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In this paper we discuss an z-dimensional analytic manifold??
M™ admitting a field of complex r-planes which is parallel with
respect to a given affine connection and has only the zero vector
in common with its complex conjugate plane field.

In the case where »=2», we have the theorem due to Pa-
tterson [2], that, if a Riemann manifold M?* admits a field of
r-planes which is null and parallel with respect to a given positive
definite metric g, the M® admits a complex analytic structure
in terms of which g is a Kahler metric. On the other hand, in
the previous paper [1], we proved the theorem that, if a Rie-
mann manifold M**' admits a field of r-planes satisfying the
similar conditions, the M*** admits an almost contact metric
structure having the covariant constant ¢-tensor.

We will treat mainly the general case r < [%] Recently K.

Yano [5] introduced the notion of an f-structure including an
almost complex structure and an almost contact structure. Our
main result is that there is a close relation between an f-
structure and the existence of a field of complex 7-planes satisfy-
ing the above conditions.

The present author wishes to express his hearty thanks to
Prof. Dr. M. Matsumoto for his kind criticism and encouragement.

1) Throughout the paper we assume the manifolds and tensors, including vectors,
to be of class ce.
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§ 1. Plane fields in a manifold with an f-structure

Let us consider an zn-dimensional analytic manifold M" with
an f-structure of rank 27 or an f,-structure, that is to say, a real
non-zero tensor field f of type (1,1) and of class C® such that

(1.1 fi4+f=0, rank of f=2r.

The condition (1.1) shows us that characteristic values of
fare +/—1, —+/—1 (each r-ple) and 0 ((n#-27)-ple). In tangent
space at each point of any coordinate neighbourhood U in M*
we can take three kinds of vector spaces f”, f” and A"* which
are spanned by characteristic contravariant vectors correspond-
ing to characteristic values —+/—1, +/—1 and 0 respectively,
where each superscript means the dimension of vector spaces.

It is obvious that f” is spanned by vectors whose components
are complex conjugate components of vectors in f , and that f~
and f” are both 7-dimensional and satisfy the relation

(1.2) frnf={o}

Hence the direct sum f"+f" forms a field of complex 27-planes
p¥, and has a real basis, that is, p*" contains a field of real 27-planes
p¥. Let A,,be basic vectors of f7, and write

(1.3) Aawy=Aw+ v —1 Bay

then A, and B, form a real basis of both p* and p*".
Definition. The complex f-plane-field is a field f~ of chara-

cteristic contravariant compex vector spaces corvesponding to chava-

cteristic value — +/—1 of f, and real f-plane-field is a field p*
of real 2r-planes spanned by A, and B,,.

Let C., be basic vectors of #*~%", then A, B, and C, form

a basis of real tangent space at each point of M". Now, the
definition of A, gives us

(1.4) SAwy=—+—1 A

2) In this paper the indices @, b, ¢, d, e run over the range 1,--,2r; h, i, j, -,
7, s, t the range 1,---, n; A, B, C, D, E, F the range 2r+1,--, #;, a, f, 1,0
the range 1,---, 7; a, B, 7, 0 the range 7+1,--27




Analytic manifolds admitting parallel fields 371

Hence we have f2An,=—4w, that is, f2Au,=—As and
f* B=—B,,.

Thus real plane field p*" becomes a distribution L correspond-
ing to the projection operator /=—f? defined by K. Yano. Thus
we have

Proposition 1. In a manifold M" with an f-structure of
rank 2r, the complex f-plane-field f~ satisfies the condition f™Nf"
= {0} at each point of M?", and the distrvibution L corresponding
to the projection operator I=—f* 1is a real f-plane-field.

In adding to the L-distribution, Yano defined a complemen-
tary distribution M corresponding to projection operator m=s>+1
and found a positive definite Riemann metric g such that

(1.5) g=gm+'fgf

with respect to which the distributions L and M are mutually
orthogonal.

Definition. A manifold with an (f.-g)-structure or an (f-g)-
structure of rank 2r is a Riemann manifold with a positive defi-
nite metvic g and an f,-structure satisfying the relation (1.5).

In a manifold with an (f,-g)-structure we see

(1.6) Ny=Aayy, MA@y =0,

that is to say, 4., are orthogonal to the distribution M. More-
- over the relations (1.5), (1.6) and (1.4) lead us to

Ny 8liay="Acar8MAgy+"(fAwy) & [Agy=—"Acay&cp>

Then the vectors 4, are null and f~ is a field of complex null
planes. Thus we obtain

Proposition 2. In a manifold with an (f.-g)-structure, vectors
in complex f-plane-field ave complex null vectors and orthogonal
to the distrvibution M.

