A limit theorem of branching processes and continuous state branching processes*

By

Shinzo WATANABE

(Received February 29, 1968)

§0. Introduction

In 1951, Feller [3] showed that a class of one-dimensional diffusion processes on $[0, \infty)$ can be obtained as a limit of Galton-Watson branching processes if one changes the scale of time and mass (=size) in an appropriate way. Lamperti [12] determined the class of Markov processes on $[0, \infty)$ which can be obtained as a limit of Galton-Watson branching processes. A main objective of the present paper is to consider a similar problem in more complicated situations. We shall show in §4 below an example of branching processes with particles moving in an *n*-dimensional space \mathbb{R}^n which converge, when we change the scale of time and mass in an appropriate way, to a continuous random motion of mass distributions on \mathbb{R}^n . To formulate such a limit processes (C. B-processes) in earlier sections.

The concept of C. B-processes was introduced by Jiřina [7] and they were studied in some special cases, by Lamperti [11], Silverstein [16] and Watanabe [17]. The general theory was developed by Jiřina [8] and Motoo [13]. In particular, Motoo

^{*} Research supported in part under contract NOO14-67-A-0112-0115 at Stanford University, Stanford, California.

determined the infinitely divisible laws on the space of measures on a compact space and gave some interesting examples of C. B -processes. In §1 and §2, we shall obtain and extend Motoo's results concerning the formulation and existence of C. B-processes. The method we adopt here is a natural extension of that used in [17]. The theory of infinitesimal generators is added for the purpose of applying it to the limit theorem of §4. The theory is quite parallel to that given in Ikeda-Nagasawa-Watanabe [6] in the case of ordinary branching processes. In §3, we shall consider the case when C. B-processes are diffusion processes. In §4, a typical limit theorem will be given.

§1. Infinitely divisible distribution on the space of measures

Let S be a compact metrizable space, \mathfrak{S} be the set of all nonnegative Radon measures¹⁾ on S and \mathfrak{S}_0 be the subset of \mathfrak{S} formed of all probability Radon measures on S. Let $\mathfrak{S} = \mathfrak{S} \cup \{\Delta\}$, where Δ is an extra-point and let $\mathfrak{S} = [0, \infty] \times \mathfrak{S}_0$. \mathfrak{S} is a compact metrizable space by the product topology.²⁾ Define a mapping ρ ; $\lambda = (\lambda, \lambda_0) \in \mathfrak{S}$ $\rightarrow \lambda = \rho(\lambda, \lambda_0) \in \mathfrak{S}$ by

(1.1)
$$\rho(\overline{\lambda}, \lambda_0) = \begin{cases} \overline{\lambda} \cdot \lambda_0, & \text{if } \overline{\lambda} < \infty, \\ \Delta, & \text{if } \overline{\lambda} = \infty \end{cases}$$

and define the topology of $\overline{\mathfrak{S}}$ as the strongest of all topologies rendering ρ continuous. $\overline{\mathfrak{S}}$ is a compact metrizable space.³⁾ Let $C^+(S)$ be the set of all *strictly positive* continuous functions on $S^{(4)}$. It is easy to see that, for each $f \in C^+(S)$, the function $\varphi_f(\lambda)$ defined by

¹⁾ i.e., bounded Borel measures.

²⁾ The topology of \mathfrak{S}_0 is that of weak convergence: \mathfrak{S}_0 is compact metrizable by this topology.

³⁾ Cf. Bourbaki [1] Chap. 9, p. 44.

⁴⁾ This notation, which is slightly different from the usual one, is more convenient in future discussions.

(1.2)
$$\varphi_f(\lambda) = \begin{cases} e^{-(\lambda,f)}, & \lambda \in \mathfrak{S} \\ 0, & \lambda = J \end{cases}$$

where

$$(\lambda, f) = \int_{s} f(x) \lambda(dx)$$

is a continuous function on S.

