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0. If W, X,Y, and Z are topological spaces with base point, and
acsl(W,X), pelI(X,Y), y€II(Y, Z) are homotopy classes of
base point respecting maps such that the compositions yop and
Boa are zero in II(X,Z) and II(W,Y) respectively, Toda [11]
defined the triple product {r,B,a} SII(SW,Z). He has since
employed it to great advantage in studying the homotopy groups
of spheres ([14], [16]). It has often been noted that the triple
product bears a formal resemblance to the Massey triple product.
In [7], Massey showed how to define longer products analogous to
the Massey products, and in [10] Spanier showed how to define
longer products analogous to the triple product. It is the object
of this paper to give another definition of longer composition pro-
ducts analogous to the triple product, and to explore some of their
properties. The advantage of this definition, as will be seen in
Sections 5 and 6, is that it enables us to make certain computa-
tions in the homotopy groups of spheres. It is, unfortunately, a
very cumbersome definition; it is hoped to give a more categorical
approach to it in a later paper. These products seem related to
those defined by D. M. Kahn (private communication). Their rela-
tion to those defined by Spanier is unclear.

1. In this paper all spaces will have the homotopy type of a

* Part of this work was done on NSF contract GF-3685.
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countable CW complex, and will come equipped with a base point *..
All maps and homotopies will preserve base point. We shall give
two sets of definitions and propositions which will later be related to.
each other. The two sets are dual in the sense of Hilton-Eckmann
[3]. While this duality is only heuristic, each of the proofs of our
propositions may be straightforwardly translated into a proof of the:
dual proposition; hence we give only one proof here. Our numbered
propositions and definitions will be expressed in terms of loop spaces,
fibrations, etc.; the dual proposition or definition, expressed in terms.
of cofibrations, suspensions, etc., will bear the same number followed
by the letter D.

Let X and Y be topological spaces, and let f: X—Y be a map.

Definition 1.1. The fibration induced by f is the fibration p:
P,—X induced from the path space over Y by f.

Definition 1.1D. The cofibration induced by f is the cofibra-
tion j;: Y—C, induced from the cofibration ¢: X—CX, where CX is
the cone over X.

We make certain conventions. The path space over a space
Y is PY={|1: [-Y,2(1)=+}. In PY, *(f)==x, all {£. Thus, P,
={(x,)eXXPY|fx=200)}. In P, *=(*,%). The cone over X,
CX, is XxI with X x {0} U=*x I identified to a point *. We denote
a point in CX by {x,?), the image of (x,¢) in XxXI. C, is the
space YUCX, with <x, 1) identified to fx. * is the image of * under
this identification. The suspension of X, SX, is CX with {{x, 1)}
identified to *; we denote a point in SX by [x, {], the image of
{x, B).

Definition 1.2. A tower of fibrations T={X,, ---, X,; Pi, -+,
P.ii; pay o+, Dui1; f1, o+, fn} of height n over a space P, is a
collection of spaces X;, -+, X,, P:, -, P,u;, and maps fi:
P—X,, i=1 -+ n, pin: Pu—P, i=1 ---, n such that p..:
P.,,—P; is a fibration with fibre 2X;, and P,-HE;P;LX,- is an
exact sequence of spaces in the sense of [9], i.e., the sequence
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Iy, P.,)—>1(Y, P)—-11(Y, X)) is always exact.

Definition 1.2D. A shaft of cofibrations S={X,, -+, X.; Ci,
cooy Cotns fryooy fus J1, =+, Ju} Of depth n under C, is a collection of
spaces X,, -+, X,,, Ci, +++,Cps; and maps fi: X,—C;, ji:Ci—Cisy, 1=1,
---,m, such that j; is a cofibration with cofiber SX;, and the
sequence X;LC;LC;H is coexact in the sense of [9], i.e.,, II1(Cis,
Y)—>I(C;, Y)—-TI(X,, Y) is always exact.

Definition 1.3. If 7T is a tower of fibrations of height #, and
f:Y—>P, is a map, a map f:Y—P,,, is called a lift of f if p,o---
op.iof =f. The corresponding lift to P;, fi, is pirso+-opnsof.

Definition 1.3D. If S is a shaft of cofibrations of depth #,
and f:C,—Y is a map, a drop of f is a map f:C,,—Y such that
f=fojno---0f;. The corresponding drop to C;, f', is fojno-++0j;.

Given a tower of fibrations of height # over P;, a map f:Y—
P,, and a lift of f, f:Y—P,.,, we define Q;, i=1, -, n+2, as
follows:

Qin=P;, i=1 - n+1; Q=Y.

We define gii;: @+1—>Q: as the map induced by p:, i.e.,

Qia=A{(3, DEYXPP;|2(0) =f:(9), 2(1) =+}.

ga(3, )= (3, p:2) if i>1; q.(y, D) =y.

We define maps g::Q..m—02X:, i=1, - n, g :0Q:—P, as follows.
gi=f. Let I:1:Q,—Y, i=1, -+, n+1 be defined by I1.+:(y, 1) =y.
Then pis10fise iy=fi0Il;;,;~* by the homotopy H((y, ), t) =1(t)
so there is a map g, : @:.+;—82X; such that if k:2X,— P, is inclusion,
kog:~finoIl;;. In general, there is no canonical way to pick g:;
the homotopy classes of any two choices of g; differ by an element
in the image of II(Qi+, 2P)).

Similarly, given a shaft S of cofibrations of depth #, and a map
f:C,—Y and a drop f, we define D,=Y, D, the cofibration induced
by f:, i=1, -, n+1, ki :Di—>D:,, and maps gZi+;: SXi—Diy,, i=1,
-n, £.:C—Y, gi=f.
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Definition 1. 4. Given a tower T of fibrations of height #, a map
f:Y—P,, and alift f: Y—>P,., of f, we define a tower induced by
S as being Tf={P;, 82Xy, -+, 2Xn; @y, -+, Quiz; @, **, Guta} &1, ***, Grt1)
for some choice of the g’s.

Definition 1. 4D. Given a shaft S of cofibrations of depth #, a
map f:C,—Y, and a drop f:C,u—Y of f, we define a shaft induced
by f, as being Sf={C,, SXy, -+, SX,.; Dy, -+, Dpss; bu, =+, b1 81, -+
g1y for some choice of the g/'s.

Proposition 1.5. The tower induced by f is a tower of
fibvations.

Proposition 1.5D. The shaft induced by f is a shaft of
cofibration if the X: are simply connected. (See the proof of
1.6 for an explanation of the last condition.)

Proof of 1.5. 1.5 follows immediately from the next lemma,
setting g=£; and g=fiu.

Lemma 1. 6. Suppose Il : E—B is a fibration, with fibre i : F—>E,
and g:X—B isa map, g: X—E a map such that Tig=g. Define
6:P;—P, by o(x, 0)=(x, 1px). Then, o is a fibration with fibve
QF. Define K:P,XI—=>B by K((x,2),t)=2(). Then, K is a null
homotopy of gop=Tlogop (here p:P,—~X); let K:P,xI—E be
a covering homotopy. Let K,: P,—~F be K((x,2),1). Let &: Pg,
—P, be the fibration induced by K,. Then, there is a singular
homotopy equivalence n: Pz —P; making the diagram
e

ln
Il

QF P,  homotopy commute.

Proof: We first show ¢:P;—P, is a fibration. Let Y be a space,
and suppose J: YXI—P, and h:Y—P; are maps such that sh=
J(»,0). Note that J(y,s)=(=x(y,5), 2(¥,5)), where x(y,$)=
pJ(3,8), and A(y,s) : I—B has 2(,5) (0)=gx(y,s), 2(y,s) (1) =*.
Further, h(y)=(x(3,0), 2(3)), where n(y):I—=E, n(y(0)=
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8x(9,0), n(3» @) =% Mu(y)#)=1(y,0)(#). Define N: YXIXI
—=B by N(y,s,t)=1(»,5)(#). Then, N(YXIx {1})=x, N(3,s,0)
=2(3,9(0)=gx(y,5), N(5,0,8)=2(y,0) ) =TLn(y) (D).

Define N,: Y'x (IX {0} U {0} xITUIX {1})—E by Ni(»,s,0) =
gx(y,5), No(9,0,)=u(9) (), Ny(y,s 1) =+ Then, N, is well-
defined, and TIIN,=N|Y X I x {0}U {0} xTUIx {1}). Hence, N,
extends to N: YXIXI—E, IN=N. Define p(y,s)@#)=N(y,s,1).
Then, #(y,5)(0)=gx(y,s), n(y,s)(1)==*. Define J: YXI—=P; by
J(y,9)=(x(9,5), u(»,5)). Then, 6J=]. Thus, ¢ is a fibration;
the fibre is easily seen to be QF.

Next, P,={(x, ) [4: =B, 2(0) =g (x), 2(1) =*}, Pz={(x, ) | p:
I>E, p(0)=g(x), n(1) =%}, and Pz,={(x, 4,v) | (x, ) EP,,v:I->F,
v(0) =K,(x, 2),v(1) =+}. Define n:Pr,—~P; by n(x,1,v)=(x, Kiv),
where K,y :I—E is given by: A
K((x,2),2t), 0<t<1/2
v(2t—1), 1/2<t<1.

Then, on(x, 2, v) = (x, [1K,»).
{A(Zt), 0<r<1/2
*,  1/2<e<1.

Kot = {

HK)‘V(t) =

Hence, on~¢. If w€8F, ni,(0) =n(x, *x,0) = (x, Ky 0).

