On the generalized Hopf homomorphism and the higher composition.

Part II. $\pi_{n+i}(S^n)$ for i=21 and 22.

By

Mamoru MIMURA

(Received in Nov. 11, 1964)

Introduction

The present paper is the continuation of the previous one [2] and is devoted to the computation of $\pi_{n+i}(S^n)$, the (n+i)-th homotopy group of the n-sphere for i=21 and 22.

The 2-primary components of $\pi_{n+i}(S^n)$, which we denote by π_{n+i}^n , are determined in [4] for $i \le 19$ and in [1] for i = 20.

The main results of this paper are stated as follows by making use of *generators* given in [4] and [1].

Theorem A.

$$\begin{array}{l} \pi_{23}^{2} = \{ \eta_{2} \circ \nu' \circ \bar{\mu}_{6}, \ \eta_{2} \circ \nu' \circ \eta_{6} \circ \mu_{7} \circ \sigma_{16} \} \cong Z_{2} \oplus Z_{2}, \\ \pi_{24}^{3} = \{ \nu' \circ \eta_{6} \circ \bar{\mu}_{7} \} \cong Z_{2}, \\ \pi_{25}^{4} = \{ E \nu' \circ \eta_{7} \circ \bar{\mu}_{8}, \ \nu_{4} \circ \zeta_{7} \circ \sigma_{18}, \ \nu_{4} \circ \eta_{7} \circ \bar{\mu}_{8} \} \cong Z_{2} \oplus Z_{8} \oplus Z_{2}, \\ \pi_{26}^{5} = \{ \alpha, \ \nu_{5} \circ \eta_{8} \circ \bar{\mu}_{9} \} \cong Z_{2} \oplus Z_{2}, \quad \alpha \in E^{-1}(\eta_{6} \circ \bar{\kappa}_{7}), \\ \pi_{27}^{6} = \{ \eta_{6} \circ \bar{\kappa}_{7} \} \cong Z_{2} \\ \pi_{28}^{7} = \{ \eta_{7} \circ \bar{\kappa}_{8}, \ \sigma' \circ \kappa_{14} \} \cong Z_{2} \oplus Z_{2}, \\ \pi_{29}^{8} = \{ \eta_{8} \circ \bar{\kappa}_{9}, \ E \sigma' \circ \kappa_{15}, \ \sigma_{8}^{3}, \ \sigma_{8} \circ \kappa_{15} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{4} \oplus Z_{2}, \\ \pi_{30}^{9} = \{ \eta_{9} \circ \bar{\kappa}_{10}, \ \sigma_{9} \circ \kappa_{16}, \ \sigma_{9}^{3} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2}, \\ \pi_{31}^{10} = \{ \eta_{10} \circ \bar{\kappa}_{11}, \ \sigma_{10} \circ \kappa_{17}, \ \sigma_{10}^{3} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2}, \\ \pi_{32}^{11} = \{ \eta_{11} \circ \bar{\kappa}_{12}, \ \sigma_{11} \circ \kappa_{18}, \ \sigma_{11}^{3}, \ \theta' \circ \mu_{23} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2}, \\ \pi_{33}^{12} = \{ \eta_{12} \circ \bar{\kappa}_{13}, \ \sigma_{12} \circ \kappa_{19}, \ \sigma_{12}^{3}, \ E \theta' \circ \mu_{24}, \ \theta \circ \mu_{24} \} \end{array}$$

$$\cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{34}^{13} = \{ \eta_{13} \circ \bar{\kappa}_{14}, \ \sigma_{13}^{3}, \ E\theta \circ \mu_{25}, \ \lambda \circ \nu_{31} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{4},$$

$$\pi_{35}^{14} = \{ \eta_{14} \circ \bar{\kappa}_{15}, \ \sigma_{14}^{3}, \ E\lambda \circ \nu_{32} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{4},$$

$$\pi_{36}^{15} = \{ \eta_{15} \circ \bar{\kappa}_{16}, \ \sigma_{15}^{3}, \ E^{2} \lambda \circ \nu_{33} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{37}^{16} = \{ \eta_{16} \circ \bar{\kappa}_{17}, \ \sigma_{16}^{3}, \ E^{3} \lambda \circ \nu_{34}, \ \nu_{16}^{*} \circ \nu_{34} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{38}^{17} = \{ \eta_{17} \circ \bar{\kappa}_{18}, \ \sigma_{17}^{3}, \ \nu_{17}^{*} \circ \nu_{35} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{39}^{18} = \{ \eta_{18} \circ \bar{\kappa}_{19}, \ \sigma_{18}^{3}, \ \nu_{18}^{*} \circ \nu_{36} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{40}^{19} = \{ \eta_{19} \circ \bar{\kappa}_{20}, \ \sigma_{19}^{3}, \ \nu_{19}^{*} \circ \nu_{37}, \ \bar{\beta} \circ \eta_{39} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{41}^{20} = \{ \eta_{20} \circ \bar{\kappa}_{21}, \ \sigma_{20}^{3}, \ E\bar{\beta} \circ \eta_{40}, \ \bar{\beta} \circ \eta_{40} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{42}^{21} = \{ \eta_{21} \circ \bar{\kappa}_{22}, \ \sigma_{21}^{3}, \ E\bar{\beta} \circ \eta_{41} \} \cong Z_{2} \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{43}^{22} = \{ \mathcal{L}_{45}, \ \eta_{22} \circ \bar{\kappa}_{23}, \ \sigma_{22}^{3} \} \cong Z \oplus Z_{2} \oplus Z_{2},$$

$$\pi_{43}^{23} = \{ \mathcal{L}_{45}, \ \eta_{22} \circ \bar{\kappa}_{23}, \ \sigma_{23}^{3} \} \cong Z_{2} \oplus Z_{2},$$

$$\pi_{44}^{22} = \{ \eta_{23} \circ \bar{\kappa}_{24}, \ \sigma_{23}^{3} \} \cong Z_{2} \oplus Z_{2},$$

Theorem B.

 $(G_{21}:2) = \{ \eta \circ \bar{\kappa}, \sigma^3 \} \cong Z_2 \oplus Z_2.$

$$\begin{array}{l} \pi_{24}^2 = \{ \eta_2 \circ \nu' \circ \eta_6 \circ \bar{\mu}_7 \} \cong Z_2, \\ \pi_{25}^3 = \{ \varepsilon_3 \circ \kappa_{11} \} \cong Z_2, \\ \pi_{26}^4 = \{ \varepsilon_4 \circ \kappa_{12}, \ \nu_4 \circ \bar{\zeta}_7, \ \nu_4 \circ \bar{\sigma}_7 \} \cong Z_2 \oplus Z_8 \oplus Z_2, \\ \pi_{27}^5 = \{ \varepsilon_5 \circ \kappa_{13}, \ \nu_5 \circ \bar{\zeta}_8, \ \nu_5 \circ \bar{\sigma}_8 \} \cong Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{28}^6 = \{ \rho''' \circ \sigma_{21}, \ \bar{\nu}_6 \circ \kappa_{14}, \ \varepsilon_6 \circ \kappa_{14}, \ \nu_6 \circ \bar{\sigma}_9 \} \cong Z_4 \oplus Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{29}^7 = \{ \sigma' \circ \rho_{14}, \ \bar{\nu}_7 \circ \kappa_{15}, \ \varepsilon_7 \circ \kappa_{15}, \ \nu_7 \circ \bar{\sigma}_{10} \} \cong Z_8 \oplus Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{30}^8 = \{ E \sigma' \circ \rho_{15}, \ \bar{\nu}_8 \circ \kappa_{16}, \ \varepsilon_8 \circ \kappa_{16}, \ \nu_8 \circ \bar{\sigma}_{11}, \ \sigma_8 \circ \rho_{15}, \ \sigma_8 \circ \bar{\epsilon}_{15} \} \\ \cong Z_8 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3 \oplus Z_2, \\ \pi_{31}^9 = \{ \sigma_9 \circ \rho_{16}, \ \varepsilon_9 \circ \kappa_{17}, \ \nu_9 \circ \bar{\sigma}_{12}, \ \sigma_9 \circ \bar{\epsilon}_{16} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{32}^{10} = \{ \sigma_{10} \circ \rho_{17}, \ \varepsilon_{10} \circ \kappa_{18}, \ \nu_{10} \circ \bar{\sigma}_{13} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{33}^{11} = \{ \sigma_{11} \circ \rho_{18}, \ \varepsilon_{11} \circ \kappa_{19}, \ \nu_{11} \circ \bar{\sigma}_{14} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \end{array}$$

$$\begin{split} \pi_{34}^{12} &= \{\sigma^{*}{}''', \ \sigma_{12}{}^{\circ}\rho_{19} \pm 2\sigma^{*}{}''', \ \varepsilon_{12}{}^{\circ}\kappa_{20}, \ \nu_{12}{}^{\circ}\bar{\sigma}_{15} \} \\ &\cong Z_{32} \oplus Z_4 \oplus Z_2 \oplus Z_2, \\ \pi_{35}^{13} &= \{\rho_{13}{}^{\circ}\sigma_{28}, \ \varepsilon_{13}{}^{\circ}\kappa_{21}, \ \nu_{13}{}^{\circ}\bar{\sigma}_{16} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{36}^{14} &= \{\sigma^{*}{}'', \ \omega_{14}{}^{\circ}\nu_{30}^{2}, \ \varepsilon_{14}{}^{\circ}\kappa_{22}, \ \nu_{14}{}^{\circ}\bar{\sigma}_{17} \} \cong Z_{16} \oplus Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{37}^{15} &= \{\sigma^{*}{}', \ \omega_{15}{}^{\circ}\nu_{31}^{2}, \ \varepsilon_{15}{}^{\circ}\kappa_{23}, \ \nu_{15}{}^{\circ}\bar{\sigma}_{18} \} \cong Z_{16} \oplus Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{38}^{16} &= \{\sigma^{*}{}', \ \omega_{16}{}^{\circ}\nu_{32}^{2}, \ \varepsilon_{16}{}^{\circ}\kappa_{24}, \ \nu_{16}{}^{\circ}\bar{\sigma}_{19} \} \\ &\cong Z_{16} \oplus Z_{16} \oplus Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{39}^{17} &= \{\sigma^{*}{}_{17}, \ \omega_{17}{}^{\circ}\nu_{33}^{2}, \ \varepsilon_{17}{}^{\circ}\kappa_{25}, \ \nu_{17}{}^{\circ}\bar{\sigma}_{20} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{40}^{18} &= \{\sigma^{*}{}_{18}, \ \varepsilon_{18}{}^{\circ}\kappa_{26}, \ \nu_{18}{}^{\circ}\bar{\sigma}_{21} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{40}^{19} &= \{\sigma^{*}{}_{19}, \ \varepsilon_{19}{}^{\circ}\kappa_{27}, \ \nu_{19}{}^{\circ}\bar{\sigma}_{22} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{40}^{29} &= \{\sigma^{*}{}_{19}, \ \varepsilon_{19}{}^{\circ}\kappa_{27}, \ \nu_{19}{}^{\circ}\bar{\sigma}_{22} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{43}^{20} &= \{\sigma^{*}{}_{20}, \ \varepsilon_{20}{}^{\circ}\kappa_{28}, \ \nu_{20}{}^{\circ}\bar{\sigma}_{23}, \ \Delta\nu_{41} + 2\sigma_{20}^{*} \} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{43}^{21} &= \{\sigma^{*}{}_{21}, \ \varepsilon_{21}{}^{\circ}\kappa_{29}, \ \nu_{21}{}^{\circ}\bar{\sigma}_{24} \} \cong Z_8 \oplus Z_2 \oplus Z_2, \\ \pi_{44}^{22} &= \{\sigma^{*}{}_{22}, \ \varepsilon_{22}{}^{\circ}\kappa_{30}, \ \nu_{22}{}^{\circ}\bar{\sigma}_{25} \} \cong Z_4 \oplus Z_2 \oplus Z_2, \\ \pi_{46}^{22} &= \{\sigma^{*}{}_{23}, \ \varepsilon_{23}{}^{\circ}\kappa_{31}, \ \nu_{23}{}^{\circ}\bar{\sigma}_{26} \} \cong Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{46}^{24} &= \{\varepsilon_{24}{}^{\circ}\kappa_{32}, \ \nu_{24}{}^{\circ}\bar{\sigma}_{27} \} \cong Z_2 \oplus Z_2, \\ (G_{22}: 2) &= \{\varepsilon_{6}\kappa, \ \nu_{6}\bar{\sigma}\} \cong Z_2 \oplus Z_2. \end{split}$$