Let $\mathfrak{M} \equiv \mathfrak{M}(\mathfrak{S})$ be the set of all substochastic Radon measures⁵⁾ on \mathfrak{S} . Clearly $\mathfrak{M}(\mathfrak{S})$ can be regarded as the set of all probability Radon measures on \mathfrak{S} by the relation

$$P(\{\Delta\}) = 1 - P(\mathfrak{S}), \qquad P \in \mathfrak{M}(\mathfrak{S}).$$

Define the Laplace transform of $P \in \mathfrak{M}(\mathfrak{S})$ by

(1.3)
$$L_{P}(f) = \int_{\overline{\mathfrak{G}}} \varphi_{f}(\lambda) P(d\lambda) = \int_{\mathfrak{G}} e^{-(\lambda,f)} P(d\lambda).$$

Hence the Laplace transform $L_P(f)$ is a function defined on $C^+(S)$ and it is clear that, if $f_n \rightarrow f$ point wise $(f_n, f \in C^+(S))$, then $L_P(f_n) \rightarrow L_P(f)$.⁶⁾

Proposition 1.1. Let $P_i \in \mathfrak{M}(\mathfrak{S})$, i=1, 2, and $L_{P_1}(f) = L_{P_2}(f)$ for all $f \in C^+(S)$. Then, $P_1 = P_2$.

This proposition follows at once from the following

Lemma 1.1. The linear hull of $\{\varphi_f(\lambda); f \in C^+(S)\}$ is dense in $C_0(\mathfrak{S})$ where $C_0(\mathfrak{S}) = \{F(\mu); \text{ continuous on } \mathfrak{S} \text{ such that } F(\varDelta) = 0\}.$

Proof. The linear hull is algebra under multiplication and it separates the point of $\overline{\mathfrak{S}}$. Hence the assertion follows from the Stone-Weierstrass theorem.

Now the infinitely divisible measures are defined in the usual way:

⁵⁾ i.e., non-negative Radon measures with total mass ≤ 1 .

⁶⁾ Clearly $L_P(f)$ can be extended as a function on $B^+(S) = ($ the set of all strictly positive bounded Borel measurable functions) and has the same continuity property.

Definition 1.1. $P \in \mathfrak{M}$ is called *infinitely divisible* if for every natural number *m*, there exists $P_m \in \mathfrak{M}$ such that

(1.4)
$$L_P(f) = [L_{P_m}(f)]^m$$
.

Our next task is to prove Motoo's result which characterizes completely infinitely divisible measures. For each $n=1, 2, \dots$, take finite number of non-empty Borel subsets of S, $\{K_i^{(n)}\}$, $i=1, 2, \dots, \nu_n$ such that

- (i) $K_{i}^{(n)} \cap K_{j}^{(n)} = \phi$, if $i \neq j$,
- (ii) $\bigcup_{i=1}^{\nu_n} K_i^{(n)} = S,$
- (iii) diameter $(K_i^{(n)}) \leq 1/n$ for all $i=1, 2, \dots \nu_n$.

Since S is a compact metric space, we can always define such $\{K_i^{(n)}\}$. Choose $x_i^n \in K_i^n$, then clearly $\bigcup_n \{x_i^n\}_{i=1}^n$ is dense in S. Define a mapping η_n ; $\mathfrak{S} \to \mathfrak{S}$ by

(1.5)
$$\eta_n(\lambda) = \sum_{i=1}^{\nu_n} \lambda(K_i^n) \delta_{x_i^{n+1}}.$$

Following properties of η_n are clear:

(1.6)
$$\eta_n(\lambda+\mu) = \eta_n(\lambda) + \eta_n(\mu),$$

(1.7) $\eta_n(\lambda) \rightarrow \lambda$ weakly when $n \rightarrow \infty$,

(1.8)
$$\eta_n[\eta_n(\lambda)] = \eta_n(\lambda).$$

Let $B^+(S)$ be the set of all strictly positive bounded Borel measurable functions. The dual operator of η_n is a mapping $\eta_n^*: B^+(S) \rightarrow B^+(S)$ define by