*, 0<t<1/2

5;(0) =(*,®). Hence, i,~ni,. That »n is a singular homotopy
equivalence now follows from the five-lemma applied to the homo-
topy sequences of the fibrations ¢: P;—P,, v:Pg—P,, the second
being mapped into the first by #. In proving the lemma dual to
1.6, we only have homology isomorphisms. Hence, we require the
spaces to be simply connected so that we may obtain singular
homotopy equivalences. One can, in fact, by a much longer proof,
prove that we actually have strong homotopy equivalences; since
this is not needed in the sequel, we omit it.
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2. We first indicate roughly our definition of the (#n—1)-fold
composition product. Let Xj, ---, X, be spaces, and f; : X;—X.y,, =1,
-o,n—1, maps. If f._,of.. is null-homotopic there is a map f.;:
X.—s—P;, , which projects to f,...

We construct the tower of height two over X, induced by
s, and see if there is a lift of f,s. We proceed in this manner,
if we can, until we have a tower of height (#—2) over X,. Let
P, ., and P, .. be the two spaces at the top of this tower; we
have a map fy,ns: Poyns—2"°X,. We find, if possible, a map
f1: X;—P,, s which is a lift of f;. The element of II1(X;, 2°X,)
represented by fi.:of; is an element of the (#—1)-fold product
{fam, o, S}

Formally, our definitions follow; X;, ---, X,, are spaces, and f;:
Xi—X.4;, as above.

Definition 2.1. An F-presentation for the given sequence of
spaces and maps is a collection of (#—2)-towers of fibrations, one
each of height (—17) over the space X;, 1=2, ---,#—1, of the form
{Xiv1, 2Xisa, -+, @Xisgrr, =+, &7 X,y Pio=X:, Piy, -, Piynis
Fio=Sf:, oo s frymeicai Diyi» o Diymi} and maps fiy: Xiy—>Piyns,
i>2, fi:X,—>P, .5, such that f., is a lift of fi,, and, the tower
over X;,(:>2) is induced by fi,.

Definition 2.1D. A C-presentation for the given set of spaces
and maps is a collection of (7—2)-shafts of cofibrations, one each of
depth (:—1) under X;, i=:2, ---,#—1, of the form {X.,, SXi, -,
StXiia, oo, ST2XG; C,-,OZX,-, C,-,l, ooy Ciio1; Zio=Fi-1, 81, s tyiap
Fivey oty Jnie), and maps gi:Ci i Xiny, 1<n—1, goi:Cogyns—>Xa
so that each g: is a drop of f:, and the shaft under X; is induced
by g:.. (In discussing C-presentations, we always assume the X;
simply connected.)

Definition 2.2. The (n—1)-fold F-composition product
{fonrr -+, fa} r €xists if there exists an F-presentation for the given set
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of spaces and maps. It consists of the set of homotopy classes of all
compositions fi,.-sof; which occur in such an F-presentation. Thus,
it is a subset of IT(X;, 2" *X,).

We shall also refer to {f.., -+, fi}r for a particular F-presen-
tation, by which we mean the set of homotopy classes of all f, .sof3,
where we have fixed the tower over X;, and allowed f; to vary over
all lifts of f; to Pan-s.

Definition 2.2D. The (n—1)-fold C-composition product {f,.-,
-+, fi}c exists if there exists a C-presentation for the given set of
spaces and maps. It consists of the set of all homotopy classes of
compositions g, 198, 1,»—s Which occur in such presentations, and is
thus a subset of II(S™*?*X,, X,).

We shall also refer to {f,-i, -+, fi}c for a particular C-presen-
tation, by which we mean the set of homotopy classes of all
8,-198n1,n3, Where we have fixed the shaft under X,_,, and allowed
2.1 to vary over all drops of f, ..

The construction of {f.., -, fi}r for a given presentation may
be looked at in at least two different ways. (A similar discussion
holds for {f.-,, -*+, fi}c and is omitted here.) In the first, the maps
f:,; may almost be disregarded. Thus, we start with a lift of f,.-,
to P, if one exists, and build P, . and P,..,,. If there exists
a lift of f,-s to P,;,, we can build the P, ;’s. Continuing in
this way, we need not consider, or bother to construct, a map f;;
until we construct f;,.-s, having constructed P.,,-s by a choice of
fs, over fs. The choice of fi.s then fixes {f.., -, fi}r for this
presentation.

On the other hand, if, for example, the X; are double suspen-
sions, we may visualize the construction as one that consists of
looking at many spectral sequences. To see this, note that a tower
of fibrations determines an exact couple of spaces in the sense of
[9]. The tower should be extended to infinity in both directions.
To do this, using the notation of 1.2, we set P;=x=X;, i<<0, so
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that P,—P, is a fibration with fibre P,, and P,—P,— X, is exact.
We set X,i1=Pn1, fan the identity map, Pnii=PP.u, i>>2, pori=
identity, />3, and X,.;=x*, i>2. Mapping a double suspension Y
into this exact couple gives us an exact couple of groups, and
hence a spectral sequence. The exact couple is displayed in diagram
I, in which the groups A: are simply II(Y, X,)/imII(Y, P.), and
are put in to extend the exact couple to the right.

j

} j

Ly ! !
STI(Y, @Po) STI(Y, 2Pos) — 0 -0 >0 —0—

y J 1)
STI(Y, 9P,) —TI(Y, 2X.) —TI(Y, Por) SII(Y, Pou) = 0 — 0 —

J | J
SII(Y, 9P, ) —TI(Y, X, )—TI(Y, P,) —TI(Y, X.) — A, > A,—

| ! i’

j i i,

0

—-II(Y, 2P,) —II(Y, 2X,) —II(Y, P;) --II(Y, X;) —A:—A;—
y

0

!

—TI(Y, 9P) —II(Y, 2X,) —TI(Y, P) —II(Y, X)) — A > Ay—
! y

0 —I(Y, P) —LII(Y, P) —I(Y, X)) — A A

J y !
— 0 —0 0 -0 0—-0—
4 @ |
Diagram I

In constructing {f.-i, ---, fi}r, one may construct the exact
couple obtained from mapping X, into the tower over X:;. One
then considers the class of fi; in II(X:-;, X:), a group occurring
in the E, term. If all the differentials through the (#—z%)-th vanish
on this class, there is a lift of fi,, to P .;; one chooses such
a lift, constructs the tower over X;_,, and continues in this way
until the tower over X, is constructed. {f,-, -+, fi} r for this presen-
tation is then the image of the class of f; under the (#—2)-th
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differential in the spectral sequence obtained from mapping X, into
the exact couple of spaces derived from the tower over X,.

Questions about the meaning of other differentials in such
spectral sequences, and about these products for maps of spectra
may be answered easily by considering what happens when you
take the loop space of all the spaces occurring in an F-presentation,
and the loops of all the maps, or the suspensions of all the spaces
and maps occurring in a C-presentation. This is done in lemmas
2.3 and 2.3D below, in which it is shown that, up to sign, a
presentation for {2f.-:, -, 2fi}r or {Sfa, -, Sfi}c is obtained.
With the appropriate sign conventions, we could define these
products for maps of spectra; however, our examples, in the homo-
topy groups of spheres, will simply be computed by taking a
sufficiently high dimensional sphere.

Lemma 2.3. Suppose {fa,:, fi}r exists. Then {2fn, -,
2fy} exists, and 2{fu-, -+, [} rS (—1)"{2f nr, -+, 2f 1} F.

Lemma 2.3D. Suppose {fu-, -+, fi}c exists. Then, {Sfu, -+,
Sfi}c exists, and S{fn-, ++, [1}cS (— 1) {Sfn-1, *++, Sfi}c.

Proof of 2.3. This is an easy induction on #; the basic obser-
vation is of the changes in sign that occur when one takes loops
in the situation of 1.6. This observation is used to prove the
following statement, inductively.

(2.3) Let {P.;, fis Pins it be an F-presentation for {fn-i, -, fi}.
Then, there is an F-presentation {Q:;, &:,;, gi»»» &} fOr {2fny, ++,
£2f,1} and homeomorphisms gp;,;:Q;:,;,—>2P;,;

ﬁr AQPi+1, n—i-1
such that the diagrams 2X, Pivtymei-t commute,
?i Qi+1, n—i—1

PisJ
QP,;, —=Q,;
the diagrams lﬂpw qis g commute,
QP.‘, -1 Qi, i-1
Pi-1, 4
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Q. £

and the diagrams lﬁi, 3 2 Xivin commute,

7
2P, ; (-D)miefi,

where (—1)""Qf;,;=8f;,, if n—i is even, and equals oo2f;; if
(n—1) is odd, where, if 1 is a loop, ¢(1) (2) =2(1—1).

Lemma 2.4. Given an F-presentation for {fn-, -+, 1} as in
(2.3), let B: Q2P ;—P;,; be the inclusion of QP:., ;-1 as the fibre
of P.,; over X;. Then, f; ok is, up to homotopy, 2fi,-.

Lemma 2. 4D. Given a C-presentation for { fa-, -+, f1} let k:C,,;
—SCi_1, ;1 be the projection of the cofibration X.—C.;. Then,
kog:,; is, up to homotopy, Sgi-1, 1.

Proof of 2.4. 2.4 again follows from observing the situation
.of 1.6.

The next proposition follows immediately from (2.3) and 2.4.