The main tool of the computation is the following exact sequence: (Proposition 4.2 of [4])

$$(T) \qquad \qquad E \qquad H \qquad \Delta \qquad E \qquad H \\ \cdots \rightarrow \pi_i^n \rightarrow \pi_{i+1}^{n+1} \rightarrow \pi_{i+1}^{2n+1} \rightarrow \pi_{i-1}^n \rightarrow \pi_i^{n+1} \rightarrow \cdots$$

In appendix, we shall see a table of the groups $\pi_{n+21}(S^n)$ and $\pi_{n+22}(S^n)$ containing the odd components.

§ 7. Computations of the 2-primary components of $\pi_{n+21}(S^n)$.

First we have

$$\pi_{23}^2 = \{\eta_2 \circ \nu' \circ \bar{\mu}_6, \ \eta_2 \circ \nu' \circ \eta_6 \circ \mu_7 \circ \sigma_{16}\} \cong Z_2 \oplus Z_2$$

by (5.2) of [4] and [1]. By Lemma 5.7 and Proposition 2.5

of [4], we have

$$\Delta(
u_5\circar{\mu}_8)=\eta_2\circ
u'\circar{\mu}_6,$$

It follows from the exactness of (T) that $H: \pi_{24}^3 \to \pi_{24}^5$ maps π_{24}^3 isomorphically onto the kernel of $\Delta: \pi_{24}^5 \to \pi_{22}^2$ which is onto (see p.45 of [1]). By Theorem 12.9 of [4] and [1], π_{24}^5 and π_{22}^2 have 16 and 8 elements respectively. Thus the kernel of Δ is isomorphic to Z_2 . By Proposition 2.2 and (5.7) of [4] we have

$$H(
u'\circ\eta_6\circar\mu_7)=\eta_5^2\circar\mu_7 \ =4ar\zeta_5 \qquad \qquad {
m by} \ (7.14) \ {
m of} \ \ [4],$$

and $4\bar{\zeta}_5 \neq 0$ by Theorem 12.9 of [4]. Consequently we have obtained that

(7.2)
$$\pi_{24}^3 = \{ \nu' \circ \eta_6 \circ \bar{\mu}_7 \} \cong Z_2.$$

By (5.6) and Theorem 12.8 of [4],

$$\pi_{\scriptscriptstyle 25}^{\scriptscriptstyle 4} = \{ \textit{E}\nu' \circ \eta_{\scriptscriptstyle 7} \circ \bar{\mu}_{\scriptscriptstyle 8}, \ \nu_{\scriptscriptstyle 4} \circ \zeta_{\scriptscriptstyle 7} \circ \sigma_{\scriptscriptstyle 18}, \ \nu_{\scriptscriptstyle 4} \circ \eta_{\scriptscriptstyle 7} \circ \bar{\mu}_{\scriptscriptstyle 8} \} \cong \textit{Z}_{\scriptscriptstyle 2} \ \oplus \ \textit{Z}_{\scriptscriptstyle 8} \ \oplus \ \textit{Z}_{\scriptscriptstyle 2}.$$

Consider the exact sequence

$$\cdots \rightarrow \pi_{27}^9 \rightarrow \pi_{25}^4 \rightarrow \pi_{26}^5 \rightarrow \pi_{26}^9 \rightarrow \pi_{24}^4 \rightarrow \cdots,$$

where $\pi_{27}^{9} = \{\sigma_{9} \circ \zeta_{16}, \, \eta_{9} \circ \bar{\mu}_{10}\} \cong Z_{8} \oplus Z_{2}$ and $\pi_{26}^{9} = \{\sigma_{9} \circ \eta_{16} \circ \mu_{17}, \, \nu_{9} \circ \kappa_{12}, \, \bar{\mu}_{9}, \, \eta_{9} \circ \mu_{10} \circ \sigma_{19}\} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2}$ by Theorems 12.8 and 12.7 of [4]. By (7.16) and (5.8) of [4]

$$\Delta(\sigma_{9}\circ\zeta_{16}) = x(\nu_{4}\circ\sigma'\circ\zeta_{14}) \pm E\varepsilon'\circ\zeta_{14}
= x'(\nu_{4}\circ\zeta_{7}\circ\sigma_{18})$$

for odd integers x, x', since we have

$$\begin{split} \varepsilon'\circ\zeta_{13} &\;\in\;\; \varepsilon'\circ\{\nu_{13},\;8\iota_{16},\;2\sigma_{16}\} \qquad \text{by the definition of }\zeta_{13} \\ &= -\{\varepsilon',\;\nu_{13},\;8\iota_{16}\}\circ2\sigma_{17} \qquad \text{by Proposition 1.4 of [4]} \\ &\supset\;\; \pi_{17}^3\circ2\sigma_{17} \\ &=\;\; \{2\varepsilon_3\circ\nu_{11}^2\circ\sigma_{17}\} \\ &=0. \end{split}$$

$$\Delta(\eta_9 \circ \bar{\mu}_{10}) = E_{\nu'} \circ \eta_7 \circ \bar{\mu}_8 \qquad \text{by (5.8) of [4]}.$$

Thus
$$E\pi^4_{25}=\{
u_5\circ\eta_8\circ\bar{\mu}_9\}\cong Z_2$$
 and

(7.3)
$$H: \pi_{27}^5 \to \pi_{27}^9$$
 is trivial.

By (7.16), (5.13) and (5.8) of [4],
$$\Delta(\sigma_{9} \circ \eta_{16} \circ \mu_{17}) = E \nu' \circ \varepsilon_{7} \circ \mu_{15} + \nu_{4} \circ \sigma' \circ \eta_{14} \circ \mu_{15} \notin \text{Im } E,$$

$$\Delta(\bar{\mu}_{9}) = E \nu' \circ \bar{\mu}_{7},$$

$$\Delta(\eta_{9} \circ \mu_{10} \circ \sigma_{19}) = E \nu' \circ \eta_{7} \circ \mu_{8} \circ \sigma_{17}$$

and these Δ -images are independent [1]. So, we have an exact sequence : $0 \to Z_2 \to \pi_{27}^5 \to Z_2$. By Lemma 6.1 of [2], there exists an element α in π_{26}^5 such that $H(\alpha) = \nu_9 \circ \kappa_{12}$ and $2\alpha = 0$, whence we have

$$\pi_{26}^5 = \{\alpha, \nu_5 \circ \eta_8 \circ \bar{\mu}_9\} \cong Z_2 \oplus Z_2$$

It is seen in (16.4) of [1] that $\Delta: \pi_{27}^{11} \to \pi_{25}^{5}$ is a monomorphism. So, E induces an isomorphism of $\pi_{26}^{6}/\Delta(\pi_{28}^{11})$ onto π_{27}^{6} . For generators of π_{28}^{11} we have, by use of (5.10) of [4],

(7.4)
$$\Delta(\sigma_{11}\circ\eta_{18}\circ\mu_{19}) = \nu_5\circ\eta_8\circ\sigma_9\circ\eta_{16}\circ\mu_{17}$$

 $= \nu_5\circ(E\sigma'\circ\eta_{15}+\bar{r}_8+\varepsilon_8)\circ\eta_{16}\circ\mu_{17}$ by (7.4) of [4]
 $= 4\nu_5\circ E\sigma'\circ\zeta_{15}+\nu_5^4\circ\mu_{17}+\nu_5\circ\varepsilon_8\circ\eta_{16}\circ\mu_{17}$
by (7.14) and Lemma 6.3 of [4]
 $= \nu_5\circ\mu_8\circ\eta_{17}^2\circ\sigma_{19}$
 $= 4(\nu_5\circ\zeta_8\circ\sigma_{19}) = 0$ by (7.14) of [4],

$$\Delta(\bar{\mu}_{11}) = \nu_5 \circ \eta_8 \circ \bar{\mu}_9,$$

$$\Delta(\nu_{11} \circ \kappa_{14}) = \nu_5 \circ \eta_8 \circ \nu_9 \circ \kappa_{12} = 0 \qquad \text{by (5.7) of } \lceil 4 \rceil.$$

It follows that $\pi_{27}^6 = \{E\alpha\} \cong Z_2$ where $E\alpha = \eta_6 \circ \bar{\kappa}_7$ since $E^3\alpha \equiv E^2(\eta_6 \circ \bar{\kappa}_7)$ mod $E^2(\nu_5^2 \circ \pi_{27}^{12} + \pi_{13}^6 \circ \kappa_{13}) = 0$ by Lemma 6.1 of [2] and $E^2: \pi_{27}^6 \to \pi_{29}^8$ is a monomorphism as is seen in the following.

Consider the exact sequence

$$\cdots \rightarrow \pi_{29}^{13} \xrightarrow{\mathcal{A}} \pi_{27}^{6} \xrightarrow{\mathcal{A}} \pi_{28}^{7} \xrightarrow{\mathcal{A}} \pi_{28}^{13} \xrightarrow{\mathcal{A}} \cdots,$$

where $\pi_{29}^{13} = \{\sigma_{13} \circ \mu_{20}\} \cong Z_2$ and $\pi_{28}^{13} = \{\rho_{13}, \bar{\epsilon}_{13}\} \cong Z_2 \oplus Z_2$.

We have seen in the computation of π_{27}^7 [1] that the last homomorphism Δ has the kernel generated by $\bar{\epsilon}_{13}$, which is the H-image of $\sigma' \circ \kappa_{14}$. The order of $\sigma' \circ \kappa_{14}$ is 2. By Lemma 5.4 and Proposition 12.20 of [4]

$$\Delta(\sigma_{13}\circ\mu_{20})=\Delta H(\sigma'\circ\rho_{14})=0.$$

This implies that the above E is a monomorphism and (7.5) $H: \pi_{29}^7 \to \pi_{29}^{13}$ is an epimorphism.

