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In this paper we discuss an n-dimensional analytic manifold')
M 3  admitting a field of complex r-planes which is parallel with
respect to a given affine connection and has only the zero vector
in common with its complex conjugate plane field.

In the case where n = 2 r , we have the theorem due to Pa-
tterson [2 ], that, if a Riemann manifold 1142r admits a field of
r-planes w hich is null and parallel w ith respect to a given positive
definite metric g, the M 2r adm its a  complex analytic structure
in terms of which g is a Kahler m etric. On the other hand, in
the previous paper [ 1 ] ,  we proved the theorem that, i f  a  Rie-
m ann m anifold M 2

'
+ 1  ad m its  a field of r-planes satisfy ing the

sim ilar conditions, the M 2 '+' adm its an alm ost contact metric
structure having the covariant constant w-tensor.

We will treat mainly the general case r [ n ]
•

 Recently K.
—  2  

Yano [5] introduced the notion of an f  -structure including an
almost complex structure and an almost contact structure. O u r
main resu lt is that there is a close relation between a n  f -
structure and the existence of a field of complex r-planes satisfy-
ing the above conditions.

The present author wishes to express his hearty thanks to
Prof. Dr. M. Matsumoto for his kind criticism and encouragement.

1) Throughout the paper we assume the manifolds and tensors, including vectors,
to be of class cm.
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§  1 .  Plane fields in a manifold with an f - structure

L et us consider an  n-dimensional analytic manifold M n with
an f-structure of rank 2r or an f r-structure, that is to say, a real
non-zero tensor field f  o f  ty p e  (1 ,1 ) and  o f class C t m  such that

(1.1) f3 + f = 0 , rank of f= 2 r .

T h e  c o n d itio n  ( 1 .1 )  shows us that characteristic values of
f  are A/-1, — A/ - 1  (each r-pie) a n d  0 ((n-2r)-ple). In tangent
space at each point of any coordinate neighbourhood U  in  Mft
we can take three kinds of vector spaces f t ,  f "  a n d  h' T which
a r e  spanned by characteristic contravariant vectors correspond-
ing to characteristic values -- A/-1, r a n d  0  respectively,
where each superscript means the dimension of vector spaces.

It is obvious that is spanned by vectors whose components
are  complex conjugate components of vectors in f '  ,  a n d  that f t
a n d  r  are  both r-dimensional and satisfy the relation

(1.2) n fr = {01.

Hence the direct sum f".--Fft forms a field of complex 2r-planes
p 2 r  and has a  real basis, that is,p- 2 t contains a field of real 2r-planes
Y r. L et Acc

2 ) b e  basic vectors of f t ,  and write
(1.3)

 
40—  A (a) - - F •\/ —1 B(a),

then A c  a n d  A „, form a  real basis o f b o th  r  and p .
Definition. The complex f  -plane-field is a field f t  o f chara-

cteristic con tra va rian t com pex  vector spaces corresponding to chara-
cteristic value —  — 1 of f ,  and re a l  f - p la n e - f i e ld  i s  a field p 't
of real 2r-p lanes spanned by A(„) and Bcco .

Let Cc„,) be basic vectors of h 2
t ,  then A(co , Bcco and Co" form

a  basis of rea l tangent space at each p o in t  o f  M r'. Now, the
definition of A(c )  gives us

(1.4) fA ( ) - - 1 A(a).

2 ) In this paper the indices a, b, c, d, e  run over the range 1 ,  - - - ,2 r ;  h, 1,
r ,  s ,  t  the range 1,—, n; A, B, C, D, E ,  F  the range 2r+1, •••, n; a ,  fi, y, 3

the range 1, — ,  r ;  a, p, r, the range r+1,•••,2r.
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f 2  
Hence we have j'il ( c ) , — 4 0 , that is, f 2 A ( c ) =-2 4 („) and

Thus real plane field p2 r becomes a distribution L  correspond-
ing to the projection operator 1= —  f  defined by K. Yano. Thus
we have

Proposition 1. I n  a  m an if o ld  M n  w ith  an f -structure of
rank  2r, the complex f-plane-field f t satisf ies the condition f nir
= {o} at each point of  M n, and the distribution L  corresponding
to the projection operator 1= — f 2 i s  a  real f-plane-field.