Proposition 2.5. If { fu-, -+, f1}r exists, for a given F-presenta-
200 { frs, s S1}F fills up a coset of the subgroup (—1)"Y{2fn,
oo, fs, (X, 2X5) Y5, where this symbol means all elements of T1(X,,
23X,) which occur in (—1)" ¥ 2f s, -+, 8fs, &}r, where g: X,—>2X,
is some map such that {2f .., -+, 2fs, &}r exists for the presentation
of (2.3), and where this symbol means {2f ., --+, 2fs, &}r for that
presentation. (If n=4, this is a right coset).

Proposition 2.5D. If { fu-1, -+, f1}c exists, for a given C-presen-
tation {four, -+, f1}e fills up a coset of (—1)" 4 (SXus X.), Sfas,
<+, Sfi)c, where the definition of this object is dual to that of
2.5. (If n=4, this is a left coset.)

3. In this section we prove two results: first, that if {f._, -,
filr exists, so does {fa-1, **, fi}c (and vice-versa), and that if one
contains zero, so does the other, and second that { f.—, -+, fi}r or
{ fue1» =, f1}c is independent of the f; up to homotopy.



Higher composition products 11

Proposition 3. 1. If { fuos, -+, f1}r SII(X,, 27 X,) exists, and if
the X: are simply connected, then {fo-, -+, fi}c exists. If {fus, -,
fi}r contains zero, so does { fuo, -+, fi}c.

Proof: This follows immediately from lemma 3.3 below.

The restriction to simply connected X; is actually unnecessary,
but the proof in that case is exceedingly long and technically
complicated (though conceptually not difficult), and, since the
condition on the X; will be satisfied in our examples, we shall
assume it here.

Proposition 3.1D. If{f.., -, f1}cSI(S"*X,, X,) exists, then
s0_does { fr, =+, f1}r, @nd if { fu-, -, f1}c contains zero, so does

{fn-l’ ""fl}F~

Theorem 3.2. If the X: are simply connected, then { fn, -+,

filr exists if and only if { fu-, -+, [1}c does, and one contains zero
if and only if the other does.

Lemma 3. 3. Given an F-presentation { P,;, f:,;, bs, 5, f:} for the
sequence XILX,—IL---@»Xn, there exists a C-presentation {C,,,
Givw, Jiow 81} fOr this sequence and maps 0. : S*Pi—>Cisss, 2<<i<<
n—1,0<k<n—i—1, such that 6;.: X;= P:,;—>X.=C,, is the identity,
and such that if we denote by f.;: X~ Pin,; the composition
Disry i+10Di1, 4204 0 ity mecisnyo fi, @Nd bY iy w2 Ciyi—> X the composition
gi%fi,i20++%Ji,4, then the diagrams

EF, .
Stfio,e SkPi’ R SkPi, . 7{:&
SXi | and | T X
Zisksk C‘“’ k C"'”" F ik

homotopy commute for 2<i<n—2, 1<k<n—i—1, where fl,. is
(possibly) another choice of f:,. (see the discussion in section 2).
Further, { fu-, *++, f1}c for this presentation contains zero if {fa,
o, f1}r for the given presentation does.
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Lemma 3.3D. If {C.,i, &i,s, Jirs, &} is a C-presentation for a

sequence of spaces and maps X:LXzﬁ---éi»X,., then there exists

an F-presentation { Pis, fis, biy Ji} fOr this sequence and maps &,
P, —2C., 2<i<n—1, 0<k<<i—2, such that &., is the identity
and such that the diagrams

Titnt P Py L0
Xk ls"’ k and léi’ ] 2* X

homotopy commute, 3<i<n—1, 1<k<i—2, where the gi,. are
(possibly) other choices for the gi.. Further, { fu, -, f1}r for
this presentation contains zero if {fu-, -, fi}c for the given pre-
sentation does.

Proof of 3.3. The proof proceeds by induction on #, starting
with #=4. The induction hypotheses follow, both on the assumption
that we are given an F-presentation for {f., -, fi}r.

A) There exists a C-presentation for {f._;, -, fi}c and maps 6,
as in the hypothesis of the lemma. In addition, the diagrams
below homotopy commute,

& 0i,x

StP;, s L
A) ls‘pi" Citis
S*X;

Nisks k

where p;,: is the projection of P;, on X, and i+, is the map of
Ciw,» on the cofibre.

B) The P, fi,» and pi,s for 3<i<n, and the f; for 2<i<n—1,
form an F-presentation for the sequence Xzﬁ')Xg,ﬁ)"'&Xn. Sup-
pose that we are given a C-presentation {Cis &is jus &} for this

sequence, and maps 6;,;: S*P;,,—>Cii4,s satisfying A). Then, there

is a C presentation for X1£>X2£)"'fﬁ’ ., and maps 6;::S*P;,.

—>Ciin,s, satisfying A), and coinciding with the given ones when
both are defined. (Essentially, condition B) says that a C-presen-
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tation for Xzﬁ*m&Xn satisfying A) for the given F-presentation

restricted to this sequence extends to a C-presentation for XIL

LI X, satisfying A)).

The case n=4 is easy. Here, B) is vacuous, since 6, is only
defined if 2<i<n—1, 0<<k<<n—i—1, and if =3 we get 1=2, k=0
in which case 6,,, is the identity and there is nothing to extend.

To prove A) for n=4, we observe that P,,; is the fibre of the
map f»: X;—X; and that Cs,, is the cofibre of the same map. We
choose for 6,,,:SP,,,—C,;,; the usual map of the suspension of the
fibre into the cofibre [5]. Thus, P.,.:={(x, D|1:I-X;, xX,,
2(0) =f2(x), 2Q1) ==}, and Cs,,=X:J,,CX,.

{x,2t), 0<it<1/2

b21[(x, 1), t] = {/1(215—1), 1/2<<t<1.

The map fo1: Py —>2X, is given (at least up to homotopy) by
some null-homotopy J of fif, as
J(x,1-28), 0<4<1/2
f:2Q2t—1), 1/2<i<1.

f:a2t—1), 1/2<¢<1.

s (2, D) (8 = {

Thus, e 0, 8 — |

We use the same J in constructing gs=gs::Cs1— Xs; thus, gs1(%)
=f3(x)’ xEX3; E3’1<xy t>=]<xr l_t)’ <x7 t>ECX2

Then, J(x, 1—28), 0<t<1/2

—,002; x’l’t:{
&31°0:,1[ (%, ), t] f:2(2t—1), 1/2<t<1,

so that gs,,00,,,= Tf,,, (again, at least up to homotopy). fi: Xi—> P,
is obtained from a null homotopy H of f.fi;fu:1=/f1, and fi(x)=
(filx), H,), where H.({)=H(x,t). We use the same homotopy to
construct gs,;: SX;—Cs,,. Thus,

(flx), 28, 0<t<1/2

NERES
Sui1lx, t] H(x, 2t—1), 1/2<t<1.
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Then, 60.,19Sf1,1(%, t] =0, [ (f1(x), H.), t] =gs (%, t]. The homotopy
commutativity of (A) follows easily.

Thus, the lemma is true for #=4. Assume, then that A) and
B) are true for the case (n—1), (n—1)>>4, and that we are given

an F-presentation for Xli»X.zi»--f”—'l»X,,. The P, and appropriate

maps for 1>>3 form an F-presentation for X,im 1. (Note

that this includes fi,n«: X;—>Psn—e, which serves as the f; of this
presentation.) By induction hypothesis A), we may construct a C-
presentation and maps satisfying A) for this F-presentation. We

consider any such C-presentation and shall extend it (in the sense

of hypothesis B)) to a C-presentation for XlﬁmX,, satisfying

A). The remainder of the proof may thus be thought of as a proof
of induction hypothesis B).

The F-presentation for X;—--— X, also gives F-presentations
for X;—»-—X,; and X;—~+-—X,_,. The C-presentation for X,—
--—> X, gives a C-presentation for X,—-.--—X,;, and appropriate
maps which satisfy A) for the F-presentation for X,—--— X, ;.
Then, by B), this C-presentation extends to a C-presentation for
X— =X, .

The C-presentations for X,—---—X, and X,—-.-—X,_; combine
to give us almost all of a C-presentation for X;—---—X,,; in fact,
we now have all the C,, except for (i,k)=(m—1,n—3); we have
maps g S*Xii1—>Ci i, maps gi,s: Cioi—>Xiiy for i<m—1, and maps
Oi—yr : S*Piy,,—C,;,» making the appropriate diagrams homotopy
commute. The choice of the space C,-1,.-s is now determined; it
is the cofibre of the map Zn—g ns: Cnsyns—Xn. We first construct
03 n-s. Since the maps f/,; and g;,; are only defined up to homotopy,
we may, by changing our choice of them, assume that the diagrams
of the lemma’s conclusion actually commute.

Consider the diagram II. The top line
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II1( Py, nms y Poya-d) 'f;”_‘-;— H(Pz,n—! , X))

o s
) ,
II(S"*Pyyns, Tfl’ru—() —tl'I (S"_‘P:, as, S" Py, ) Tf;"'—‘; I'I(S""P,, -ty X”_l)

TL(S™*Pyya-s, Bnsn-d) STL(S™*Pyyn-ss Cocsynes) En-nota

Diagram II

is self-evident; the second line is the mapping sequence of the map
Tf;,.-s with “contraefficients” in P,,,-s [3], and the third line is
the mapping sequence of the map g. ...« with “contraefficients” in
P,,, 5. We start with the homotopy class of P ns: Poyns—>Poynu
in I1( Py, s, Piyn-s). Let this class be a. fi, 402 s is null-homotopic,
so that f;,.uxa=0, and Tfs,.uxS"*a=0. Hence, Tfs,xS" " is
in the image of II(S**Ps .4, Ifs,.s). Let p be an element such
that 9+8=S""*ax. Consider 05, xBEI(S" Py s, Gn-trns). If 7x:
TI(S™*Py, 3, ntyns)—>TL(S" Py, s, Co1,n-s) associates to each map
the corresponding map of cofibres, we choose 0, ,-s as a represen-
tative of 74+B. Thus, we have many choices of 6,,,3; we shall
construct appropriate maps corresponding to each choice.

