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Let C  be a quasi-coherent sheaf, o f  fin ite type, on an integral
preschetne X, and denote by V  (C ), P (C ) the vector and projective

fibres of C respectively. Then each non-zero rational section 0) of

V (C ) over X  defines a rational section 6-)  o f p(e) over X  (section
2), and we can construct a closed subscheme <w> of X whose points are
the non-regular points of di (P ro p . 5 ) .  D enote by [co] the X-pre-
scheme obtained by blowing up centered at <w>. On the other hand
we can construct a quasi-coherent fractional Ideal Ox  (0)) of the sheaf
o f  rational functions g Z (X ) o f X  w hich  is invertib le w hen X  is
UFD (Cor. of Prop. 4) and which corresponds to the Cartier divisor
of the rational section 0).

In this note, we shall prove so -me relations between these schemes
or sheaves (T h . 1 .2). In  the case that X  i s  a  non-singular quasi-
projective algebraic scheme, they give an explicite formula of Chern
classes of vector bundles of rank 2 (Cor. of Th. 2'). And, as a special
case, if X  i s  a surface and V(C) i s  the bundles of simple differen-
tials, then our formula proves that the Severi-series o f  X  coincides
w ith the second Chern class c , (X ) o f X  (last Remark).

1. Rational maps and rational functions (EGA. I. 7 )  Let
X  and Y  b e  S-preschemes, and l l x  the set of dense oçei  subsets
o f X ; then the fam ily of sets of S-mophisms (Horns( U, 17 )) ETEux

* )  This work was partially supported by a  research grant o f th e  Sakkokai
Foundation.
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forms an inductive system (with natural restriction of morphisms),
and each element of the set Rats (X, Y )  = lim Horns( U, Y )  is

-> L T E rrx
called a rational map from X  to  Y  over S  (o r a  rational S-map
form X  to  Y ) .  W e shall call the rational S-maps from S  to X  the
rational sections of S-prescheme X : Rats (S, X )= r (X /  S ) . Let g
be a sheaf (of sets) on a prescheme X, for each open subset U  of
X, put T' ,,t( U, = l i m  r  ( V , 9 ;  each element o f P g )  is

VE11,

called a rational section o f g  o n  U .  I t is  e a sy  to  see  th a t, for

tow open subsets U and V o f X , i f  Vc U  and V  i s  dense in U,
then Pm( U, r,u (V , g ) , and that, i f  U is irreducible, then rr,t
( U , g )  is nothing but the s ta lk  a t the generic point x  o f  U . In
case of g = 0x, the structure sheaf o f X, the rational sections of Ox
on  U are called the rational functions o f X  on  U, and we denote
R(U) = .  The sheaf associated with the presheaf ( U)
is  c a lle d  th e  sheaf o f  rational functions o n  X  and we denote
it .R (X ) .  The canonical map r (U, ( U )  defines the canonical
homomorphism c: Os—)..R (X ), and, by means of it, 112,(X )  is consid-
ered as an Os -Algebra.

Let 9 . b e  an Os -Module, U a dense open subset o f  X  and f :
9 . I U—Ox U an (Os I U)-homomorphism. Then, for each open subset
W  o f X, consider the following r ( W, 0 s )-homomorphism obtained
as the composition map:

( 1 )  f ( w ) :r  ( w , g )  rest; r ( w n t  7, 9 .) f  (w n u)_> 
(  wn u>ox)

c( wn U 1 (
r (w n U , ..R (X )) —r ( W, (X ))

(note th a t  Wn U is  dense in W, hence the restriction T'( W, _R (X ))
( W  n U, .R (X )) is an isomorphism). Obviously f (  W ) commutes

with the restriction m aps of the sections of g  and (X ) ,  hence
the collection (7( W))w c x gives an Os -homomorphism g—>g2.(X),
and, thus, we get a map

au :  HomOsl u ( I  U ,O .K 1U)=r(U, '•)—>E1omox ( 9  R ( X ) ) ,
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=cgtomOx (g , 0x ), the dual of the O x -Module 9 . ). Moreover, it
is clear that a u  i s  a  P (X, Ox ) -homomorphism and commutes with
the restriction map 4 :  P (U, ( V, 4 )  ( U, VE Ux, UD V) =
a v .4 .  Therefore, passing to the inductive limit, we have the canon-
ical F (X , gZ(X))-homomorphism

a :  r„„(X ,4)--H om o x (g,

The following proposition is well known (EGA. I. 7. 3).