The following result has been proved:

$$\pi_{28}^7 = \{ \eta_7 \circ \bar{\kappa}_8, \ \sigma' \circ \kappa_{14} \} \cong Z_2 \ \oplus \ Z_2.$$

It follows immediately from (5.15) and Theorem 9.1 of [4] that

$$\pi^8_{29} = \{\eta_8 \circ \bar{\kappa}_9, \ E \sigma' \circ \kappa_{15}, \ \sigma^3_8, \ \sigma_8 \circ \kappa_{15}\} \cong Z_2 \ \oplus \ Z_2 \ \oplus \ Z_4 \ \oplus \ Z_2.$$

Consider the exact sequence:

$$\cdots \to \pi_{31}^9 o \pi_{31}^{17} o \pi_{29}^8 o \pi_{30}^9 o \pi_{30}^{17} = 0$$
,

where $\pi_{31}^{17} = \{\sigma_{17}^2, \kappa_{17}\} = Z_2 \oplus Z_2$. By (5.16) of [4],

$$\Delta \kappa_{17} = (2\sigma_8 - E\sigma') \circ \kappa_{15} = E\sigma' \circ \kappa_{15}$$

and
$$\Delta \sigma_{17}^2 = \pm (2\sigma_8^3 - E\sigma' \circ \sigma_{15}^2).$$

Here we remark $E\sigma'\circ\sigma_{15}^2=0$. For, the relation $H(\sigma'\circ\sigma_{14}^2)=\eta_{13}\circ\sigma_{14}^2$

= $(\bar{\nu}_{13} + \bar{\nu}_{13}) \circ \sigma_{21} = 0$ implies that $\sigma' \circ \sigma_{14}^2$ belongs to $E\pi_{27}^6 = \{\eta_7 \circ \bar{\kappa}_8\}$. If $E\sigma' \circ \sigma_{15}^3 = \eta_8 \circ \bar{\kappa}_9$, by the exactness of the above sequence, we have that $2\sigma_9^3 = E^2\sigma' \circ \sigma_{16}^2 = \eta_9 \circ \kappa_{10} \neq 0$. But $2\sigma_9^3 = 0$ since $2\sigma_{16}^2 = 0$. This is a contradiction and we have proved the required relation.

It follows from the exactness of the above sequence that

$$\pi_{30}^9 = \{ \eta_9 \circ \bar{k}_{10}, \ \sigma_9 \circ \kappa_{16}, \ \sigma_9^3 \} \cong Z_2 \oplus Z_2 \oplus Z_2$$

and

(7.6) $H: \pi_{31}^9 \to \pi_{31}^{17}$ is trivial.

 $\pi_{32}^{19} = \pi_{31}^{19} = 0$ by Theorems 7.12 and 7.13 of [4]. Thus it is clear from the exactness of (T) that

$$\pi_{31}^{10} = \{ \eta_{10} \circ \bar{k}_{11}, \ \sigma_{10} \circ \kappa_{17}, \ \sigma_{10}^{3} \} \cong Z_2 \oplus Z_2 \oplus Z_2$$

We have seen in p. 50 of [1] that the kernel of the homomorphism $\Delta: \pi_{32}^{21} \to \pi_{30}^{10}$ is isomorphic to Z_2 and generated by $4\zeta_{21} = \eta_{21}^2 \circ \mu_{23}$. By Lemma 7.5 of [4], $H(\theta' \circ \mu_{23}) = \eta_{21}^2 \circ \mu_{23}$. From the exactness of the sequence :

$$0 = \pi_{33}^{21} \to \pi_{31}^{10} \to \pi_{32}^{11} \to Z_2 \to 0,$$

we have

$$\pi_{32}^{11} = \{\sigma_{11}^3, \ \eta_{11} \circ \bar{k}_{12}, \ \sigma_{11} \circ \kappa_{18}, \ \theta' \circ \mu_{23}\} \cong Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$$

By Lemma 2.4,

$$\Delta \zeta_{23} = \Delta H(\sigma^{*'''}) = 0$$
 for $\Delta : \pi_{34}^{23} \to \pi_{32}^{11}$.

Whence

(7.7) $E: \pi_{32}^{11} \to \pi_{33}^{12}$ is a monomorphism.

Also we know that $\Delta: \pi_{33}^{23} \to \pi_{31}^{11}$ is trivial by (16.8) of [1]. Therefore we have an exact sequence

$$0 \to \pi_{32}^{11} \to \pi_{33}^{12} \to \pi_{33}^{23} \to 0.$$

where $\pi_{33}^{23} = \{\eta_{23} \circ \mu_{24}\} \cong Z_2$.

In π_{33}^{12} , we have an element $\theta \circ \mu_{24}$ of order 2 which is mapped to $\eta_{23} \circ \mu_{24}$ under H, by Lemma 7.5 of [4]. Thus

$$\pi_{33}^{12} = \{ \sigma_{12}^3, \ \eta_{12} \circ \bar{k}_{13}, \ \sigma_{12} \circ \kappa_{19}, \ E \theta' \circ \mu_{24}, \ \theta \circ \mu_{24} \}$$

$$\cong Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2.$$

Consider the following exact sequence:

where $\pi_{35}^{25} = \{\eta_{25}^{\circ}\mu_{26}\} \cong Z_2$. By the relation (7.30) of [4].

$$(7.8) \qquad \Delta(\eta_{25} \circ \mu_{26}) = E\theta' \circ \mu_{24}.$$

For the last homomorphism Δ in the above sequence, by (16.11) of [1], we know that its kernel is of order 2 and generated by ν_{25}^3 . Thus we have an exact sequence:

$$0 \to E\pi_{33}^{12} \to \pi_{34}^{13} \to \{\nu_{25}^3\} \to 0,$$

where $E\pi_{33}^{12}=\{\sigma_{13}^3,\ \eta_{13}\circ\bar{\kappa}_{14},\ \sigma_{13}\circ\kappa_{20},\ E\theta\circ\mu_{24}\}\cong Z_2\oplus Z_2\oplus Z_2\oplus Z_2$ By (6.1) of [2], we have that

$$H(\lambda \circ \nu_{31}) = H(\lambda_0 \circ \nu_{31}) = \nu_{25}^3$$

By Proposition 2.12 of [2], we have

$$2(\lambda_0 \circ \nu_{31}) \in \{\sigma_{13}, \nu_{20}, 2\nu_{23}, \nu_{26}\} \circ 2\nu_{31} = \sigma_{13} \circ \{\nu_{20}, 2\nu_{23}, \nu_{26}, 2\nu_{29}\}.$$

Lemma 7.1. For sufficiently large n, i.e., for $n \ge 16$

$$\{\nu_n, 2\nu_{n+3}, \nu_{n+6}, 2\nu_{n+9}\} \equiv \kappa_n \mod \sigma_n^2$$
.

The proof is quite similar to the discussions in p. 40 of [1] and we omit it.

Corollary. $2(\lambda \circ \nu_{31}) \equiv \sigma_{13} \circ \kappa_{20} \mod \sigma_{13}^3$, and the order of $\lambda \circ \nu_{31}$ is four.

For, we have $2(\lambda_0 \circ \nu_{31}) \equiv \sigma_{13} \circ \kappa_{20} \mod \sigma_{13}^3$ by Lemma 7.1. Since $H(\lambda \circ \nu_{31} - \lambda_0 \circ \nu_{31}) = 0$, $2(\lambda \circ \nu_{31}) - 2(\lambda_0 \circ \nu_{31}) \in 2E\pi_{33}^{12} = 0$. Corollary follows. These discussions show

$$\pi_{34}^{13} = \{\sigma_{13}^3, \; \eta_{13} \circ \bar{k}_{14}, \; E \theta \circ \mu_{25}, \; \lambda \circ
u_{31}\} \cong Z_2 \; \oplus \; Z_2 \; \oplus \; Z_2 \; \oplus \; Z_4.$$

It follows from (16.10) of [1] that the homomorphism H in the following exact sequence is trivial:

$$\cdots \rightarrow \pi_{36}^{27} \rightarrow \pi_{34}^{13} \rightarrow \pi_{35}^{14} \rightarrow \pi_{35}^{27} \rightarrow \cdots,$$

where $\pi_{36}^{27}=\{
u_{27}^3,\;\mu_{27},\;\eta_{27}\circ s_{28}\}\cong Z_2\,\oplus\,Z_2\,\oplus\,Z_2$

We have

$$\Delta(\nu_{27}^3) = \Delta(\nu_{27}) \circ \nu_{28}^2 = 0$$
 by (10.21) of [4],
$$\Delta(\mu_{27}) = E\theta \circ \mu_{25}$$
 by (7.30) of [4]

and
$$\Delta(\eta_{27} \circ \varepsilon_{28}) = \Delta(\eta_{27} \circ \varepsilon_{28} + \nu_{27}^3)$$

= $\Delta(H(\sigma^{*}))$ by (2) of Lemma 6.2 of [2]
= 0.

It follows that

$$\pi_{35}^{14} = \{\sigma_{14}^3, \; \eta_{14} \circ \bar{k}_{15}, \; E \lambda \circ \nu_{32}\} \cong Z_2 \, \oplus \, Z_2 \, \oplus \, Z_4$$

and

(7.9) the kernel of $\Delta: \pi_{36}^{27} \to \pi_{34}^{13}$ is generated by ν_{27}^3 and $\eta_{27} \circ \varepsilon_{28}$. Next consider the exact sequence

$$\begin{array}{ccc} & \varDelta & E & H & \varDelta \\ \cdots & \rightarrow \pi_{37}^{29} \rightarrow \pi_{35}^{14} \rightarrow \pi_{36}^{15} \rightarrow \pi_{36}^{29} \rightarrow \pi_{34}^{14} \rightarrow \end{array} \cdots,$$

where $\pi_{37}^{29}=\{\bar{\nu}_{29},\; \mathbf{s}_{29}\}\cong Z_2 \oplus Z_2$ and $\pi_{36}^{29}=\{\sigma_{29}\}\cong Z_{16}.$

Since $\Delta \sigma_{29}$ is of order 16 [1], the above H is trivial.

