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O. If W, X, Y, and Z are topological spaces with base point, and
aE 1- 1 ( W, X ) , 3ELI (X, Y), r E IT ( Y, Z )  are homotopy classes of
base point respecting maps such that the compositions a n d
go,r are zero in 1- 1 (X , Z ) and H ( W, Y) respectively, Toda [11]
defined the triple product {r, 3, a} g_ H (S Z ) .  H e has since
employed it to great advantage in  studying the homotopy groups
o f spheres ( [14] , [16]). It has often been noted that the triple
product bears a formal resemblance to the Massey triple product.
In  [7 ], Massey showed how to define longer products analogous to
the Massey products, and in [10] Spanier showed how to define
longer products analogous to the triple product. I t  is  the object
of this paper to give another definition of longer composition pro-
ducts analogous to the triple product, and to explore some of their
properties. The advantage o f  this definition, as will be seen in
Sections 5 and 6, is that it enables us to make certain computa-
tions in the homotopy groups o f spheres. It is , unfortunately, a
very cumbersome definition; it is hoped to give a more categorical
approach to it in a later paper. These products seem related to
those defined by D. M. Kahn (private communication). Their rela-
tion to those defined by Spanier is unclear.

1. In this paper all spaces will have the homotopy type of a

*  Part of this work was done on NSF contract GF-3685.
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countable CW complex, and will come equipped with a base point *.
All maps and homotopies will preserve base point. We shall give
two sets of definitions and propositions which will later be related to
each other. The two sets are dual in the sense of Hilton-Eckmann
[3 ] .  While this duality is only heuristic, each of the proofs of our
propositions may be straightforwardly translated into a proof of the
dual proposition; hence we give only one proof here. Our numbered
propositions and definitions will be expressed in terms of loop spaces,
fibrations, etc.; the dual proposition or definition, expressed in terms
of cofibrations, suspensions, etc., will bear the same number followed
by the letter D.

Let X  and Y be topological spaces, and let f : X ---)-Y  be a map.

Definition 1. 1. The f ib ratio n  induced by f  is the fibration p:

131 , x - induced from the path space over Y  by f .

Definition 1.1D. The cof ibration induced by  f  is the cofibra-
tion j f : Y-->C 1 induced from the cofibration X — *CX , where C X  is
the cone over X .

We make certain conventions. The path space over a space
Y  is P Y= {212: 2 (1 )= * } . In P Y , * (t )= * ,  all t. Thus, P f

=  { ( X ,  eXx P Y lf x = 2 (0 )1  .  In P  * =  ( * ,  * ) .  The cone over X,
C X , is X x / with X x {0} U* x / identified to a point *. We denote
a point in C X  by <x, t)', the image of (x , t) in  X X I s  C f  is the
space YUCX, with <x, 1> identified to f x .  *  is the image of * under

this identification. The suspension of X , S X , is C X with {<x,
identified to *; we denote a point in SX  by [x , t], the image of
<x, t>.

Definition 1.2. A  tow er o f  fibrations T = {X 1 , •••, X„; P i ,
P.+1; 13 2 ,  • • • ,  P n + 1 ;  f l ,  • • • ,  f n }  o f  h e ig h t n  ov er a  sp ac e  P i  i s  a
collection of spaces X 1 , •••, P1 , •••, P,o_1 , and maps

i=1 , A+1: i =1, • • •  n  such that

P 1÷1 --->P1 is  a fibration with fibre D X „ and 1) 1+11 :->' I P.-Li , •X ; is an
exact sequence o f  spaces in  the sense of [9 ] , i.e., the sequence
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( Y, X , )  is always exact.

Definition 1 . 2D . A  shaf t o f  cofibrations S= {X1, •••, X .; C1,
of  depth n  under C 1 i s  a collection of

spaces X ,, X„, C1,---, C„+, and maps f , :X , , C,,

•••, n, such that j ,  i s  a  cofibration w ith  cofiber S X J,  and the
f i i fsequence X i— >C,— i>Ci+1 s coexact in  the sense o f [9 ], i.e., I I  (C i+ i,

(C ,, Y)-->II ( X i ,  Y )  is always exact.

Definition 1. 3. I f  T  is a  tower of fibrations of height n, and
is a m ap , a map Y-.)-P„+, is called a  l i f t  of f  if  132 .•• -

op„+ 1 01-+ f .  The corresponding lif t  to P i , 7 ,
 i s  p, + ,0...0p, d :

Definition 1. 3 D .  I f  S  is  a  shaft o f cofibrations o f depth n,

and f :C,--->Y is a m ap , a drop of f  is a  map f :C„+, - . Y  such that

f The corresponding drop to c„ f ,  is

Given a tower of fibrations of height n  over P i, a  map f :

P , ,  a n d  a  l if t  o f  f , f : Y --.P „+ ,, we define Q,, i = 1 , n+2, a s
follows:

Q,+1--13 7„ i=1, •••,n+1; Q1= Y.

We define qi-F1: Qi+1- ->Qi as the map induced by p i ,  i.e.,

Q,+1= {(Y , A ) E  Y x
 P P ,

 i 2 (0 )  - .f i( y ) , 2 (1 )=* }
A)= (y, p,A) i f  i> 1 ;  q2 (y, A) =y.

We define maps g,:(2,+,—.42X,, i=1, •••, n, g 1 : Q1 --..13
1 a s  follows.

g, - f .  Let n  :  Q ,+ 1- Y, i =1,n + 1 be defined by 11 i+i(Y, 2)
Then Pi+10Ï+10 n i + , - .  by the homotopy H ( ( Y, A), 0 = A (t)

so there is a map g,:Q,+,--->S2X, such that i f  k:s2X,---, -P, + , is inclusion,
kogi----1+10 H i ,  • In general, there is no canonical way to pick g- ,;
the homotopy classes of any two choices of g , differ by an  element
in  the im age of II 913,).

Similarly, given a shaft S  of cofibrations of depth n, and a map
f :  C,--> Y  and a drop f ,  we define Di= Y, D i+ , the cofibration induced
by f ,

 i= 1 ,••• ,n + 1 , D , - . D , + , ,  and  maps g,+1:
•••, n, g i= f .
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Definition 1. 4. Given a tower T  of fibrations of height n, a map
f  :1 7 ->P1 ,  and a lift f  : Y-->P„+, of f ,  we define a  tower induced by
f  as being T f= { P 1 , s2X 1 , •••,s2X„; Q1, • • • , Q n +2 ; q2, • • • , q n -1- 2; g1 , • • •  y  gn+1}
for some choice of the g:s.

Definition 1. 4D. Given a shaft S of cofibrations of depth n , a
map f  :C 1 -->Y , and a drop f :C„+i -->Y  of f ,  we define a shaft induced
by f ,  as being Sf= {C,, SX,, •• • , SX„; D,, • ••  n +2 ; k l, •  •  •  , k„+,; g 1 , • ••,
g„±i }  for some choice of the g,'s.

Proposition 1. 5. The tow er induced by  f  i s  a  tow er of
f ibrations.

Proposition 1. 5D. The sh af t in d u ced  b y  7  is  a  sh af t  of
cof ibration if the  X  are sim ply  connected. (See th e  proof of
1. 6 for an explanation of the last condition.)

Proof  o f 1 . 5 .  1.5 follows immediately from th e  next lemma,
setting g = f - ,-  and g = f + ,.

Lemma 1. 6. Suppose 11:E--->B is a f ibration, with fibre i:F->E,
and g : X-->B is a m ap, g : X--->E a m ap such that H g-g. D ef ine

:13 1-->P, by e (x , p )= (x , H  p ) .  Then, a  is  a f ibration with fibre
2 F .  Define K :P g x .I->B  by K ((x , A), t) = A (t). Then, K  is  a null
hom otoPy of gop = H o i o p  (here p  :P g -->X ) ; le t  k :  P g x 1 .->E  be
a  covering hom otopy . Let K i : 13 ,-1 F be K ((x , A ) ,1 ) . Let E : P 1 7 1

- - > P g  be the f ibration induced by  K .  T h e n , there is a singular
hom otopy  equivalence n:Py ,-->Pi m ak ing the diagram

11 p _
K,

,f2F in homotoPy commute.

P ro o f : We first show a:Pi- ..P g  is a fibration. Let Y be a space,
and suppose J:Y x 1 ---->P g  a n d  h: Y -->Pi are maps such that eh=

J(y , 0). N ote that J(y , s)= (x (y , s), 2(y , s ) ) ,  where x (y , s) -
pJ(y , s ) , and 2(y , s ) :I ->B  has 2(y , s)(0 )=gx (y ,  ), 2(y , s)(1 )=* .
Fu rth er, h  (y ) (x ( y,0), p ( y ) ) ,  where p (y )  : I - E ,  p ( y ) ( 0 ) =
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gx(y, 0) , ,u(y) (1) =*, II,u(y)(t) = 2(y, 0) (t). Define N :  Y x I x I
---43 by N(y, s, t) = 2(y , s ) ( t ) .  Then, N(Y x I x {1} ) = *, N(y, s,
= 2(y , s) (0) = gx(y, s), N(y, 0, t)= A(y, 0) (t) =  ,u (y) (t) .

Define N o : Yx  ( Ix  {0} U {0} xl"U ix {1} by No( y , s, O)=

s), No(Y, 0, t)=  u (Y )(t), N o (y , s , 1 ) = *. Then, No is well-
defined, and II N o —NI Y x  ( Ix  {0} U {0} xlUix {1} ) .  Hence, No
extends to N : Y x I x IIN = N .  Define ,u(y, s)(t)=1V (y , s, t).
Then, ,u(y, s) (0) = gx (y, s), p (y, s) ( 1 )  = * .  Define J: Y  x by
J(y, s)=(x(y, s), ,u (y, s)). Then, crj = j .  Thus, a is  a fibration;
the fibre is easily seen to be S2F.

Next, P g = { (x , 2)12: 2(0) = g (x), 2(1) =*} , Pi= {(x, 1.2)1 IA:

"(0) = ( x ) ,  p(1) = *1 , and P 7 1-='  { ( x, 2, 11) 1 (X , 2) P g

(0) = K i (x , 2) , v (l) = *1 . Define n: Py,--->Pi by n(x, A, y ) = (X , K A Y ) ,

where KA v : is given by:

=
I.K((x , A), 2 t ) ,  0 < t< 1 /2

v(t)
v(2t —1), 1 /2 < t< 1 .

Then, cm(x, A, y )= (X , 1- 1K),
1 2 ( 2 0 ,  0 < t< 1 /2

Kn , v ( t )
*, 1/2<t<1.

Hence, crn— E. I f  co s2F, nii(w) =n(*, *, (0 )  =  ( *  , (0 ) .