(1.9)
$$\eta_n^* f(x) = \sum_{i=1}^{\nu_n} f(x_i^n) I_{K_i^n}(x).^{(8)}$$

Clearly we have

(1.10)
$$\lambda(\eta_n^*f) = (\eta_n\lambda)(f) = (\eta_n\lambda)(\eta_n^*f),$$

where

$$\lambda(f) = \int_{s} f(x) \lambda(dx).$$

⁷⁾ δ_x is the unit measure at $x \in S$.

⁸⁾ $I_K(x)$ is the indicator function of $K \subset S$.

Define a function $\xi(\tilde{\lambda}; f)$ defined on $\widetilde{\mathfrak{S}} \times C^{+}(S)$ by

(1.11)
$$\boldsymbol{\xi}(\tilde{\boldsymbol{\lambda}};f) = \begin{cases} (1 - e^{-\tilde{\boldsymbol{\lambda}} \cdot \boldsymbol{\lambda}_0(f)}) \frac{1 + \bar{\boldsymbol{\lambda}}}{\bar{\boldsymbol{\lambda}}}, & 0 < \bar{\boldsymbol{\lambda}} < \infty \\ \lambda_0(f), & \bar{\boldsymbol{\lambda}} = 0 \\ 1, & \bar{\boldsymbol{\lambda}} = \infty \end{cases}$$

where $\tilde{\lambda} = (\bar{\lambda}, \lambda_0) \in \widetilde{\mathfrak{S}} = [0, \infty] \times \widetilde{\mathfrak{S}}_0$ and $\lambda_0(f) = \int_{\mathcal{S}} f(x)\lambda_0(dx)$. It is easy to see that, for each fixed $f \in C^+(S)$, there exist constants $0 < C_1 < C_2$ such that

(1.12)
$$C_1 \leq \xi(\tilde{\lambda}; f) \leq C_2$$
 for all $\tilde{\lambda} \in \widetilde{\mathfrak{S}}$,

and $\xi(\tilde{\lambda}; f)$ is continuous in $\tilde{\lambda} \in \widetilde{\mathfrak{S}}$.

Theorem 1.2.⁹⁾ (M. Motoo [13]). $P \in \mathfrak{M}$ is infinitely divisible if and only if

(1.13)
$$-\log L_{\mathbb{P}}(f) = \int_{\mathfrak{S}} \xi(\tilde{\lambda}; f) n(d\tilde{\lambda})$$

by some bounded non-negative measure $n(d\tilde{\lambda})$ on $\widetilde{\mathfrak{S}}$.

Proof. Let P be infinitely divisible and define, for each n=1, 2, ..., $P^{(n)} = \gamma_n \circ P^{(10)}$ For each $m=1, 2, \cdots$, there exists $P_m \in \mathfrak{M}$ such that

 $L_{P}(f) = [L_{P_{m}}(f)]^{m}.$

Set $P_m^{(n)} = \eta_n \circ P_m$, then,

(1.14)
$$L_{p^{(n)}}(f) = \int_{\mathfrak{S}} e^{-\eta_{n}(\lambda)(f)} P(d\lambda)$$
$$= \int_{\mathfrak{S}} e^{-\lambda(\eta_{n}^{*}(f))} P(d\lambda)$$
$$= L_{p}(\eta_{n}^{*}(f)) = [L_{p_{m}}(\eta_{n}^{*}(f))]^{m} = [L_{P_{m}^{(n)}}(f)]^{m}.$$

 $P^{(n)}$ and $P_m^{(n)}$ can be identified with substochastic measures on $\eta^n(\mathfrak{S}) \simeq R^{\nu_n}$ where R^{ν_n} is the positive part of ν_n -dimensional Euclidean

⁹⁾ Cf., also Jiřina [8].