Now consider $E^{3}(\lambda \circ \nu_{31})$. It follows from Lemma 12.18 of [4] that

$$E^{\scriptscriptstyle 3}(\lambda \circ \nu_{\scriptscriptstyle 31}) - 2 \nu_{\scriptscriptstyle 16}^{\scriptscriptstyle *} \circ \nu_{\scriptscriptstyle 34} = \varDelta \nu_{\scriptscriptstyle 33}^{\scriptscriptstyle 2}.$$

We have

$$\begin{aligned} 2\nu_{16}^{*} \circ \nu_{34} &\in \{\sigma_{16}, \ 2\sigma_{23}, \ \nu_{30}\} \circ 2\nu_{34} \\ &= -\sigma_{16} \circ \{2\sigma_{23}, \ \nu_{30}, \ 2\nu_{33}\} \\ &\supset -2\sigma_{16} \circ \{\sigma_{23}, \ \nu_{30}, \ 2\nu_{33}\} \\ &\subset -2\sigma_{16} \circ \pi_{37}^{23} = \sigma_{16} \circ 2\pi_{37}^{23} \\ &= 0, \end{aligned}$$

where the indeterminacy is $2\sigma_{16}^2 \circ \pi_{37}^{30} + \sigma_{16} \circ \pi_{34}^{23} \circ \nu_{34} = 0$. Thus we have

(7.10).
$$2\nu_{16}^*\circ\nu_{34}=0$$
, $E^3(\lambda\circ\nu_{31})=\Delta\nu_{33}^2$ and $2E^3(\lambda\circ\nu_{31})=\Delta(2\nu_{33}^2)=0$.

By (4) of Lemma 6.2 of [2], $\Delta \sigma_{31} = \Delta (H \sigma_{16}^*) = 0$. Since σ_{31} generates π_{38}^{31} it follows from the exactness of (T)

(7.11). $E: \pi_{36}^{16} \rightarrow \pi_{37}^{16} \text{ is a monomorphism and } 2E^2(\lambda \circ \nu_{31}) = 0.$

On the other hand $2E\lambda \nu_{32} \neq 0$, and this is a non-trivial kernel of $E: \pi_{35}^{14} \to \pi_{36}^{15}$. By (3) of Lemma 6.2 of [2]

$$\Delta(\bar{\nu}_{29} + \varepsilon_{29}) = \Delta H(\sigma^{*\prime}) = 0.$$

Since $\bar{\nu}_{29}$ and ε_{29} generate $\pi_{37}^{29}\cong Z_2\oplus Z_2$, we have

$$(7.12) 2E\lambda \circ \nu_{32} = \Delta \bar{\nu}_{29} = \Delta \varepsilon_{29}$$

and

(7.13) the kernel of $\Delta: \pi_{37}^{29} \rightarrow \pi_{35}^{14}$ is generated by $\bar{\nu}_{29} + \varepsilon_{29} = H(\sigma^*)$.

Consequently, we have obtained

$$\pi_{36}^{15} = E \pi_{34}^{14} = \{ \sigma_{15}^3, \ \eta_{15} \circ \bar{k}_{16}, \ E^2 \lambda \circ \nu_{33} \} \cong Z_2 \oplus Z_2 \oplus Z_2$$

From (7.11), we have an exact sequence

$$0 \to \pi_{36}^{15} \to \pi_{37}^{16} \to \pi_{37}^{31},$$

where $\pi_{37}^{31} = \{\nu_{31}^2\} \cong Z_2$. By Lemma (12.14) of [4], we have $H(\nu_{16}^* \nu_{34}) \equiv \nu_{31}^2 \mod 2\nu_{31}^2 = 0$.

It follows from the first relation of (7.10) the above sequence splits and

$$\pi_{37}^{16} = \{\sigma_{16}^3, \; \eta_{16} \circ \bar{k}_{17}, \; E^3 \lambda \circ \nu_{34}, \; \nu_{16} \circ \nu_{34}\} \cong Z_2 \; \oplus \; Z_2 \; \oplus \; Z_2 \; \oplus \; Z_2$$

Consider the exact sequence

where $\pi_{39}^{33} = \{\nu_{33}^2\} \cong Z_2$. By the second relation of (7.10) we have

$$\pi_{38}^{17} = \{\sigma_{17}^3, \; \eta_{17} \circ \bar{k}_{18}, \; \nu_{17}^* \circ \nu_{35}\} \cong Z_2 \, \oplus \, Z_2 \, \oplus \, Z_2$$

and

(7.14)
$$H: \pi_{39}^{17} \rightarrow \pi_{39}^{33}$$
 is trivial.

From the exactness of $0=\pi_{40}^{35}\to\pi_{38}^{17}\to\pi_{39}^{18}\to\pi_{39}^{35}=0,$ it follows immediately

$$\pi_{39}^{18} = \{\sigma_{18}^3, \ \eta_{18} \circ \kappa_{19}, \ \nu_{18}^* \circ \nu_{36}\} \cong Z_2 \oplus Z_2 \oplus Z_2.$$

As is shown in p.53 of [1], the kernel of $\Delta: \pi_{40}^{37} \to \pi_{38}^{18}$ is generated by $4\nu_{37} = \eta_{37}^3$. By Lemma 16.4 of [1] we have that

$$2(\bar{\beta}\circ\eta_{39})=0$$
 and $H(\bar{\beta}\circ\eta_{39})=\eta_{37}^3$ for $\bar{\beta}\in\pi_{39}^{19}$.

Therefore the sequence

splits and

$$\pi_{40}^{19} = \{\sigma_{19}^3, \; \eta_{19} \circ \bar{k}_{20}, \; \nu_{19}^* \circ \nu_{37}, \; \bar{\beta} \circ \eta_{39}\} \cong Z_2 \; \oplus \; Z_2 \; \oplus$$

Next we prove

(7.15)
$$\xi_{13} \circ \nu_{31} \equiv \sigma_{13}^3 \mod \sigma_{13} \circ \kappa_{20}.$$

By the definition of ξ_{13} stated in p.153 of [4],

$$egin{aligned} \xi_{13} \circ
u_{31} & \in \{\sigma_{13}, \;
u_{20}, \; \sigma_{23}\} \circ
u_{31} \ & = -\sigma_{13} \circ \{
u_{20}, \; \sigma_{23}, \;
u_{30}\} \ & \equiv \sigma_{13}^3 \mod \sigma_{13} \circ \kappa_{20} \end{aligned}$$

since $\{\nu_{20}, \sigma_{23}, \nu_{30}\} \equiv \sigma_{20}^2 \mod \kappa_{20}$ by Example 4 in p.85 of [4]. Hence by Corollary 12.25 of [4],

$$(7.16) \Delta\nu_{39} = (\nu_{19}^* + \xi_{19}) \circ \nu_{37} \equiv \nu_{19}^* \circ \nu_{37} + \sigma_{19}^3 \mod \sigma_{19} \circ \kappa_{26}.$$

In the exact sequence

$$0 \to \varDelta \pi_{42}^{39} \to \pi_{40}^{19} \to \pi_{41}^{20} \to \text{Kernel } \varDelta \to 0,$$

 $\Delta\pi_{42}^{39}$ is generated by the element of (7.16) and Kernel Δ is already known to be trivial as in p.54 of [1]. By Lemma 16.5 of [1] we have

$$H(\bar{\beta}\circ\eta_{40})=\eta_{39}^2$$
 and $2\bar{\beta}\circ\eta_{40}=0$.

Therefore we have

$$\pi_{41}^{20} = \{\sigma_{20}^3, \; \eta_{20} \circ \bar{k}_{21}, \; E \bar{\beta} \circ \eta_{40}, \; \bar{\bar{\beta}} \circ \eta_{40}\} \cong Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$$

By Lemma 16.4 of [1], $\Delta \eta_{41} = E\bar{\beta}$ and $\Delta \eta_{41}^2 = E\bar{\beta} \circ \eta_{40}$. Since η_{41} and η_{41}^2 generate π_{42}^{41} and π_{43}^{41} respectively and since $E\bar{\beta} \neq 0$,

$$\pi_{42}^{21}=E\pi_{41}^{20}=\{\sigma_{21}^3,\; \eta_{21}\circar{k}_{22},\; Ear{ar{eta}}\circ\eta_{41}\}\cong Z_2\;\oplus\; Z_2\;\oplus\; Z_2.$$

In the exact sequence

 $\pi_{44}^{43} = \{\eta_{43}\} \cong Z_2$ and $\pi_{43}^{43} = \{\iota_{43}\} \cong Z$. As is seen in [1], $\Delta \iota_{43}$ is of order 2, whence $H\pi_{43}^{22}$ is generated by $2\iota_{43}$. By Proposition 2.7 of [4], $2\iota_{43} = \pm H\Delta(\iota_{45})$. We have

$$\Delta \eta_{43} = E \bar{\beta} \circ \eta_{41}$$

by Lemma 16.5 of [1]. Thus

$$\pi_{43}^{22} = \{ \sigma_{22}^3, \, \eta_{22} \circ \bar{k}_{23}, \, \varDelta \iota_{45} \} \cong Z_2 \oplus Z_2 \oplus Z_2$$

It follws easily from the exactness of (T)

$$\pi_{44}^{23} = \{\sigma_{23}^3, \; \eta_{23} \circ \bar{k}_{24}\} \cong Z_2 \, \oplus \, Z_2,$$

and $(G_{21}:2)=\{\sigma^3,\ \eta\circ\bar{\kappa}\}\cong Z_2\oplus Z_2$ in stable range.

Finally we prove

Proposition 7.2.
$$2\lambda \circ \nu_{31} = \sigma_{13} \circ \kappa_{20}$$
 and $\sigma_n \circ \kappa_{n+7} = 0$ for $n \ge 15$.

proof. Let n be sufficiently large. As is well known there exists an element β_1 of $\pi_7(SO(n))$ such that $J(\beta_1) = \sigma_n \in \pi_{n+7}(S^7)$ for Hopf-Whitehead J-homomorphism. We have $\sigma_n \circ \eta_{n+7} = J(\beta_1) \circ E^n \kappa_7 = J(\beta_1 \circ \kappa_7)$, while $\beta_1 \circ \kappa_7 \in \pi_{21}(SO(n)) = 0$ since $21 \equiv 5 \pmod{8}$.

Assume that $2\lambda\circ\nu_{31}\neq\sigma_{13}\circ\kappa_{20}$, then $2\lambda\circ\nu_{31}=\sigma_{13}\circ\kappa_{20}+\sigma_{13}^3$, by Corollary to Lemma 7.1. By (7.10), $\sigma\circ\kappa+\sigma^3=0$ in stable range. Thus $\sigma^3=\sigma\circ\kappa=0$, but this contradicts to the above result. Consequently $2\lambda\circ\nu_{31}=\sigma_{13}\circ\kappa_{20}$ and $\sigma_{15}\circ\kappa_{22}=0$ by (7.11). q. e. d.

§8. Computations of the 2-primary components of $\pi_{n+22}(S^n)$.

By (5.2) of [4] and by (7.2), we obtain immediately

$$\pi_{24}^2=\{\eta_2\circ
u'\circ\mu_6\circar\mu_7\}\cong Z_2.$$

We have $E(\eta_2 \circ \nu' \circ \eta_8 \circ \bar{\mu}_7) = 0$ by Lemma 5.7 of [4]. By the exactness of (T), π_{25}^3 is isomorphic to $H\pi_{25}^3$ which is $\{\nu_5^2 \circ \kappa_{11}\} \cong Z_2$ by (7.1).