It is clear from the construction of #,,-s that the diagram (A)
homotopy commutes.

Next, we construct gn.-i,».s. Consider Diagram III. In this
diagram, rectangle I represents #,.-4x8 and hence commutes;
rectangle VI constructs

n— n—Af_
§7 4Py ST Pt Sop, L Pt €, Trnnt SX, ST ng 5Py

—

- ’ — II1 081 n—4
1 l I sz, n—4 ¢ I%ﬂ_;, n—d gn—h%f — V Tfin L
CS"—‘P,, n-3 bﬁ Xn—l j C"_b et En-1yn—4 Xn

7 * VI 7 l V%»—ﬁ
071 n-3

S3P;, n-s [ o
Diagram III

03,n-s from 6,,, 4B, and hence commutes; triangles II, IV, and V
commute by the induction hypothesis and the remark above; triangle
VII commutes by definition, and square III homotopy commutes by
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the construction of a C-presentation. By the homotopy commuta-
tivity of (A), the composition 7z, n—490s,2-4°S™* Py, .5 is homotopic
to the (m—4)-fold suspension of the projection p: P, .s—X,. The
map T fsns0fs,ns is null-homotopic since the F-presentation is an
F-presentation of {f.-1, ---, fi}. We may use a null homotopy of
this composition to extend the map g.-1,.-°j to the cofibre of
Guzrnisr 1.6, Cusyns, and to extend the map Z-in-s0jodb to the
cofibre of 7, i.e,, S**P,,,5. It follows from the observation above
that %n—s,n-4905,,-40S"*Ps, -3 is homotopic to S**p and from the
construction of an F-presentation that the extension of gni,n-s0j0b
is the adjoint of a map fs ns: Pyns—=>2" "X, which may occur in
an F:presentation. The commutativity of the diagram

S™Py, s Tf2na X

i B2,n-3 -
gn—b n-3
Cn-l) n—3

where g.-1,.-s is the extension of g.-1, .49, now follows immediately.

In order to construct gn-1.-s:S**X;—>C, 1, s consider Diagram
IV. To construct a

TI(S™ Xy, Gotymet) —T1(S™ Xy, Cosy md) 225 IS X, X))
% '
II(S™ Xy, Cactynms)
Diagram IV

8n-1,»-3 We start with the class of g, 3.4 in II(S" X}, C, 5,.4), Se€
if it goes into zero under g, s n s, pull it back to II(S™ X1, Zn s nv)
if it does, and project to a map of cofibres. However, we can map
the bottom sequence of Diagram II into the top line of Diagram IV
by f#..s. Under this map, the element 0, . xS™ ‘e goes into the
class of g4+ by our induction hypothesis. Thus, f{.-s02n1x8
is a pull-back of the class of g.-;, .4, and its projection into a map
of cofibres gives the desired g,-1,n-s.

If {f.-1 '+, f1} r contains zero, we may choose an F-presentation
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such that fi .-s°f1,.-s is null-homotopic for any choice of f;,.s (see
the discussion of section 2). Then, in the C-presentation constructed
to satisfy our induction hypotheses, Zn-1, n-5°Zn-1,n-3~ 1 f2,n-3S"F1rns,
which is null-homotopic. This concludes the proof of 3. 3.

Next, we prove that {f,.., :-, fi} is independent of the choice
of the f; up to homotopy.

Theorem 3.4. Suppose {f.-1, -+, fi} exists, and suppose g;~f:,
i=1, - n—1. Then, {gn -, &} exists, and is equal to {fn, -+,
fi.

The proof in the case of {f., -+, fi}r follows immediately from
3.5; similar arguments hold for {f..; -, fi}c when simple con-
nectivity assumptions hold.

Lemma 3.5. Suppose { P, f.; bns f:} is an F-presentation for
{ fnery =+ fi}r, and gi~f:. Then, there is an F-presentation {Q,
Gii Qinin i} JOV {Gnos, -+, &1 }r and singular homotopy equivalences
0iri 1 Qi = Piy; such that the diagrams below homotopy commute.

p,, <0, Q,; &
(A) lp;.: lqm (B) lpm 2 Xivjn,
Pi,s 31
Pi,j—l(_J" Qi, i-1 P;,; Fivs

T4 P,
© X o

S Qi

girJ

Proof: Suppose X, B, C are topological spaces, f: X—B, p:
B—C, g: X—C are maps, and H:pf~g. We define Hp: P,—P, by

H(x, 1-2¢), 0<t<1/2

Ho(x, ) =(x, 1), n(t)= {01(21,‘—1), 1/2<t<1.

Then, if II:P—~X, 6:P,—~X are the projections, §(Hp)=II; if
i1:2B—P, and j:2C—P, are the inclusions of the fibers, we see
immediately that j(2p)~(Hp)i. If p was a singular homotopy
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equivalence it follows that (Hp) was a singular homotopy equiva-
lence.

Using the facts adduced in the last paragraph, it is then an
easy task to build the p;,; by induction. The homotopy commuta--
tivity of A) follows easily; the choice of g;,; in B) is made by
taking g,,=f:;°0:,, and checking that g,,; satisfies the conditions.-
necessary in an F-presentation. g,; may be chosen as a map
representing an element of II(X;, @:.1,;) corresponding to that
represented by 7—;, ; under pi, 5. (Of course, one should choose g:
thus, and define g;,; by composition with appropriate ¢:1,;'s.)

3.4. allows us to make the following definition.

Definition 3.6. Suppose a;€I1(X;, X:11), =1, ---, n—1. Then,.

{ana, -+, an} exists if { fa-q, -+, f1} exists for some choice of f;
representing «;, and is equal to {f..., :--, fi} for such a choice..
{an-1, **au}r and {a@n, -+, au}c have the appropriate meanings.

4. In this section we prove an easy result which will be useful.

in section 6.

Proposition 4.1. Suppose X, LXz-Jifi; X. is a set of spaces

and maps such that { f.-., -, f1}r exists. Suppose that g:Y—X,
is a map such that fiog is null homotopic. Then, there arve maps
h:Y—0X,, representing elements of {f., f,, &} such that the (n—1)-
fold product {2fn—s, -+, 2fs, h} exists. If k: X,—0"*X, represents
an element Of {fu-1, -+, f1}r then kog represents an element of
(=D Y @fns, -+, 2fs, h}r for some h representing an element of
{fo f1, &}. This result may be expresed crudely by saying that
{{Sn1s oo frde 83rS (= 1) N 2f neay oo, &f s, { fos 1, &)r ).

We use the rough notation above to write 4. 1D.

Proposition 4.1D. Suppose{f.-1, ---, f1}c exists, and g: X,—Y
is a map such that {g, fu-1}c=0. Then, {{g, a1, fr-z)c, Sfa-s, -+, Sfi}c
exists, and {g, { fn-r, -+, [1}c }c S (— )" ML G, fru-1, fos2tc, Sfns, =+, Sf1}e.

Proof of 4.1. Suppose { P, ;, p.,;, fi,» fi} is an F-presentation for
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{ fac1, =+, f1}, and k=f, . s0f; represents the corresponding element
of {fu1, =, fi}r. Let py,1: P,;—X, be the fibration induced by fi.
Then, pa, 19D 20+ Do, ns°f10P1,1=frop1,1 which is null-homotopic. The
fiber of pa,19ps,20+ 0Py, ns is, by definition of P, .5, 2Ps .—s. There
is thus a map b, : P,,,—82P;, .., such that, if ¢;: 2Ps,,.;—P,,; is the
inclusion of the fiber over X,, ¢, s0b,~fiop:,:. Since fiog is null-
homotopic, there is a map g: Y—P,, such that p;,,0g=g. Then
k°g=f2,n_s°71°g=fz,n—a°ﬁ°p1,1°§~f2,n-s°qn—a551°§ Now, ps, 200030~
0Py, ns°qn-30by 1 P1,7—>2X; (since this map factors through g¢;) is a
map that occurs in an F-presentation for {f, fi, £}r. Thus, k=
D2,20D,30 - O Ps, n_3°qn-sobio g represents an element of {f,, fi, £}r.
The result now follows from this observation and (2. 3).

For our application of 4.1 in section 6 it is convenient to
rephrase it. The composite map 2P ;. — P, —2 X;+s is, as we
have seen, 2fs,;—; up to sign. If we change the sign where neces-
sary, we get what is essentially an F-presentation for testing
products {2f.-1, -+, 2fs, a}r. If, now, we look at the adjoint of #,
h:SX,—X,, and de-loop the maps 2fs; .., we get an F-presentation
for { fu-1, -+, f5, B}r. Thus we obtain 4.2.