Proposition 1. Let X  be an integral (1. e. reduced and ir-
reducible) preschem e. Then, ( i )  .R (X )  is  a  quasi-coherent Ox-

M odule, ( i i )  £ k ( X )  i s  a constant sheaf, hence r(U , _R (X ))=
R (U )=R (X ) , f o r  each open subset U o f  X , ( i i i )  the canonical
homomorphism r:0 x---->gZ(X ) is  in jective , (iv ), for each point x
o f X , g Z (X ),=R (X ) is  the quotient field o f Ox ,,, and at the ge-
neric point X, SIZ(X) x — R (X )=O s ,;, and (v), for any quasi-coher-
ent O s -Module g , gO osgZ (X )=R (X ) ( 1 )  (direct sum).

Corollary. I f  X  is integral, then, fo r each O s -Module g . o f
finite type, the canonical homomorphism

g z ( x ) )  is  injective. Moreover, if g  is quasi-coherent, then a  is
a n  isomorphism.

P r o o f )  Since X  is irreducible, r,„,(X , \.6- ) = 7 = ( 9-7,
Ox, 7), where -g is the generic point o f X .  Since (X ) = O x ,,T. (Prop.
1  ( iv )) , b y  the definition o f a, it is easy to  check that the compo-
sition map

L-4 )  =4 „± - . Homox(g . ,_R (x )) — >Hitirno.,,,(9. ,, g z (x ),)

is  the identity map, where the last arrow  is the map which corre-
sponds each sheaf homomorphism f  to its restriction fT  a t  the ge-
neri -2 point x .  H e n c e  a  is  injective. Moreover, assume that 9 . is
quasi-coherent. When that is so, in order to prove that a  is surjec-
tive, it is sufficient to prove that the last arrow is injective, i. e., for
fEHoM e),(g , (X )) , .f .= 0 implies f  = O. T o  show this, we may
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assume X  to be affine. Let X = Spec(A), is an A-module;

then A  is integral and .R(X ) is the shef associated with the quo-

tient field K  of A , and f :g-->gR (X ) corresponds to an A-homomor-
phism g9:M --).K . But, by tensoring K , ço can be decomposed into

v—(901
M— .MOA K -K  and y is exactly the same to L :g .c - - ->Ox„----

K , hence, v= 0 implies ço= v.0 = O.

2. Rational sections of vector- and projective fibres.
Let E  be a quasi-coherent Os-Module o f finite type and denote by

S (e )  the symmetric Os-Algebra of E(EGA. II. 1. 7. 4). And put
V(C) = Spec (S (E ))  (resp. P(e) = Proj (S (e) ) ) ; V (C) (resp. P(C))
is called the v ector (resp. projective) fibre over X  defined by C
(EGA. II. 1. 7. 8, 4. 1. 1).

Proposition 2. L e t X  b e  a  preschem e. F o r  each quasi-
coherent 0 1 -M odule  C  o f  f in ite  type, ( i )  w e have a  canonical
isomorphism

r,,t(V  (e) / C),

and m oreov er (ii), i f  X  is in tegral, the canonical hom om orphism
e: - ® ( X )  i n d u c e s  a canonical isom orphism

Proof ) (i) r,a,(V  (C) / X ) =Ern Hom,(U, V (6)) HomOs I u
(giu,oxl U ) =r .(X , (EGA. II. 1. 7. 8, 1. 7. 9). (ii) Assume X  to
be integral. Since e® osR (X ) is  a constant sheaf (Prop. 1 ,(v )),
for any pair of open subsets U , V of X  such that UD V, we get a
commutative diagram:

F(U, NZ') >7 ) .1- ( U,10_0R(X))
(2) c( NA? r (X ' •6''O.YZ( X ))

r(V> 6 ) r(17,80.Wx)) 
Passing to the direct limit, this defines our F. Consider the following

canonical .R(X )-homomorphism

[3: Né®o s .R(X)=Aomo s (e, 0s)00„R(x)—stomoxce,_R(x)),
obtained by tensoring 22.(X) to the natural 0 1 -homomorphism =



Rational sections and Chern classes of vector bundles 299

Aomo,(g, <q{omox(e, R(X)). T aking the global sections,
w e get an R(X)-homomorphism

19(X ) :r (x , iégovgz(x))—Homoxce,-R(x)).
It is easy to see that a  ig • where a is the canonical homomorphism
defined in the section 1. In our case a is an isomorphism (C or. o f
Prop. 1), hence c i s  injective. M o reo v er is  surjective; in  fact, for

any sE r(X ,'0 ..4Z (X )), a t  the generic point x, s E (6D.gZ (X )),  —

Né „  hence there exist an opuset U and  an (0 x 1U)-homomorphism t:

elu--->oxIu such that t • e(U )  (s U) in r (U, NC O gZ.(X )). Q. E.D.