By Lemma 6.1 of [4],
$$H(\varepsilon_3)=\nu_5^2$$
, so $H(\varepsilon_3\circ\kappa_{11})=\nu_5^2\circ\kappa_{11}$ and
$$\pi_{25}^3=\{\varepsilon_3\circ\kappa_{11}\}\cong Z_2.$$

By (5.6) and Theorem 12.9 of [4], we obtain immediately

$$\pi_{26}^4=\{arepsilon_4\!\circ\!\kappa_{12},\
u_4\!\circ\!ar\zeta_7,\
u_4\!\circ\!ar\zeta_7\}\cong Z_2\oplus\ Z_8\oplus\ Z_2.$$

Consider the exact sequence

$$M \longrightarrow \pi_{28}^9 \longrightarrow \pi_{26}^4 \longrightarrow \pi_{27}^5 \longrightarrow \pi_{27}^9 \longrightarrow \pi_{25}^4 \longrightarrow \cdots$$

where $\pi_{28}^9 = \{\bar{\zeta}_9, \bar{\sigma}_9\} \cong Z_2 \oplus Z_2$.

By the definition of $\bar{\zeta}_6$ and the relation $\nu' \circ \bar{\zeta}_6 = 0$,

$$\nu' \circ \bar{\zeta}_6 \quad \in \nu' \circ \{\zeta_6, \ 8\iota_{17}, \ 2\sigma_{17}\}$$

$$= \{\nu', \ \zeta_6, \ 8\iota_{17}\} \circ 2\sigma_{18} \quad \text{by Proposition 1.4 of [4]}$$

$$\subset \pi^3_{18} \circ 2\sigma_{18}$$

$$= 0 \quad \text{by Theorem 10.5 of [4]}.$$

Therefore we have, by use of (5.8) of [4],

$$\Delta \bar{\zeta}_9 = \pm (2\nu_4 - E\nu') \circ \bar{\zeta}_7$$

$$= \pm 2\nu_4 \circ \bar{\zeta}_7.$$

By the definition of $\bar{\sigma}_6$ and the relation $\nu' \circ \nu_6 = 0$,

$$\begin{array}{lll} \nu' \circ \bar{\sigma}_{6} & \in & \nu' \circ \{\nu_{6}, \; \varepsilon_{9} + \bar{\nu}_{9}, \; \sigma_{17}\} \\ \\ & = \; \{\nu', \; \nu_{6}, \; \varepsilon_{9} + \bar{\nu}_{9}\} \circ \sigma_{18} & \text{by Proposition 1.4 of [4]} \\ \\ & = \; \{\nu', \; \nu_{6}, \; \eta_{9} \circ \sigma_{10}\} \circ \sigma_{18} \\ \\ & \supset \; \{\nu', \; \nu_{6}, \; \eta_{9}\} \circ \sigma_{11}^{2} & \text{by Poposition 1.3 of [4]} \\ \\ & \subset \; \pi_{11}^{2} \circ \sigma_{11}^{2} = \{\varepsilon_{3} \circ \sigma_{11}^{2}\} = 0 & \text{by Lemma 10.7 of [4]}. \end{array}$$

Therefore we have

$$\nu' \circ \bar{\sigma}_{\scriptscriptstyle 6} \equiv 0 \mod \nu' \circ \pi_{18}^6 \circ \sigma_{18} + \pi_{10}^3 \circ \eta_{10} \circ \sigma_{11}^2 = 0,$$

and $\Delta \bar{\sigma}_9 = \pm (2\nu_4 - E\nu') \circ \bar{\sigma}_7 = 0.$

By (7.3), the homomorphism H in the above exact sequence is trivial. It follows that

$$\pi_{27}^{5}=\{arepsilon_{5}\circ\kappa_{13},\
u_{5}\circar{\zeta}_{8},\
u_{5}\circar{\sigma}_{8}\}\cong Z_{2}\oplus Z_{2}\oplus Z_{2}$$

Consider the exact sequence

$$\stackrel{\mathcal{A}}{\cdots} \rightarrow \pi^{11}_{29} \rightarrow \pi^{5}_{27} \rightarrow \pi^{6}_{28} \rightarrow \pi^{11}_{28} \rightarrow \pi^{5}_{26} \rightarrow \cdots,$$

where π_{29}^{11} is generated by $\eta_{11} \circ \bar{\mu}_{12}$, ξ' and λ' . By (5.10) of [4]

$$egin{aligned} \varDelta(\eta_{11}\circar{\mu}_{12}) &=
u_5\circ\eta_8^2\circar{\mu}_{10} \ &= 4
u_5\circar{\zeta}_8 \qquad & ext{by Lemma 12.4 of [4]} \ &= 0. \end{aligned}$$

By Proposition 2.7 of [4] we have

$$H\Delta(2\lambda) = H\Delta(E^2\lambda') = 2\lambda'$$

whence $H\Delta(\lambda) \equiv \lambda' \mod \{\eta_{11} \circ \mu_{12}, 2\xi', 4\lambda'\}.$

So, $\Delta \lambda' \equiv 0 \mod \{\Delta 2\xi'\} = 0$.

Similarly $\Delta \xi' \equiv 0 \mod \{\Delta 2\xi'\} = 0.$

Therefore $\varDelta: \pi_{29}^{11} \to \pi_{27}^{5}$ is trivial. By (7.4) the kernel of $\varDelta: \pi_{28}^{11} \to \pi_{26}^{5}$ is isomorphic to $Z_2 \oplus Z_2$ and generated by $\sigma_{11} \circ \eta_{18} \circ \mu_{19}$ and $\nu_{11} \circ \kappa_{14}$. We have

$$\nu_{11} \circ \kappa_{14} = H(\bar{\nu}_6) \circ \kappa_{14}$$
 by Lemma 6.2 of [4]

 $= H(\bar{\nu}_6 \circ \kappa_{14})$ by Proposition 2.2 of [4],

 $\sigma_{11} \circ \eta_{18} \circ \mu_{19} = \eta_{11} \circ \sigma_{12} \circ \mu_{19}$ by Lemma 6.4 of [4]

 $= H(\rho''') \circ \mu_{19}$ by (10.12) of [4]

 $= H(\rho''' \circ \mu_{19})$ by Proposition 2.2 of [4].

Moreover

$$2(\nu_{11}\circ\kappa_{14})=\nu_{11}\circ(2\kappa_{14})=0.$$

By the definition of $\bar{\zeta}_9$, we have

$$\nu_{6} \circ \bar{\zeta}_{9} \in \nu_{6} \circ \{\zeta_{9}, 8\iota_{20}, 2\sigma_{20}\}_{5}$$
 $\subset \{\nu_{6} \circ \zeta_{9}, 8\iota_{20}, 2\sigma_{20}\}_{5}$ by Proposition 1.2 of [4]
$$= \{2\sigma'' \circ \sigma_{13}, 8\iota_{20}, 2\sigma_{20}\}_{5}$$
 by (10.7) of [4]
$$\subset \{\sigma'' \circ \sigma_{13}, 16\iota_{20}, 2\sigma_{20}\}_{5}$$
 by Proposition 1.2 of [4]
$$\supseteq 2\sigma'' \circ \{\sigma_{13}, 16\iota_{20}, \sigma_{20}\}_{5}$$
 by Proposition 1.2 of [4]
$$\supseteq 4\sigma'' \circ \rho_{13}$$
 by Lemma 10.9 of [4]
$$= 0,$$

where the indeterminacy is $\rho''' \circ 2\sigma_{21} = 2\rho''' \circ \sigma_{21}$. Thus

$$\nu_6 \circ \bar{\zeta}_9 = 2n(\rho''' \circ \sigma_{21})$$
 for $n = 0$ or 1.

But we know that $E: \pi_{27}^5 \to \pi_{28}^6$ is a monomorphism and $\nu_6 \circ \bar{\zeta}_9 \neq 0$, since $\Delta: \pi_{29}^{11} \to \pi_{27}^5$ is trivial. This implies that n=1, i. e., (8.1) $\nu_6 \circ \bar{\zeta}_9 = 2\rho''' \circ \sigma_{21}.$

We have obtained

$$\pi_{28}^6 = \{\rho''' \circ \sigma_{21}, \ \bar{\nu}_6 \circ \kappa_{14}, \ \varepsilon_6 \circ \kappa_{14}, \ \nu_6 \circ \bar{\sigma}_9\} \cong Z_4 \oplus Z_2 \oplus Z_2 \oplus Z_2.$$

Next consider the homomorphism

$$\Delta: \pi_{30}^{13} \to \pi_{28}^{6}$$

where $\pi_{30}^{18}=\{arepsilon_{13}^{*},\ \sigma_{13}\circ\eta_{20}\circ\mu_{21},\
u_{13}\circ\kappa_{16},ar{\mu}_{13}\}\cong Z_{2}\ \oplus\ Z_{2}\ \oplus\ Z_{2}\ \oplus\ Z_{2}$

By Example 5.12 of [2], we have

$$\Delta(\varepsilon_{13}^*) = \Delta H(\sigma' \circ \omega_{14}) = 0.$$

We choose an element τ' from the secondary composition $\{\rho'', 8\iota_{22}, 2\sigma_{22}\}$, then

$$H(\tau') \in H\{\rho'', 8\iota_{22}, 2\sigma_{22}\}$$

$$\subset \{H(\rho''), 8\iota_{22}, 2\sigma_{22}\}$$
 by Proposition 2.3 of [4]
 $= \{\mu_{13}, 8\iota_{22}, 2\sigma_{22}\}$
 $\supset \{\mu_{13}, 2\iota_{22}, 8\sigma_{22}\}$
 $\ni \bar{\mu}_{13}$ by the definition of $\bar{\mu}_{13}$.

Thus
$$\bar{\mu}_{13} \equiv H(\tau') \mod \mu_{13} \circ \pi_{30}^{22} + \pi_{22}^{13} \circ 2\sigma_{22} = \{ \varepsilon_{13} \circ \mu_{21}, \ \bar{\nu}_{13} \circ \mu_{21} \}$$
 whence $\Delta \bar{\mu}_{13} \equiv \Delta H(\tau') \mod \{ \Delta(\varepsilon_{13} \circ \mu_{21}), \ \Delta(\bar{\nu}_{13} \circ \mu_{21}) \} = 0$ and $\Delta \bar{\mu}_{13} = 0$.

