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1. Introduction. Let us denote as usual by & the class of
canonical semi-exact differentials on an open Riemann surface,
and by &, the class of exact differentials of class & For an open
Riemann surface R of genus g (<o), we shall call a point P a
Weierstrass point on R (for the integrals of class &,) if there
exists a non-constant function whose differential is of class &,
and which has the only singularity of order at most g at P. In
my previous paper, we obtained that the set of points which are
not Weierstrass point is dense in R (Mori [5]). Main assertion
to be proved in this paper is that if T',,NT¥,cT'¥ holds on R,
the number of Weierstrass point is at most (g—1)g(g+1) as in
the classical case. Moreover we shall show some properties of
differentials of class & on Riemann surfaces of class Oy, of finite
genus.

2. At first we recall the definition of the principal operators
L, and (P)L,, where P denotes a regular partition of the ideal
boundary (Ahlfors-Sario [1]).

Let R be a compact bordered surface with boundary B, and
W a boundary neighborhood of R with relative boundary « which
consists of a finite number of analytic curves. For a given real-
valued function # on «, Lu solves the boundary value problem
in W with a vanishing normal derivative on 83, and (P)L.u solves
the boundary value problem in W with a constant value on each
part of the partition P of 3, the constants being chosen so that
the flux along each part of P vanishes,
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Now suppose that R is an arbitrary open Riemann surface.
Let W be a regularly imbeded subregion with compact complement
and with relative boundary «, and let Q be a generic notation
for a regular subregion which contains the complement of W, P,
the partition of (), which constitutes a consistent system {Pg}
such that it induces the partition P. The operator L,, as applied
to QN W and acting on function # on « will be denoted by L,
and similarly the operator (P)L, applied to QN W will be denoted
by (P)L,,. The limit of Lou as Q tends to R is Lwu and the
limit of (P)L,qu is (P)Lu on W.

Suppose that at a finite number of points ;&R there are
given singularities of the form

(1) s = Reﬁ} al(z—¢t;) " +a?log|z—t;l,

where a” are real and subject to the condition 3} a»=0. Then,
j

there exist functions p,, and pp., harmonic on R except for the
singularities (1), such that

Lopos = Dos» (P)Llpps = Dps

in W, if the complement of W contains all the {; in its interior.
These functions are uniquely determined save for additive con-
stants. We say that p,, (pp,) has L~behavior ((P)L,-behavior) in
a boundary neighborhood of R.

Let A be a parametric disk on R and ¢ a l-simplex contained
in A. Consider a singularity

(2) T = arg (2—¢{,)/(2=1)),

where 9y=¢,—¢,. On the surface K—v we choose the normal
operator which is composed of (P)L, for a boundary neighborhood
of R and of the Dirichlet operator for A—+v. This Dirichlet
operator maps a continuous function on 9A into the restriction to
A — of the harmonic function in A with these boundary values.
The direct sum of these operators yields a function pp. harmonic
on R—v. The differential dpp. can be extended harmonically to
all of R—(¢,+¢,), and we denote the extension by dpp., even
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though it is not exact. If v is a finite 1-chain, it is homologous
to a linear combination > #;y;, where each v; is a 1-simplex
j

contained in a parametric disk and each », is an integer. We
extend the definition of dpp. to arbitrary v by letting dpp,
= >\ n,dpp.;. Similarly we can define the differential dp,. cor-
responding to the singularity (2), using the normal operator which
is composed of L, for a boundary neighborhood of R and of the
Dirichlet operator for A—v. Let 8 be a 1-chain in R. Then we
have

(3) [, (@be,+idpr) = —2ri(@x7)

where o denotes the singularity log |(z2—¢&,)/(z—¢,)] (Rodin [77]).