0 < t 1 / 2
K *  w (t) = I

o)(2t — 1), 1 /2 < t< 1 .

i2(0)) = (*, w). Hence, That n  is  a  singular homotopy
equivalence now follows from the five-lemma applied to the homo-
topy sequences of the fibrations :  v:Pk ,—.P g ,  the second
being mapped into the first by n. In  proving the lemma dual to
1. 6, we only have homology isomorphisms. Hence, we require the
spaces to be simply connected so that we may obtain singular
homotopy equivalences. One can, in fact, by a much longer proof,
prove that we actually have strong homotopy equivalences; since
this is not needed in the sequel, we omit it.
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2 .  We first indicate roughly our definition of the (n-1)-fold
composition product. Let X 1 , •••, X„ be spaces, and f ,  X 1—>X1 , 1 , i =1,
• • • , n -1 , maps. I f  f,„_i of,„, is null-hom otopic there is a map
X„_2 —>13

1 _, which projects to

We construct the tower o f height two over X , , - 2  induced by

and see if  there is a lift of We proceed in this manner,
i f  we can, until we have a tower o f height (n -2 )  over X 2. L e t
P 2 ,  n - 2  and P 2 ,  7 1 - 3  be the two spaces at the top of this tower; we
have a map f 2 ,  9 / - 3  P 2 ,  g 2 - 3 - - ) % fr - 3 X . .  We find, if possible, a map

Xi—>P2, —3 which is a lift of f1 .  The element of 2 '" X .)
represented by f2 , 7 1 -3 o 7 l  is  an element o f th e (n -1 )-fo ld  product

{ f r t - 1 ,  • • • ) 1 .1.} •

Formally, our definitions follow; X 1 ,••• X,„ are spaces, and f , :
X1-->X1+1 , as above.

Definition 2. 1. An F-presentation for the given sequence of
spaces and maps is a collection of (n-2)-towers of fib rations, one
each of height (n—i) over the space x -1, i=2, •••, n -1 , of the form

{  X 1 + 1 ,  1 2 . X 1 + 2 ,  •  '  •  ,  /214 X i + k + 1 ,  • • • , 0 ,  I, • • • 13 1,n-i;
• • f i , n - i - 1 ;  p i y l f  • • • , and maps 7i :

i > 2 , : X1 - - >P2,,,--3, such that 7  i s  a lift of f i ,  and, the tower

over X1_1 ( i> 2 ) is induced by

Definition 2 . 1D . A  C-presentation for the given set of spaces
and maps is a collection of (n-2)-shafts of cofibrations, one each of

depth ( i - 1 )  under .7(1, i —2, •••, n -1 ,  of the form {X1-1, SX1-2, •••,
S k Xi_k-i, •••, S ' 2X1; C1,0= X i ,  C1,1, •", C10-1; g 1 ,  = 1 1 -1 ,  g i ,  1 , •  •  •  g f ,  1-2;

0, • • • , , and maps : i < n  —1,

so that each is a drop of f ,  and the shaft under Xi is induced

by (In discussing C -presentations, we always assume the
simply connected.)

Definition 2. 2. T h e  (n -1 )-fold  F-com position product

{ f n - l f  •  •  •  f l }  F  exists if there exists an F-presentation  for the given set
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of spaces and maps. It consists of the set of homotopy classes of all
compositions f2,..-30.6 which occur in such an F-presentation. Thus,
it is  a subset of ..(2"-3X „).

We shall also refer to {f„--1, •••, f i } F  for a particular F-presen-

tation, by which we mean the set of homotopy classes of all f2,92-3C ,
where we have fixed the tower over X ,,  and allowed j i  to vary over
all lifts of f ,  to P2,.-3.

Definition 2 . 2D . The (n-1)-fold C-composition product
• • • ,  P C  exists i f  there exists a C-presentation for the given set of
spaces and maps. It consists of the set of all homotopy classes of
compositions g— „_,og„_,,„, which occur in such presentations, and is
thus a subset o f I I ( S 'X „  X ”).

We shall also refer to ff,,-1, c  for a particular C-presen-

ta tion , by which we mean th e  se t o f homotopy classes of all
where we have fixed the shaft under X „ _ ,, and allowed

g .- I to vary over all drops of fn-i.

The construction of f, ,  n -1 , •  •  •  ,  1 1 } F  for a given presentation may
be looked at in at least two different ways. (A  similar discussion
holds for 1 f and is omitted here.) In the first, the maps
f , , ,  may almost be disregarded. Thus, we start with a lift of f,-2
to P„_,,, if one exists, and build P-2,2 and P.-2,1. I f  there exists
a lift o f  f ,  t o  P r . - 2 , 2 ,  we can build the P ,„ 3 „ 's .  Continuing in
this way, we need not consider, or bother to construct, a map A ,
until we construct f , „ „ ,  having constructed P 2 ,1 1 - 3  by a choice of

over f,. The choice o f A n - 3  then fixes {fn-i, •••,f1}F for this
presentation.

On the other hand, if, for example, the X1 are double suspen-
sions, we may visualize the construction as one that consists of
looking at many spectral sequences. To see this, note that a tower
o f fibrations determines an exact couple of spaces in the sense of
[ 9 ] .  The tower should be extended to infinity in both directions.
T o  do this, using the notation of 1. 2, we set X1, i<O, so
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that P i--> P o  is  a fibration with fibre P , ,  and P 1-->P0 —.X0 is  exact.
We set X,..+ P f1- -  7.+1. r n +1  the identity map, P„.+1=PP.+1, p,,+,—
identity, i> 3 ,  and X„+,=*, Mapping a double suspension Y
into this exact couple gives us an exact couple of groups, and
hence a spectral sequence. The exact couple is dispiayed in diagram
I, in  which the groups A , are simply II( Y, X .)/im il(Y , P i ) ,  and
are put in to extend the exact couple to the right.

- 2P2) 2X 2) — IT ( Y,

S/Pi )  -->II ( Y, 12X1) —>II ( Y,
1— * 0 —>II (Y  , P i ) (Y

 0 —>  o

'V 1
X s )

---
.1:°

>n(Y, X 2 )  —
5

.“.2 — ><-1.2 — >

1
P 1 )  , ll(Y , X1) —> A1-->A3—).

0

Diagram I

In  constructing { f ,,_3,  • F one may construct the exact
couple obtained from mapping .X.1_3 in to  the tower over X 1 .  One
then considers the class o f f ,_„ in .x 1 ), a group occurring
in the E , term . If all the differentials through the (n— i)-th vanish

on this class, there is a lift of to  P , , . ;  one chooses such
a lift, constructs the tower over X1_1 ,  and continues in this way
until the tower over X; is constructed. f r+- 1, • • F  for this presen-
tation is then the image of the class o f f 1 under the ( n -2 ) -th
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differential in the spectral sequence obtained from mapping X, into
the exact couple of spaces derived from the tower over X,.

Questions about the meaning o f other differentials in  such
spectral sequences, and about these products for maps of spectra
may be answered easily by considering what happens when you
take the loop space of all the spaces occurring in an F-presentation,

and the loops of all the maps, or the suspensions of all the spaces
and maps occurring in  a  C-presentation. This is done in  lemmas
2. 3 and 2. 3D below, in  which it is shown that, up to sign, a
presentation fo r  { Df.-1, • • •, F  o r  {Sf.--1, • ••, c  is obtained.
W ith  th e  appropriate sign conventions, we could define these
products for maps of spectra ; however, our examples, in the homo-

topy groups o f  spheres, will simply be computed by taking a
sufficiently high dimensional sphere.

Lemma 2. 3. Suppose {f,,—1, • • • , F  exists.
2 f ,}  exists, and 2  ff.-1, • • f i }  F g ( - 1)"{S2f.-i, • ••, S2fi} F

Lemma 2 . 3D . Suppose f • • • f  1 }  C  exists. Then, {Sf.-1 , •••,

S t i } c exists, and S • • • , f i }  c g  ( - 1 ) -  { S f.-1 , •  , S fi}  c .

Proof of 2 .  3 .  This is an easy induction on n ;  the basic obser-
vation is of the changes in sign that occur when one takes loops
in  the situation  of 1. 6. This observation is used to prove the
following statement, inductively.
(2. 3) L et {/3

1,,, J , 1 , X i , 7 }  be an F-presentation fo r {f„-i, •
Then, there is a n  F-presentation {Q1, 1, g i , 1 , q 1 , 3 , i } fo r {S2f,,--i,
Sdf }  and homeomorphisms pi, ;  :

Dfi g p

.4 .L

such that the diagrams DX, commute,
g , i+ 1 ,  n -1 -1

Then { 2 f , 1 , •••,

2 1 °
6 j

the diagrams if l P h  jj commute,
12P1,

j
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Qi,

and the diagrams ' P i , j S2i+1 X i+ i+ i commute,
p  / 7 .

where ( i =Stfi„ i f  n— i is even, and equals 6 0 2 f1 , i if
<n—i) is odd, where, i f  A is a loop, (JO) = 2(1— 0.

Lemma 2. 4. Given an F-Presen tation  for { f„_,, •••, A l as in
(2. 3 ) ,  let k:s2PH-1.1-1— .P„, be the inclusion of ,QP,+,, ; _i as the fibre
o f P , ;  o v e r  X .  Then, f „,o k  is, u p  to  hom otoPy ,

Lemma 2. 4D. Given a C-presentation for let k:Ci, 1
— S C  i - b j - 1  be the projection of the cofibration X 1--->C1, 3 . Then,
k o g , ,  is, u p  to  hom otoPy ,

Proof o f  2 . 4 .  2. 4  again follows from observing the situation
of 1.6.

The next proposition follows immediately from (2 . 3 )  and 2. 4.
P r o p o s i t i o n  2 .  5 .  I f  

{ f r r - 1, •••, fi. }F exists, for a given F-presenta-
lion {f ,,, •••, f i} F f ills up  a cose t of the  subgroup  ( - 1 ) - 1 {,s2f.-1,
•-• S2f3> (X1, S2X3)} F, where this symbol means all elements of
2" - - 3 .X.,0 which occur in  ( - 1 ) - 1 {Df—i, •••, Df3, g} ,, where g: X 1--)12X 3

is some maP such that {,S2f„,, •••, 2f3,g} F exists for the Presentation
o f  (2. 3), and where this symbol means {2f , 1, •••,s2f3, g } F f or that
presentation . ( I f  n = 4 ,  this is a right coset).

Proposition 2. 5D. If  {f„_3., •••,fl}o exists, for a giv enC-Presen-
tation  • • •  ,  P c  f i l ls  u p  a c o se t  o f  ( - 1 ) 1 { (SX „-2, S f . - 3 ,
•••, S f i } c, where the def inition o f  th is  o b jec t is  du al to  th at of
2 .  5 .  ( I f  n = 4 ,  this is a left coset.)

3. In this section we prove two results: first, that if { f - 1, •••,

f i }F exists, so does f f  C  (and vice-versa), and that if one
contains zero, so does the other, and second th a t  f •• •, f 1  } F  o r

is independent of the f i  up to homotopy.
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Proposition 3.1. I f  { •••  f i} Fg n (X i,1 2 - 3 X „) exists, and if
the X 1 are simply connected, then {  f •••, f i.} c exists. I f  { f,,-1,•••,

f i}  F contains zero, so does • • • ,  f i } c •

P r o o f :  This follows immediately from lemma 3 . 3  below.