Furthermore

$$egin{aligned} \varDelta(\sigma_{13}\circ \eta_{20}\circ \mu_{21}) &= (\varDelta\eta_{13})\circ \sigma_{18}\circ \mu_{19} &= 0 \ \\ \varDelta(
u_{13}\circ \kappa_{16}) &= (\varDelta
u_{13})\circ \kappa_{14} &= \pm 2ar{
u}_6\circ \kappa_{14} &= 0. \end{aligned}$$

and

Thus the homomorphism Δ is trivial, and we have an exact sequence

$$\begin{array}{ccc} & E & H \\ 0 & \to & \pi_{28}^6 \to & \pi_{29}^7 \to & \pi_{29}^{13} \to & 0, \end{array}$$

by use of (7.5), where $\pi_{29}^{13} = \{\sigma_{13} \circ \mu_{20}\} \cong Z_2$. Consider the elements $\rho'' \circ \sigma_{22}$ and $\sigma' \circ \rho_{14}$ in π_{29}^7 .

$$H(\rho'' \circ \sigma_{22}) = \mu_{13} \circ \sigma_{22}$$
 by (10.12) of [4]
 $= \sigma_{13} \circ \mu_{20}$
 $= \eta_{13} \circ \rho_{14}$ by Proposition 12.20 of [4]
 $= H(\sigma') \circ \rho_{14}$ by Lemma 5.14 of [4]
 $= H(\sigma' \circ \rho_{14}).$

It follows

$$ho^{\prime\prime}\circ\sigma_{22}\equiv\sigma^{\prime}\circ
ho_{14}\mod E\pi_{29}^6=\{E
ho^{\prime\prime\prime}\circ\sigma_{22},\ ar{\epsilon}_{7}\circ\kappa_{15},\ eta_{7}\circ\kappa_{15},\
u_{7}\circar{\sigma}_{10}\},$$
 and
$$2\sigma^{\prime}\circ
ho_{14}\equiv2
ho^{\prime\prime}\circ\sigma_{22}\mod 2E
ho^{\prime\prime\prime}\circ\sigma_{22}$$
 $=E(
ho^{\prime\prime\prime}\circ\sigma_{21}).$

So, $2\sigma' \circ \rho_{14} = (2n+1)E(\rho''' \circ \sigma_{21})$ for some integer n.

In any way the order of $\sigma' \circ \rho_{14}$ is 8, and we have

$$\pi_{29}^{7}=\{\sigma'\circ\rho_{14},\ \bar{\iota}_{7}\circ\kappa_{15},\ \varepsilon_{7}\circ\kappa_{15},\ \nu_{7}\circ\bar{\sigma}_{10}\}\cong Z_{8}\ \oplus\ Z_{2}\ \oplus\ Z_{2}\ \oplus\ Z_{2}.$$

It is easily verified by use of (5.15) of [4] that

$$egin{aligned} \pi_{30}^8 &= \{ E \sigma' \circ
ho_{14}, \; ar{\iota}_8 \circ \kappa_{16}, \; arepsilon_8 \circ ar{\sigma}_{16}, \; \sigma_8 \circ ar{\sigma}_{17}, \; \sigma_8 \circ
ho_{15}, \; \sigma_8 \circ ar{arepsilon}_{15} \} \ &\cong Z_8 \; \oplus \; Z_2 \; \oplus \; Z_2 \; \oplus \; Z_2 \; \oplus \; Z_{32} \; \oplus \; Z_2. \end{aligned}$$

Lemma 8.1. $\eta_7 \circ \sigma_8 \circ \kappa_{15} = 0$.

Proof.
$$\sigma_8 \sharp \bar{\epsilon}_3 = \sigma_{11} \circ \bar{\epsilon}_{18} = \bar{\epsilon}_{11} \circ \sigma_{28}$$
 by Proposition 3.1 of [4]

$$\in \{\varepsilon_{11}, 2\iota_{19}, \nu_{19}^2\} \circ \sigma_{26}$$

$$= \varepsilon_{11} \circ \{2\iota_{19}, \ \nu_{19}, \ \sigma_{25}\}$$
 by Proposition 1.4 of [4].

In the stable range, we have

$$\eta \circ < 2\iota$$
, ν^2 , $\sigma > = < \eta$, 2ι , $\nu^2 > \circ \sigma$ by (3.5) of [4]
 $= \varepsilon \circ \sigma$ by (6.1) of [4]
 $= 0$ by Theorem 14.1 of [4].

Since $\eta \circ \kappa = \bar{\varepsilon} \neq 0$ and $\eta \circ \sigma^2 = 0$, we obtain

$$\langle 2\iota, \nu^2, \sigma \rangle \equiv 0 \mod \sigma^2$$
.

It follows from this relation that

$$\bar{\varepsilon}_{11} \circ \sigma_{26} \equiv 0 \mod \varepsilon_{11} \circ \sigma_{19}^2$$

where $\varepsilon_{11}{}^{\circ}\sigma_{19}^2=0$ by Lemma 10.7 of [4]. That is

$$\bar{\varepsilon}_{11}\circ\sigma_{26}=\sigma_{11}\circ\bar{\varepsilon}_{18}=0.$$

The exactness of $0=\pi_{34}^{21} o \pi_{32}^{10} o \pi_{33}^{11}$ implies that $ar{arepsilon}_{10}\circ\sigma_{25}=\sigma_{10}\circar{arepsilon}_{17}=0.$

By Lemma 10.7 of [4],

$$\Delta\sigma_{19}^2=(\sigma_9\circ\eta_{16}+\bar{\epsilon}_9+\varepsilon_9)\circ\sigma_{17}^2=0.$$

Since π_{33}^{19} is generated by σ_{19}^2 and κ_{19} , we have

(8.2)
$$\sigma_9 \circ \bar{\epsilon}_{16} \in \operatorname{Ker}(E : \pi_{31}^9 \to \pi_{32}^{10}) = \Delta \pi_{33}^{19} = \{\Delta \kappa_{19}\}.$$

Here we have $\sigma_{9} \circ \bar{\epsilon}_{16} \neq 0$, as the kernel of $E : \pi_{30}^8 \to \pi_{31}^9$ is generated by

(8.3)
$$\Delta \rho_{17} = \pm (2\sigma_8 - E\sigma') \circ \rho_{15}$$
 by (5.16) of [4]
and $\Delta \varepsilon_{17} = \pm (2\sigma_8 - E\sigma') \circ \bar{\varepsilon}_{15}$
 $= E\sigma' \circ \bar{\varepsilon}_{15} = E\sigma' \circ \gamma_{15} \circ \kappa_{16}$ by (10.3) of [4]
 $= (\gamma_8 \circ \sigma_9 + \bar{\nu}_8 + \varepsilon_8) \circ \kappa_{16}$ by (7.5) of [4].

Hence

$$\Delta \kappa_{19} = \sigma_9 \circ \tilde{\epsilon}_{16}.$$

On the other hand

$$\varDelta \kappa_{19} = (\sigma_{9} \circ \eta_{16} + \bar{\nu}_{9} + \varepsilon_{9}) \circ \kappa_{17} \qquad \text{by (7.1) of [4]}$$

$$= \sigma_{9} \circ \bar{\varepsilon}_{16} + \bar{\nu}_{9} \circ \kappa_{17} + \varepsilon_{9} \circ \kappa_{17} \qquad \text{by (10.23) of [4]}.$$
So, $\eta_{9} \circ \sigma_{10} \circ \kappa_{17} = \bar{\nu}_{9} \circ \kappa_{17} + \varepsilon_{9} \circ \kappa_{17} = 0 \qquad \text{by Lemma 6.4 of [4],}$
whence $(\bar{\nu}_{8} + \varepsilon_{8}) \circ \kappa_{16} \in \text{Ker } (E : \pi_{30}^{8} \to \pi_{31}^{9}) = \varDelta \pi_{32}^{17},$
i.e., $(\bar{\nu}_{8} + \varepsilon_{8}) \circ \kappa_{16} = \pm \varDelta (a \ \rho_{17} + b \ \bar{\varepsilon}_{17}) \qquad \text{for some integers} \quad a, b$

$$= 2a \ \sigma_{8} \circ \rho_{15} - E(a \ \sigma' \circ \rho_{14} + b(\eta_{7} \circ \sigma_{8} \circ \kappa_{15} + \bar{\nu}_{7} \circ \kappa_{15} + \varepsilon_{7} \circ \kappa_{15})).$$
So,
$$2a \equiv 0 \mod 32$$
or
$$a = 16 \ a' \quad \text{for some integer} \quad a'.$$

Since $16(\Delta \rho_{17}) = 0$ and $(\bar{\nu}_8 + \varepsilon_8) \circ \kappa_{16} \neq 0$, we have

(8.5)
$$\Delta \bar{\varepsilon}_{17} = (\bar{\nu}_8 + \varepsilon_8) \circ \kappa_{16}.$$

On the other hand $\varDelta \bar{\varepsilon}_{17} = \eta_8 \circ \sigma_9 \circ \kappa_{16} + (\varepsilon_8 + \bar{\nu}_8) \circ \kappa_{16}$, we have then $\eta_8 \circ \sigma_9 \circ \kappa_{16} = 0$,

and by use of the monomorphism $E: \pi_{29}^7 \to \pi_{30}^8$, we obtain the required relation $\eta_{7^\circ} \sigma_{8^\circ} \kappa_{15} = 0$. q. e. d.

By (7.6) we have the following exact sequence:

where

It follows from (8.3) and (8.5) that

$$\pi_{31}^9=\{\sigma_9\circ
ho_{16},\;arepsilon_9\circ\kappa_{17},\;
u_9\circar\sigma_{12},\;\sigma_9\circararepsilon_{16}\}\cong Z_{16}\;\oplus\;Z_2\;\oplus\;Z_2\;\oplus\;Z_2.$$

Consider the following exact sequence:

where $\pi_{33}^{19} = \{\sigma_{19}^2, \kappa_{19}\} \cong Z_2 \oplus Z_2$.

By (8.2) and (8.4) we have

$$\pi_{32}^{10} = \{\sigma_{10} \circ
ho_{17}, \; arepsilon_{10} \circ \kappa_{18}, \;
u_{10} \circ ar{\sigma}_{13}\} \cong Z_{16} \; \oplus \; Z_2 \; \oplus \; Z_2.$$

It is verified from the results $\pi_{34}^{21} = \pi_{33}^{21} = 0$ that

$$\pi_{33}^{11} = \{\sigma_{11} \circ \rho_{18}, \ \varepsilon_{11} \circ \kappa_{19}, \ \nu_{11} \circ \bar{\sigma}_{14}\} \cong Z_{16} \oplus Z_2 \oplus Z_2.$$

By (7.7), we have an exact sequence

$$\begin{array}{c}
E & H \\
0 = \pi_{35}^{23} \to \pi_{33}^{11} \to \pi_{34}^{12} \to \pi_{34}^{23} \to 0,
\end{array}$$

where $\pi_{34}^{23} = \{\zeta_{23}\} \cong Z_8$.

The element $\sigma^{*'''}$ in Lemma 6.2 of [2] has the properties $H(\sigma^{*'''}) = \zeta_{23}$ and $8\sigma^{*'''} \equiv 4\sigma_{12} \circ \rho_{19}$ mod $\{8\sigma_{12} \circ \rho_{19}\}$, whence the order of $\sigma^{*'''}$ is 32.