Remark. In the above proof, we may replace X  b y  a n y  open
su b se t U  o f  X , hence (U ) : r ( t C é g R (X ) ) — >r(U, Romox
(C, _R(X))) i s  a  r (U, .R (X))  - isomorphism. Therefore we have the
following

C oro lla ry . For any quasi-coherent O s -Module C, o f finite
type, o n  a  integral prescheme X , we have a canonical .R(X)

-isomorphism

\Z'EsoxR(X)::;Noniox(e, R(X)).

3. Now we shall give some fundamental notions and notations
needed for our study. From  now  on, w e shall assume the base pre-
scheme X  to  b e  in teg ra l. Let C  b e  a  quasi-coherent O s -Module of
finite type; then, by Cor. of Prop. 1 and Prop. 2, we have canonical
isomorphisms

r ( V  (e) / X ) 5 . 1 Z ( X ) ) : _ ---,r (X, \éE0 x .gZ(X)).
For each rational section coE F (V (C )/ X ),  w e  d e n o te  b y  a  and
(c :  the images of co under these isomorphisms in  Homo x (C, gR,(X))
and in r(X , NCO...(X)), respectively. N ow  fix a rational section co

(C)/ X ) .  Then, the Ox -homomorphism o f  Os-Modules cot :
C--->gR.(X) can be uniquely extended to a homomorphism o f  graded
Ox-Algebras (o f homogeneous degree 0)

co*: S (C )-- , (X )[7 1 = .R (X )O z .Z[T].
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P u t  I(w )=Im ag e  o f  (t4' a n d  j(w ) = K e r n e l  o f  w * ; th e n  /(w)
i s  a  quasi-coherent fractional Ideal of .R  ( X ) ,  an d  Im ag e  of

J(a))=ED,=>0.1.(0)) i s  a  quasi-coherent homogeneous
of S  ( e ) ,  and i t  is  g e n e r a t e d  b y  th e component o f  degree 1:

J(w )---Ji(œ )•s(e).
Thus, we have exact sequences

(3) 0---4(0))
and

(390 —Ji(w) --.e---)1(w)

Pu t [a] = P ro ja 0 (/ (0 ))" ) ; th e n  [w ] i s  a  closed subscheme of

P(E )=Proj(S (e) ; [0 ]  .L P(E ), and i t  i s  the X-prescheme obtained
by blow ing up the fractional Ideal I(w ) o f  .R(X) (E G A . I I .  8 . 1.
3), and the canonical projection [o] 2-43 (e ) 1 ).X  is  birational (EGA.
II. 8 . 1 . 4 ). N ote  th a t  [w ] is not em pty if and only if 4-/-0, i. e.,
(0/0.

If or;b--0, there exists an open subset U  o f  X  such  th at w* in-
duces a homomorphism S Œ) ( O x  U ) [T ] (tak e  a  defining ho-

momorphism elu --->oxlu of w (C o r .  o f  Prop. 1 ) and extend it to
S (E IU )=- S (e)1U — .(0 x 1 U )[T ]) . T his g ives a  rational m ap U -
Proj ( ( O  U) [ T ]) —*Proj (S (e )  IU)-->P(E) (c f. EGA. II. 2. 8. 1 ) ,
hence a  rational map

B y  the definition o f rational maps and the fa c t th a t X  is integral,
this does not depend on the choice o f  U .  And, since w* is  an Ox

-homomorphism, the rational map ci) is  a rational section of the pro-
jective fibre P(E)/ X , and, obviously, it can be decomposed into
[w ]--->P(E). w  is called  the induced section of w  to  the projective
fibre P(e)/X , and [co] is called the im age o f  (i) or the projective

image of to. Hence we get a correspondence

—  [r„t(v (e)/x )]- {0} —r(P(e)/x).
P ro p o sitio n  3 .  L e t wo : U--->P(E) be an  X -m orphism  which
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represents (D, then the closure of the image (7 ( U )  in  P ( E )  co-
incides with [w].

P r o o f )  Since Tr i: [w] i s  birational, (DJ : [to ] is also
birational, hence the closure o f (-0 ,( U )  in  p ( e ) = t h e  closure of
ãi3 ( U )  in  [w ]=[w ]. Q. E. D.

To each open subset U  o f X , associate a subset g( U )  o f r(U,
g Z ( X ) ) =R ( X )  consisting o f th e  rational functions f  such that
f . r( U ,  I(0))) cr (U, Os ). This correspondence U  to  g( U )  gives,
w ith natural restrictions, a presheaf g o f sub-Ox -modules o f  _R(X ).
The sheaf associated with g  is  ca lled  the sheaf o f  w  and denoted
by O (w ).

Proposition 4. ( i )  The Presheaf  g  is a sheaf, i. e., g=0x (w ).
( i i )  F or each ()Pen subset U  o f X , g(U ) — r(U ,0 ,(a)))  coincides
with the  set o f rational functions f E R ( X )  such that f .(0 ):IU )
E Image o f  ( r( U ) - - - >r( U 0 _ ( X ) ) .