§ 2. Manifolds with f-structure admitting a parallel plane
field

Definition. A manifold with an (f.-I')-structure is a mani-
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fold in which an f,-structure and a symmetric affine connection
I are given globally.

In the first place we prove

Theorem 1. In a manifold with an (f,-I')-structure, a nece-
ssary and sufficient condition for complex f -plane-field f~ to be
parallel with respect to a given symmetric affine connection I’
is that the tensor field f satisfies the condition Vf.f=0, where,
expressed in terms of local coordinate (x', U), Vf.f means that
ka zl f LJ“

Proof. A, being basic vectors of f’, the condition for f~
to be parallel can be written, by A. G. Walker’s result [4], as

2.1) VAwy=588 « A

for »* local complex covariant vector fields &{%. Differentiating
(1.4) covariantly and using (2.1), we get

(2.2) V fed,=0, ie. 7 f+Au=0 and F feBu,=0.

These results and (1.4) give us Ff.fA,,=0. As the tensors f
and Ff are real, we have the relations Ff.fA,,=0 and Ff.f B,
=0. On the other hand, as vectors C, of basis of A"% are
characteristic vectors corresponding to characteristic value 0 of f,
the relation f C.,=0 holds good. Then we have Ff.f C.,=0.
These results give us

Vff=0.

Conversely, if the last relation holds good, then by differen-
tiating (1.4) covariantly and using (1.4) we have — /=1 F4,,=
fVAu.,. This equation gives us that /4., are contained in complex
f-plane field. Consequently it follows that F4,, have, for
r? covariant vectors ¢, the form FA,,=&84,,. Thus the
f-plane-field is a parallel plane field with respect to a given
symmetric affine connection I', and the theorem is completely
proved.

In a manifold with an f,-structure there exist affine conne-
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ctions I" which are not always symmetric but leave f covari-
ant constant. In fact, denoting by 6 covariant differentiation with

°

. . . . *
respect to an arbitrary affine connection I°, we can define I’

for example, in terms of f and f’, as follows

(2.3) [ =T 4 0 f-f—f-3f+ 3 f2o0f-f.

For, (1.1) gives us
(2.4) Sreof fi=fof-f.

From (2.3), (2.4) and (1.1), denoting by 0 and ; partial differen-

tiation and covariant differentiation with respect to r respect-
ively, we get

Pf=of+If—f-I'=3(f + f%)=0.

However, the affine connection preserving f covariant constant
is not unique. For example, if v is a covariant vector field,
then I’ + f.v also preserves f covariant constant.

Summarizing the above remarks, we get

Proposition 3. In a manifold with an f.-strcture there exist
(not mecessarily symmetric) affine connections with respect to
which the structure tensor f is covariant constant.

Next, we consider an (f,—g)-structure iz M"™ and get the
following result:

Theorem 2. In a manifold with an (f,-g)-structure, a nece
ssary and sufficient condition for the complex f-plane-field to be
parallel in Levi-Civita’s sense is that the tensor field f is covari-
ant constant over M™ with respect to ¢.

Proof. If the complex f-plane-field /" is parallel, so is its
conjugate f” .Hence real f-planefield L is also parallel. As the
distribution M is orthogonal to L, M is parallel, too. Then, for
the basic vectors N, of M, there exist (#—27)* covariant real
vectors C&3 satisfying

(2.5) V Neay =C3+ Ness-
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It follows, from the definition of M, that
(2.6) INy=0, mN,=N.

The last relation and the relation fm=0 give us fN.,=0.

Moreover, by differentiating this result covariantly and using
(2.5) we find

2.7) Vf*Neay=0.

Hence the relations (2.2) and (2.7) give us Ff=0.
On the other hand the converse follows at once from
Theorem 1.

§ 3. Manifolds admitting a parallel plane field

Definition. A complex =" -plane-field in a manifold M* is a
field of complex r-dimensional planes =" satisfying the relation
o N7"= {0} at each point of M*. A manifold with a (z"-I')-
structure is a manifold admitting a complex n™-pane-field and a
symmetric affine connection I’ with respect to which =™ is
parallel.

It follows apparently from Theorem 1 that a manifold with
an (f,-I')-structure satisfying the condition Ff-f=0 has a (z"-I')
structure. In this section we shall consider the convrese of this
fact.