By an easy calculation we have

$$\pi_{34}^{12} = \{\sigma^{*}{}''', \ \sigma_{12}{}^{\circ}\rho_{19} \pm 2\sigma^{*}{}''', \ \varepsilon_{12}{}^{\circ}\kappa_{20}, \ \nu_{12}{}^{\circ}\bar{\sigma}_{15}\} \cong Z_{32} \ \oplus \ Z_{4} \ \oplus \ Z_{2} \ \oplus \ Z_{2}.$$

We have

$$2\rho' \circ \sigma_{24} \in \{\sigma_9, 16\iota_{16}, \sigma_{16}\} \circ 2\sigma_{24}$$
 by the definition of ρ'

$$= -\sigma_9 \circ \{16\iota_{16}, \sigma_{16}, 2\sigma_{23}\} \text{ by Proposition 1.4 of [4]}$$

$$\equiv -2\sigma_9 \circ \rho_{16} \mod \sigma_9 \circ \pi_{24}^{16} \circ 2\sigma_{24} + \{2\sigma_9 \circ \mathcal{L}_{23}\},$$

since it is verified that $<16\iota$, σ , 2σ contains 2ρ in [4].

$$2\pi_{24}^{16}=0$$
 and $2\sigma_{9}\circ\varDelta\iota_{33}=2\llbracket\sigma_{9},\;\sigma_{9}
ceil}=2\varDelta\iota_{9}\circ\sigma_{17}^{2}=0.$ Thus

$$(8.6) 2\rho' \circ \sigma_{24} = -2\sigma_9 \circ \rho_{16}.$$

Applying E^4

(8.7)
$$4\rho_{12}\circ\sigma_{28} = -2\sigma_{13}\circ\rho_{20} \quad and \quad 8\rho_{13}\circ\sigma_{28} = \pm 8E\sigma^{*}'''.$$

Consider the exact sequence

$$\begin{array}{ccc}
 & A & E & H \\
\cdots \rightarrow & \pi_{36}^{25} \rightarrow & \pi_{34}^{12} \rightarrow & \pi_{35}^{13} \rightarrow & \pi_{35}^{25} \rightarrow \cdots,
\end{array}$$

where $\pi_{36}^{25} = \{\zeta_{25}\} \cong Z_8$, $\pi_{35}^{25} = \{\eta_{25} \circ \mu_{26}\} \rightarrow \cdots \cong Z_2$ and H is trivial by (7.8).

By Proposition 3.2 of [4] we have that

$$\Delta(E^{16}(\eta_9^2 \circ \mu_{11}) \circ E^{21} \iota_{15}) = E^{21} \rho^{1V} \circ E^{19} \sigma_8 + E^4 \sigma_8 \circ E^{14} \rho^{1V}$$

i. e.,
$$\begin{split} 4\varDelta\zeta_{25} &= \varDelta(\eta_{25}^2 \circ \mu_{27}) \\ &= 8E^3 \rho' \circ \sigma_{27} + 16\sigma_{12} \circ \rho_{19} \\ &= 8\sigma_{12} \circ \rho_{19} \qquad \text{by (8.7) and } 16\sigma_{12} \circ \rho_{19} = 0. \end{split}$$

Thus $\Delta \zeta_{25}$ is of order 8.

Also, by Proposition 2.7 of [4],

$$H\Delta(\zeta_{25}) = \pm 2\zeta_{23}$$

= $H(2\sigma^{*})$.

So,
$$\pm \Delta \zeta_{25} \equiv 2\sigma^{*}$$
 mod $E\pi_{33}^{11}$,

whence $\pm \Delta \zeta_{25} = 2\sigma^{*} + x\sigma_{12} \circ \rho_{19} + y\varepsilon_{12} \circ \kappa_{20} + z\nu_{12} \circ \bar{\sigma}_{15}$ for some integers x, y and z.

Since $\Delta \zeta_{25}$ is of order 8, we have

$$0 = 8\Delta \zeta_{25} = 16\sigma^{*} + 8x\sigma_{12} \rho_{19}$$

= $8(x+1)\sigma_{12} \rho_{19}$ by Lemma 6.2 of [2],

whence $x \equiv 1 \mod 2$.

Thus $\Delta \zeta_{25} \equiv 2\sigma^*$ "+ $(2n-1)\sigma_{12}\circ\rho_{19} \mod \{\varepsilon_{12}\circ\kappa_{20}, \nu_{12}\circ\bar{\sigma}_{15}\}$ for some integer n. An easy computation shows

$$\pi_{35}^{13} = \{ \rho_{13} \circ \sigma_{28}, \ \varepsilon_{13} \circ \kappa_{21}, \ \nu_{13} \circ \bar{\sigma}_{16} \} \cong Z_{16} \oplus Z_2 \oplus Z_2.$$

Consider the exact sequence

where $\pi_{37}^{27} = \{\eta_{27} \circ \mu_{28}\} \cong Z_2$ and the image of H is $\{\nu_{27}^3, \eta_{27} \circ \varepsilon_{28}\} \cong Z_2$ $\oplus Z_2$ by (7.9). We have

$$H(\omega_{14} \circ \nu_{30}^2) = \nu_{27}^3$$
 by Lemma 12.15 of [4],

$$H(\sigma^{*'''}) = \nu_{27}^3 + \eta_{27} \circ \varepsilon_{28}$$
 by Lemma 6.2 of [2].

By Proposition 3.2. of [4],

$$\mathcal{L}(\eta_{27} \circ \varepsilon_{28}) = 8\rho_{13} \circ \sigma_{28} + 8\sigma_{13} \circ \rho_{20}$$

$$= 24\rho_{13} \circ \sigma_{28} \qquad \text{by (8.7)}$$

$$= 8\rho_{13} \circ \sigma_{28} \neq 0.$$

Then we have obtained an exact sequence

$$0 \to E\pi_{35}^{13} \to \pi_{36}^{14} \to H\pi_{36}^{13} \to 0$$
,

where $E\pi_{35}^{13}=\{
ho_{14}\circ\sigma_{29},\; arepsilon_{14}\circ\kappa_{22},\;
u_{14}\circar{\jmath}_{17}\}\cong Z_{8}\,\oplus\, Z_{2}\,\oplus\, Z_{2}.$

Obviously

$$2\omega_{14}\circ\nu_{30}^2=\omega_{14}\circ(2\nu_{30}^2)=0.$$

As we have the relation

$$\rho_{14} \circ \sigma_{29} \equiv 2\sigma^{*} \mod \sigma_{14} \circ E\pi_{35}^{20} + 2\pi_{29}^{14} \circ \sigma_{29} = \{2\rho_{14} \circ \sigma_{29}\}$$

by Lemma 6.2 of [2]. we see that the order of $\sigma^{*"}$ is 16. Thus

$$\pi_{36}^{14} = \{\sigma^{\star}{}^{\prime\prime}, \; \omega_{14}{}^{\rm o}\nu_{30}^2, \; \varepsilon_{14}{}^{\rm o}\kappa_{22}, \; \nu_{14}{}^{\rm o}\bar{\jmath}_{17}\} \cong Z_{16} \, \oplus \; Z_2 \, \oplus \; Z_2 \, \oplus \; Z_2.$$

By (7.13), we have an exact sequence

where $\pi_{38}^{29} = \{\nu_{29}^3, \mu_{29}, \eta_{29} \circ \varepsilon_{30}\} \cong Z_2 \oplus Z_2 \oplus Z_2$ and the last Z_2 is generated by $\varepsilon_{29} + \varepsilon_{29} = H(\sigma^*)$. By Lemme 6.2 of [2],

$$E\sigma^{*\prime\prime} \equiv 2\sigma^{*\prime} \mod \rho_{15} \circ \sigma_{30} \equiv 2E\sigma^{*\prime\prime}.$$

By Proposition 3.2 of [4],

$$\Delta(E^{16}H(\rho'')\circ E^{23}\iota_{15})=E^7\rho''\circ E^{21}\sigma_8+E^6\sigma_8\circ E^{14}\rho'',$$

whence $\Delta(\mu_{29}) = 4\rho_{14} \circ \sigma_{29} + 4\sigma_{14} \circ \rho_{21}$

$$=12
ho_{14}\circ\sigma_{29}$$
 by (8.7)
 $=4
ho_{14}\circ\sigma_{20}$
 $=8\sigma^{*}{}'' \neq 0$ by Lemma 6.2 of [2].

Therefore

(8.8) $8E\sigma^{*}{''}=4\rho_{15}\circ\sigma_{30}=0$, and the order of $\sigma^{*}{'}$ is 16. By (10.10) of [4], we have

$$\Delta(\eta_{29}\circ\varepsilon_{30})=4\sigma_{14}^2\circ\varepsilon_{28}=0$$

and

$$\Delta(\nu_{29}^3) = 4\sigma_{14}^2 \circ \bar{\nu}_{28} = 0.$$

These discussions imply

$$\pi_{37}^{15} = \{\sigma^{*}{}', \ \omega_{15} \circ \nu_{31}^{2}, \ \varepsilon_{15} \circ \kappa_{23}, \ \nu_{15} \circ \bar{\jmath}_{18}\} \cong Z_{16} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2}.$$

Next, π_{39}^{31} is isomorphic to $Z_2 \oplus Z_2$ and generated by \mathfrak{F}_{31} and \mathfrak{e}_{31} . By Proposition 3.2 of [4]

$$egin{aligned} arDelta(ar
u_{31} + arepsilon_{31}) &= E^3(\xi_{12} \circ \eta_{30}) \circ E^{30}
u_4 + E^{11}
u_4 \circ E^6(\xi_{12} \circ \eta_{30}) \\ &= \xi_{15} \circ \eta_{33} \circ
u_{34} +
u_{15} \circ \xi_{18} \circ \eta_{36} \\ &= 2 \xi_{15} \circ \eta_{33} \circ
u_{34} \\ &= 0, \end{aligned}$$

whence $\Delta = \Delta \bar{\nu}_{31} = \Delta \varepsilon_{31}$

$$H(\bar{\nu}_{31}^*) \in H\{\sigma_{16}, 2\sigma_{23}, \bar{\nu}_{30}\}_1$$

$$= -\Delta^{-1}(2\sigma_{15}^2) \circ E^2 \bar{\nu}_{29} \quad \text{by Proposition 2.6 of [4]}$$

$$= \bar{\nu}_{31}.$$

Therefore $\Delta \varepsilon_{31} = \Delta \bar{\nu}_{31} = \Delta H(\bar{\nu}_{31}^*) = 0$. So, we have an exact sequence

$$\begin{array}{c} E & H \\ 0 \to \pi_{37}^{15} \to \pi_{38}^{16} \to \pi_{38}^{31}. \end{array}$$

By Lemma 6.2 of [2], $H(\sigma_{16}^*) \equiv \sigma_{31} \mod 2\sigma_{31}$. σ_{31} generates $\pi_{38}^{31} \cong Z_{16}$.