¹⁰⁾ i.e., $P^{(n)}(B) = P(\eta_a^{-1}(B))$ for every $B \in \mathscr{B}(\mathfrak{S})$.

space $R^{\nu_n,11}$ (1.14) implies that $P^{(n)}$, considered as a measure on R^{ν_n} , is infinitely divisible. Hence by the classical result,

$$L_{P^{(n)}}(f) = \exp\left(-\int_{\widetilde{\mathfrak{S}}} \xi(\widetilde{\lambda}; f) n^{(n)}(d\widetilde{\lambda})\right)$$

where $n^{(n)}(d\tilde{\lambda})$ is a non-negative bounded measure concentrated on $[0, \infty] \times \eta_n(\mathfrak{S}_0)$. For each $f \in C^+(S)$, $L_{p^{(n)}}(f) \to L_p(f)$ and by (1.12) it is easy to see that $\sup n^{(n)}(\widetilde{\mathfrak{S}}) < \infty$. Then, clearly,

$$L_{P}(f) = \exp\left(-\int_{\widetilde{\mathfrak{S}}} \xi(\widetilde{\lambda}; f) n(d\widetilde{\lambda})\right),$$

where $n(d\tilde{\lambda})$ is a weak limiting point of $n^{(n)}(d\tilde{\lambda})$.

Conversely, given a bounded non-negative measure $n(d\lambda)$ on $\widetilde{\mathfrak{S}}$, we shall show that

$$\exp\left(-\int_{\widetilde{\mathfrak{S}}}\xi(\widetilde{\lambda};f)n(d\widetilde{\lambda})\right)$$

is the Laplace transform of an infinitely divisible measure $P \in \mathfrak{M}$. For this, it is sufficient to show that the above function is the Laplace transform of some $P \in \mathfrak{M}$, since then, $L_P(f) = [L_{P_m}(f)]^m$, where $P_m \in \mathfrak{M}$ corresponds to $n_m(d\tilde{\lambda}) = \frac{1}{m}n(d\tilde{\lambda})$. Again, by the well-known result for finite dimensional case,

$$\exp\left(-\int_{\widetilde{\mathfrak{S}}} \xi(\widetilde{\lambda}; \eta_n^*(f)) n(d\widetilde{\lambda})\right)$$
$$= \exp\left(-\int_{\widetilde{\mathfrak{S}}} \xi(\eta_n \widetilde{\lambda}; f) n(d\widetilde{\lambda})\right)^{12}$$
$$= \exp\left(-\int_{[0, \infty] \times \eta_n(\mathfrak{S}_0)} \xi(\widetilde{\lambda}; f) n^{(n)}(d\widetilde{\lambda})\right)^{12}$$
$$= \int_{\eta_n(\mathfrak{S})} e^{-(\lambda,f)} P_n(d\lambda),$$

where $P_n(d\lambda)$ is a substochastic measure concentrated on $\eta_n(\mathfrak{S})$. P_n , considered as a probability measure on $\overline{\mathfrak{S}}$, has a weak limiting point

¹¹⁾ i.e., $R_{*}^{\nu_n} = \{(x_1, \dots, x_{\nu_n}); x_i \ge 0, i = 1, 2, \dots, \nu_n\}.$

¹²⁾ $\eta_n \tilde{\lambda} = (\bar{\lambda}, \eta_n \lambda_0)$ for $\tilde{\lambda} = (\bar{\lambda}, \lambda_0)$.

P and then, it is clear that

$$\exp\left(-\int_{\widetilde{\mathfrak{S}}} \mathfrak{E}(\widetilde{\lambda}; f) n(d\widetilde{\lambda})\right) = \lim_{n \to \infty} \exp\left(-\int_{\widetilde{\mathfrak{S}}} \mathfrak{E}(\widetilde{\lambda}; \eta_n^*(f)) n(d\widetilde{\lambda})\right)$$
$$= \int_{\mathfrak{S}} e^{-(\lambda,f)} P(d\lambda),$$

which completes the proof.