The restriction to simply connected X ,  is actually unnecessary,
but the proof in  that case is exceedingly long and technically
complicated (though conceptually not difficult), and, since the
condition on the X 1  will be satisfied in  our examples, we shall
assume it here.

Proposition 3. 1D . I f ••, f i} X ,0  exists, then• c g

so:does { f .-1 , •••, f 1} F, and if {  f 7.
-

1, • • • f f l  } C  contains zero, so does
{

Theorem 3. 2. If the X i  are simply connected, then { f .-1 , • • •

f i} F exists if and only i f  f • f  1 } c  does, and one contains zero
if and only if the other does.

Lemma 3. 3. Given an F-Presentation { P1, 5 , f  p1, 5, f i}  for the
f i f2sequence there exists a  C -Presentation  { C i,k ,

ji,k , g i}  for this sequence and maps 2 < i <
n - 1 ,0 <k <n — i—  1 , such that 641,0: Xi= P 6 0—.X 1 =C1,,, is the identity,
and such that i f  we denote by ft.,: the composition

P1+1, 5+1 °p + 1 , j+ 2
°
 • • • op i+ i, n-(i+1)

°
f i  and by C1, X1+ 1  the composition

—  .
g

1 o31o , o . . • 0 j , , k , then the diagrams

Sk71 - 1 , k  S k i ,

k

S k X,_i and
Ck+ k ,  k

T f  kSki)„

k Xi+k+1

Ci+k, k k

h o m o to p y  commute fo r  2 < i < n  — 2 , 1 <k <n — i — 1 , where f , k  is
(possibly) another choice of f i ,k  (see the discussion in section 2 ).

Further, { f,,-1, •••, f1} c f o r this Presentation contains zero if  { f .-1,
f i },  for the given Presentation does.



12 H illel H . Gershenson

Lemma 3. 3D . I f  {Ci, k, g k, Jik ,g  is  a C-Presentation for a, i  

f i 1 .2f i a - 1sequence of spaces and maps then there exists
an F-Presentation {P„ k, f„ k, p „ for this sequence and maps E1, k:
P i-k , C  k  2<i<n — 1, 0 <k <i — 2, su c h  th at  E  is  the identity
and such that the diagram s

f i-k-1, k
8-k, k

k

SY' C -
k

and

p f i-k 7  k
i-k, k

k

9 k Ci, k

hom otoPy commute, 3 <i<n - 1 ,  1 <k <i  —2, w here the g ,  are
(Possibly) other choices fo r  the g1,k. Further, { f„ - -1 ,  • • • ,  f i lF  for
this Presentation contains z ero if  { f , , _1 , • •  •  , f  C  f or the  given pre-
sentation does.

Proof  of 3 .  3 .  The proof proceeds by induction on n , starting
with n = 4 .  The induction hypotheses follow, both on the assumption
that we are given an F-presentation for { f •••, fi.}F•

A) There exists a  C-presentation for { f • • • , } c  and maps Bio,

a s  in  th e  hypothesis of the lemma. In addition, the diagrams

below homotopy commute,

Sk k  , ei,

(A ) is h pi,k C1+, h

S k X. k

where P i ,k  is the projection of P i o ,  on X „  and vi+k,k is the map of
C  k  on the cofibre.

B) The P „ ,„  of i , k  and p„ k  for 3 < i< n ,  and the Ï  for 2<i<n — 1,
.f3 f 1

form an F-presentation for the sequence X 2 — +  X 3 — > • • • — *  X „ .  Sup-

op.pose that we are given a  C-presentation { C i ,  g e,k, k ,  r•-•:}  for this
sequence, and maps Oi,k : S k  P,, ,. — C1+,.,,. satisfying A ). T h en , there

is a  C  presentation for X 1 L X 2 .-1 ---1 ›.. • -f i- X „ ,  and maps O i ,k  S k -Ps,h

k, satisfying A ), and  coinciding with the given ones when
both are defined. (Essentially, condition B ) says that a  C-presen-
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f2
tation  for X 2 - + • • • satisfying A) for the given F-presentation

ftrestricted to this sequence extends to a  C-presentation for X,—).
fm-i

• .. - - > X „ satisfying A)).

The case n = 4  is easy. Here, B )  is vacuous, since Bio ,  is only
defined if  2 <i<n -1 , 0 <k <n — i — 1 , and if n - 3  we get i = 2, k= 0
in  which case 0 2 , 0 is the identity and there is nothing to extend.

To prove A ) fo r n = 4 , we observe that P 2 ,1  is the fibre of the
map f2: X2--->X3 and that C 3 ,1  is the cofibre of the same m a p . We
choose for 02,1: SP2,1-->C3,1 the usual map of the suspension of the
fibre into th e  cofibre [5]. Thus, P2 ,1 =  {  ( X, A) X 3, xe X 2

2 (0 )  = f 2 ( x ) ,  ( 1 )  =  *  ,  and C 3 ,,  X 3  U  J .2 C X2 •

2t>, 0
0 2, 1 [  (x , A), t ]  =

1<x,
2(2t — 1) , 1/2<t<1.

The map f  P2,1 -  2 ,  1 - > S2 X 4  is given (at least up to homotopy) by
some null-homotopy j  of f 3 f 3 a s

J ( x ,  1 - 2 t ) ,  O t < 1 / 2
(f 2 ,1 (x , /0) (t)

f s  ( 2 t  — 1 ) ,  1 / 2 < t < 1 .

Thus, J ( x ,  1 - 2 0 ,  0 < t< 1 / 2
Tf2,1[(x, A), t]

f32(2t —1), 1/2<t<1.

We use the same j  in  constructing i3=g3, 1:C3,1-->X4; thus,
= f 3 ( x )  ,  x  X 3 ; g„ 1<x, t> = J(x, 1— t) , <x, t> E C X 2 .

,
AX, 1 -  2 t ) , 0 < t- ,1 / 2

g3,1 0 02 1[ (x, A), t ]  =
Then,

f3A(2t —1), 1 / 2 < t < 1 ,

so that g 3 ,1 0 0 2 ,1 =  Tfs, I (again, at least up to homotopy)• :
is obtained from a  null homotopy H  of f 2 f 1  :71,1= f i ,  and f i ( x ) =
(f ,(x ), HO, where H ,.(t)=H (x , t) . We use the same homotopy to
construct g3,1:SX1—>C3,1. Thus,

g s ,  [ x ,  t ]  =  
1<fi(x), 0<t<1/2
H(x ,2t — 1), 1/2<t<1.

g 3, 1 (x)



14 H i l l e l  H . G e rsh e n so n

Then, 0,, t] 0  2 ,1  ( f l  ( X )  • H  . )  11 =g 3 , d ix ,  t ] .  The homotoPY
commutativity o f (A ) follows easily.

Thus, the lemma is true for n = 4 . Assume, then that A) and
B ) are true for the case ( n - 1 ) ,  (n -1 )> 4 ,  an d  that we are given

f i f ian F-presentation for .X2—> • • • — > X „,. The P„ k  and appropriate
f i f 7 , 1

maps for form an  F-presentation for X 2 - - . • • • - - - - > X 1 .  (Note
that this includes /;,„_4 : X 2 - 4 3 2,14-4 which serves as the -A of this
presentation.) By induction hypothesis A ), we may construct a  C -

presentation and  maps satisfying A ) fo r this F-presentation. We
consider any such C-presentation and shall extend it (in  the sense

of hypothesis B)) to a C-presentation for X 1--- • • • X „  satisfying
A ). T he remainder of the proof may thus be thought of as a proof
of induction hypothesis B).

The F-presentation for X 1– • • •--> X „  also gives F-presentations
for X 1 --, •••--->X , - 1  and • • X „ _ , .  The C-presentation fo r X2- - .
•• •- -  X „ gives a  C-presentation fo r X2-->•••--->X,-1, and appropriate
maps which satisfy A ) fo r  th e  F-presentation fo r  X 2-->••• - - -. X . - 1 .

Then, by B), this C-presentation extends to a  C-presentation for
• • • 

The C-presentations for • • X „  and X  • • •---> X –, combine
to give us almost all o f a  C-presentation fo r .7(1– X .; in fact,
we now have all the C „ k  except for (i, ( n - 1 ,  n - 3 )  ;  we have

maps g „  k  :  S kk  maps –g „ k C z , k -  X 1 4 1  for i < n –  1, and maps
0 1-k , k  S k  P t - k 7 k making th e  appropriate diagrams homotopy
commute. The choice of the space C21-1, n-3 is now determined; it
is the cofibre of the map i n - 2 ,  n -4  C n -2 , n -4 - >  X n - 1  •  We first construct
02„/-3 • Since the maps f  :„  and g „ ,  are only defined up to homotopy,
we may, by changing our choice of them, assume that the diagrams
of the lemma's conclusion actually commute.

Consider the diagram II. T h e  to p  line
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n-44g n
H (P2, .-3  p n - 4 )  -

12,
O. . - k l - g p n - 9  p

S" - '

(S - 4 1;,„-4 , 4 )  
T f ; ,

Oh n -4 * tif °2 , n -4 *

11 (S n - 4 P i p n - 3  p  in -3 P  n - 4 )  ! Ill (S " - 4 P 2 p n - S  •  C. - 3, - 4 )

Diagram II

is self-evident; the second line is the mapping sequence of the map

T.g,77-4 with "contraefficients" in  P 2 „ ) - 3  [ 3 ]  and the third line is
the mapping sequence of the map .4.7- 2, - 4  with "contraefficients" in

P 2 „ ) - 3  •  We start with the homotopy class o f  b P2) n-3 —  2 )  n - 3 - 4 1 21 n-4

in II ( P 2 )  n - 3 )  P 2 )  n - 4 )  •  Let this class be a. —, b is  null-homotopic,71-4 ° ,  2 )  n - 3

so that f ;,.-4 * a= 0, and T f  n - 4 *  S
" - 4  a = 0 .  Hence, Tf,.._4 * Sn- 4  a  is

in the image of 1-1(S" - 4 P 2„ 4 ,  Tn„_ 4 ). Let ig be an element such
that 8*  13 S" - - 4 ce . Consider 0 2 „ ) - 4 *  E  ( S

" - 4
P 2 ) „ - 3 , n-4) • If

1-1(Sn- 4 P 2,„_3, C . -1, —.3 ) associates to each map
the corresponding map o f cofibres, we choose 02,„_3 as a represen-
tative o f )2* (3. Thus, we have many choices o f  03,7,-3; we shall
construct appropriate maps corresponding to each choice.

It is clear from the construction of 03, p ,-3 that the diagram (A)
homotopy commutes.