The order of σ_{16}^* is 16 since $16\sigma_{16}^* \equiv \{\sigma_{16}. 2\sigma_{23}, \sigma_{30}\} \circ 16\iota_{38} \equiv -\sigma_{16} \circ \{2\sigma_{23}, \sigma_{30}, 16\iota_{37}\} \equiv -\sigma_{16} \circ (2\rho_{23}) = 0 \mod 16\pi_{38}^{16} = 0$ by (8.7) and (8.8). Thus the above sequence splits:

$$\pi_{38}^{16} = \{\sigma_{16}^*, \ E\sigma^*{}', \ \omega_{16} \circ \nu_{32}^2, \ \varepsilon_{16} \circ \kappa_{24}, \ \nu_{16} \circ \bar{\tau}_{19}\} \cong Z_{16} \oplus Z_{16} \oplus Z_2 \oplus Z_2 \oplus Z_2.$$

Consider the exact sequence

$$A \xrightarrow{\mathcal{L}} H \xrightarrow{\pi_{33}^{33} \to \pi_{38}^{16} \to \pi_{39}^{17} \to \pi_{39}^{33} \to \pi_{37}^{16}}$$

where $\pi_{40}^{33} = \{\sigma_{33}\} \cong Z_{16}$ and $\pi_{39}^{33} = \{\nu_{33}^2\} \cong Z_2$. By (7.10), $\Delta \nu_{33}^2 = E^3(\lambda \circ \nu_{31}) \neq 0$. Thus the above E is an epimorphism.

By Lemma 6.2 of [2],

$$2\sigma_{16}^* = E\sigma^{*\prime} \mod \{\rho_{16} \circ \sigma_{31}, \ \varDelta \sigma_{33}\}.$$

However we have, by Proposition 2.4 of [4],

$$H\Delta(\sigma_{33}) = \pm 2\sigma_{31} = H(\pm 2\sigma_{16}^*),$$

whence

$$\Delta\sigma_{33} \equiv \pm 2\sigma_{16}^* \mod E\pi_{37}^{15}$$
.

Thus $\pm \Delta \sigma_{33} \equiv 2\sigma_{16}^* - E\sigma^{*\prime} \mod \{\rho_{16} \circ \sigma_{31}\}.$

It follows

$$\pi_{39}^{17} = E \pi_{38}^{16} = \{ \sigma_{17}^*, \; \omega_{17} \circ \nu_{33}^2, \; \varepsilon_{17} \circ \kappa_{25}, \; \nu_{17} \circ ar{ au}_{20} \} \cong Z_{16} \oplus Z_2 \oplus Z_2 \oplus Z_2.$$

In the exact sequence

$$\Delta E H$$
 $\pi_{41}^{35} \rightarrow \pi_{30}^{17} \rightarrow \pi_{40}^{18} \rightarrow \pi_{40}^{35} = 0,$

 $\pi_{41}^{35} = \{\nu_{35}^2\} \cong Z_2$. By the relation $\Delta\nu_{35} = \omega_{17} \circ \nu_{33}$ in p.170 of [4], $\Delta\nu_{35}^2 = \omega_{17} \circ \nu_{33}^2$.

Thus

$$\pi_{40}^{18} = \{\sigma_{18}^{^{*}},\; arepsilon_{18}{}^{\circ}\kappa_{26},\;
u_{18}{}^{\circ}ar{\jmath}_{21}\} \cong Z_{16} \oplus Z_2 \oplus Z_2.$$

Lemma 8.2. In the stable range $\sigma \circ \rho = \rho \circ \sigma = 0$ and $\sigma^* = 0$. Proof. There exists an element $\beta_2 \in \pi_{15}(SO(n))$ such that $J(\beta_2) = \rho_n$, where n is sufficiently large. $\beta_2 \circ \sigma_{15} \in \pi_{22}(SO(n)) = 0$ since $22 \equiv 6 \pmod{8}$. Thus $\rho \circ \sigma = \sigma \circ \rho = E^{\infty}J(\beta_2 \circ \sigma_{15}) = 0$.

Next consider $\sigma^* \in \langle \sigma, 2\sigma, \sigma \rangle$. By (3.10) of [4],

$$\langle \sigma, 2\sigma, \sigma \rangle = \langle \sigma, 2\sigma, 2\sigma \rangle = 2 \langle \sigma, 2\sigma, \sigma \rangle$$

mod $\{\sigma \circ \eta \circ \kappa, \ \sigma \circ \rho\} = \{\sigma \circ \eta \circ \kappa\}.$ $\sigma \circ \kappa = 0$ by Lemma 8.1. Thus $\langle \sigma, 2\sigma, \sigma \rangle = 0$, and $\sigma^* = 0$.

Lemma 8.3.
$$8\sigma_{20}^{\star}=4\varDelta\nu_{41},$$
 $4\sigma_{21}^{\star}=\varDelta\eta_{43}^{2},$ $2\sigma_{22}^{\star}=\varDelta\eta_{45}$ $\sigma_{22}^{\star}=\varDelta\iota_{47}.$

and

Proof. Obviously $2\varDelta\eta_{45}=2\varDelta\eta_{43}^2=0$. $2\varDelta\iota_{47}=\pm\varDelta H(\iota_{49})=0$. Im $E\cap\{\varDelta\nu_{41}\}=\{4\varDelta\nu_{41}\}$ since $H(\varDelta\nu_{41})=\pm 2\nu_{37}$ is of order 4. These elements $\varDelta\iota_{47}$, $\varDelta\eta_{45}$, $\varDelta\eta_{43}^2$ and $4\varDelta\nu_{41}$ generate the kernel of E^{∞} : $\pi_{40}^{18} \to (G_{22}\,;2)$, which is at most 16 elements. On the other hand σ_{18}^* is of order 16 and vanishes in the stable range by Lemma 8.2. Then Lemma 8.3 follows immediatelely. q. e. d. Consider the exact sequences

for $n \ge 18$. The above discussions clarify the kernels of E. We also see in §7 that Δ are monomorphisms except the case n = 19. For n = 19 the kernel of Δ is generated by $2\nu_{37} = \pm H(\Delta\nu_{41})$. Therefore the following results are verified easily:

$$\begin{array}{l} \pi_{41}^{19} = \{\sigma_{19}^{\star}, \; \varepsilon_{19} \circ \kappa_{27}, \; \nu_{19} \circ \bar{\sigma}_{22}\} \cong Z_{16} \oplus Z_2 \oplus Z_2, \\ \pi_{42}^{20} = \{\sigma_{20}^{\star}, \; \varDelta \nu_{41} + 2\sigma_{20}^{\star}, \; \varepsilon_{20} \circ \kappa_{28}, \; \nu_{20} \circ \bar{\tau}_{23}\} \cong Z_{16} \oplus Z_4 \oplus Z_2 \oplus Z_2, \\ \pi_{43}^{21} = \{\sigma_{21}^{\star}, \; \varepsilon_{21} \circ \kappa_{29}, \; \nu_{21} \circ \bar{\sigma}_{24}\} \cong Z_8 \oplus Z_2 \oplus Z_2, \\ \pi_{44}^{22} = \{\sigma_{22}^{\star}, \; \varepsilon_{22} \circ \kappa_{30}, \; \nu_{22} \circ \bar{\sigma}_{25}\} \cong Z_4 \oplus Z_2 \oplus Z_2, \\ \pi_{45}^{23} = \{\sigma_{23}^{\star}, \; \varepsilon_{23} \circ \kappa_{31}, \; \nu_{23} \circ \bar{\tau}_{26}\} \cong Z_2 \oplus Z_2 \oplus Z_2, \\ \pi_{46}^{24} = \{\varepsilon_{24} \circ \kappa_{32}, \; \nu_{24} \circ \bar{\tau}_{27}\} \cong Z_2 \oplus Z_2 \\ \text{and} \quad (G_{22} \colon 2) = \{\varepsilon \circ \kappa, \; \nu \circ \bar{\sigma}\} \cong Z_2 \oplus Z_2. \end{array}$$

Appendix. Table of $\pi_{n+21}(S^n)$ and $\pi_{n+22}(S^n)$.

For the completeness of this paper we quote from [5] the odd primary components of $\pi_{n+21}(S^n)$ and $\pi_{n+22}(S^n)$.

The results are the followings:

$$odd\ component\ of\ \pi_{2m+22}(S^{2m+1})\cong \left\{egin{array}{ll} & m=1\ and & m\geq 5, \ Z_3 & m=2,\,3,\,4, \end{array}
ight.$$
 $odd\ component\ of\ \pi_{2m+23}(S^{2m+1})\cong \left\{egin{array}{ll} Z_{105} & m=1, \ Z_{45} & m=2, \ Z_{9} & m=3,\,4, \ Z_{3} & m=5, \ 0 & m\geq 6. \end{array}
ight.$

By Serre's isomorphism

$$\pi_{i-1}(S^{2m-1}:p) \oplus \pi_i(S^{4m-1}:p) \cong \pi_i(S^{2m}:p), \ p:odd\ prime,$$
 we can compute easily $\pi_{n+21}(S^n:p)$ and $\pi_{n+22}(S^n:p)$ for even n .

In the following table, an integer n indicates a cyclic group Z_n of order n, the symbol " ∞ " an infinite cyclic group Z, the symbol "+" the direct sum of groups and $(2)^k$ indicates the direct sum of k-copies of Z_2 .

Table of $\pi_{n+21}(S^n)$ and $\pi_{n+22}(S^n)$.

n =	1	2	3	4	5	6	7
$\pi_{n+21}(S^n)\cong$	0	(2) ²	2	$24+(2)^2$	6+2	6	6+2
$\pi_{n+22}(S^n)\cong$	0	2	210	9240+6+2	$90+(2)^2$	$180 + (2)^3$	$72+(2)^3$

n =	8	9	10	11
$\pi_{n+21}(S^n)\cong$	$12+(2)^3$	$6+(2)^2$	$6+(2)^2$	(2)4
$\pi_{n+22}(S^n)\cong$	1440+24+(2)4	$144+(2)^3$	144+6+2	$48+(2)^2$

n =	12	13	14	15
$\pi_{n+21}(S^n)\cong$	6+(2)4	$4+(2)^3$	$4+(2)^2$	$(2)^3$
$\boxed{\pi_{n+22}(S^n)\cong}$	$2016+12+(2)^2$	$16+(2)^2$	16+(2)2	$16+(2)^3$

n =	16	17	18	19
$\pi_{n+21}(S^n)\cong$	(2) ⁴	(2) ³	(2) ³	(2)4
$\pi_{n+22}(S^n)\cong$	$240+16+(2)^3$	$16+(2)^3$	$16+(2)^2$	16+(2)2

n =	20	21	22	23	n ≥ 24
$\pi_{n+21}(S^n)\cong$	(2) ⁴	(2) ³	$\infty + (2)^2$	(2) ²	(2) ²
$\pi_{n+22}(S^n)\cong$	$48+4+(2)^2$	8+(2)2	4+(2)2	$(2)^3$	(2)2

Kyoto University

BIBLIOGRAPHY

- [1] M. Mimura and H. Toda: The (n+20)-th homotopy groups of n-spheres, J. of Math. Kyoto Univ., 3 (1963), 37-58.
- [2] M. Mimura: On the generalized Hopf homomorphism and the higher composition. Part I, J. of Math. Kyoto Univ., 4 (1964), 171—190.
- [3] J.-P. Serre: Groupes d'homotopie et classes des groupes abéliens, Ann. of Math., 58 (1953), 258-294.
- [4] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies No.49, Princeton (1962).
- [5] H. Toda: On iterated supensions, to appear.