Proposition 4.2. Uuder the conditions of 4.1, there are maps
h:SY—X,, adjoint to representatives of {f., f1, &}r, such that
{ fac1, o, fo, B}r exists. If k: X,—>2"2X, vepresents an element of
{fa-1, ==, [i}r, then the adjoint of kog, mapping SY—-0"*X, is an
element of (—1)" Y fo-y, >, fs, B }r for some such h. In the presen-
tation for this product, the tower of fibrations over X, may be
taken to be that occurving in the original presentation for

{fn—l, "’,fl}p-

5. In this section we apply the techniques developed above to
the study of the p-components of the stable homotopy groups of
spheres, for an odd prime p. While we do not compute any new
groups, we are able to show the existence of some previously
unknown regularity in the known groups.
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We begin by recalling some of the results of [13]. Let p be
an odd prime. We denote by II.(S, p) the p-primary component of
the k-th stable homotopy group of spheres. IL(S, p) is infinite
cyclic with generator ¢, the unit of the ring I1.(S, p) =,§H,,(S, .

There is an element a; 11, 5(S, p) of order p, and elements a,E
ILus-1(S, P), pa,=0, a.E{a., pt, ax}. In [14] this is proved for
s<<p?; in [1] and [15] it is proved for all s. If p’|s, «, is also
divisible by p"; this is proved in [14] for s<<p’; Adams is believed
to have supplied a proof for all s in his study of the J-homomor-
phism. Further, there are elements B.E Iy prenr-n-2(S, p), 1<s<<
p—1, of order p. If we set ai, equal to an appropriate element
such that pai,=ai, then it is shown in [14] that the a., a:, B.
generate I, (S, p) multiplicatively in degrees less than 2p*(p—1) —3.
We shall show that 8, arises from a; as a p-fold product, and that
the B, arise from a; and B3, in a manner analogous to that by which
the «. are constructed from a;.

Lemma 5.1. The p-fold product {ay, -+, au}c exists and does
not contain zero. It does contain xB, for some x&Z,, x+0.

Proof: This is just lemma 4. 10 (ii) of [14], translated into our
terminology. The proof given in [14] is exactly the construction
of a C-presentation for this product.

Proposition 5.2, If 2<ls<<p—1, the five-fold product {B;-, pr,
By, D¢, an} exists and does not contain zero. It does contain xp,
for some xZ,, x=0.

This proposition suggests at least two questions.
A) Does this sequence of B, continue indefinitely? That is, does
there exist B., of order p, in degree 2(sp+s—1)(p—1)—2, B,
{Bs-1, Pe, By, Dt, ay}c, for all s>17?
B) If A) is true, do there exist more, similar, families? In
particular, it is easy to see that the p-fold product {aj, ---, ay}c
exists. This lies in degree 2p°(p—1) —2. Ilypee-1-2(S, p) is either
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Z, or 0 [13]. Is this product non-zero? If it is, suppose 7: is
a non-zero element in this product. Can we form a sequence of
non-zero elements 7., r.€{r.-1, D¢, 71, D¢, B1, D2, ar}c? 7. would have
degree 2(sp*+ (s—1D(p+1))(p—1)—-2.

Before proving 5.2, we need a lemma.

Lemma 5.3. Suppose yE11,.(S™) is an element of order p.
Then, the triple product { pe,, v, Ptnss}c is defined and contains zero.

Proof: We use the definition of the triple product as a fun-
ctional homotopy operation [10]. Thus, if p,:S"—S" is a map of
degree p, and p,: S™*—S"** is the k-th suspension of p,, we form
the following coexact sequences of spaces in the sense of [9]:

S”**—"iS"*"ﬁC,eS"*"“—»S"*"“, where C, is the mapping cone of 2,.

We then form the diagram

Mos01(S™) 22 M0 (S™ 2 T1(C,, §7) LT, (S™) 2B 1L, (S™)
Xp Xp Xp Xp Xp
Mis1 (S 2B M1 (™)~ T1(C, S Lo Ms (S™) 2B 1L, 4 (S™,

in which the horizontal rows are obtained by mapping the sequence
of spaces into S™, and the vertical arrows are induced by p, and
hence are multiplication by p. (Note that II(C,, S*) is an abelian
group since C, is a double suspension because %£>2; in fact,
E>2p—3.) {Ptn, 1, Dents}c is obtained by considering y&EIl..(S™),
observing that pr=0, taking j'(3) in II(C,, S*), multiplying by p,
and pulling back to Il (S™). Suppose jFr=y. Since C, is the
Moore space H(Z, n+k), II(C,, S*) is a cohomotopy group with
coefficients in Z, for an odd prime p. By Theorem 3.6 of [8],
I(C,, S*) is a vector space over Z,. Hence, p7=0, so p7 pulls
back to zero.

Proof of 5. 2. The proof falls naturally into two parts: existe-
nce of the product, and a proof that it is non-zero.

We first prove that the product exists. We shall consider the
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-elements B., a;, etc. as being in the homotopy groups of appropriately
high dimensional spheres. Recall (see section 2) that the products
may be considered as the images of elements under the differential
in a spectral sequence that comes from the C-presentation. pa;=0,
so one may look at {Bi, p¢, as}c=d:(B,) in an appropriate spectral
sequence. This is a coset of some subgroup of Ilysin-1-2(S).
This group has no p-component [13] ; since B; is in the p-component,
d,(8) =0. Hence, we may construct a shaft of cofibrations on
which to test the existence of {p¢, By, p¢, ar}c. We display the
relevant part of the exact couple on which this is computed; here,
# is a sufficiently large integer, a=2p(p—1)—2, b=2(p—1)—1.

] P, (S") —II (C4, 2, Sn) g | RS (S”>
!

I‘I,,+a+1(S")—>H(Cf, 1, S = atea (S™)
0,(S") —I1.(S™) i»H,,+,,(S")

We start with p¢ in the I1.(S™) on the left. d,(pe) =pFpi=pp
=0, so we have an element [p¢], in E,. IL.(S" p)=2Zp(a}).
‘Two copies of Il,+.+:(S™) occur in the exact couple; call the left
hand one G’ and the right hand one G"”. It follows from the dis-
cussion in section 2 that d,(G") =0, and that d,: G'—G" is multi-
plication by p. Therefore, (recalling that a,=pa,), the E, term in
‘the position of G is G"'/pG"”, a group of order p. Now, d,[pc].
={pe, A1, pt}c, which, by 5.3, is zero mod pG”. Hence, d.[p:].=0,
so that {pe, B, p¢, a1 }c exists. The image of d, in G’ is the image
.of multiplication by f,, and hence is zero. Thus, E, in the position
of G is Z,(a,). d.(a,) is a representative of {a,, p¢, a;}c which,
by Theorem 4.14 of [14] contains a generator of Il.i.+;+:1(S™ p).
Thus, E; in the position of Il,i.s:(S™ p) has no p-component.
Thus, for any C-presentation, {pe, Bi, p¢, @1}c, as an element of Ej,
is in a group with no p-component. By 3.2, there exists an F-
presentation for {pe, Bi, p¢, an}r. It is easily seen that IL..:( Py, )
is finite in any such presentation. Hence, one may choose a lift
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of a representative of «; that represents an element of the p-com-
ponent of Il (Pss.). It then follows from 3.3 that there exists
a C-presentation for {p¢, B, p¢, aa}c which has in it an element in
‘the p-component of Il,..++:(S™). Hence, by the remark above, in
this C-presentation {p¢, 81, p¢, au }c=0 in E;. Hence, we may construct
a shaft of cofibrations on which to test the existence of {B..,, p,
B1, D¢, ay }c. In the corresponding spectral sequence, d,(B,-1) =pB.1=0;
d:[Bec1):={Bi1, D¢, Bu }e S Mycoptenp-n-542(S™), which has no p-com-
ponent [13]; since [B.-1]. is in the p-component, d.[B.-;].=0. Hence,
[B-1]s exists; again, ds[Be1]s={Be1, Pt, B, Dt} SIhicprenr-12(S),
which again has no p-component [13], so that ds;[B.-1]s=0, so that
[Bsals exists. Thus, di[Bs-1]s={Bs1, D¢, Bu, D¢, an}c eXists.

Next, we show that it does not contain zero. (It must contain
.elements of the p-component since §,-; is in the p-component). We
‘use a method introduced by Toda [14], namely, constructing maps
.of the Cs,; that occurs in a C-presentation into appropriate elements
of the Postnikov system of a sphere, and observing what happens
in the mod p cohomology.

As above, a=2p(p—1)—2, b=2(p—1)—1. Let c=2((s—1)p
+s—2)(p—1)—2. Again, n is sufficiently large. Let Y=C;;. Y
‘has cells in dimensions 0, n+c¢, n+c+1, n+a+c+2, n+a+c+3.
The (n+c+1)-cell is glued to S™° by a map of degree p; the
(n+a+c+2)cell is glued to the (n+c+1)-skeleton by a map &,
‘which represents B; when the (n+c)-skeleton is identified to a
point; and the (#+a-+c+3)-cell is glued to the (n+a+c+2)-
skeleton by a map which is a map of degree p when the (n+a+c
+1)-skeleton is identified to a point. It follows that H*(Y, Z,) is
zero except in degrees 0, n+c¢, n+c+1, n+a+c+2, n+a+c+3,
in each of which degrees it is Z,. Further, if we pick generators
e of H*(Y,Z,) and t of Hm++(Y,Z,), then ds generates
H™~+(Y,Z,) and ér generates H™++(Y, Z,), where & is the mod
p Bockstein.

There are maps f:Y—=S" f|S™ represents 8,_;, and g : Sm+e+o+e+3
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—Y such that if »: Y-S+ collapses the (n+a+c+2)-skeleton
to a point, g represents «;. The composition fg represents {§;-1,
be, By, pe, anke.