Next, we construct g,„ 1„„_3 . Consider Diagram III. I n  this
diagram, rectangle I represents 0 2 » )-4 J )  and hence commutes;
rectangle VI constructs

S n - 4 p 3 ,  4 ,  3
"

4 PR, n - 3  S n - 41J2 ,  4
 0

2, n - 4 c _ 4  7271-2, /1-4

i I T f ; „ , - 4 If II
CS " - 4 1 3 2 ,

VI j  V I I

h i
i n  n - 4  g n - I,  n - 4

C n -p ,

in - lp  n - 4

Diagram III

03, 3 from  0
2) 1)-4 J )  and hence commutes; triangles II, IV, and V

commute by the induction hypothesis and the remark above; triangle
V II commutes by definition, and square III homotopy commutes by
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the construction of a C-presentation. By the homotopy commuta-

tivity of (A), the composition 7 , , ,_ , , , - 4 0 0 2 , - 4 0 s - - 4 p 2 , , , _ 3  is homotopic

to the (n -4)-f o ld  suspension of the projection p :  P 2 , - 3 - x 2 .  The
map T f  71, - 4 ° n - 4  is null-homotopic since the F-presentation is an
F-presentation o f { f-1, •••, f1 }. We may use a null homotopy of
this composition to extend the map g - 1„- 4 0 j  to  the cofibre of

g - 2, - 4, i.e., C n - 1 ,  n-3 and to extend the map g„_1 „_4 0job to  the
cofibre of i ,  i.e., S"- 3 P 3 ,,,- 3 . It follows from the observation above
that 72.-2,4002,40 ,3" - 4 P2,,,-3 is  homotopic to  S"- 4 P  and from the
construction of an F-presentation that the extension of gin - 1 ,  n - 4  ° i° b

is  the adjoint of a map f;,.-3 : which may occur in
an F-presentation. The commutativity of the diagram

T f ;,„,
X„

krn-1, n-3

where g - 1, „_s is the extension of g,._ 1, 7 , - 4 . i ,  now follows immediately.

In order to construct consider Diagram
I V .  To construct a

(S ' - 4 X1, C -2 , n -4 ) g ; 4 4 1 1 ( S ' - 4 X 1 ,  X „„)

1'7

IT ( S 'X i ,
Diagram IV

gn -1 ) / 1 -3  we start with the class of g - 2, - 4  in II (S 'X i, see
if it goes into zero under g- -2 , - 4 * ,  pull it back to II (S " - 4 Xi, g - 2, - 4)

i f  it does, and project to a map of cofibres. However, we can map
the bottom sequence o f Diagram II into the top line o f Diagram IV
by ,f,*„,_3. Under this map, the element 02,-4*S" - 4 a  goes into the
class o f g - 2, - 4  by our induction hypothesis. Thus, ft.--302,..-4*0
is a pull-back of the class of a n d  its projection into a map
of cofibres gives the desired

If {f.-1, •••, f1) F  contains zero, we may choose an F-presentation
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such that f n -3
°

f 1 ,  n - 3  is  null-homotopic for any choice of f2,.--3 (see

the discussion of section 2 ) .  Then, in the C-presentation constructed

to satisfy our induction hypotheses, T f  3.71,n-3
which is null-hom otopic. This concludes the proof of 3. 3.

Next, we prove that { f,-1 , •••,f,}  is independent of the choice

of the f ,  up to homotopy.

Theorem 3.4. S uppose •••, f i}  exists, and suppose
i=1, • •• , n -1 . Then, { g,-1, ...,g1}  ex ists, and- is equal to { f .-1,•••,
fl}

The proof in the case of f , , ...1 ,  •  f l  } F  follows immediately from

3 .  5 ;  similar arguments hold fo r  { •••,f1}c  when simple con-

nectivity assumptions hold.

Lemma 3 .5 .  Suppose { P„„ f „„ p„ } is an F-Presentation for
1f -1 , •••, f lIF, and g , - f , .  Then, there is an F-Presentation { Q ,,„

g „,,  q , ,  gr.}  for {g,-1, gi },  and singular hom otopy  equivalences
such that the diagrams below hom otopy  commute.

<-  W
Pi, 1  ,-,

Q • ,  gi' ii, i i  

(A ) 1» i lqi, i (B) iPi, 1 ,S2' X i + J + 1 ,
.---' 7Pi, 5 -1 /:<1 Q , , , i _ i

- 

p

 ,"

A 1  p .H-1, i

(C) X, Ïpi,i, 1 •

- Q .+  •j g 1 ,  .1

P ro o f : Suppose X, B ,  C  are topological spaces, f :p :
g : X -C  are maps, and H : p f - g .  We define Hp : P f -)..P, by

11/(x, 1 -2 t),  0 < t < 1 / 2
H p(x, 2) ( x ,  / 2 ) ,  / 2 (0  =

19 2 (2 t -1 ) ,1 / 2 t 1 .

Then, if 111 : .13 1- > X , are the projections, O (H p )=1 1  ; if
i :2 1 3 - .P ,  and j :S 2 C -P ,  are the inclusions of the fibers, we see

immediately that j(Q p) - (H p ) i .  I f  p  w as a  singular homotopy
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equivalence it follows that ( H p ) was a singular homotopy equiva-
lence.

Using the facts adduced in the last paragraph, it is then an
easy task to build the p„ ;  b y  induction. The homotopy commuta-
tiv ity  o f A ) follows easily ; the choice o f g „ ,  in B )  is  made by
taking g1, 1 = f 1 , 5 0 p 1 „,  and checking that g „ ,  satisfies the conditions
necessary in  an  F-presentation. :g7„ ,  may be chosen as  a  map
representing an  element o f  1-1(X 1 , Q,+,,,) corresponding to that
represented by 7,. ; under P1+1,1*. (O f course, one should choose g ,

thus, and define g— „ ,  by composition with appropriate q,+,,,'s.)
3. 4. allows us to make the following definition.

Definition 3.6. Suppose a, E  (X, , X 1+0 , i= 1 ,  • • • , n - 1 .  Then,
{ ,  •  •  • ,  c e i  }  exists i f  { f--1, • • •, exists fo r some choice o f f

representing c e „  and is equal to { f.-1, •••, fl} for such a  choice.
{ ,  •  "  7  t r i  IF and { o ,, • • • , cri} c have the appropriate meanings.

4. In this section we prove an easy result which will be useful
in section 6.

f2Proposition 4 .1 .  Suppose X „ is a set of spaces
and maps such that {f„_ 1 , • •• , fi }F exists. Suppose that g
is a map such that f i og is null h o m o to p ic . Then, there are maps
h: Y ---, 12 X s , representing elements of {f, ,f,, g }  such that the ( n - 1 ) -

fold Product •••, 2f,, h} exists. I f  k: represents
an element o f { f „ ,  • • • ,  f i } ,  then keg represents an element of
( - 1 ) 7 - 1 {s2f„_,, •••, DA, h}F fo r  some h representing an element of
{f2 , fi, g }. This result may be expresed crudely by saying that
{ { 1 .. - 11 • • • 1 f 1 } F )  g } F g  ( - 1 ) '  1 { 1 2f . - 1 ,  • • • ,  

2
f 3 7 {  f 2 , f i, g } F} F •

We use the rough notation above to write 4. 1D.

Proposition 4. 1D. Suppose•  •  •  ,  f i ) ,  exists, and g :X „ --)-Y

is a map such that {g , f„_ ,}c= 0 . Then, {{g, f,„_,,

exists, and {g, •• • , f i } c } c g . ( -1 ) — '{ {g , Sfi}c.

Proof of 4 .  1 .  Suppose {P„ „ p „ „ f ,  f l  is an F-presentation for
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{ • • • , } ,  and k = f 2 ,„_3o7
1
 represents the corresponding element

of ••, IF . Let 1b ,1 _ P1,1— >  X 1  be the fibration induced by f i .- 
Then, b  b2, 2° 2,2° • • •pz,"_30.Tiopi,,—fiop,,, which is null-homotopic. The

fiber o f b  b2 ,1 ° . 2, 2
°

 • • • 
°

P 2 ,  n - 3  is, by definition o f P 2 ,  r t - 3  
,
Q P 3 , There

is thus a map b i: P1,1- - -.9P3, —4 such that, i f  q1: 2 P3, 1_1-2-P 2 „ is  the

inclusion of the fiber over X 2  q„_20bi— T,op i , 1 . Since f i o g  is null-

homotopic, there is a  map g  such that p l , l o i = g .  Then

k o g =f 2 ,-3 0 f lo g =1 ;,-3 8 ) .K .P io ..g — f — s o q „,"obiog— . N ow , p 2 , 2 o p 2 , 3 0 . . .

°P2, : sz.X3 (since this map factors through q , )  is  a

map that occurs in  an  F-presentation for f  f ,F •  Thus, h=
P 2 , 2

°
P 2 , 3

°
 • •  

C
P 2 , 7 ,- 3

° ,
q 7 ,-3

C:
61

°—" represents an  element o f  { fz , ft,g

The result now follows from this observation and (2. 3).

For our application of 4. 1 in section 6  it is convenient to

rephrase it. T h e  co m p o s ite  map 2 P3„_,-->P3„--->gX1+3 is , a s  we

have seen, Q f 3 , 1 , up  to  s ig n . I f  we change the sign where neces-

sary, w e get w hat is  essen tia lly  a n  F-presentation fo r  testing

products {1.2 f „,,, • ••, S 2 f 3 ,  a } F .  If, now, we look at the adjoint of h,
k : X 2 ,  and de-loop the maps 9f 3 ,, , ,  we get an F-presentation

for { f , ,  • • •, f3, 7i} . Thus w e obtain  4. 2.

Proposition 4. 2. U u d e r the conditions of 4. 1, there are maps
h :S Y - - >X 3 ,  adjoint to representativ es o f {  f 2 ,  f i ,  g }F , such that

•••, f 3 , h IF  ex ists . I f  k : represents an element of
••• then the adjoint of k o g ,  mapping SY --212" - 4 X ,, is an

element of ( - 1 ) '{ f „ , , • • • ,  f 3 , -171}F for some such ii. In  the presen-
tation fo r  this Product, the tow er o f f i b ra t i o n s  over X 2 m ay be
tak e n  to  b e  th at o c c u rrin g  in  the  orig ina l Presentation for

5. In this section we apply the techniques developed above to
the study of the p-components of the stable homotopy groups of
spheres, for an odd prime p .  While we do not compute any new
groups, we are able t o  show  the existence of some previously
unknown regularity in the known groups.
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We begin by recalling some of the results o f  [ 1 3 ] .  Let p  be
an odd prime. We denote by IIk(S, p ) the P-primary component of
the k -th  stable hom otopy group o f  sp h eres. II0(S, p )  is infinite
cyclic with generator c, the unit of the ring p ) (S,

k 2 0

There is an element a 1 E fl 2 _3 (S , p )  o f order p ,  and elements a,

112scp-i)-1( s ,  p ) ,  p a o, u E { a i , pe, }. In  [1 4 ]  this is proved for
s < P 2 ;  in  [ 1 ]  and [1 5 ]  it is p roved  for a l l  s. I f  P ' s ,  a s is also
divisible by P ' ;  this is proved in [14 ] for s < P 2 ;  Adams is believed
to have supplied a proof for a ll s  in  his study of the J-homomor-
p h ism . Further, there are elements R p ) ,  i< s <
p - 1 ,  o f  order p. I f  w e  set Wk,, equal to  an appropriate element
such that P a = a k p  th en  it is  sh o w n  in  [1 4 ] th a t the a ,  cE:,

generate II * ( s , p )  multiplicatively in degrees less than 2p2(p — 1) —3.
W e shall show that arises fro m  a  as a P-fold product, and that
the j ,  arise from cy, and [3, in a manner analogous to that by which
the a., are constructed from

Lemma 5. 1. The p-fold Product • • • ,  a i } c  ex ists and does
not contain zero . It does contain x 191 fo r  some x E Z p, x #0 .