P r o o f )  ( i )  Easy. ( i i )  B y the isomorphism C a R  ( X )
,q/om (e, g.( ) ) )  (Cor. of Prop. 2), f  ( w :IU )  corresponds to f .  (wp
hence, by the commutative diagram

   R om o x  (e, Ox)

eN /0 0 x-R(X ) Rom 0 x(e, (  X) ),

it is  easy  to  see  th at f  (w : U) E  Im [r(U, \Z') , r ( U, O ..q (X ))] if
and only if /m [ f  (w ,* U ) ] E O x  U . On the other hand /m  [ f• (wP I U)]
= f . Im (4  IU  )  f  (1 (w )  I U). T h is  proves (ii). Q. E. D.

Corollary. I f ,  f o r  each point x  o f  X ,  Crx „  is  an unique
f ac triz atio n  domain ( in  this case, we shall say that X  is  UFD),
then Ox (w ) is an invertible sheaf on X.

P r o o f )  Let x  be a point of X .  Then

Ox (co) = { f  E R (X )  such that f  I(w) xc0x, .}  •

Let a ,E R ( X )  ( i=1 ,• • • ,r)  be a set of generators of / ( c o )  over Ox.
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Since R (X )  i s  the quotient field of Ox ,„ and O x ,, is  an unique fac-
torization domain, w e m ay w rite a,=gc, such  th at g E R (X ),  C, E

Ox , ,  and c ,'s  have no common factors in  Ox ,„. Then, for f  R (X ) ,
f  is  in  Ox (w), if  an d  on ly  i f  f.g •c , i s  in  Ox,„ fo r every  i. This
proves that Ox(w)„-= (1/g)0x ,,==-"Ox,„. Hence, Ox ( w )  is invertible.
Q. E. D.

R em ark . T h e fractional invertible Ideal O x (w ) o f  g R (X )  de-
fines a C arier d iviser (w ) on X , and g  (of the above proof) is its
local equation at x  ( c f .  [7 ] ) .  T h is (w ) is called  the div isor of  the
rational section w.

From now on w e shall assume that our integral prescheme X  is
U F D . By definition, O x (w )/(0 ))(c 0 x )  i s  an  quasi-coherent Ideal of

Ox, we denote it / (w )=O x ( w ) / ( w ) .  Then, since Ox (w ) is invertible,
w e have a canoical isomorphism of X-preschemes (EGA. II. 3. 1. 8)

g:[w],=Proj(ED„ ./(0))") =,.[(0 ]  — P ro i(e ,,o/ (0 ))"),

and  (EGA. II. 3. 2. 10)

(4) g,,(0,„„(n)) -=- 0 ,„,(n)0 x (w)".

By means of g , we shall identify [w] i a n d  [w ] .  Moreover, we shall
denote by <w> the closed sub-prescheme o f X  defined by th e  quasi-
coherent Teal f ( w )  of O x  (0 < ,,,> =0x/f(w )), th en  [w] [ ( o ] ,  i s  the X-
prescheme obtained by the blowing up centered at <w>.

4. Some results. W e shall g ive here som e relations among
th  sheaves and preschemes defined in  the above section.

Proposition 5. The underly ing space of the closed sub-pre-
schem e <w> o f  X  is  the set of Points o f X at w hich the rational
section d i is not def ined, i.e., X— <w> is the dom ain of  def inition of
-0)

P ro o f )  Since the question is  local, w e  m ay  assume th a t X =

( 1 )  We shall say that a  rational map f : X — >17  is defined at x X , i f  there exist
an open n b d . U  o f x  and a morphism fo: U—>Y which represents f ,  and the set of
points of X  at which f  is defined is called the domain o f definition of f .
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Spec (A) is affine and that e =  is generated by its global section

E  which is o f finite type over A .  Let e1,••• ,e , be a set of genera-

tors o f E  over A  and put t t , -  cot ( e , ) E R ( X )  (04' : E - 4 2 ( X ) ) .  Let

x  be a point of X  and t h e  corresponding prime ideal o f  A ;  and

write a, = g - a ,  where g E R ( X ) ,  a ,E A  and a,'s have no common

divisors in A p  Ox , Consider the following commutative diagram:

E R ( X )

„----'multiplication by g,
A

where r,* is  the A-homomorphism defined by rt(e ,) — a,. It can be

extended to the following commutative diagram of graded A-algebras:

CO
*

S A  (E ) A [g  • T ] cR (X )[T ]
r*

A [T ] /2*

and, passing to the associated projective fibres, we get the following:

P(E )=Pro i(S A (E )) Proj(A [g T ])
ri

Proj(A [ T ])u ,

where ci), r  are rational maps. While Proj ( A [T ])  and Proj (A [g •T ])
can be canonically identified with X ,  and, by m eans o f  this

identification, ,a is  the identity morphism o f X(EGA. II. 3. 1. 7 and

3. 1. 8). Hence r =d), in  this sense. Now, since 1(0)) = -0 x (c0 ),=

E ,a ,O x „  (C f. Proof of Cor. of Prop. 4), we see that

xE <w> j(w )„   /  Ox , *  all a,'s in ern -1 p = E
z =Co is not defined at X. Q. E. D.