Next. we show that P?dsx0. If W is Y with the (n+c)-
skeleton identified to a point, H*(W, Z,) is non-zero in dimensions
n+c+1, n+a+c+2 n+a+c+3. Let s be a generator in dimension
n+c+1, r in dimension #+a+c+2, and ér in dimension #+a+c+3.
It is sufficient to show that P’¢'x0. Let K be that element of
the Postnikov system for S™**! such that if k2:S™+*—K is the
map occurring in the Postnikov system, £k, :IL(S™)—IL(K) is
an isomorphism for i<n+a+c+l=n+c+1+2p(p—1)—2, and
IL(K) =0 for i>n+a+c+1. Then, k extends to k: W—K, since
there is no obstruction to extension. If 7:S™**'—W is inclusion,
it is clear that iz, :IL;(S™*)—=II;(W) is an isomorphism for j<nm
+a+c+1. B is a generator of Iliercrn(S™*'); since the (n+a
+c+2)-cell of W is attached by a map representing 81, Ilnrwsct: (W, p)
=0. Then, if C is the class of finite abelian groups of order prime
to p, ky:IL;(W)—IL;(K) is a C-isomorphism for j<m+a+c+1,
and a C-epimorphism for j=#n+a+c+2. Hence, k*: H/(K, Z,)—
Hi(W,Z,) is an isomorphism for j<<u+a+c+1 and a monomor-
phism for j=n+a+c+2. According to statement (3.12) on p. 203
of [13), H**(K, Z,)=Z2,(ay), H"+**(K, Z,)=Z,(b,), where a
and b, are generators of these groups, and P?a,=8b,. Now, £*(a,) %0,
and P?%k*(a,) =k*(P?a,) =k*(8b,) =6k*(b,). Since k*b;%0, and 6 is
non-zero on H™++*(W,6 Z,), 8k*(b,)+#0. Hence, P’ is non-zero on
H™+(W,Z,), and hence on H"+*(Y,Z,). Thus, to sum up,
H*(Y,Z,) has generators 1 in H®, ¢ in H™, d¢ in H™*, ¢ in
Hrete+ 5r in H™*+** and P?ds>0, so P*dc=xdr, for some x=Z,,
xx0.

Now let Z be the complex obtained from Y by attaching a cell
by the map g. The mod p cohomology of Z is the same as that
of Y, with an additional generator in degree n+a+b+c+4. We
denote the generators in Z by the same symbols as those in Y,
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and claim that P'r=0. This follows from the well-known [2] fact
that «; is an element of mod p Hopf invariant one, and the fact
(noted above) that »g represents a;.

Let L be that member of the Postnikov system of S™ such
that if /:S"—L is the map occurring in the Postnikov system then
ly :IL,(S™)—IL;(L) is an isomorphism for i<<#+c¢, and II,(L)=0,
i>n+c. Then, lof is null-homotopic, since there is no obstruction
to a null-homotopy. Let m:M—S™ be the fibration induced by /.
Since lof is null-homotopic, there exists a map f: Y—M, mof—f.
The p-component of II...(S™) is generated by B,;. Since f|S™*
represents fB.-,, and since II...(Y)=2Z,, and is generated by the
inclusion of S$™* into Y, it follows that f :II1,.+.(Y)—IL...(S™),
and hence fy :IL+.(Y)—IL...(M) is a C-isomorphism. Since both
Y and M are (n+c—1)-connected, f*: H™(M, Z,)—~H"(Y, Z,)
is an isomorphism. It follows from theorem 3.10 of [13] and the
discussion on p. 310 of [14] that H™(M, Z,) is generated by an
element b:7%, and that, in H*(M, Z,), W.,b¢7?=0, where W,_,=
sP*P'3—(s—1) P15+ (s—2)o P,

If fog is null-homotopic, so is fog, so that f extends to f/'\ VA
—M, where j/"\* H™(M, Z,)—>H"*(Z, Z,) is an isomorphism. Hence,
F*0e) =26, z€Z,, 2%0. Hence W.,6=0 in H*(Z, Z,).

Now, P'6s=0 for dimensional reasons. Hence, W,_;6=—(s—1)
P55+ (s—2)8P**¢. By the Adem relations, P'P?= P!, Hence,
Plg=P'P?s=wP'r for some weZ,. But P'r=0 for dimensional
reasons. Hence, W,_;6=—(s—1)P**'d6=— (s—1) P'P?8s. But s>1,
and P'P?3sx0. Thus, if fog is null-homotopic, we contradict
W,_b7”=0. Hence, fog is essential, and {B.-1, P¢, B, P¢, ar}c (and
hence, by 3.3, {B.-, P¢, B, P, a1 }r) does not contain zero. As we
have seen, it does contain an element of the p-component, which
proves 5. 2.

6. In this section, we turn to the unstable p-components. It
is first necessary to review the results of [16].
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Since p is odd, it is sufficient to confine oneself to odd-dimen-
'sional spheres (Theorem 13.12 of [6]). We shall be interested in
the p-components of Ilyi1+.(S**), which we denote by G(#, k), for
n<2p(p—1)—1. Recall that S*: G(n, k)—>G(n, k+1) is an isomor-
phism if n<2(k+1)(p—1)—2, and an epimorphism if n=2(k+1)
(p—1)—2 (Theorem XI, 8.3 of [6]). Toda has shown [16] that
if n<2p(p—1)—2 then G(n, k)=0 unless # is of the form
2s(p—1)—1, 1<s<<p, or 2(r+k)(p—1)—2, 1<r<<p—~k. If n has
either of these forms, G(n, k) =Z,; if n=2s(p—1) —1 then G(n, k)
is generated by an element «,(2k+1) which suspends into the
'stable element «, [16]. In addition, G2p(p—1)—1,1)=Z, on
.a generator a,(3), and G2p(p—1)—2,1)=2Z, [16].

Additional information about the 2p(p—1)—1 and 2p(p—1)—2
stems may be gained from [14] and [16]. The main tool of [16]
is the exact sequence (A), where Il ,—(2°S*+, S*'; p) is the p-
component of the homotopy group.

(A =G, k=15 G, k) 5Tl 1 (@8, S51; p)—
—=Gn—1,k—1)—>--

Formulas 13.6 of [16] give values for Ilp.,(2°S**!, S*-1; p)
that allow us to write the exact sequences (a), (b), (c) below,
where N=2p(p—1)—1.

(@) 0—=G(N, k—1D-5>G(N, k) Z,~G(N—1,k—1) > G(N—1, %)

—~Z,—0, 2<k<p

S2 ; S2
(®) 0—>G(N, p—1)—>G(N, p)>Z,~G(N—1, p— 1)
S GN-1, p)—0
©) 0-G(N, p)sG(N, p+1)—0.

Note that G(N, p+1) is stable, and hence is Z,(a,(2p+3)).
Also, G(N—1, p) is stable, and hence is Z,(5:(2p+1)). Thus, (c)
implies that G(N, p) =Z,.(a,(2p+1)), and (b) reduces to (b").
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) 0>G(N, p—1)—Za(at(2p+1)) T Z,—
S G(N~—1, p— 1) Z,(g(25+ 1)) 0.

From (a) and (b’) it is evident that the iterated suspersion is
a monomorphism of G(N, k) into Z,:(a,(2p+1)), 1<<k<<p. Hence,
G(N, k) is Z, or Z,. for 1<<k<<p.

The following lemma is due to Hardie [4].

Lemma 6.1. G(N, 2)=~Z,.(a,(5)).

Proof: Either G(N, 2) =Z,(a;(5)) or Z,(«,(5)). In [16] it is
shown that G(N—1,1) is generated by a;(3)ca,(2p). If G(N,2)
=Z,, it follows from the exact sequence (a), with .£=2, and
recalling that G(IN—1,1)=2,, G(N, 1) =Z,, that S*(a:(3) ca,,(2p))
=0=a;(5)ca,1(2p+2). It follows that {a:1(5), a,-1(2p+2), Pesy>_spts}
exists in G(N,2). Let r be any element in this triple product,
and suspend it until the stable range is reached, giving S™r&{a,
sy, Pe}. It is shown in [14] that this triple product contains an
element of order p°, and that the indeterminary consists of elements
of order p. Hence, S™r is of order p°’. Hence r is of order p’,
r=>2. But y€G(N, 2) which was assumed to be Z,. Henc G(N, 2)
=Zp(a;(5)).

Corollary 6.2. G(N, k) =Z,.(a,(2k+1)), k>1.
From 6.2 and the sequences (a) and (b") we obtain the sequ-
ences (a'), (a"), (b").
@) 0-Z—>G(N—1,k—1)">G(N—1, )25 2,0, 3<k<p
@") 0>G(N—1,1)=G(N—1,2)?% 2,0
b)) 0-Z—~>G(N—1, p—1)>Z,(g:(25+1))—0.

We conclude that G(N—1,k) is Z,DZ, or Z,., 2<<k<<p: it is
shown below that G(N—1, k) is Z,.

For convenience in notation we introduce the following con-
vention. In writing a composition product of elements which
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suspend to stable elements, we only write the dimensions in which
they occur once; the other dimensions are then determined by the
stems of the elements involved. Thus, the composition of a,(3) €
I1,,(S*) and «;(2p) in II,, s(S*) is written {a:(3), a1}; the triple
product of a;,(5) EI1,,+,(S%), a:(2p+2) €I1,,-,(S***) and ay(4p—1)E
Is-s(S*™) (assuming it exists) is written {a.(5), as, a}.

Our next proposition is an unstable version of 5.1. It shows
that the unstable element of lowest degree in the range in which
we are interested may be viewed as an attempt to approximate ;.