P ro o f : This is just lemma 4 . 1 0  (ii)  o f [14] , translated into our
term inology. The proof given in  [1 4 ]  is  exactly  the construction
of a  C-presentation for th is product.

Proposition 5 .2. I f  2<s<p — 1, the five-fold Product {19,, Pe,
Pe, }  ex ists and does not contain zero . It does contain

f o r  some x E Z p, x #0 .
This proposition suggests at least two questions.

A) Does this sequence of continue indefinitely ? That is, does
there  ex ist 1% , o f order p ,  in  degree 2(sp±s— 1) ( p  1) —2, e

{1%- i, Pe, t3i, Pe, (El }c, for a ll s>1 ?

B) I f  A )  i s  true, do th e re  ex is t more, s im ila r , fam ilie s?  In
particular, i t  is  e a s y  to  s e e  th a t  the P-fold product {a",, •••, a;}c
e x is t s . This lies in degree 2p2( p —1) — 2 . n (s, p )  is either
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Z , or 0  [ 1 3 ] .  Is this product non-zero ? I f  i t  is, suppose T i  is.
a non-zero element in  this product. Can we form a sequence of
non-zero elements r„  rsG{rs-i, Pc, Ti, p e, i3, p , ?  r s  would have
degree 2 ( s p 2 + (s -1 )(p + 1 ))(p —  1) —2.

Before proving 5. 2, we need a lemma.

Lemma 5. 3. S uppose ren ,,k (S ') is  an  elem ent o f  order p .
Then, the triple product {pc„,r, PC.+k}c is defined and contains zero.

P ro o f : We use the definition of the triple product as a fun-
ctional homotopy operation [10] . Thus, i f  p , :  s - - -> s "  is a map of
degree p ,  and p 2: 5--P-4-5" , k is the k-th  suspension of p i ,  we form.
the following coexact sequences o f spaces in the sense o f [9] :

where C p  is the mapping cone of p 2 .

We then form the diagram

„+,,,(s-) s-) L n „ (sn )..H ri„+k (s-)
xp xp xp xp I xp

11.+k-Fi(S") >± 1:41.+k+I(S")-- 1-1(cp, s-)L 1 -1,„,k(s-) '-̀ 2.n„+k(s-),

in which the horizontal rows are obtained by mapping the sequence
of spaces into S ", and the vertical arrows are induced by p ,  and
hence are multiplication by p .  (Note that II(Cp, S - )  is an abelian
group since C p i s  a double suspension because k > 2 ;  in  fact,
k 2 P —  3.) {pt„, r, Pt.+k lc is obtained by considering rEn”÷k(S"),
observing that for= 0 , taking j --1 ( r )  in 11(C, S"), multiplying by p ,
and pulling back to 1-1.+1+I(S'). Suppose jy — r. Since C p  is  the
Moore space H (Z p, n+k), II(C p, S") is  a cohomotopy group with
coefficients in Z p  for an odd prime p. By Theorem 3 . 6  o f [8] ,
II(Cp, S " )  is  a vector space over Z p .  Hence, Py. = 0 , so p r-  pulls.
back to zero.

Proo f  of  5 . 2 . The proof falls naturally into two parts: existe-
nce of the product, and a proof that it is non-zero.

We first prove that the product exists. We shall consider the
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elements igs, a ,  etc. as being in the homotopy groups of appropriately
high dimensional spheres. Recall (see section 2 )  that the products
may be considered as the images of elements under the differential
in a spectral sequence that comes from the C -presentation. Pa 1 = 0 ,
so one may look at 131, Pc, ailc=d2(l3i) in an appropriate spectral
sequence. Th is is  a  c o s e t  o f  some subgroup o f  n
This group has no P-component [13] ; since i s  in the P-component,

d2(1) = 0 .  Hence, we may construct a  shaft o f  cofibrations on

which to test the existence o f  {pc, i3i, Pe, ex1 }c . We display the
relevant part of the exact couple on which this is computed; here,
n  is a sufficiently large integer, a= 2p ( p - 1) - 2 , b = 2 (p -1) - 1.

(c,„ 2, s")-4 -1„,,,,(Sn)

n„+„+,(sn)-)-n(c,„ (s-)
1

n „(S ") — l l > , ( S ')  '-==.1- 1„,(S ")

We start with pe in the 1-1„(S") on the left. d i (p c )  e p c = p 3 ,

= 0 ,  so w e have an element [Pe]2 in E2. P )  Z fi2 (CVP) •
Two copies of 1 1 „+ I(S ") occur in the exact couple ;  call the left
hand one G' and the right hand one G " .  It follows from  the dis-
cussion in section 2  that di(G") = 0 ,  and that d 1 : G '--.G " is multi-
plication by p .  Therefore, (recalling that ap— Pa;), the E , term in

•the position of G " is  G "/ P G ", a group of order p .  Now, d 2 [p c ]2

=  { Pc, RI, Pe } c  which, by 5. 3 , is zero mod PG". Hence, d2[Pt] 2 =  0 ,

so that be, . A1, be, a 1,Ie  ex ists . The image of d , in  G ' is  the image
of multiplication by lei, and hence is zero. Thus, E 2  in the position
o f  G ' is  Z p (a p ).  d2(ap) is  a representative o f { ap, Pe, al le which,
by Theorem 4.14 o f  [1 4 ] contains a  generator o f  II.-F.+b-Fi(S', P)•
Thus, E 3 in  the position  of ll„+„+,(s-, p) has no P-component.
Thus, for any C-presentation, {pc, ai, Pc, eri}c , as an element o f E 3 ,

is  in  a group with no P -co m p o n en t. By 3 . 2 , there exists an
presentation for {Pc, j3, Pe, a l }F . It is easily seen that TT (P212)

is finite in  any such presentation. Hence, one may choose a lift
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of a  representative o f a i  that represents an element of the P-com-

ponent of ( P 3, 2 ) .• It then follows from 3. 3 that there exists
a C-presentation fo r {Pe, Pe, tei}c which has in  it an element in
the P-component o f IL-h,+b-Fi(S"). Hence, by the remark above, in
this C-presentation {pc, tqi, Pc, erl}c= 0 in E ,. Hence, we may construct
a shaft o f cofibrations on which to test the existence o f {19—i, Pr,

Pt, z 5 }c .  In the corresponding spectral sequence, d1 (R-1) —PS-1=0;
d, { Pc, f3i}cg.112(sp+s-2)0-1)_,4„(S"), which has n o  P-com-

ponent [13] ; since [R—i] 2 is in the P-component, d2 [1
9

s- 1 ] 2 =  O. Hence,

[  s
- 1]  3 exists; again, d , [_ 1  h e  R  jot }  n1, 3=  t s-1, r-1, c g  - - 2 ( s P + s - - 2)(P - 1 ) - 3 ( S  ) ,

which again has no p-component [13] , so that so that

. ,[ Is - - i ] 4 exists. Thus, d 4 [i3 ] 4
=- IS pc, 81, be, Ic exists.

Next, we show that it does not contain zero. (It  must contain
.elements of the p-component since Os_i is in the p-component). We
use a method introduced by Toda [14] , namely, constructing maps
of the C 1 , 3  that occurs in a C-presentation into appropriate elements
of the Postnikov system of a sphere, and observing what happens
in the mod p cohomology.

As above, a = 2 p (p -1 ) —2, b — 2(p -1 ) - 1 .  Let c = 2((s —1)p

+ s- 2) (p  - 1 ) -  2 .  Again, n is sufficiently large. Let Y = C , , , .  Y

has cells in dimensions 0, n + c , n + c+ 1 , n+a+c+2, n+a+c+3.
The (n + c+ 1 )-ce ll is glued to S "“  by a  map o f  degree p ;  the
(n+a+c+2) -cell is glued to the (n+c+1)-skeleton by a map hi

which represents [31 w hen  the (n+c)-skeleton is identified to a
point; and the (n + a + c+ 3 )-ce ll is glued to th e  (n + a + c+ 2 )-
skeleton by a map which is a map of degree p when the (n + a + c
+1)-skeleton is identified to a point. It follows that H * (Y , Z )  is
zero except in  degrees 0, n + c , n + c+ 1 , n + a + c+ 2 , n + a + c+ 3 ,
in each of which degrees it is Z .  Further, i f  we pick generators
a  o f  H"+`(Y, Z p )  and r  o f  H " -"+`+2 ( Y, Z „ ) ,  then ad generates
H"“+ 1 ( Y ,Z , )  and 8 r  generates 1-P"-a+c+3 ( Y ,Zp), where ô is the mod

_P Bockstein.
There are maps f:Y--*S",f1.3"+` represents and g  : S"+'+'+'+'
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such that i f  n : Y-->S"+'+`+' collapses the (n+a+c+2)-sk eleton
to a point, v g  represents a. The composition f g  represents {0-1,

Pe, fia, Pe, cei} c.
Next. we show that PP 8 d # 0 .  I f  W  is  Y  with th e  (n+c)-

skeleton identified to a point, H *(W ,Z p) is non-zero in dimensions
n+ c +1, n + a + c + 2, n+ a+ c + 3 . Let a' be a generator in dimension
n+ c + 1, r in dimension n+ a+ c + 2, and dr in dimension n+ a+ c + 3.
It is sufficient to show that P i ' 0 .  L e t  K  be that element of
th e  Postnikov system fo r S"+̀ +' such that i f  k: S"+̀ +1 - - K  is  the
map occurring in  th e  Postnikov system, k *  :11(S'+`÷ 1 ) - 4 -1,(K ) is
a n  isomorphism f o r  i< n + a + c + 1 = n + c + 1 + 2 p ( p - 1 ) - 2 ,  and
Il i (K ) = 0  for a+ c + 1. Then, k  extends to k :W - .K , since

there is no obstruction to  extension . If i:S " -" - , .W  is  inclusion,
it is clear that i * :11,(S"+̀ +1 )--4-1,( W )  is an  isomorphism for j< n
+ a + c + 1 .  0 ,  is  a  generator o f 1- 1”+.+c+i(S"+') ; since th e  (n +a
+c+2)-cell of W is attached by a map representing f ,  II„+ „+ ,+ i ( W, p )
= 0 .  Then, if C  is the class of finite abelian groups of order prime
to  p ,  -k * : 1-15 ( W )--41 ,(K ) is  a  C-isomorphism fo r j<n + a+ c + 1,
a n d  a  C-epimorphism for j= n+ a+ c + 2. H ence, k* :  H i (K, Zp) ,

I ll(W ,Z p ) is  a n  isomorphism for j<n +a +c + 1 an d  a  monomor-
phism for j = n + a + c + 2 .  According to statement (3. 12) on p. 203

o f  [13 ], H"`+'(K , Z p)=Z p(ao), H"÷`+ 2 (K , Z p)=Z p(bi), where aœ

and bi  are generators of these groups, and PP ao=8b i .  Now, -k*(ao)

and P P -k*  (ao)=Te* (PP aœ) =-Tz* = 87i* (bi ) .  Since k*b i # 0, and 8 is
non-zero on H'+'+̀ +2 ( W ,Z„), 8k*(1 ,1) * 0 .  Hence, P P  is  non-zero on
H"+̀ -"(W ,Z p ), an d  hence o n  H"+` -"( Y, Z n). T h u s , to  su m  up,
H *( Y, Z p) has generators 1 in  H°, in  H"+`, 8ci in  11"- +̀1 ,  r  in

8t. in  H " ÷ ' ,  and PP8a#0, so PP8 a=x 8 r, for some x EZ p,
x +0.