3. Let us denote by @ the canonical partition of the ideal
boundary. To each harmonic semi-exact differential o with a finite
number of singularities and periods, there corresponds a differential
MR, w) with the same singularities and periods as o and which, in a
boundary neighborhood of R, is the differential of a function whose
real and imaginary parts have (Q)L.-behavior. Therefore we have

(4) MO, ) = o

if and only if o is distinguished (Rodin [7]). Moreover, a mero-
morphic differential @ is of class & if and only if

(5) MQ, Rep) = Re ¢ .

Hence we know that the real part of a meromorphic differential is
distinguished if and only if it is of class & (Mori [6]).
Similarly, there corresponds a differential p(w) with the same
singularities and periods of o and which, in a boundary neigh-
borhood of R, is the differential of a function whose real and
imaginary parts have L,-behavior. We can easily see that

(6) mwo) = o

if and only if o* is distinguished.
It is known that a Riemann surface is of class Okp if and
only if all the differentials dp,,—dpo, vanish (Ahlfors-Sario [1]).
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Then, by the use of above results we can easily show

Theorem 1. The class & is identical with &% if and only if
the Riemann surface is of class Okp. Every harmonic semi-exact
differential which has at most a finite number of non-vanishing
periods and is square integrable in a boundary neighborhood is
distinguished if and only if the Riemann surface belongs to Oxp.

4. From now on we restrict the Riemann surface R to be of
finite genus unless otherwise stated, and let g be the genus of R.
Moreover if R is of class Ok, there exists a compact continuation
R of R which is conformally unique (A. Mori [4]). We identify
R with the subregion on R which is conformally equivalent to R.
Then, a restriction to R of any differential on R whose poles are
all in R is a differential of class & on R by Theorem 1. Con-
versely, let @ be a differential of class & on R. Then, there
exists a boundary neighborhood W of R such that the integral
of @ on W is an AD-function on W. Since F—R is an AD-

removable set (Royden [8]), S¢» can be extended analytically to R,
and differential of S@ is an extension of » to K. Thus we get

Corollary 1. Suppose that a Riemann surface R of finite genus
is of class Oxp, and R is a compact continuation of R. Then the
class & is identical with the class of restrictions to R of differ-
entials on & whose poles are all in R.

By this Corollary we see

Corollary 2. If the genus of a Riemann surface of class Oxkp
is g, the degree of divisor of any differential of class & is at most
2g—2. Moreover, there does exist a differential of class & such
that the degree of whose divisor is strictly less than 2g—2.

5. Take a point P on a Riemann surface of genus g. Then,
there always exists a non-constant function whose differential is
of class &, and which has the only singularity of order at most
g+1 at P, and hence there happens one of the following two cases :
1) there does not exist non-constant such function with the only
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singularity of order at most g at P, or 2) there exists a non-
constant such function with the only singularity of order at most
g at P. If the second case happens, we call the point P a Weier-
strass point on R (for the integrals of class &) after the classical
case. The set of points at which the first case happens is dense
in R (Mori [5]).

If R is a Riemann surface of class Ok, and F is a compact
continuation of R, the restriction to R of a function on R whose
poles are all in R is a function whose differential is of class &,,
and any integral of class &, can be extended analytically to all
of R by Corollary 1. Therefore, a Weierstrass point on ® which
is in R is a Weierstrass point on R and conversely, any Weier-
strass point on R is a Weierstrass point on K.

Corollary 3. If a Riemann surface R is of class Ogp and of
genus g, the number of Weierstrass points on R is al most
(g—1)g(g+1). Further, for any integer n such that 0<n<(g—1)
g(g+1), there exists an open Riemann surface of class Ok and of
genus g which is exactly with n Weierstrass points.

By removing a suitable number of Weierstrass points from a
compact Riemann surface, we get the last assertion.