Proposition 6.3. For 1<k<p—1 the (k+1)-fold product
{ar(2k+1), a1, +++, a0 }c S G(2(k+1)(p—1) —2, k) exists and does not
contain zero.

Proof: The proof is an unstable version of Toda’s proof of
5.1. The product exists since it is seen that the degrees in which all
the shorter C-products occur are in the stable range, and contain
zero p-component. Further, each such product has a representative
in the p-component, and thus is zero. In view of the fact that a
is an element of mod p Hopf invariant one, the space Ciiy,s-1 in
a C-presentation for the (k+1)-fold product of the proposition is
a cell complex with one zero cell and one cell in dimension 2k+2:¢
X (p—1), 1<i<k, with the property that P' is non-zero on H*#*¢-»
(Cyi1,1-1, Z,), 1<i<<k. There are maps f:Cii,i-i—>S™", extending
a map representing a;(2k+1) on the 2k+2(p—1) skeleton, and
g : S8 5C,,y such that if i Cug,s—=>S™ collapses the (2kp
—1) skeleton to a point, yog represents a;(2kp). Let Y=Ciu,ia
U eX#-2 Then, P! is non-zero on H*(Y; Z,). If fog is null-
homotopic, f extends to f: Y—S*+. Suppose fog is null-homotopic
(i.e., the product contains zero). Let Z=S**J;CY. Then, Z has
cells in dimensions zero and 2k+2i(p—1)+1, 0<<i<k+1, and P!
is non-zero on H*+¥@-D+1(7Z 75 0<i<<k+1. Hence, (P")*! is non-
zero on H*(Z, Z,). If k<p—1, (P)*'=xP*, xx0, xZ,, so
that P*' is non-zero on an element of degree 2k+1, which is im-
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possible. If k=p—1, we conclude that (P')?=0, which is also
false. Thus, if the product contains zero, we get a contradiction
which proves the proposition.

The remainder of our discussion will show that the other un-
stable elements in the range in which we are interested arise in a
manner similar to those in G(2(k+1)(p—1)—2 k) and will settle
the structure of G(N—1, k).

It is shown in [16] that the groups GQ2(r+1)(p—1)—2,1)
are isomorphic to Z, with generators a;(3)ca,(2p)={a:(3), a,}.
We generalize this result below; we shall treat G(n, k) with p—1
>k>2. The case p=3 is treated in [16] using triple products;
our results extend these proofs to higher p using longer products.

If 2<<k<<p—1 and 1<<s<<p—Fk the k-fold products {a:(2k+2
(p—1)), as, +++, a1, . }c exist. To see this, it is only necessary to
observe that, in constructing a C-presentation all the groups that
occur have stable p-components which are zero. This product is
contained in Iluiacpnyrecers-nern—a (SH*HD: b)Y which is zero unless
k=p—1, s=1.

Similarly, if 2<k<{p—1 and 1<s<<p—*k, the k-fold products
{ay2k+2(p—1)—2), fi1, =+, as, @, }c exist; this product is contained
in  Ilg-sysaco-ntacers—n—n-2 (SXEDPHED 5y - which is zero. Thus, by
taking the double suspension (see 2.3D) we see that the k-fold
product {a;, (2k+2(p—1)), ay, -*-, &, }c always exists and contains zero.
Thus, we may construct shafts of cofibrations on which to test the
existence of the (k+1)-fold products {p, ay, **+, a1, @. }c Where pE
Toiraco-1(X) or Thpias—-2(X), any space X. The space Ciig,eq in
a shaft for testing the existence of the second product is a finite
cell complex of dimension 2kp—2, with one cell in dimension zero,
and one cell in each dimension 2k+2i(p—1)—2, 1<li<k. If 3:
Ciiay1-r—>S™7* is the map collapsing the 2kp—3 skeleton to a point,
the map g,= g, s-1: S*+* P35, 4, has the property that yog,
represents a,(2kp—2). Further, Ciu,s-, of this shaft is simply the
2kp—3 skeleton of Chiigia;  if € i Crigyss—>S?»* D collapses the
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2p(k—1) —1 skeleton to a point, then gi.,:»=%h has the property
that goh represents a;(2p(k—1)). The double suspersions of
Ciis,0-1 and Ciig,sy and of the maps g. and % give parts of the.
shaft for testing the existence of the first preduct (at least up to
sign).

We note that Ciy,.» is a space of the type discussed in the.
proof of 6.3; it occurs in a shaft of cofibrations in a C-presentation
for the k-fold product {a;(2k—1), ay, -+, a1 }c. Let m: S¥+-D2
Cii,52 be the inclusion of the 2k+2(p—1)—2 skeleton. If a:
S#+200-D=2, §2-1 represents a;(2k—1), then (see the proof of 6.3)
a extends to a: Cuy, +o—>S*", am=a. Then, aoh represents a non-
zero element of G(2((k—1)+1)(p—1)—2,k—1), as in 6.3. Let
7:S8%* 71— 0*S§*+ be the usual inclusion. Since G(2k(p—1)—2, k) =0,
iohoq is null-homotopic. Hence, icd may be extended to &: Ciiy, i
—2*S**1. We wish to show that & may be constructed so as to
factor through ¢:2S3 ,—2'S**! where S¥, is the (p—1)-fold
reduced product of S*.

The non-zero elements in G2(r+k)(p—1)—2 k), 2<k<p—1,
1<r<<p—*k arise because in that degree the map j, of sequence
A) is an isomorphism; the elements of G(N—1, k) which are not
images of the double suspension are mapped into non-zero elements.
by the map j.. In these degrees, the group IL;(@2*S*+ S*': p) is
Z,. Further, the map ¢, :I1.(2S%,, S*; p)—IL,(22S**, S*1: p) is.
an epimorphism for these ¢, ie. =2(r+k)p—2r—3, 2<k<<p-—1,
1<r<<p—k. These facts are to be found in [12]. Toda also shows.
there that there is a map 6:S*°— P(2S%,, S*1 ), the space of
paths in 2S%, beginning in S*' and ending in base point, such
that 6 induces a C-isomorphism of homotopy groups (where again
C is the category of all finite abelian groups of order prime to p)
in a range of dimensions that includes all the groups which interest
us here.

Hence, Il,,_;(P(QS%, S* 1 x))=ZPT, where T is a finite
abelian group of order prime to p. It is also shown in [16] and
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[12] that Il,_,(2S*+! S*-*: py=Z, and that the map & :Ilu,.
(@2 8%+ S%1s h)—Tly,—s(S™'; p) is an isomorphism, and that g, :
Tl (2S% 1, S* 1) —Tl,-, (22 5%+, S*+; p) is an epimorphism. Hence,.
0 : My (2SS, S* ) —TIu, s(S™?; p) is an epimorphism of the free
part onto Z,. Let p:P(2S¥,; S** ,)—S*1 be the projection of
paths onto their initial points. It follows that p6# represents a.
generator of Ily,—s(S**; p). Thus the diagram (B) may be assumed.
to homotopy commute. (We may have to take @k to represent
{xa;(2k—1), ay, -+, az} for some x=Z,, xx0, instead of {a,(2k—1),
ay, -+, ap}, but this does not essentially change our argument and

we disregard it.)
Sm—a ¢ P(,Q ik_l; Szk—l, *)
w o]

a
Cle+1, by —> St

6 defines a map 6: (D™ S*)—(2S%*, S*71) so that the
diagram (C) commutes.
1-:["(1)21:‘»—2y Szkp—a) 2 R ]._.[;_1(52”_3)
04 ! (96)x
(€ IL(@SE, S*) —» (5™
lII* /
Gl
Hi(g2szk+1’ S2k—1)
The map % is exactly the attaching map of the (2kp—2)-cell
Of Ciis, 41 t0 Chrigyr—o. Hence, @ extends to Ciiy,s: in such a manner
that, if x: (D™ §*#7°)— (Cii1,4-1, Ciir,s-2) is the characteristic map
of the top-dimensional cell, then the diagram (D) homotopy com-

mutes,

Dka—z, S2le1:—3 _0_
( 2
D) # (0S¥, S* 1)
(Ck+1, k-1, Ck+1, Ie—z) '0./7
where ¢ is the map extending @. Note that ¢s extends @ to a map
Of Ck+1,k—2 to .QZS“‘H.
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Now let @=2s(p—1)+2kp—3. g.:S°>Chu, s represents an
element 7,EI1o(Cii,i-1). It follows by an easy induction, using the
definition of a C-presentation in which all the spaces X; are spheres,
that, if 7:Ci, s> (Cisgy a1, Ciirya-), then jur. is in the image of
px. Let p: (D72 S8 (S22 4+ ) be the map identifying S*#~*
to a point. Then, since we are in the p-stable range, vy :IIo(D*?
S8 HY—T1,(S™~%; p) is an isomorphism. Hence, there is a unique
element @ €I,(D*72 S~ $) such that v«(@.) =a.(2kp—2).

I (D™, §™4; )~ Ho(S™;5)
(E). 7 7 7*

I (Cisgya-1, Citry-230) -J*— I, (Cﬁﬂy 1P

Consider the diagram (E). The relative 74 is also a C-isomor-
phism in this degree range. Hence, u«(@.)=7«(r.). Now consider
the diagram (F), where ¢ is inclusion. It is clearly commutative.
We have noted that 64 and gx are isomorphisms in this dimension
and that ¢, is an isomorphism if s<<p—#% and an epimorphism if
s=p—k. We know also that j.(y.) =us«(@). Hence, (g0)+Jjx(rs)
is a generator of ITo(2*S**!, S*'; p).