Now le t Z  be the complex obtained from Y  by attaching a  cell
by the map g .  The mod p  cohomology of Z  is  the same a s  that
of Y , with an  additional generator in  degree n + a + b + c + 4 .  We
denote the generators in  Z  by th e  same symbols a s  those in  Y ,
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and claim that Play #0. This follows from the well-known [2] fact
that a l  is  an element o f mod p  Hopf invariant one, and the fact
(noted above) that 72g  represents a.

L e t L  be that member of the Postnikov system o f  S "  such
that if 1:L  is the map occurring in the Postnikov system then

Il i (S")--->II,(L) is  an isomorphism fo r i< n + c ,  and II, (L) =0,
i n + c .  Then, lo f  is null-homotopic, since there is no obstruction
to a null-homotopy. Let m  : M -).S " be the fibration induced by I.
Since lo f  is null-homotopic, there exists a map T : m of=f.
The P-component of IL,+c(S") is generated by [3_1. Since fiS -÷`
represents 8,, and since 1-1„+ ,( Y ) Zp ,  and is generated by the
inclusion of S "+` in to Y ,  it follows that f *  : Y)-.IL+ ,(S"),
and hence j: 11„4„( Y )- 4 -1„+c(M) is a C-isomorphism. Since both
Y  and M  are (n +c - 1) -connected, P : H"+` (M, Z ) ->H '+'(Y , Z p)
is an isomorphism. It follows from theorem 3. 10 of [13] and the
discussion on p. 310 of [14] that 11'+̀  (M , Z p) is generated by an
element bs.:-,2 ) ,  and that, in H* (M , Zp), 0, where W _ 1 =
s.13 '13 '8 -  ( s -1 )  f " -"8-1- (s-2)8.13 P+'.

If f o g  is null-homotopic, so is j o g ,  so that 7 extends to Z

->M , where .;̀ >* :H " ( M ,  Z ) - 4 1 " ( Z ,  Z p )  is an isomorphism. Hence,

f * (e _ - -12 )) =za, zE Zp, Zk  0. H en ce  W s -16 = 0 in H*(Z , Z p).
Now, I:" 0 for dimensional reasons. Hence, a  —  (S -1 )

13 P+'8cr+ (s - 2 ) P i  a. B y  the Adem relations, .13 1 PP= P P + 1 .  Hence,
P P + 1  I n P P  =  w P i r  for some w Z p .  But .13 1 r =0  for dimensional
reasons. Hence, W  -  ( s  - 1 )  1 3 P+1 8cr -  ( s  - 1 )  P '.1 3 ° 8er. But s>1 ,
and P 1P P 8 0 -# 0 . Thus, i f  f o g  is null-homotopic, we contradict

bn 2 ) = 0. Hence, f o g  is essential, and { be R  be n ,s --1  , (and
hence, by 3. 3, { Pe, 81, Pc, i t i} F )  does not contain zero. As we
have seen, it does contain an element of the P-component, which
proves 5. 2.

6 .  In this section, we turn to the unstable P-components. It
is first necessary to review the results of [161.
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Since p  is odd, it is sufficient to confine oneself to odd-dimen-
sional spheres (Theorem 13.12 o f [6 ] ) .  We shall be interested in
the P-components of II2k+1+.(52 ' ) ,  which we denote by G(n, k ), for
n<2p (p — 1) —1. Recall that S 2 : G(n, k)-->G(n, k+1) is  an isomor-
phism if n<2(k  +1) (p—  1) —2, and an epimorphism if n = 2(k +1)
(p— 1) — 2 (Theorem XI, 8.3 o f [6 ] ). T oda  has shown [16] that
if n<2p(P — 1) —2 then  G(n, k) =0 unless n  i s  o f  th e  form
2s(p— 1) —1, 1 <s <p , or 2(r + k )(p-1)—  2, 1 <r<p —  k . If n  has
either of these forms, G(n, k ) =Z ; i f  n —2s (p — 1) —I then G(n, k)
is generated by an element a. (2k + 1) which suspends into the
stable element a ,  [16] . In addition, G ( 2 p ( p - 1 ) - 1 ,1 ) =z i,  on
a generator ap (3) , and G (2p (p — 1) --- 2, 1) —Z,, [16] .

Additional information about the 2P(p-1)— 1 and 2p (p — 1) — 2
stems may be gained from [14] and [16] . The main tool of [16]
is the exact sequence (A) , where I I 2 k + 7  ( D 2 S 2 k + 1 , S2 1 ; p )  is the p-
,component of the homotopy group.

(A ) --> G(n, k —1) '-1 2 >G(n, r i z ,e+n ( s 2 2 S 2 k + 1 ,  5 2 k - 1 ;  p ) ,

--->G(n —1, k-1)—>...

Formulas 13. 6 of [16] give values for 1 1 2 k + n - 1 (2 2
S 2 k + 1 ,  S 2 k - 1 ;

•that allow us to write the exact sequences (a ) ,  (b ) ,  (c )  below,
where N = 2P ( p-1)—  1.

<a) 0---> G(N, k —1) 212->G(N, k) 1 '1 >Z,,—> G(N —1, k — 1) G(N —1, k)
2<k < p

s2 s2
<13) 0---> G(N, G(N — 1, p — 1) ,

s2 G(N —1, p)-->o
s2( c )  0--->G(N, p)— >G(N, p+ 1)-4).

Note that G(N, p +1) i s  stable, and hence is Z,2(a;(2P+ 3)).
Also, G (N -1 , p )  is stable, and hence is Z(j 1 (2p+ 1)). Thus, (c)
implies that G ( N ,  =  (a '„ (2p  +  1)), and (b) reduces to (b').
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(13') p —1) 'L z p 2  ( . 'p  (2p + 1) )-1-1.̀

G(N —1, p— 1) (131(2p + 1))--->0.

From (a) and (b ')  it is evident that the iterated suspersion is
a monomorphism o f G(N , k ) into Zp2(a'p(2p+1)), i< k < p . Hence,

G(N , k ) is  Zp or Z 2  for 1 <k <P.
The following lemma is due to Hardie [4].

Lemma 6. 1. G(N, 2) =Z 2(arp(5)).

P ro o f : Either G(N, 2) =Z2(a'p(5)) or Zp(c p(5)) . In [16] it is
shown that G(N — 1, 1) is generated by a i (3)0ap_,(2p). I f  G(N, 2)

=Z p , it follows from  the exact sequence (a ) ,  w ith  k =2, and
recalling that G (N -1 , 1 ) =Zp, G(N, 1) = Z p , that S 2 (cei(3) {Pa:

exists in  G(N, 2 ) .  Let be any element in  this triple product,
=0= a i (5) oap, (2p + 2 ).  It follows that { ai (5), ap-1(2P+2), be-2P2 - 2P+3

and suspend it until the stable range is reached, giving
oz , pc}. It is shown in  [14] that this triple product contains an
element of order p2, and that the indeterminary consists of elements
o f order p .  Hence, Sm r  is  o f order p2 . H en ce  r  is o f order p',
r > 2 .  But r  G(N, 2) which was assumed to be Z. Henc G(N, 2)
=  Z p 2  (a; (5 )  )

Corollary 6.2. G(N , k ) = Z p(arp(2k  +1)) , k>1.

From 6. 2 and the sequences (a) and (b ')  we obtain the sequ-
ences (a ') ,  (a " ),  (b ").

(a') 0--->Zp--)-G(N— 1, k— 1 ) G(N —1, k)- Z--O,

(a") G(N —1, 1) ,  G(N —1, 2)

(b") G(N —1, p—i.) p(91(2P +1))-4).
We conclude that G(N — 1, k) is Z,C)Zp or Zpz, 2 <k <P ; it is

shown below that G(N — 1, k) is  Z 2

For convenience in notation we introduce the following con-
vention. In  writing a composition product o f  elements which

3 <k < p
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suspend to stable elements, we only write the dimensions in which
they occur once; the other dimensions are then determined by the
stems of the elements involved. Thus, the composition of a i (3) G

1-12p (S3)  a n d  ai(2 P)  in H 4 _3 (S 2 )  is written { ai(3 )  ce i}; the triple
product of a i (5) G nip+2 (S") , (2p + 2) G 114p-1 (S 2P+ 2 )  and a 4 (4P - 1) e
H8 6 (S 4 1)  (assuming it exists) is written {a,(5), a , a2}

Our next proposition is an  unstable version  of 5 . 1 . It shows
that the unstable element o f lowest degree in  the range in  which
we are interested may be viewed as an  attempt to approximate (31.

Proposition 6 .3 .  F o r  i< k< p — 1 t h e  (k +1 )- f o ld  Product
{ «,(2k +1),  o , •-•, ai} cg_G(2(k+ 1) (p — 1) —2, k )  exists and does not
contain zero.

P ro o f : The proof is an unstable version of Toda's proof of
5. 1. T h e  product exists since it is seen that the degrees in which all
th e  shorter C-products occur are in  the stab le range, and contain
zero P-component. Further, each such product has a  representative

in the P-component, and thus is zero . In  view of the fact that
is an  element o f mod p  Hopf invariant one, the space C_  k - 1  in
a C-presentation for the (k+1)-fold product of the proposition is
a  cell complex with one zero cell and one cell in dimension 2k+2i
x ( p  - 1 )  ,  1 <i<k , with the property that P ' is non-zero on H 2 +2 ( P- 1 )

k +1, Z p ) ,1 < i< k .  There are  maps f  Ck-El y k -1 - >  S2k-" ,  extending

a  map representing a i (2 k + 1 ) on the 2k+ 2(P — 1) skeleton, and
g

 S ' 3- -
C k+1, such that if C  k - 1 - > S 2 "  collapses th e  (2kP

—1) skeleton to a point, vog  represents c f ,(2 k p ) . L e t Y=Ck+i,k-i.
U g e(k+')P - 2 . Then, 13 '  is non-zero on H "P (Y ; If f o g  is null-

homotopic, f  extends to f :  Y --S 2 1 . Suppose f o g  is null-homotopic

(i.e., the product contains zero ). L et Z = S "+ 1 U7C Y .  Then, Z  has
cells in dimensions zero and 2k +2i (P + 1 ,  0 < i < k + 1 ,  and Pl
is non-zero on H " 4 -2 i( P- ' ) +1 ( Z ,Z p ) ,  0 <i<k +1 . Hence, (P9k+ ' is non-
zero on H 2k+1 ( Z ,  Z ) .  If k < p  - 1 ,  ( P i ) k i - i  x P k + i ,  x 4 0 ,  X G Zp ,  so
that Pk+' is non-zero on an element of degree 2k+ 1, which is im-
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possible. I f  k = p -1 , we conclude that ( P 9 P # 0 ,  which is also
false. Thus, if the product contains zero, we get a contradiction
which proves the proposition.