Assume M™ to admit a (z"-I')-structure. Since the relation
7" N7"= {0} holds good in each point of M?”, the direct sum ="+
ﬁ’=g7)2’ forms a field of complex 2r-dimensional planes and con-
tains a real base, that is to say, at each point of M™", for »
basic contravariant vectors Awy=a'w;,+ v/ —1 b%a, of 7", 27 real con-
travariant vectors cu,=(dw, bw,) are linearly independent over
the real number field. Then we take a field ¢* of real 2r-dimen
sional planes spanned by ¢4, and call it z"-plane-field here-
after. It is clear that the real z"-plane field is contained in ¢* and
is independent to the choice of basis 44, of n”. By the assump-
tion, complex ="-plane-field is parallel. Then there exist »* comp-
lex covariant vector fields 7{£} for which the relation
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(3.1) VAcay=1E3 e

holds good. Considering the real part and imaginary part of
(3.1), we have also

(3.2) Vecy= B3 Can

where B} are (27)% real covariant vector fields determined by
78. Consequently ¢* is also a parallel field.

Now, in each local coordinate neighbourhood, let us consider
the system of real partial differential equations

(3.3) X, fEcQ,D%:O, (@=1.2,--27),

and the system of complex partial differential equations
(34) Xof=Erlf =0, (@=12:7)

These are both completely integrable from the conditions (3.1)
and (3.2). Denoting (n—27) independent solutions of (3.3) by w*,
the w4 are solutions of (3.4), too. And actually, for »—7 indepen-
dent solutions of (3.4), real solutions of (3.4) are w* only, because
of the definition of c;.

Now let z*=u®++/—1 v*(a=a-+1) be the other » complex
solutions of (3.4). Then it is easy to show that there is no fun-
ctional relationship of the form F(u!, «--2” v *!,.-0%, w¥*!...w™)=0.
Therefore we take (#%, v*, w%) as a new coordinate system in
each local coordinate neighbourhood U, and call it a canonical
coordinate system hereafter. From the equations (3.4) and (3.3),
in the canonical coordinate system, a,, and b,, must have the
following components

(3.5)  ‘Gy=(-"aly,abs++,0,00) and By =(+++,—aly,als+,0,000).

It is clear that an integral manifold of (3.3) is a maximal integ-
ral manifold of real a"-plane-field ¢*", and is expressed locally by
w*=const., and (#®v% can be regarded as a local coordinate
system of this submanifold.

Furthermore let us consider transformations of canoical coordi-
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nate systems. For every pair U, U’ of intersecting neighbourhoods
admitting canonical coordinate systems (x") =(*, v*, w*) and
(x"y=(u*', v*' w*) respectively, in Un U, w* and w*' are solu-
tions of the system (3.3). Then we can represent w* as w*' =
F#(w*+! ... w") where F# are real analytic functions. Similarly,

u* and v*’ are represented as real analytic functions of #!,.--u"
vr+l cee 1}2:'
b b .

b

From now on, we shall show that z*'=u*'4+/_1 0v* are
complex analytic functions of z*=#"+ +/—1 v*. For this purpose
we consider the components of the vectors i,, From relation
(3.5), in a canonical coordinate system, i, have the form

(3.6)  Awy=(-, aly— V=1 By, aBy+ v/ —1 alsy++,0,:+).

Then they satisfy the relation

37 3+ /=T 28,=0.

Since relation (3.7) also holds good in U’, we get
(%«)2—?;—,4- 2(2)3—;{;) + x/“"_:l(]d)%g; + 2(2)%?) =0.

Substituting (3.6) and (3.7) in the last equations, we get

ouf’  ovP’ S [ ouf’ | ovP
["‘z><am T )-I—aZ,,)( o + ou’ )]

V=1 [ b2 P i, (2427 o

o' ov oY ouY

As 2r vectors ag, and b, are linearly independent, these equa-
tions can be reduced to the well known Cauchy-Riemann’s diffe-
rental equations

(3.8) ouf’ _ ovF  ouf’ . ove’
ow oY’ o' ouw’

Consequently, by Hartogs’s theorem, z* have the form z*'=

@*'(z',...2z") and @' are complex analytic. Thus we have
Theorem 3. In a manifold with a (a"-I')-structure, real

a"-plane-field is integrable and its integral submanifolds have
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complex analytic structures.