In adding to the L-distribution, Yano defined a  complemen-
tary distribution M  corresponding to projection operator m =f 2 4-1
and found a positive definite Riemann m etric g  such that

(1.5) g =g m +f g f

with respect to which the distributions L  and M  are mutually
orthogonal.

Definition. A  m anifold w ith an (f ,-g)-structure or an (f -g)-
structure of  rank  2r is a R iem ann m anifold w ith a positiv e defi-
nite metric g  and an f r -structure satisfying the relation (1.5).

In a manifold with an (fr-g)-structure we see

(1.6) 1A(0) = A(), = 0,

that is to say, 4 ) are orthogonal to the distribution M . More-
over the relations (1.5), (1.6) and (1.4) lead us to

'Acco gA (&) —'Acco gmA (p) -1-'(f A(co) g f  A (p)= 71(a6) 0 ( p ) .

Then the vectors Ac,o  are null and
 f t

 is  a field of complex null
planes. Thus we obtain

Proposition 2. In a m anifold w ith an (f„-g)-structure, vectors
in complex f-plane-field are complex null vectors and orthogonal
to the distribution M

§ 2. Manifolds with f - structure admitting a  parallel plane
field

Definition. A  m anifold w ith a n  (1:r -1p-structure is a mani-
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f old in  w hich an f , . - s t r u c tu r e  and a symmetric affine connection
F  are given globally.

In the first place we prove
Theorem 1. In  a  m anifold w ith an ( f - F) - structure, a  nece-

ssary  and suff icient condition for complex f  -plane-field f t  to be
parallel w ith respect to  a  given symmetric affine connection r
is that the tensor f ie ld  f  s a t i s f i e s  the condition 17f . f=  0 , where,
expressed in  term s of local coordinate (x1, U ) ,  1 7 f . f  means that
17 J `  li f , .

Pro o f . 4 , ,  being basic vectors of f t ,  the condition for J . '
to be parallel can be written, by A . G .  Walker's result [4 ], as

(2.1) 17A(,),g; • A(p)

for r 2 local complex covariant vector fields eM . Differentiating
(1.4) covariantly and using (2.1), we get

(2.2) f•A ()= 0 , i.e. 17 f•A cco = 0  a n d  17  f../3( ,) =0.

These results and (1.4) give u s  17  f . f  4 0 = 0 . A s the tensors f
and 17f are real, w e have the relations 17f . fA cco = 0  and 17f . f
= 0 .  On the other hand, as vectors C ( , ) o f  basis o f h4 - 2 r  are
characteristic vectors corresponding to characteristic value 0 of f ,
the relation f  C (A) = 0  holds good. Then we have 17f.f C(A) = 0.
These results give us

f7 f.f= 0 .

Conversely, if the last relation holds good, then by differen-
tiating (1.4) covariantly and using (1.4) we have — \/-1 17  Aw =
»7/1w .  This equation gives us that 17 A( a )  are contained in complex
f-p lane field. Consequently it follows that 17/1( c )  h a v e , fo r
1-2 covariant vecto rs e PT) , the fo rm  174 ) =eMA (p ) . Thus the
f-plane-field i s  a  parallel plane field w ith respect to  a  given
symmetric affine connection F, a n d  th e  theorem is completely
proved.

In a manifold with an f,-structure there exist affine conne-
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ctions '1" which are not always symmetric but leave f  covari-
ant constant. In fact, denoting by 6 covariant differentiation with
respect to an arbitrary affine connection i', we can define P,
for example, in terms of f  an d  P ,  as follows

(2.3) P =  +  6 .f• f— f.a f+  11 •6.f .f .

For, (1.1) gives us

(2.4) f2 a f of . 2 af . f .

From (2. 3), (2.4) and (1.1), denoting by a and p  partial differen-
tiation and covariant differentiation with respect to  I

 we get

f  a f - F IV - 1•14.= 6 ( f  f  3 ) = 0 .