Definition 1.2.

(1.15)
$$\Psi = \left\{ \Psi(f) = \int_{\widetilde{\mathfrak{S}}} \xi(\widetilde{\lambda}; f) n(d\widetilde{\lambda}); n(d\widetilde{\lambda}), \text{ non-negative bounded} \right\}$$
measure on $\widetilde{\mathfrak{S}}$.

Thus the above theorem states that $P \in \mathfrak{M}$ is infinitely divisible iff $-\log L_P(f) \in \mathfrak{P}$. By (1.12), it is easy to see that we have the following

Proposition 1.3. If $\psi_n \in \Psi$, $n=1, 2, \dots$, and $\psi_n(f) \rightarrow \psi(f)$ for every $f \in D$ where D is a non-empty open subset¹³⁾ of $C^+(S)$, then there exists a unique extension of ψ such that $\psi \in \Psi$.

Definition 1.3. A function $\psi \equiv \psi(x; f)$ defined on $S \times C^+(S)$ is called a Ψ -function if

(i) for fixed $x \in S$, it is an element of Ψ ,

(ii) for fixed $f \in C^+(S)$, it is an element of $C^+(S)$.

The set of all Ψ -functions is denoted by Ψ . Given two Ψ -functions ψ_1 and ψ_2 , the composition $\psi_3 = \psi_1(\psi_2)$ is defined by

(1.16)
$$\psi_3(x; f) = \psi_1(x; \psi_2(\cdot; f)).$$

Lemma 1.2. If $\psi_i \in \mathbf{V}$, i=1, 2, then $\psi_1(\psi_2) \in \mathbf{V}$.

Proof. For any $\mu \in \mathfrak{S}$ and $\psi \in \mathfrak{P}$, $\int_{s} \psi(x; f) \mu(dx) \in \mathfrak{P}$. Therefore given ψ_{i} , i=1, 2, and μ , there exists a unique $P_{\mu}^{i} \in \mathfrak{M}$ such that

$$\exp\left(-\int_{\mathcal{S}}\psi_{i}(x;f)\mu(dx)\right)=\int_{\mathfrak{S}}e^{-(\lambda,f)}P_{\mu}^{i}(d\lambda).$$

¹³⁾ With respect to the uniform topology.

Define, for each $x \in S$, $P_x(d\lambda) \in \mathfrak{M}(\mathfrak{S})$ by

$$P_{s}(d\lambda) = \int_{\mathfrak{S}} P^{1}_{\delta_{s}}(d\mu) P^{2}_{\mu}(d\lambda),$$

then

$$\int_{\mathfrak{S}} e^{-(\lambda,f)} P_{\mathfrak{s}}(d\lambda) = \int \exp\left(-\int_{\mathfrak{s}} \psi_2(x;f) \mu(dx)\right) P^1_{\mathfrak{s}}(d\mu)$$
$$= \exp\left[-\psi_1(x;\psi_2(\cdot;f))\right],$$

which proves $\psi_1(\psi_2) \in \Psi$.

Definition 1.4. A one-parameter family $\{\psi_t\}_{t\in[0,\infty)}$ of Ψ -functions is called a Ψ -semi-group if

(1.17)
$$\psi_{t+s} = \psi_t(\psi_s),$$
$$\psi_0(\cdot; f) = f.$$

§2. Continuous state branching processes

Definition 2.1. Let $X = (\mu_t(dx, \omega), \mathcal{Q}, \mathcal{F}_t, P_\mu)^{14})$ be a Markov process on $\overline{\mathfrak{S}} = \mathfrak{S} \cup \{\Delta\}$ with Δ as a trap. X is called a *continuous* state branching process (C. B-process) if it satisfies, for every $t \ge 0, f \in C^+(S)$ and $\mu_1, \mu_2 \in \mathfrak{S}$,

(2.1)
$$E_{\mu_1+\mu_2}(e^{-(\mu_1,f)}) = E_{\mu_1}(e^{-(\mu_1,f)})E_{\mu_2}(e^{-(\mu_1,f)}).$$
¹⁵⁾

The property (2.1) is called the branching property.