In the canonical coordinate system of any coordinate neigh-
bourhood U, consider a non-zero real tensor f of type (1,1) whose
components are given by the following form;

0, E,, 0
3.9) (ffj)=( —E, 0, 0 )
0, 0, O

where E, is an 7-dimensional unit matrix. Take another coor-
dinate neighbourhood U’ which intersects with U and consider,
in the canonical coordinate system on U’, a tensor f of type
(1,1) given by, as well as (3.9),

0, E-, 0
(3.9 (f% =( —E, 0, 0]
0, 0, 0
Then in UNU we can easily verify the usual transformation
'14
law of the tensor of type (1,1) i. e. f§, = {;g—ﬁ; —gﬁ—j, by mak-

ing use of (3.8). Hence we can find a non-zero real tensor f of
type (1,1) over M" whose components in the canonical coordinate
system on U are given by (3.9). Of course it can be easily
verified that

3+ f=0, rank of f=27.

Thus the M" admits an f,-structure.
Finally direct calculation leads us to

(3-10) fl(w)= - 1/:1 )

by virtue of equations (3.6) and (3.9). From equation (3.10), it
follows that the =" is nothing but the complex f-plane-field f~
corresponding to the f-structure given by (3.9). Since the =z” is
parallel with respect to I', we obtain, from these results and by
Theorem 1, the following

Theorem 4. In order that a manifold M" admits a (z"-I')-
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structure, it is necessary and sufficient that the M"* has an (f,-T')-
structure satisfying the condition V f.f =0. In this case the field
7" coincides with the complex f-plane-field.

Remark: The condition z"Nz"= {0} implies 2»<#n. When n=
27, the rank of f becomes #, from which the tensor f is almost,
complex one and the condition Ff.f =0 is reducible to F/f =0.
Thus we obtain the famous theorem (Patterson [3]) i.e. “If a
manifold M* admits a field =~ of complex r-planes such that =
and @ at each point have only the zero vector in common, and
a symmeltric affine connection I' with respect to which " is par-
allel, then the MY is a complex manifold.”.

Recently, Ishihara and Yano [6] proved that a manifold
with an f,-structure admits a coordinate system with respect
to which the tensor f has components of the form (3.9), if and
only if the Nijenhuis tensor of f vanishes, i. e. f is integrable.
Then, in our case, the proof of the Theorem 4 shows us
directly

Corollary. If a manifold M" admits a (a'-I')-structure,
then the M" admits an integrable f.-structure.

Remark: Even though a manifold M"* admits an (f.-I)-
structure satisfying the condition 7 f.f=0, the f,-structure is not
necessarily integrable. For, in this case, the M® admits an
integrable f,*structure defined by (3.9), but, the new tensor f*
does not necessarily coincide with the original structure tensor
f, though both f and f* admit in common only the distribution L.

§ 4. Riemann manifolds admitting a field of parallel null

planes

Definition. A manifold with a (z"-g)-structure is a Riemann
manifold admitting a field =" of v-planes and a positive definite
Riemann wmetric ¢ with rvespect to which the = is null and
parallel.

It is clear, as a consequence of Theorem 2 and Proposition 2,
that a manifold with an (f,-g)-structure satisfying 7 f=0 admits
a (a"-g)-structure.

Conversely we assume, in the following, a manifold M™ to
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admit a (z"-¢)-structure.

Since ¢ is positive definite and the =" is null, the relation
7Nz"={0} holds good in each point of M". Then the M~
admits a (z"-I")-structure, and from Theorem 4, the M” admits
an (f,-I')-structure satisfying pf-f=0, and the =z" coincides
with the complex f-plane-field. Moreover, in canonical coordinate
system, the relations (3.5) and (3.9) hold good.

For the basic vectors A,, of z", since z" is a field of null
planes, the relation ‘A, g2 =0 holds good, from which it follows
that

"9 — 090 =0, '@wGbp+'bwy9ap=0.
By means of relation (3.5), these results are reduced to
(4.1) Oy =0w s 9w =0

From the equations (3.9) and (4.1), it is easy to verify that
relation (1.5) holds good. Consequently the given metric g and the
tensor f whose components have the form (3.9) in canonical coor-
dinate system constitute an (f,-g)-structure. Moreover, in our
case, the complex f-plane-field is =" and is parallel with respect
to the given metric ¢g. Thus we obtain, from Theorem 2,

Theorem 5. In order that a manifold M" admits a (z"-9)-
structure, it is necessary and sufficient that the M"* admits an
(f.-9)-structure satisfying the condition pf=0. In this case the
field =" coincides with the complex f-plane-field.

Remark: When we confine ourselves to consider cases where
n=2r and n=2r+1 in this theorem, we obtain Patterson’s
theorem and Ichijy6’s described in the introduction.

Institute of Mathematics, Tokushima University
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