\boldsymbol{P}_{x}(W>0)=\boldsymbol{P}_{x}\left(e_{\Delta}=+\infty\right)
$$

equivalently

$$
\boldsymbol{P}_{x}(W=0)=\boldsymbol{P}_{x}\left(e_{\Delta}<+\infty\right) \equiv u_{1}(x)
$$

First it is easy to see that $u(x)=\boldsymbol{P}_{x}(W=0)$ satisfies the equation (2.17) and so the equation (2.22). On the other hand since $W=1 . \mathrm{i}_{t \rightarrow \infty} \mathrm{~m} . W_{t}$

$$
\boldsymbol{E}_{x}(W)=\lim _{t \rightarrow \infty} \boldsymbol{E}_{x}\left(W_{t}\right)=\varphi_{1}(x) \int_{G} \varphi_{1}(x) d x>0
$$

and so $u(x)<1$. Then by Lemma $2.2 \quad u(x)=u_{1}(x)$.
Corollary Let $\left\{t_{n}\right\}$ be any sequence such that $\sum_{n=1}^{\infty} e^{-\delta t_{n}}<+\infty$ then

$$
\boldsymbol{P}_{x}\left(\frac{Z_{t_{n}}^{F}}{Z_{t_{n}}} \rightarrow A(E) \text { when } n \rightarrow \infty \mid e_{\Delta}=+\infty\right)=1
$$

for every $x \in G$ and $E \in \boldsymbol{B}(G)$.

REFERENCES

[1] T. E. Harris : Some mathematical models for branching processes. 2d. Berk. Symp., (1951) 305-328.
[2] T. E. Harris: The theory of branching processes. Springer, (1963).
[3] B. A. Sevast'yanov : Branching stochastic processes for particles diffusing in a bounded domain with absorbing boundaries. Th. Prob. Appl. 3, (1958) 111-126.
[4] A. V. Skorohod : Branching diffusion processes. Th. Prob. Appl. 9, (1964) 492-497.

[^0]: 1) Independently a quite similar idea was given by K. Ito at the seminar of probability theory at Kyoto University.
[^1]: 2) \triangle is the point at infinity when S is not compact and an isolated point otherwise.
 3) $\tilde{\zeta}$ is the terminal time of $\tilde{x}_{t}-$ process; $\tilde{\zeta}=\inf \left\{t ; \tilde{x}_{t}=\Delta\right\} \quad(\inf \phi=+\infty)$
 4) ζ is the terminal time of x_{t}-process.
 5) For $t \geq e_{\infty}$, we shall set $x_{t}=\Delta$.
[^2]: 6) $\chi_{E}(x, x, \cdots, x)=1$ if $(x, \cdots, x) \in E$
 $=0$ otherwise
 7) Without this assumption the explosion happens in general: if we set $P_{x}\left(e_{\infty}\right.$ $=+\infty) \equiv u_{\infty}(x), x \in G$ then $u_{\infty}(x)<1 \leftrightarrows \int^{1} \frac{d \xi}{\xi-F[\bar{\xi}]}<+\infty \quad C f$. Harris [2] p. 106-107. N. Ikeda gave another interesting proof of this fact. By the result given below we see also $u_{\infty}(x)=u_{1}(x) \equiv P_{x x}\left(e_{\Delta}<+\infty\right)$ when $u_{\infty}<1$.
[^3]: 9) T is defined by (1.4).
[^4]: 10) The proof is essentially the same as that of [3].
 11) T_{k} is defined by (1.5).