The prescheme structure of <w> (i. e., the sheaf O<„> )  may

involve more detailed nature of the singular part of the rational section

co(or co). Th e  following two theorems will te ll u s  some o f  these

aspects.

Theorem 1. The Ideal I(w )•0 ,„, of the closed sub-prescheme
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_  [ 0 ) ]  x  c e ‘)  in  OE o ] is  is o m o rp h ic  to  th e  0 , 0, -Module
i *e ) ( 1 )  (go p ( e ) n*0 x (w )) =  (0  p ( c)(1)®o x 0 x ( 0 ) )  [w], e . ,  we
g e tan  exact sequence of  O P (  ED- Modules

(5) 0— .i* (0 p (  e ) (1 ) (  °pc o n*0 x Ca))) m—i* 7r*0

P ro o f )  W e have an exact sequence (EGA. II. 8. 1. 8)

C,03 X x<w>- - - ) . °•

By this and the isomorphism (4 ), we get our assertion. Q. E. D.

Proposition 6. I f  6 ' is locally  free  o f ran k  2, then J i (w) is
an invertible O s -M odule and J(0 ) )  (the  Id e al o f  [w ] in  O P (e ))
is  also  an invertible OP( C)-Module.

P ro o f )  A t  any point x  o f X , we have an exact sequence

Take a basis (e1 , e2) o f  6% over Ox ,„  and put ev,-- 04' (e,) (i=1, 2) ;
then, i f  we write a, -- --g • a ,  as in the proof of Cor. of Prop. 4, we get
the following commutative diagram

it

h
0 - 4 1 (w)---> 6% 1(w), 0,

where Â(a1a2c) = (a2c, - a s ) ,  g(c, d )  a i c + a2c, f(c, d )  c • ei+ d• e2
and h(ct i c  a ,d ) =g • ( a ic +a ,d ) .  And it is easy to see that the upper
horizontal sequence is exact, hence j 1 (o)); --- a1a20.:=---0,, j. e., ji(o)) is
invertible. Moreover, since J(w) = J i (w) • S ( C ) ,  J( w )  =  (0)) OP (e).
This proves that J(w ) is invertible. Q .  E .  D .

R e m ark . When e is locally free of rank 2, by the above pro-
position, we may regard [w ] as a Cartier divisor on  P  (C ) , and

J (w )  Op (e)( —  [w] ), the invertible OP (e)-Module corresponding to

the Cartier divisor — [w].

Theorem 2. W hen C  is locally  free  o f ran k  2,

Ji(w)00x_42 = -0 x(w) (co 0).
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P ro o f )  Take an open covering ( Ua ) „  , of X  such that L I 116,,
a  „ „  

U, for each  ive l. L e t ta= (t, tc:) be the basis of L I U a  over

O x IU ., determined by ço„, and  ra = (rn r ) t h e  dual basis of I Ua

of ta, then rT Ar`: is a  basis of A 2\g' I U .  When that is so, the homo-

morphism wi":6'—)-2Z(X) can be expressed, locally o n  Ua , as

(DP = .21. • z l + As' Er ( U .,gZ (X ))=R (X ).

Note that, (.0-0 (i. e., wP  /  0) implies A ,̀6  1 0  for i = 1 or 2, and that,

for e=f k `•V i' E r(U ., e), eG r( (Lc, k w ) )  if and  only i f  E  -M̀ =O.
Consider the map

(Ji(w)®ox A 'e)iuo,,gz(x)1Ua
given by the correspondence

(b,̀' • tT + b?,' • t ) ®car.`f ArY : c a  /

A t any point x  o f  Ua ,  l e t  A ;'— g •a„ g E R (X ), c i,E C ç  such that
a, and a, are relatively prime to each other in O . Then a1.b1+a2.