® Mo(D*2, 547 5)_T5 Ho(@Sts, $*51)
i M / Ox
Ho(cnﬂ, -1 0) ._];. HO(CHly -1, CI:H, w-230)
;(qa)* y ¢(q¢,)* gx
T (@'S™1; ) —% TI(@'S™, §*;p)

It then follows that (qo)«(7.) is a generator of I1o(2’S*'; p)
if s<<p—k, and an element which maps into a generator of
Mo (5%, S™; p) if s=p—k.

We now replace the maps S"ﬁcm, ,,_lﬂ.rf-sw by the adjoint
maps S"*’S—wiSzC,.ﬂ,k_l(ir—);S”“. It follows from 2.3D that this
composition represents an element of {a:(2k+1), ay, -+, a.}c (the

(k+1)-fold product). It follows from the remarks above that this
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element is in the p-component, is non-zero, and is not in the kernel
of the map j, of sequences (A) above. Hence, if s<<p—k&, this
element generates G(2(k+s)(p—1)—2, k), and if s=p—k, it maps
into a generator of Z, under the map j. of sequences a’) or a"),
whichever is appropriate.

This proves that there are C-presentations for the (k+1)-fold
products {a;(2k+1), ay,++, ay, a.}c. 1<s<<p—Fk, which contain non-
zero elements as discussed above. However, we have more control
over the product if we rephrase this result as follows. Let a,(2k+1)
E Myepren (2°S*+'; p) be the element corresponding to a;(2k+1).
We have constructed a C-presentation for the (k+1)-fold product
{@(2k+1), ay, -+, au, @, }c with the property that the map of Cii,is
into 2°S**!' factors through S*-!. By 3.3D we may construct an
F-presentation for this product so that the map fs, i : Ps,sp—>2"S%+
factors through £?S*-!, We may have had to change the maps
Zmn» of the C-presentation (see 3.3D) but it is easily seen, using
the arguments given above, that, looked at in I1o(S**!), this product
is still non-zero and maps right under the maps j. of sequences
(A), a’), a”’) above. Further, any two elements of {&(2k+1),
ay, ++, a, }r for this presentation differ by a map into 2P, -, composed
with £fs -2, and hence, looked at in II,(S*+*!), by an element in
the image of the double suspension. This proves the following
theorem.

Theorem 6.4, If 2<<k<<p—1, 1<s<<p—Fk, then there exist
F-presentations for the (k+1)-fold product {a,(2k+1),a, -+, an, a; }r
such that: i) if p, o are in the product then p—o is in the image
of the double suspension when the product is viewed as being in
Tt syo-1y+e-1 (S0, ii) the product contains elements which are
in the p-component, and which generate the p-component if

s<p—k, and map into non-zero elements under the maps j,
of sequences a'), a"") if s=p—k.

Corollary 6.5. If2<<k<<p—1, 1<<s<<p—Fk then for an F-pre-
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sentation as in 6.4, if {a(2k+1), ay, -+, ay, a. }r is viewed as being in
H2(k+s)(»—1) m—l(szk“), {&1(2k+ 1), ay, Ay, A }Fﬂ G<2(k+5> (P— 1) - 2:
k) contains one element which generates G(2(k+s)(p—1)—2,k)..

Proof: This follows from 6.4 and the fact (see pp. 177-178 of
[16]) that the image of the double suspension in this group is zero..
Recall that we have set N=2p(p—1)—1. We now examine
the unstable (N—1)-stem. First note that by 6.4 there is an
element §,G(N—1,2) such that j,0,50, 6.€{a(5), as, ap-s}r.
According to Proposition 4. 17, ii) of [14], {a, a., p¢}=m,a.+,, Wwhere

1<s<<p—1, and m.= s-il—l (mod p). (The indeterminary of the

product need not concern us here; it is all of orders prime to p,.

and may be gotten rid of by multiplying by an appropriate integer
prime to p. In any case, m,a,+; is the only element in the p--
component in this product.)

Then, pé.e{{a(5), a, a,-}, pe}r, which, by 4.2, is, up to sign,.
{@(5), m,_y a,-1}, which, viewed in the homotopy of S°® rather than.
in that of £°S° is the double suspension of #2, ,a;(3)ca,,. But
Mya:(3) o,y is a generator of G(N—1,1). If follows from the
exact sequence a’’) that G(N—1,2)=Z, with generator 4,.

To prove that G(N—1,k)=Z,, 2<k<<p—1, we make the
induction hypothesis that if 6, G(N—1, k) occurs in the (k+1)-
fold product {ay(2k+1), e, -, au, @y+}r as in 6.4, then &, is of
order p*. It follows from sequence a’) that if this statement is
true, then S%3, is of order p, and S*6.,=0. We have proved the
statement for k=2,

In order to make the inductive step, we must modify the
definition of 8. slightly. Let a(2k+1) EIlyuis-5(2'S**) be the
element corresponding to a;(2k+1) EIl+,-n(S™). As in the proof
of 6.4 we may construct a C-presentation for the (k-+1)-fold
product {4:(2k+1), ay, ***, a4, @+ }c in such a way that the map of
Ci+1,1-5 into 2'S**! factors through S** and the map of Cisy, e into-
2:S*+ factors through £°S*'. These maps may be so chosen that.
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the two diagrams analogous to diagram (D) in the proof of 6.4
(one diagram for the extension of the map of Ciiy,:s into S*3 to
a map of Ciy,er into £22S*' and the other for the extension of
the map of Cii,s» into £:5%*' to a map of Ciiy, s into 2:S**)
homotopy commute.

The product we obtain is in the homotopy of 2:S*+. If we
look at this in the homotopy of £:S*+! taking adjoints and double
suspensions of the presentation as in the proof of 6.4, we see that
we get a C-presentation like that in the proof of 6.4, and hence
that we get an element like that in the C-presentation of the proof
of 6.4. If we take a corresponding F-presentation, using 3. 3D, we
obtain an F-presentation in which fi i1 Py, s—2S*+ factors
through 2*°S*7° and fs, i : Ps, o= 2"'S**! factors through £-1S*,
If we choose an element in {&(2k+1), ay, -+, au, ap—s }r for this
product, then, looked at in Ilu.y(S**), it maps into a non-zero
element under the map j,. of sequence a’’). Let d; be such an
element. Assuming the induction hypothesis for £—1, it suffices
to prove that pd,=0, since this will prove that G(N—1, k) is Z,,
and hence that it is generated by any element & such that j.d is
non-zero.

Now, &.€{a(2k+1), ay, -, an, @s}r, a (k+1)-fold product.
Using 4.2, poie{{a(2k+1), a, -, a1, api}r, Pt} S +{ & (2k+1), ---,
ay, {as, @y, pe}}r. Any element in {ay, @, pc} is of the form
My r-1pt+ 0, where the order of ¢ is prime to p. Since this product
is additive in the last variable, and since {&(2k+1), -+, ay, 6}r will
be zero since ¢ is prime to p, we conclude that pa, € +m,_{ & (2k+1),
ay, a1, @ g jr, @ k-fold product. Note that the towers of fibra-
tions that occur in this presentation are exactly those that occur
in the presentation for &;. They are in fact the P;; for that
presentation with ¢>>3; the f;,;, are the same as in that presen-
tation, and the only new thing is the map of S¥**=P,,,. In
using 3.3 to construct a C-presentation for this product, we observe
that we almost have this already in the C-presentation corresponding
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to the F-presentation for 4;. In fact, we already have maps 6;;:

SP,;—C.;,; for all the (,7) in this presentation, making the
diagrams (see 3.3)

SiP;, I

Xi+i+1

\

CH-})} g
homotopy commute for all the (7, ) involved, and the diagrams

/,S"P,, ;
S'X; homotopy commute
(.,
i+1yJj

except for the cases in which X; is S***™' i.e., the case =3,
j<<k—2. The problem here is that the maps of S"**~*/ into Cjs,;
are not defined, since we do not yet have a C-presentation for the
k-fold product { &, (2k+1), ay, -+, s, @y-i-py }c. However, the required
maps may be constructed from the F-presentation, as in the proof
of 3.3. Thus, we now have a C-presentation for pd; as an element
of the product {4, (2k+1), as, -+, a1, @—i-1 }c. However, our construc-
tion of the maps P, s—>2+'S*! and P; ,,—2"'S*+! as factoring
through £°S*-* and £''S*! respectively (as in the proof of 6.4)
allow us to conclude that po,= +m, ,S?d,_, where 8., is in the k-
fold product {@,(2k—1), ay, -+, a4, ap--13}r, as in 6.3, when every-
thing is looked at in the homotopy of S**!. Note that S?d,, is
well-defined for the given presentation; any two choices of 4, differ
by an element in the double suspension so that any two S?8,_, differ
by an element in the quadruple suspension, which is zero by our
induction hypothesis. Our induction hypothesis also implies that,
since d,_, generates G(N—1, k—1), §%3,; is non-zero. Hence, J; is
of order p*, which completes the induction. This proves the
following.

Theorem 6. 6. Hzp(p-])_z+zk+1(52k+l, p): 2 for nggp—l. A
ZGenerator is given by the 6, of 6.4. The image of this group
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under double suspension is cyclic of order p; its image under
quadruple suspension is zevo if k<<p—1.

Corollary 6.7. The lowest dimensional sphere in whose

homotopy groups there is an element which suspends to B, is
S¥-1 in whose homotopy there is an element 8, of order p* which,
double suspends to B, in the homotopy of S**.
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