However, the affine connection preserving f  covariant constant
is not unique. For example, i f  y  is a covariant vector field,
then  P+ f . y  also preserves f  covariant constant.

Summarizing the above remarks, we get
Proposition 3. In a manifold with an f r -strcture there exist

(not necessarily symmetric) affine connections w ith  respect to
which the structure tensor f  is covariant constant.

Next, we consider an ( f — g)-structure in  M n  and get the
following result:

Theorem 2 .  In a manifold w ith an (f -g)-structure, a  nece
ssary  and sufficient condition for the complex f-plane-field to be
parallel in Levi-Civita's sense is that the tensor field f  is covari-
ant constant ov er M n with respect t o  g.

Proof . If the complex f-plane-field f r  is parallel, so is its
conjugate 

J r
 .Hence real f-plane-field L  is also parallel. As the

distribution M  is orthogonal to L , M  is parallel, too. Then, for
the basic vectors /V( ,„)  o f  M , there exist (n-2r) 2 covariant real
vectors C -1; satisfying

(2.5) 17N,„)=---Q...2-N(B)•
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It follows, from the definition of M , that

(2.6) IN cc= 0, MN(A)= N(A).

The last relation and the relation f m = 0  give us f N (A ) = O.
Moreover, by differentiating this result covariantly and using

(2.5) we find

(2.7) P f • NA ) = O.

Hence the relations (2.2) and (2.7) give us P 7= 0 .
O n the other hand  the converse fo llow s at once from

Theorem 1.

§  3 . Manifolds admitting a  parallel plane field

Definition. A  complex 7rr -plane-field in a manifold M " is a
fie ld  o f complex r-dimensional planes rr  satisfying the relation
7rM77". = {0 } at each point of M .  A  manifold with a
structure is a manifold admitting a  complex r'-pane-field and a
symmetric a ffine connection r  w ith respect to w hich Irr is
parallel.

It follows apparently from Theorem 1 that a manifold with
an  (f r -r)-structure satisfying the condition F H =0  has a (zr-r)
structure. In th is section we shall consider the convrese of this
fact.

Assume M n to admit a (e-r) -structure. Since the relation
{0} holds good in each point of M 4 ,  the direct sum ed-

frr= -O r forms a field of complex 2r-dimensional planes and con-
tains a  rea l base, th a t is  to  say, at each  point of M n ,  for r
basic contravariant vectors 2(0,) =d ( c o + ,V —1 bi ( co  of e, 2r real con-
travariant vectors c( „) =(a ( „) ,  k o )  are linearly independent over
the real number field. Then we take a field 02 r of real 2r-dimen
sional planes spanned by c ,, ,  and c a l l  i t  rr-plane-fie ld  here-
after. It is clear that the real rre-plane field is contained in j 2 ' and
is independent to the choice of basis 2( „) o f  e .  B y the assump-
tion, complex r'-plane-field is parallel. Then there exist r2 comp-
lex covariant vector fields TA for which the relation
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(3J) 172( )= 7243. Â(p)

holds good. Considering the rea l part and imaginary part of
(3.1), we have also

(3.2) 17c(c0=BM•c(,),

where BM are (2r) 2 r e a l  covariant vector fields determined by
724;. Consequently 0 2 '  is also a parallel field.

Now, in each local coordinate neighbourhood, let us consider
the system of real partial differential equations

(3.3) X„,f=e(a)af .-0, (a= 1,2,•..

and the system of complex partial differential equations

(3.4)
af  

 =o , (a= 1,2,•• •,r).

These are both completely integrable from the conditions (3.1)
and (3.2). Denoting (n— 2r) independent solutions of (3.3) by te,
the W A  are solutions of (3.4), too. And actually, for n—r indepen-
dent solutions of (3.4), real solutions of (3.4) are tv l only, because
of the definition of c(a ) .

Now let f  = u + — 1 v - (a = a + r )  be the other r  complex
solutions of (3.4). Then it is easy to show that there is no fun-
ctional relationship of the form F(tO, , v r +  v 2 r , w 2r+ w n )  =  0 .