6. Let a Riemann surface R of genus g be of class Okp
and let R be a compact continuation of R. We denote by
{As, By} 4—r, -, @ homology basis of R modulo dividing cycles.
Then {4, B,} forms a homology basis of R as well. Let @g,
and g, (k=1,2,--, g) be the canonical semi-exact differentials

which are uniquely determined by the conditions Re S Pay
By
=—Re g Pp,=08,, and Re S ®a,=Re S o5,=0. The space
An Ap By,

I'y,. which is spanned by the @,, and @, over the real number
field is identical with T',,, if and only if R belongs to Okp, and
the space I',sNT,,, which always contains I',,, is spanned by the
@4, if the genus of R is finite and T',,NT%,cT¥, holds (Mori
[6]1). Therefore the @4, span I',,, of dimension g and hence they
are linearly independent even over the complex number field.
Then by Corollary 1 we can easily see that extensions @,, of @4,
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to R form a basis of the space of analytic differentials on R.
We consider the following form of Jacobi inversion problem
on R. For a 1-chain v (finite or infinite) on R, we set

H(vy) = (Sy%q,, Sy@/lz ’*tty Sygz)Ag) .

For arbitrary given complex numbers c,, ¢, ,, ¢,, we try to find
n paths v; starting from a given point and satisfying

(7) HX v;) = (¢, ¢, ¢,)  (mod periods).

On the compact surface R, if we set

ﬁ('}") = (g§¢)A1’ S§¢A2 PR S;¢Ag>

for a 1-chain ¥R, we can always find # paths ¥, starting from
a given point on R and satisfying

ﬁ(Z ¥;) = (€1, €000, ¢,) (mod periods)

if n=g. Each %/ may not be contained in R. If ¥,CR, we let
it be v;. Suppose that 4; is not contained in K. Then we take
a planar boundary neighborhood W; so that it does not contain
the starting point of ¥;, and let P; be the first point of 6W;N#;
where one meets when one moves along ¥; from the starting
point. We can choose a path 77 connecting P; and the end point
Q; of 7; in W; except for Q; if @;&R. By the assumption that
ReO0gkp, any component of R—R is a point on R and it is acces-
sible from the interior of R. Let us denote by #; the part of
7; which connects the starting point and P;, and let v;=;+v7.
Because of planar character of W,-; we have

H(v;) = H®,),
and we get »n paths v,, v,,, v, which satisfy (7).

Corollary 4. (Jocobi inversion problem) We can always find
n paths starting from an avbitrary given point on R which satisfy
(7) on a Riemann surface R of genus g, if R is of class Oxp and
n=g.
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7. Now we consider a Riemann surface R on which
T, NT¥,cT¥ holds (Mori [6]). If R is of class Ogp, T NTE,
cT¥% holds, but we can not guarantee the converse. Let R be
a compact continuation of R which is the same genus as R, and f
a meromorphic function on R such that whose poles are all in R.
The differentials

() = MQ, Re df)+inQ, Re df)*
2 f) = MQ, Im df)+in@, Im df)*

are of class & on R, and

Re df—\(Q, Re df)
Im df —\(Q, Im df)

belong to T, NTk,=T, NT#. Therefore Jc;)l( f) and S%( f) are

single-valued on R. Thus we conclude that if R is a Riemann
surface of genus g on which T,,N\T%,CT¥ is valid and if R is a
compact continuation of R, then a Weierstrass point on R which is
in the interior of R is a Weierstrass point on R.

Conversely, let P be a Weierstrass point on R and f a func-
tion whose differential is of class &, and which has the only
singularity of order at most g at P. We take an open Riemann
surface R of class O, on R so that it contains R, and consider
the differential M(Q, Re df) on R. We have

Re df —\(Q, Re df)eT,,NT}, = T, NTH,

on R. Moreover M, Redf) and its conjugate M@, Re df)* have
no periods along any dividing cycle on R. Therefore the function

Sx(Q, Re df)+in@Q, Re df)*

which has the same singularity as f is an integral of class &, on
R. This implies that P is a Weierstrass point on R. Then, by
the same way as the proof of Corollary 3, we can show that P
is a Weierstrass point on K. Thus we have proved

Theorem 2. Suppose that R is a Riemann surface of genus g
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on which T, NTE,cTE holds. Then the number of Weierstrass
points on R is at most (g—1)g(g+1).
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