1)2 =0 , hence b1/a2= — b,/a, is in  O . Therefore k a is a n  element of
(1/g) • a r —Ox (w ), (c f . th e  proof of Cor. of P ro p . 4 ). T h is  means

that the above map induces a n  (Ox  I Ua )-homomorphism

0 «  ( kw) 00x A 2 (N ) I U. --->Ox (0)) I Ua,

and it is easy to see that this is an isom orphism . If G =
are the transition matrices of e (with respect to ço„), then (Ga 13) - 1 =
GB a  a n d  det(Ga) - 1 =det(G °a ) are the transition m atrices and func-

tions of Né  an d  A 2 /', respectively. Hence,

ca= det(0 3a)•c 6 ,

and A =  det (0') • ( — Gff.13+ G ` , 1 3 • A ) ,

therefore, by easy calculation, we get the identity ka = P .  This shows
that the ø's can be patched together and give a global isomorphism

: Ji (w) 0  A . Q. E. D.

Corollary. Under the sam e assum ptions in  T h. 2,

OP(e) ( [a)] ) =-0 P(e) ( 1 ) 00x A '6'00)(0x (01)-1
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(c f. Remark of Cor. of Prop. 6).

Proo f )  S ince  J(0 ))=J 1 (0 ))-S (E )=  J1 (w )00S (e )( - 1), we get,
by Th. 2, an isomorphism

J(w) ®Ox A 2 5 (e) ( - 1)00x0x(w).

Hence, passing to the associated sheaves on  P (E ),  w e get an iso-
morphism

J ( . ) 0 0 x  A 2 \6"--- 0/3(e)( — 1)00.0. (0))•

On the other hand J(w)=Op(e) ( MY', therefore, combining these
two isomorphisms, we get our assertion. Q. E. D.

5. The case of algebraic schemes. Let X  be an algebraic
scheme over an algebraically closed field k. We denote, for each non-

negative integer p, by XP the set of points x  o f X  such that codim x x
=dim0x,.r=p, and b y  Z P (X ) the free abelian group generated by

the irreducible closed subsets {x} o f X, where x are in XP, and we

shall say each element of Z ( x )  a  cycle on X  o f codimension p.
Let C P (X ) (p o) be the abelian category o f coherent Ox -Mod-

ules whose supports are of codimension p ,  and

rp:CP(X ) -->KP(X )

the universal solution in the category of abelian groups satisfying
the following axiom (i. e., the Grothendieck group o f CP(X )):

(A d d itiv ity ) I f  0-->F'--->F--->F"---.0 is  exact in C P(X ), then rp
(g )— rp (g p + rp (g ")•

The immersion CP(X)-.C 4 ( X )  (for P 4 )  determines a  canon-
ical homomorphism KP(X)--->Kg(X). By means o f  this homomorp-
hism, we shall consider that every element of K ( X )  lies on Kg(X ),
especially on K ° ( X ) = K ( X ) .  Defining the product by

y (F) • r(g) = x p20( - 1) P r(g o ro x p (g , g ) ) ,  F ,  gE  ObC°(X),

K ° (X )= K (X )  has a ring structure (cf. Borel-Serre[1]).

For any 9 . E0bCP (X ), put
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zp(g)=-ExExp lengtho. (g .)  • {x} ZP (X ))

and ca ll it the cycle of codim ension p  associated to g  (cf. Serre
[8 ] ) .  Since the m ap zp:CP(X )-->ZP(X ) is  c learly  additive, it de-
fines a  group homomorphism zp: KP(X)---->ZP(X) such  that zp(r,
( g ) )  = z p ( g ) .  We denote, for any closed subscheme Y  o f  X, z p
(O r )  Y p (P codim Y), it  is  e a sy  to  show that, i f  Y  is reduced
and irreducible of codimension p, zp(oy )= Yp= Y, i. e., the underlying
space of Y with multiplicity 1. Moreover, if X  is regular (i. e., non-
singular), the Cartier divisors on X  are identified to the elements of
Z '( X )  (i. e., the Weil divisors), hence we have a bijective canonical
correcpondence between Z 1 (X )  and the set of invertible sub-Os-
Modules of 2 Z (X ) (D  x  ( D ) )  ,  and it is easy to see that, for any
positive divisor D E  Z i (X ) ,  Zi ( O D )  D  D  ,  where OD= Ox/Ox( -  D )

(C f. M um ford. [7 ]). The following theorem has been proved by
Serre which is very usefull for our study.

Serre's Intersection T h e o ry  (Serre [8], Prop. 1 of V, c.).

Assume the algebraic scheme X  to be regular. For elements EE

K ( X )  and 72 K g (X )  such that E,72EK P+g(X ), the cycles z ( E )
and z g (72) intersect properly to each other and

,z,„(E • 72) — X p(E) • 2g (12) (the intersection product in
usual sense).

Lemma 1. Assume X  to be regular. For closed subschem e
Y  o f X  and any divisor D  on X , if we have an exact sequence
o f coherent 0,-M odules

(6) ( —  D )  0

then there e x se ts  a divisor D 'E Z '( X ) ,  linearly equivalent to D,
such that the intersection product D'. p is defined and, for any
P c o d i m x  Y,

Pz +1 (Q ) D ' • Y.