Therefore we take (u , v ,  l e )  as a  new coordinate system in
each local coordinate neighbourhood U, and ca ll it a  canonical
coordinate system hereafter. From the equations (3 .4) and (3.3),
in the canonical coordinate system, acao and b( a ) must have the
following components

(3.5) rck,, ) =(• • • ,a4 ) ,. • • ,a( g) ,• • • ,0,• ••) and tbcc  = (•••, — al• • • ,a ( g) ,• • • , 0,• • •).

It is clear that an integral manifold o f (3.3) is  a maximal integ-
ral manifold of real rr-plane-field 0 2 ' ,  and is expressed locally by
wA=const., and ( u , 0 )  can be regarded as a local coordinate
system of this submanifold.
Furthermore let us consider transformations of canoical coordi-
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nate systems. For every pair U , U ' of intersecting neighbourhoods
admitting canonical coordinate systems (xi)  e, WA) and
(x " ) .=( te ',  va' W4 ') respectively, in  Un U', W A  and WA are solu-
tions of the system (3.3). Then we can represent ur4 ' as
F.A.,(w2r+1,...on) where F A '  are real analytic functions. Similarly,

and v6 ' are represented as real analytic functions of ul,•••,W ,

From now on, we shall show that f '= u '' '- k  A/ -1  v - ' are
complex analytic functions of z _-=_ u. + —1 v-. For this purpose
we consider the components of the vectors 2(„) . F ro m  relation
(3.5), in a canonical coordinate system, Acc,) have the form

(3.6) '2(co .-..-- (•••, acro — \/-1 a l,• ••, a l +  \ / - 1 a ( ) ,...,0,•.•)•

Then they satisfy the relation

(3.7) A(P) d- \/-1 21=0.

Since relation (3.7) also holds good in  U ', we get

aug' -  ate'
+

a v i v
 2

 -  aviv4„)  + 2 (1)  —  1  (2 4 )
d i e

CY„) _ )=0.
auY avY

Substituting (3.6) and (3.7) in the last equations, we get

(  ate'  _ avg' + a . ) (  ate' + avf3'
)\ au? avY \avY auY

+ — 1 [b ( \at1) ( 
 ate'

 — 
 a

v
°
' ) ±bY (  ate 4_  ae ' V] 0

e avY (w)k avY air/ .J=•- •

A s 2r vectors ac„) and k o,) are  linearly independent, these equa-
tions can be reduced to the well known Cauchy-Riemann's diffe-
rental equations

(3.8) ate _aze ate'  _
ato avY avY attY •

Consequently, by Hartogs's theorem, z " '  have the form z '' ,

0 6 '(z 1 ,•••zr) and 0"  are  complex analytic. Thus we have
Theorem 3. In  a m anifold  w ith  a  (e -r)-s tru ctu re , real

e-plane-field is  in teg rab le  and its  in te g ral submanifolds have
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complex analytic structures.
In the canonical coordinate system of any coordinate neigh-

bourhood U, consider a non-zero real tensor f  of type (1,1) whose
components are given by the following form;

O , E '. ,  O\
(3.9)( f t) — E r , 0 , 0

o ,  o , 0

where E r  i s  an r-dimensional unit matrix. Take another coor-
dinate neighbourhood U ' which intersects with U  and consider,
in the canonical coordinate system on U', a  tensor f  of type
(1,1) given by, as well as (3.9),

0 , E r , 0 \
(3.9') ( f ) =  — E r, 0 , 0 )•

O, O, O'

Then in  Un U ' we can easily verify the usual transformation
axu axqlaw of the tensor of type (1,1) i. e. f ;', =f  P  axz' by mak-' axi '

ing use of (3.8). Hence we can find a non-zero real tensor f  of
type (1,1) over Iff 1' whose components in the canonical coordinate
system o n  U  are given by (3.9). Of course it can be easily
verified that

f3 +  f =0 , rank of f  =2r.