Definition 2.2. A C. B-process is called *regular* if $E_{\mu}(e^{-(\mu,f)})$ is continuous in $\mu \in \overline{\mathfrak{S}}$ for each $t \ge 0$ and $f \in C^+(S)$.

Theorem 2.1. (Jiiina) There is a one-to-one correspondence between a regular C. B-process $X = \{\mu_t, P_\mu\}$ and Ψ -semi-group $\{\psi_i\}_{i \in [0,\infty)}$: the correspondence is given by

(2.2)
$$E_{\mu}(e^{-(\mu_{I},f)}) = \exp\left(-\int \psi_{I}(x; f) \mu(dx)\right).$$

¹⁴⁾ \mathcal{Q} is an abstract space, \mathcal{F}_t is an increasing family of Borel fields on \mathcal{Q} , $\mu_t(dx,\omega)$ is a mapping $[0,\infty)\times\mathcal{Q} \ni (t,\omega) \rightarrow \mu_t(dx,\omega) \in \overline{\mathfrak{S}}$ adapted to \mathcal{F}_t and $\{P_{\mu}, \mu \in \mathfrak{S}\}$ is a family of probability measures on $\{\mathcal{Q}, \bigvee \mathcal{F}_t\}$ such that $P_{\mu}\{\omega: \mu_0(dx,\omega) = \mu(dx)\} = 1$.

¹⁵⁾ $E_{\mu}(\cdot) = \int \cdot P_{\mu}(d\omega)$. We set always $e^{-(d,f)} = 0$ for every $f \in C^{*}(S)$.

Proof. Let $X = \{\mu_t, P_\mu\}$ be a regular C. B-process and set

$$E_{\delta_{s}}(e^{-(\mu_{t},f)}) = \exp(-\psi_{t}(x;f)).$$

Then, for each $x \in S$ and $t \ge 0$, $\psi_t(x; f) \in \Psi$ since

$$\exp(-\psi_t(x; f)) = E_{\delta_x}(e^{-(\mu_t, f)}) = [E_{\frac{1}{m}-\delta_x}(e^{-(\mu_t, f)})]^m.$$

By the regularity of X, it is easy to see that, for each $t \ge 0$ and $f \in C^+(S)$, $\psi_t(\cdot; f) \in C^+(S)$. Now we claim that

(2.3)
$$E_{\mu}(e^{-(\mu_t,f)}) = \exp(-\int \psi_t(x;f)\mu(dx)).$$

When μ is of the form $\mu = \sum_{i=1}^{\nu} \frac{m_i}{n_i} \delta_{x_i}$, $(m_i, n_i \text{ natural numbers, } x_i \in S)$ this follows from the branching property. Then, by regularity, (2.3) holds for every $\mu \in \overline{\mathfrak{S}}$. Now,

$$E_{\delta_{\mathbf{x}}}(e^{-(\mu_{t+s},f)}) = E_{\delta_{\mathbf{x}}}(E_{\mu_{t}}(e^{-(\mu_{s},f)}))$$
$$= E_{\delta_{\mathbf{x}}}\left[\exp(-\int \psi_{s}(x;f)\mu_{t}(dx))\right]$$
$$= \exp[-\psi_{t}(x;\psi_{s}(\cdot;f))].$$

Hence, $\psi_{t+s} = \psi_t(\psi_s)$. Thus, $\psi_t = \psi_t(x; f)$ is a Ψ -semi-group.