The remainder of our discussion will show that the other un-

stable elements in the range in which we are interested arise in a
manner similar to those in  G ( 2 ( k + 1 ) ( p - 1 ) - 2 ,  k )  and will settle
the structure of G(N —1, k).

It is shown in  [ 1 6 ]  that the groups G (2 (r +1)(p -1 ) —2 ,1)

are isomorphic to Z p  with generators a i (3 ) ott,.(2P) =  { a i ( 3 ) ,

We generalize this result below; we shall treat G(n, k ) with p-1
> k > 2 .  The case P = 3  is treated in  [ 1 6 ]  using triple products;
our results extend these proofs to higher p using longer products.

I f  2 < k < P - 1  and 1 < s < p — k  the k -fo ld  products { û ,(2 k + 2

(P - 1 ) ) ,  •••, a . ,I c  ex ist. To see this, it is only necessary to
observe that, in  constructing a C -p re sen ta t io n  all the groups that
occur have stable P -com ponen ts which are zero. This product is
contained in  lik+ ,20-0+2(k p,-i)(p-i)-2(S 2 k + 2 (P -1 ) ; p ) ,  which is zero unless
k = p —1, s = 1.

Similarly, i f  2 < k < P  — 1  and 1<s<p—  k , the k -fo ld  products
{ ai(2k + 2 (p —1) —2) ,  f i ,  •  •  • > a i ,  a ,} c  exist; this product is contained
in  I12(k_1)+2(p-i)+2(k+,-1)(p-3.)-2(S i ( k - ' + ' ( P - ' ,  p ) ,  which is zero. Thus, by
taking the double suspension (see 2 . 3 D )  we see that the k-fold

product { a1(2k + 2(p - 1 ) ) ,  • ••, a .,} c always exists and contains zero.
Thus, we may construct shafts of co fib ra tio n s on which to test the
existence of the (k +1)-f old products {P, a ,  a ,  a s } c  where p E

r iz k -F 2 (p - i) (  

X )  o r  __T T 2k+20-1)-2 (X ) ,  any space X .  The space C  k - j .  in
a shaft for testing the existence of the second product is a finite
cell complex of dimension 2 k p - 2 ,  with one cell in dimension zero,
and one cell in  each dimension 2k +2i(p —1) — 2 , 1 < i < k .  I f  72:

C k+1, S 2 " - 2  is the map collapsing the 2kp—  3 skeleton to a point,
the map P . g k+1, k-1 S 2 k P + 2 ' 6 5 - 1 ) - 3 - ' ' C k + 1 , k - 1  has the property that 72 og
represents tr.,(2kp — 2 ) .  Further, Ck+3.0-2 of this shaft is simply the
2kp —3 skeleton o f  Ck +1,1-1; if C : C k+1, k-2 - > S 2 P ( k - i )  collapses the
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2p(k — 1) —1 skeleton to a point, then fr k - 2 =  h  has the property
th a t C o tt represents ct,(2P(k — 1)) . The double suspensions of .

C  k d  k - 1  and C k + 1 ,  k - 2  and of the m aps g, and h  g ive  parts of the
shaft for testing the existence of the first product (at least up to
sign).

W e note that Ck-Fi,k-2 is  a space of the type discussed in the
proof of 6. 3; it occurs in a shaft of cofibrations in a C-presentation
for the k-fold product {a/(2k— t Y i ,  c e i } c .  Let m : S 2 k+2 'P- 1 ) - 2 —)-
C  k + 1 ,  k - 2  be the inclusion of the 2k + 2(p-1) — 2 skeleton. If a :
s2k-F2(p-1)-2,S2k-1 represents ce,.(2k —1), then (see the proof o f 6. 3)
a  extends to a  C_ k+1, k-2 — >  S 2 " , dm = a .  Then, doh represents a non-

zero element o f G (2((k  —  1) +1)(p— l) —2, k — 1 ), as in  6. 3. Let
s2k-i, s22 r'2 k  +1 be the usual inclusion. Since G (2k (p -1 ) —2, k) =0,

ic ,h07/ is null-homotopic. Hence, io -a-  may be extended to b  C_ k + 1 ,k - 1

2 2  S 2 k  +1  W e w ish  to  show that b  may be constructed so as to
factor through q : s2S 2pk_1—.522 S 2 k+1 , where S 1 i s  th e  (p-1)-f o ld
reduced product of S 2k.

The non-zero elements in G (2(r + k ) ( p - 1 ) - 2 , k ) ,  2 < k < p - 1 ,
1 <r<p — k  arise because in  that degree the map j ,, o f  sequence
A )  is an isomorphism; the elements o f G(N  — 1, k ) which are not

images of the double suspension are mapped into non-zero elements
by the map j . .  In  these degrees, the group u ( D 2s 2. , •  p )  i s

Z . Fu rther, the map q,, :11,(Q■9 i  S 2 k - 1  p ) , f t  (22s2 ,k , i ,

•

 p )  i s

an epimorphism for these i ,  i.e., i = 2(r + k)p— 2r —3, 2 < k < p  —1,
1 <r<p —  k .  These facts are to be found in [12 ]. Toda also shows
there that there is a map 0 : S 2 kP- 3 -->P(S 2S 1 , the space of
paths in  S2S 1 beginning in  S '  and ending in base point, such
that 0 induces a C-isomorphism o f homotopy groups (where again

C  is  the category of all finite abelian groups o f order prime to p)
in a range of dimensions that includes all the groups which interest

us here.
Hence, 1-12,, 3(P(s2Sr_ 1, S2 1, * ))=ZED T ,  where T  is  a  finite

abelian group o f order prime to  p .  It is also shown in  [16] and
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[12] that II (S22S
2 k + 1 ,  S 2 k - 1 ;

z p ,  and that the map 0_ : __TT2kp-i,_
( s22.52k+i s2k_i ; p)_ n2kp_s(s2k_i ; p )  is  an isomorphism, and that q *

II2kp-2(s2S2pk_i, S 2 k- 1 )-->n2kp-2(122 S 2 " ,  S 2 "  ;  p )  is an epim orphism . Hence,

a :112k p_2(s2si,s 2 — )---)112kp_3(s 2 h- i ;  p )  is an epimorphism of the free
part onto Z. L e t  p : Su-% )-- S2 1 b e  the projection of
paths onto their initial points. It follows that pa represents a
generator of 112kp-3(S2 ' ;  p ) .  Thus the diagram (B ) may be assumed
to  homotopy commute. (W e may have to take a h  to represent
{  X a i  (2 k -1 ) ,  • • • a i l  for some x G Z p , X #  0 , instead of { tr i ( 2 k - 1 ) ,

•••, a i },  but this does not essentially change our argument and
we disregard it.)

S 2 kP'
o

 P(s2S 2 _i ;  S " - - 1 , * )

(B) ih1 P
C k+ 1, k -2

S 2 k - 1

0  defines a  map O: (D 2 P- 2 , S 2 kP 3 ) , (2.3 1 , S 2 1 )  so that the
diagram (C )  commutes.

l l i  i ( s 2k2,-3 )

(C) n 1
( s2s2pk S 2

1
- 1 ) 1 ( s 2 1 _ i )

(2
2s 2k,1 , .5 2, 1 )

The map h  is exactly the attaching map of the (2 k P -2 )- cell
o f C  k i  1 ,  k + 1  to  C  k +1 , k-2 • Hence, a extends to C-  k + 1 ,  k - 1  in such a manner
that, i f  i t  :  ( D

2 " - 2 ,  S 2 k P - 3 ) - -  ( C k + 1 , k . ,  C  k + 1 ,  k - 2 )  is the characteristic map
of the top-dimensional cell, then the diagram (D ) homotopy com-
mutes,

( D 2 k P - 2  S 2 k 3 )

(D) I 
,

P ( 2s2pk  2 ,  S 2 k - 1 )

k +1, k - l•  C k + 1 , k - 2)

where cl is  the map extending Note that qa extends d  to a map
of C k + 1 , k -2  tO  S 2 2 ,5 2 k + 1 .
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Now let Q =2 s  (p — 1) + 2kp — 3. g, : k + 1 ,  k - 1  represents an
element nT s  _ — Q  -(C k+1, k - 1) • It follows by an easy induction, using the
definition of a C-presentation in which all the spaces Xi are spheres,
that, i f  j :  C17+1, le- 1 — >  (C 1 +1 , k -1 , k - 2 )  ,  then J r .  is  in  the image of

Let z  : (D 2 " - 2 , S"P - 3 )—*(S"P - 2 ,  * )  be the map identifying S " "

to a point. Then, since we are in the P-stable range, v* :1-1Q(D " '" ,

Sw - 3 , p) - 4-1Q (S 2k, - 2 ; p ) is an isomorphism. Hence, there is a unique
element Ty,E n 0 (D 2kP- 2 , S 2 » 3 ; p )  such that 1,* (Tk,) =a, (2kP — 2).

(D"fr - - 2 , sw - - 2 ;p)--1- H Q (.32 0 - 2 ;p)

(E), 1111* 77* Tv,
H Q (C,.+ 2 , Ck +1, k -2; P) (C k + 1,  k - 1  P )

Consider the diagram (E ) .  The relative 72*  is also a C-isomor-

phism in this degree range. Hence, ,u* ( a , )= j * ( r s ) .  Now consider
the diagram (F ),  where r  is inclusion. It is clearly commutative.

We have noted that 0*  and q* are isomorphisms in this dimension
and that r*  is  an isomorphism if s< p— k and an epimorphism if
s = p— k. We know also that j *  (T s )  p * (as). Hence, (01) * j* (T s )

is a generator of I I  ( s2 2 S  2 7 + 1 ,  S 2 k - 1 ;  p )

HQ(D2 0 - 2 , S u P- 3 ;P ) -6ï*S z k -i;P )(F)
p*

1-1Q ( C e - 2 ;  P ) — . (C k+1, k-1 C k + 1 ,  k - 2 ;  )

i( q 6 )  *  . 7 ik 6 )  *
H Q (22S 2k +1 ;  p )  1 *  H Q GQ2S2k+1 ,  S 2 k - 1 ;

It then follows that (V )* (r s )  is  a generator o f 1 1 Q (1 2 2 S
2k-F1  ; p )

i f  s<p — k ,  a n d  a n  e lem en t w h ich  m aps in to  a  generator of

II Q(S22.32" -1 , S 2 1 ; p ) i f  s=p —k.
gs go-

We now replace the maps S Q --Ck+i,k -3. - - .S22 ,5 2 k + 1  by the adjoint
S 2 g s (qcrY

maps SQ+2 - - - >S 2 C k +i,k -i--*S "+ 1 . It follows from 2. 3D that this

composition represents an element o f  { a i ( 2 k + 1 ) , trs}c (the
(k+1)-fold  product). It follows from the remarks above that this
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element is in the P-component, is non-zero, and is not in the kernel
o f th e  map j , o f  sequences (A ) above. Hence, i f  s <p — k , this
element generates G (2(k + s) (p —1) —2, k ) , and  if s =p — k , it maps
into a  generator of Z  u nder the map j , o f  sequences a ') o r a"),
whichever is appropriate.