Thus the M "  admits an f r -structure.
Finally direct calculation leads us to

(3.10) f  2(co= — 2(d)

by virtue of equations (3.6) and (3.9). From equation (3.10), it
follows that the 7-cr is nothing but the complex f-plane-field f r

corresponding to the f-structure given by (3.9). Since the 7Ir  is
parallel with respect to we obtain, from these results and by
Theorem 1, the following

Theorem 4 . I n  o rd e r th at a  m anif old Ill" adm its a  ( i t r - T ) -
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structure, it is necessary and sufficient that the M " has an (fr -n-
structure satisfying the condition F f.f =O . In  this case the field
7rr coincides with the complex f -plane-field.

Remark: The condition 7Cr  n  =  {0 } implies 2 r  n. When n=
2r, the rank of f  becomes n, from which the tensor f  is almost,
complex one and the condition F f . f  = 0  is reducible to Ff=0.
Thus we obtain the famous theorem (Patterson [3]) i .  e .  " I f  a
manifold M" admits a field 2rr of complex r-planes such that r'
and 7 ?  at each point have only the zero vector in  common, and
a symmetric affine connection I '  with respect to which 77r  is par-
allel, then th e  M " is a complex manifold.".

Recently, Ishihara and Yano [6 ] proved that a manifold
with an f,.-structure admits a  coordinate system with respect
to which the tensor f  has components of the form (3.9), if and
only if the Nijenhuis tensor o f  f  vanishes, i. e .  f  is integrable.
Then, in our case, the proof o f th e  Theorem 4  shows us
directly

Corollary. I f  a  manifold Mu admits a (n-r-T)-structure,
then the admits an integrable L.-structure.

Remark: Even though a manifold M n  admits an (f ,.-f ')-
structure satisfying the condition F f.f= 0, the f,.-structure is not
necessarily integrable. For, in  this case, the M '  admits an
integrable f r *-structure defined by (3.9), bu t, the new tensor f *
does not necessarily coincide with the original structure tensor
f, though both f  and f *  admit in common only the distribution L.

§  4 . Riemann manifolds admitting a  fie ld  o f parallel null

planes
Definition. A  manifold with a (7r-g)-structure is  a Riemann

manifold admitting a field 77'. of r-planes and a positive definite
Riemann m etric g  with respect to which the 7Cr  is  n u ll and
parallel.

It is clear, as a consequence of Theorem 2 and Proposition 2,
that a manifold with an (f.-g)structure satisfying F f=0 admits
a (e-g)-structure.

Conversely we assume, in the following, a manifold Mn to
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admit a (e-g)-structure.
Since g  is positive definite and the 7rr is  null, the relation

Jrr n 7r =  {0} holds good in each po in t o f M n . Then th e  Mn
admits a (7rr-r)-structure, and from Theorem 4 , th e  M n  admits
an ( fr -r)-structure satisfying 17 f • f = 0 ,  and th e  7rr  coincides
with the complex f-plane-field. Moreover, in canonical coordinate
system, the relations (3.5) and (3.9) hold good.

For the basic vectors 2(„) o f  7rr , since 7rr is a field of null
planes, the relation t2(c o  0 (0 ) = 0  holds good, from which it follows
that

ta(a)gauo— 'boogb(j3)-0, ta (a )gb(p)± rb (,)ga(p)— O.

By means of relation (3.5), these results are reduced to

(4.1) g78. —  giis „

From the equations (3 .9 ) and (4.1), it is easy to verify that
relation (1.5) holds good. Consequently the given metric g and the
tensor f  whose components have the form (3.9) in canonical coor-
dinate system constitute a n  ( f,.-g)-structure. Moreover, in  our
case, the complex f-plane-field is  77r  and is parallel with respect
to the given metric g. Thus we obtain, from Theorem 2,

Theorem 5. In  order that a manifold M "  adm its a
structure, it is necessary  and suf f icient that th e  M n  adm its an
(f -g)-structure satisfy ing the condition 17 1=0 . In  th is case the
field 7rr coincides with the complex f  -plane-field.

R em ark: When we confine ourselves to consider cases where
n -, 2 r  a n d  n = 2r+ 1 . in  this theorem, we obtain Patterson's
theorem and Ichijyô's described in the introduction.

Institute of Mathematics, Tokushima University
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