P r o o f )  Take a D 'E Z 1 (X )  which is linearly equivalent to D
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and intersets properly w ith  Supp(Y ). Let D' = Ei- E2, E >0  and
they have no common components. Then, since exact sequences

0 - >Ox ( - E i) - >Ox - >0,, - > 0  ( i=  1, 2)

are locally free resolution of 0 ,„  we get

0->9or1Ox (0E,, 0y) - >Ox( -  E 1) 00x0y->Os->OE,(goxOy - >0 (exact)
an d  ¶ or pox (0, E ,, oy ) = 0, if P>2.

Since E ,  intersect properly with Supp (Y) and Supp(OE 1 g 0 y )  c

Supp(oE,) n Supp (0y ) ,  w e  have codim. S u p p  (0E,0y) codim.
Supp(0 y ) -1. Hence, by Serre's intersection theory, the intersection
product z i  (OE )  • Z p (0 y )  =  E ,•Y , is defined and is equal to

zp+2(0E1®0y) - zp + 1 (gon o .(0 .2 0 y )

- z p + , ( 0 y ) - z p , i ( o x ( - E , ) 0 0 y ) .

Therefore

D' • Y p— p E 2  Yp — Z p i-i(O x ( — E 2 )® 0 Y)

— z 1(Ox (—  E) ØO),

while Ox( - D ) - - " C 's ( - D ')=--- O x (-E 1 )0 0 x (E 2 ),  hence, by tensoring

O x ( -E 2 )  to the exact sequence (6 ), we get an exact sequence

0 -O ( - -  E1)

and, taking zp+1,

pi t (O x (—  E2)00y) - zp+1(0x( - E1)00y
= zp+1(0x( -  E2) ØQ) =  Z P + 1 ( g )  •

Thus we get the proof. Q. E. D.

Now we shall apply this result to Th. 1.

Theorem 1'. Let X  be a regular algebraic schem e, e  a  lo-
cally  free  Os-M odule o f  ran k  p-r1 a n d  H  a  div isor on  P (e )
such  that O P (e )(H ) ------ --'0 p (e ) (1 ) .  Then, for any  non-zero rational
section co r , a t ( v ( e ) /  x ) ,  there  ex ists a div isor D on P ( e )  such
that it is  linearly  equiv alen t to  H  +  (w )  and that the intersec-
t io n  p ro d u c t  D • z p (O L,,,) = D • [ ( 0 ] p  is  d e f in e d  a n d  is  e q u al to
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— z (0 ,— 7r - '<co>) = — (i - '7r- '<o)>) „„ j .  e., i n  t h e  C h o w  ring
A (P (C ) )o f  P (C )  ( i f  X  i s  quasi-projective, c f. [2 ]),

(i - '7( 1 <a)>)p+i= (— H— n* (w)) • [w] P.

M oreov er , i f  E  i s  o f  rank  2,

(7r- 1<to>)2= — D • Lcol, i .e ., (7r- 1 <w›),
= (— H— 7r- 1 (03)) • la d  in  A (P (C )).

P r o o f )  Note that, P ( e )  is also a  regular algebraic scheme
and that the projection i t  : P ( s )  X  is  fla t; then it is easy to see

that zp(n*Ox (0)))= (w ) . Then the first part is straightly obtained
applying Lemma 1 to the exact sequence (5). The second part is
an immediate consequence of the following lemma.

L em m a 2. U nder the  sam e a ssu m p tion  i n  T h. l ', i f  C is  of
rank  2,

(i) codim. Supp (0 < > ) 2, an d  ( i i )  i* n*0 < „> =-7r*0

P r o o f )  ( i )  For any point x  o f X , r (w ) is generated by rela-
tively prime two elements of O , h en ce  d im 0 ,.„,,=d im (a/r(0 )))<
dim 0 - 2. This proves (i).

(ii) Since i n*0 < ,---O p(e)/T (a)). O p(e))00 [ ,,  in order to get

our assertion, it is sufficient to prove that

J(w)(S (E) (w) • S (e)) = (J (co) ± f(w) • S (E)) / I (w) • S(C )=0,
i . e . ,  J((o )cI(w ). S (C ).