This proves that there are C-presentations for the (k+1)-fold
products { ai (2k+1), a l .,• • • , a , a ,  } c  1 < s < p — k, which contain non-
zero elements a s  discussed above. However, we have more control
over the product if we rephrase this result as follows. Let ze- 1 (2k+ 1)

1-12(P+k-2)(s22.s.-0 ; p ) b e  th e  element corresponding to a i (2k+1).G
W e have constructed a C-presentation for the (k+1)-fold product

{  a l (2k + 1), a l., .-•, a ,}c  with the property that the map of C  k + 1 , k -2

into .Q2 S 2 r"  factors through .32 ' .  By 3. 3D we may construct an
F-presentation for this product so that the map f  P  2 --)-SAS2 k+i3 , k -2  -  -  3 , k -

factors through SI"

S 2 k - 1 .  We may have had to change the maps
g,„' „, of the C-presentation (see 3. 3D) b u t it is easily seen, using

the arguments given above, that, looked at in II Q (S '+ '), this product
is still non-zero and maps right under the maps j , o f  sequences
(A ) ,  a ') ,  a " )  above. Further, any two elements of {ii 1 (2k+1),
a l ,  • • •, oz. IF for this presentation differ by a map into DP3, k -2  composed
with 2 f 3 ,k _ 2 ,  and  hence, looked at in 1-1Q (S 2 ' ) ,  by a n  element in
the im age of the doub le suspension . T h is proves th e  following
theorem.

Theorem 6.4. I f  2 < k < p  — 1 , 1 <s <p — k , then there ex ist
F-presentations for the (k +1 )-f o ld  Product { ii i ( 2 k +1 ) ,a i •••,a b a}  F

such  that: i )  i f  p , a  are in the Product then p — a  is in the image
of the double suspension when the product is v iew ed as being in
112(k+s)(p--2)+2k_1(S 2 +1 ). i i )  the Product contains elem ents w hich are
in  th e  p-component, a n d  w hich generate th e  p -com ponen t if

s <P — k , and m ap  in to  non-zero elem ents under the m aps
o f  sequences a ') ,  a " )  i f  s=P— k .

Corollary 6.5. I f  2 < k < p - 1, 1 <s <p — k  then for an F-Pre-
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sent ation as in 6. 4, if  { ai (2k+1), a, •••, a, a.,}, is viewed as being in
112(k+.)0-0,1k-i(S2 k+1 ), { &1(2k+ 1) , al, • • • as }F f l  G (2 (k +  s ) (p - 1 )  2,
k ) contains one element which generates G (2 (k +  s )(p -1 ) —2, k).

P r o o f :  This follows from 6 .4  and the fact (see pp. 177-178 of
[16] ) that the image of the double suspension in this group is zero._

Recall that we have set N = 2 P (P -1 )  — 1 . We now examine
the unstable (N -1 ) - s t e m .  First note that by 6.4 there is an
element 82 e G(N—  1 ,  2 )  such that j.62 0, a1(5), a ,  ap_2 } F .

According to Proposition 4. 17 , ii) of [14], {a , a s ,  pc}— nters+ i, where
1  1<s<P —  1, and m ,  

s - 11
 (mod p ) .  (The indeterm inary  of the

product need not concern us here; it is all of orders prime to p ,
and may be gotten rid of by multiplying by an appropriate integer
prime to  p. In  any case, M a s i-i is  the only element in the P - -

component in this product.)

Then, p82 { { a1(5), a„ ap_2} , Pc} F ,  which, by 4 . 2 , is, up to sign,

{a 1(5), mp_2 a), which, viewed in the homotopy of S ' rather than
in  that of 9 2 .5 ',  is  the double suspension of m  Acr ( 3 )  Pi' • But
m,- 2 a1 (3) 0 ap_i  i s  a  generator o f  G(N — 1, 1) . I f  follows from the
exact sequence a " ) that G (N - 1,2) Z2 with generator 82 .

To prove that G (N -1 ,k )= -Z p 2 ,  2 < k < P -1 ,  we make the
induction hypothesis that i f  (LE G(N— 1, k )  occurs in the (k+ 1)-

fold product { ai (2k +1) , ,  a , ap_k} F as in  6 . 4 , then 8,, is  of
order p2. It follows from sequence a ')  that i f  this statement is
true, then S 2 8k is  o f order p ,  and S 4 8k _i = 0 .  We have proved the
statement for k= 2.

In  order to make the inductive step, w e must modify the
definition of ô,. slightly. L e t a i (e2k+, ( k 1+ ):

i ) ( s 2 1H

2 (

kk+

+ p _ 3 )  ( 2 4 . 5  2 k  + 1 

)  be the
element corresponding to a, (2 k  +  1 ) r i  ) .  As in the proof
o f  6 . 4  we may construct a  C -presentation fo r  th e  (k+ 1)-fold
product { a,(2k +1), a, • • •, a1, ap_,,}c in such a way that the map of
CH-1, k - 3  into SA92 4 '  factors through S 2 "  and the map o f Ck+1,k-2 into
..(24 .52 '+' factors through .22 S 2 1 . These maps may be so chosen that
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the two diagrams analogous to diagram (D ) in  the proof of 6. 4

(one diagram for the extension of the map o f Ck+1,k-3 into S 2"  to
a map o f  Ck+1,k-2 into S22.32 ' 1,  and the other for the extension of
the map o f  Ck+i, k_2 into S22S 2'  to  a map o f C k+1, k-1 into 24.92k+1)

homotopy commute.
The product we obtain is in the homotopy o f S24.32 1. I f  we

look at this in the homotopy of S22 ,3 2 " ,  taking adjoints and double
suspensions of the presentation as in the proof o f 6. 4, we see that
we get a  C-presentation like that in the proof o f 6. 4, and hence
that we get an element like that in the C-presentation of the proof
of 6. 4. I f  we take a corresponding F-presentation, using 3. 3D, we
obtain a n  F-presentation in  which f 4 ,  k - s  P 4 ,  k_3--->S21 +1S 2k+1 factors
through S2k- 2 S 2 k- 3 ,  and f3,k_.2 : P3, k--2 - ''S2k + 1 152 k + 1 factors through S2'S 2

I f  we choose an element in  { a,.(2k +1), a p _ k }F  fo r  this
product, then, looked at in  II2k+N(S2" ) ,  it maps into a non-zero
element under the map j , ,  o f  sequence a"). L e t  a; be such an
element. Assuming the induction hypothesis for k - 1 ,  it suffices
to prove that Par

k tO , since this will prove that G(N — 1, k )  is Z  p 2

and hence that it is generated by any element 8 such that j * d is
non-zero.

Now, a;G { ii 1 (2k +1) , a l , • • ,  a ,  a p _ k  } F , a (k +1)-f o ld  product..
Using 4. 2, pak { { a, (2k +1) , a l ,  • • •> } F ,  PC } {  a, (2k +1), --•,

{  a , a p - k ,  Pt} }F  •  Any element in CeP— k , P e )  is  o f th e  form
m p-kap-(k -1 )+  i ,  where the order of r is prime to p .  Since this product
is additive in the last variable, and since { a,(2k +1), •••, a, a }p- w ill
be zero since a is prime to p ,  we conclude that pa,ÇE ± Mp_k { ai (2k ± 1) ,
a l , • • • , a 1 , a p - ( k - 1 ) }  F  a k-fold product. Note that the towers of fibra-
tions that occur in this presentation are exactly those that occur
in  th e  presentation fo r  8'k . They are in  fact th e  13 „ 5 fo r  that
presentation with i> 3 ;  the )Ç,„  are the same as in that presen-
tation, and the only new thing is the map o f SN+2*- 4 --->P 3 ,k_2 . In
using 3. 3 to construct a C-presentation for this product, we observe
that we almost have this already in the C-presentation corresponding
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to the F-presentation for ô .  I n  f a c t ,  we already have maps O„
S '1 ) --).C1+,  fo r a ll th e  ( i ,  j )  i n  this presentation, making the
diagrams (see 3. 3)

S P I ,
X i+ j+ 1

homotopy commute for all the ( i ,  j )  involved, and the diagrams

SJX , homotopy commute

except fo r  th e  c a se s  in  which X , is S 2 ' ,  i.e ., th e  case  i = 3,
j< k  — 2. The problem here is that the maps of SN+2 - 4 +1 into Ci + 3 ,1

are not defined, since we do not yet h ave  a  C-presentation for the
k-fold product { a i (2k+1), , • • However, th e  required• aP - (k-  33 }C • Ho
maps may be constructed from the F-presentation, as  in  th e  proof
of 3. 3. Thus, we now have a C-presentation for psk' as an element

eof the product { (2 k  + 1 ), a i , a ,  1ep_(k-1), • However, our construc-
tion o f th e  maps P4, k-3

— > S 2 k + 1 S 2 k + 1  and  P 3 0 _2--)12k+1S '+ ' as factoring
through 2 k - 3 S

2 1 - 3  an d  S2k - ' S 2 k - 1  respectively (as in  the proof o f 6. 4)

allow us to conclude that Pak'  =  ± M p -k  S 2 8 k.-1 where ak_, is in  th e  k-
fold product { -a1(2k — 1), a,  • ccP-(k-1)}F, a s  in  6. 3, when every-
thing is looked at in  th e  homotopy o f S 2k+1 . Note that S 2 (7k_1 is
well-defined for the given presentation; any two choices of ak  differ
by an element in the double suspension so that any two S 2 (7 ,-, differ
by an  element in the quadruple suspension, which is zero by our
induction hypothesis. Our induction hypothesis also implies that,
since 5k1 generates G (N  — 1, k -1), s25k_, is non-zero. Hence, 8/,' is
o f  order P 2 , which completes th e  in d u c tio n . T h is  proves the
following.

Theorem 6. 6. n- -2 P (p -1 ) -2 + 2 k + 1  (S  2 k + 1 , p ) r Z 2 fo r  2 < k <  p — 1. A
generator is  g iv en  by  the ô k  of 6. 4. The image of this grout)
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under double suspension is cy clic o f  order p ;  its  im age under
quadruple suspension is z ero i f  k <p  —  1.

Corollary 6. 7. T h e  low est dim ensional sphere i n  whose
homotoPy groups there  is  a n  elem ent w hich suspends to is
S2 - - 1 , in  whose homotopy there is an element o f  order p2 which
double suspends to  [31 in  th e  homotoPy o f  S2P+'.
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