Conversely, suppose we are given a \mathcal{V} -semi-group $\{\psi_i\}$. Then, just as in the proof of Lemma 1.2, there exists a unique $P'_{\mu} \in \mathfrak{M}$ such that

(2.4)
$$\exp(-\int \psi_{\iota}(x; f) \mu(dx)) = \int_{\mathfrak{S}} e^{-(\lambda, f)} P_{\mu}^{\iota}(d\lambda),$$

for each $t \ge 0$ and $\mu \in \mathfrak{S}$. Now

$$\int_{\mathfrak{S}} e^{-(\nu,f)} \left[\int_{\mathfrak{S}} P_{\mu}^{t}(d\lambda) P_{\lambda}^{s}(d\nu) \right]$$

=
$$\int_{\mathfrak{S}} P_{\mu}^{t}(d\lambda) \int_{\mathfrak{S}} e^{-(\nu,f)} P_{\lambda}^{s}(d\nu)$$

=
$$\int P_{\nu}^{t}(d\lambda) \left[\exp(-\int \psi_{s}(x;f)\lambda(dx)) \right]$$

=
$$\exp\left[-\int \psi_{t}(x;\psi_{s}(\cdot;f))\mu(dx) \right]$$

$$= \exp\left(-\int \psi_{t+s}(x; f)\mu(dx)\right)$$
$$= \int_{\mathfrak{S}} e^{-(\nu, f)} P_{\mu}^{t+s}(d\nu),$$

and hence

$$\int_{\mathfrak{S}} P^{\iota}_{\mu}(d\lambda) P^{s}_{\lambda}(d\nu) = P^{\iota+s}_{\mu}(d\nu),$$

i.e., $\{P^{t}_{\mu}(d\lambda)\}\$ is a transition function on \mathfrak{S} . Thus $\{P^{t}_{\mu}(d\lambda)\}\$ defines a unique Markov process on $\overline{\mathfrak{S}} = \mathfrak{S} \cup \{\Delta\}\$ with Δ as a trap, (cf. Dynkin [2]). The branching property is clear from (2.4). q.e.d.

When S is a single point or finite number of points, \mathfrak{S} can be identified as the positive part of the finite dimensional Euclidean space and in these cases the structure of C. B-processes are completely determined under a slight regularity condition in time t, cf. Lamperti [11], Silverstein [16] and Watanabe [17]. Following the method of [17], we shall now describe a large class of C. Bprocesses. Some examples were obtained already by Motoo [13].

Let T_t be a non-negative strongly continuous semi-group of bounded operators on C(S) and let A be the infinitesimal generator in Hille-Yosida sense of T_t . Let D(A) be the domain of A. Let $\varphi(x; f)$ be a Ψ -function and $\sigma(x)$ be a non-negative function in C(S). Now, consider the following non-linear evolution equation for $\psi_t(x) \in C(S)$:

(2.5)
$$\frac{\partial \psi_{t}}{\partial t} = A \psi_{t} + \sigma [\varphi(\cdot; \psi_{t}) - \psi_{t}]$$
$$\psi_{0} = f.$$

In practice, we consider the equivalent integral equation:

$$(2.5)' \quad \psi_t(x) = T^{\sigma}_t f(x) + \int_0^t ds \int_s T^{\sigma}_s(x, dy) \sigma(y) \varphi(y; \psi_{t-s}),$$

where T_{t}^{σ} is the semi-group with infinitesimal generator $A - \sigma$.¹⁶⁾

¹⁶⁾ It is well known that there exists a unique semi-group T^{σ} with infinitesimal generator $A^{\sigma} = A - \sigma$ with $D(A^{\sigma}) = D(A)$. T^{σ} is non-negative and strongly continuous. $T^{\sigma}(x, dy)$ is the kernel of T^{σ} .

Proposition 2.2. For $f \in C^+(S)$, the solution $\psi_t = \psi_t(x; f)$ of (2.5)' exists and unique. Further ψ_t defines a Ψ -semi-group.

For the proof we need the following

Lemma 2.1. Let $C_{\epsilon}^{*}(S) = \{f \in C^{+}(S); \min_{x \in S} f(x) > \epsilon\}.^{17}$ For every $\epsilon > 0$, there exists $K = K(\epsilon) > 0$ such that

$$\|\varphi(\cdot;f)-\varphi(\cdot;g)\| \leq K \|f-g\|$$

for every f, $g \in C_{\epsilon}^+(S)$.