A t any point x  o f X, any element e E J,(c o )  is expressed as

G 0,„ such that b1a1+b2a2=0

(with the notations used in the proof o f Th . 2 ). S ince r(0)).---a1a
+a,a, and a , and a , are relatively prime to each other,

eS„,,(C) cb1S,„(e)+b2s,„(e)ca 1S„,(C)+a 25„,(E) = I  (c o ) S „,(E)

T h is  proves J i (a)).5„,_ 1 ( e ) c i ( c o s n,(E) , j .  e., 1 (w )=J1 (0)) S (C)
(co) s(e). Q. E. D.
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In the algebraic scheme case, Cor. of Th. 2 also can be transe-
lated as follows

Theorem 2'. Under the sam e assum ptions in  T h . 1 ', i f  E
is  o f rank  2, the div isor [0)] is linearly  equiv alent to the divisor
H+27- iK—n - 1 (co), w here K  is a div isor on X  such  that O x (K ) =-

A2.

Corollary. Under the sam e assum ptions in  T h. 2', if  X  is
quasi-projective, for any  locally  free Ox-M odule E of rank  2, the
f irst C hern  c lass c , (E ) of E is equal to clx ( A 2e), and the second
C hern class c 2 (L )  of e  is  eq u al to  <co> —  (e ) •  ( 0 )) ( w ) 2 , where
a) is non-zero ratio nal section of the v ector f ibre v(e)/x ( The
Chern classes are in the sense of Grothendieck, c f. [4] , [5]).

P r o o f )  Combine the results o f  T h . 1' and 2', w e get an
equality in the Chow-ring of p(e)

H 2 + n*K • H+ n* (<0)> + (co) • K— ((o) 2 ) =0.

This identity shows, by the definition (c f. [4] , [5] ), that

c1 (e)=— c 1 (4 =  —K= — cl x( A 2  \g) =c/x( and

e2(e)=c2(e)=<,>+  (a') K— (a ,)2

= <60> —  (co ) • (*I(E) — ((0) 2 . Q. E. D.

R em ark . We shall now apply the result to the case of surfaces.
Let X =F  be a non-singular projective surface and E =g ,=S o m e i ,
(s2,0 ,) the tangential sheaf on F .  Then, for any linear differential
form w on F  (i.e ., an element of r(F,..(2 0 g 2 ,(F))) , we can express
it, at any point x  o f F, as 0)=h(f .dt1+ g•dt2) (t's are local param-
eters at x )  where h, f  and g  are rational functions on F  such that
f  and g  are regular at x  and are relatively prime in O F , .  Denote
b y mx  the intersection multiplicity of the divisors ( f )  and ( g )  at
x , and put <o)>=Zrn x . x ;  then the 0-cycle <w> i s  ju s t  the same
thing of ours. And the second Chern class

c2 (9 -
F ) =c 2 (F)=<w>+ (w) • K—  ( a ,) 2
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(K = cl ( A 2 N
 F ) = cl (S4) = the canonical divisor class on F )  is called

the Severi-series which has been defined by F. Severi in [9] , and
used by J. Igusa, in [6] , in order to prove the in-equality B2 p
where B 2 is  the second Betti number of the surface F  and p  is the
Picard number o f F".

Appendix

Let V—>Spec ( k )  be a  non-singular projective algebraic variety
of dimension n  and ..(2;,= A oS h  the sheaf of germs of holomorphic
p-forms on V. Then we get

c„( V) = E( — 1)"°12P•g, h "  dimjig( V„S2e).
P .9

In fact, let

c ,(V )=E 'c i ti ci(DIOti =II" (I+ a i t )
i 1

be the Chern polynomial of V. Then we have

ct(s2f,') E7-oci(S2)fOt i = — ( d -a „ + • • • + a i „ ) t )

(cf. [5] ). Hence

ch(pf ,)= exp( — a i , —a i 2 — •••—a i p ) .

Applying this result to the theorem of Riemann-roch ( [1] )
we get

X (V , ,Z )= 7 r , k ( c h ( Z ) • T ( V ) )

e X P (— a 11 —a 12 - -  •-• —tr i p )  • 1 7 (a d l — exp( — et i ) ) )

= (c1 ,c 2 ,•••,c„).

Therefore, the polynomial

; 0x( V, s2PYP=E;-or,',(ci, c .)Y (=Z (c i,• . . ,c .))

is the n-th term of the "m -Folge" belonging to the power series

Q(y ,x ) =x(y+1)/ (1— exp(— x(y+1))

2) Igusa difined B 2  by the classical fact E (_ 1 ) iB i=c 2 (F ) . On the other hand
we can show c ,(F )= 2 "( - 1)P . 0 h,P, 5 ( F )  by means of the Riemonn-Roch theorem of
Grothendieck ([1]) (see Appendix).
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(c f. [10 ] p . 1 6 , note that n * ( ) =  t c „ [  1 ) .

This proves that

c„=E ;-0 ( - 1) P T :(c1, ••-, c .) =E ( - 1) P x (V , V')
= E ;, , - 0 ( - 1 ) + ghP . g.

(cf. ibid. the formula ( 1 6 )  of Chap. 1 , sect. 8 , p. 17).

Kyoto University.
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