Proof. By the mean value theorem,

$$\begin{split} |\xi(\tilde{\lambda};f) - \xi(\tilde{\lambda};g)| \leq & |e^{-\tilde{\lambda}\cdot\lambda_0(f)} - e^{-\tilde{\lambda}\cdot\lambda_0(g)}| \cdot \frac{1+\lambda}{\bar{\lambda}} \\ \leq & \bar{\lambda} |\lambda_0(f) - \lambda_0(g)| e^{-\bar{\lambda}\epsilon} \cdot \frac{1+\bar{\lambda}}{\bar{\lambda}} \,.^{18)} \end{split}$$

Hence, by taking $K(\epsilon) = \sup_{\overline{\lambda} \in (0,\infty)} (1 + \overline{\lambda}) e^{-\overline{\lambda} \overline{\epsilon}}$, the lemma is proved.

Proof of the proposition. Let $f \in C^+(S)$ then for some $\epsilon > 0$, $f \in C_{2\epsilon}^+(S)$. Then, there exists $t_0 > 0$ such that $T_i^{\sigma} f \in C_{\epsilon}^+(S)$ for all $t \in [0, t_0]$. Define $\psi_i^{(n)}(x)$, $t \in [0, t_0]$, $x \in S$, successively by

(2.6)
$$\begin{aligned} \psi_{t}^{(1)}(x) &= T_{t}^{\sigma}f(x) \\ \psi_{t}^{(n)}(x) &= T_{t}^{\sigma}f(x) + \int_{0}^{t} ds \int_{S} T_{s}^{\sigma}(x, dy) \sigma(y) \varphi(y; \psi_{t-s}^{(n-1)}). \end{aligned}$$

Then $\psi_i^{(n)} \in C_{\epsilon}^+(S)$ for all $t \in [0, t_0]$ and $n=1, 2, \dots$, and also, by Lemma 1. 2, $\psi_i^{(n)} \in \mathbf{P}$. Using Lemma 2.1, we can show by the standard argument that

$$\sup_{0 \leq t \leq t_0} \|\psi_t^{(n)} - \psi_t\| \to 0$$

for some $\psi_t \in C^+(S)$. Then $\psi_t \in \Psi$ by Proposition 1.3. Also, by Lemma 2.1, we can show that ψ_t is the unique solution in $C^+(S)$

- 17) Thus $C^*(S) = \bigcup_{\epsilon > 0} C^*_{\epsilon}(S)$.
- 18) $\tilde{\lambda} = (\tilde{\lambda}, \lambda_0) \in [0, \infty] \times \mathfrak{S}_6$.

of (2.5) in $[0, t_0]$. We denote this solution as $\psi_t = \psi_t(x; f)$ then, by the uniqueness of the solution, $\psi_{t+s} = \psi_t(\psi_s)$ for $t+s \le t_0$. If we define $\psi_t = \psi_t(x; f)$ in the interval $[t_0, 2t_0]$ by

$$\psi_{i}(x; f) = \psi_{i-i_{0}}(x; \psi_{i_{0}}(\cdot; f)),$$

then, $\psi_t \in \Psi$ by Lemma 1.2 and $\{\psi_t\}$, $t \in [0, 2t_0]$ defines a solution of (2.5) in the interval $[0, 2t_0]$. This is the unique solution in $C^+(S)$ by virtue of Lemma 2.1. Continuing this process, we get the unique solution ψ_t , $t \in [0, \infty)$ of (2.5)' in $C^+(S)$ and clearly ψ_t is a Ψ -semi-group. q.e.d.

More interesting class of Ψ -semi-groups can be obtained by the following limiting procedure. Let h(x; f) be a function defined on $S \times C^+(S)$ such that $h(\cdot; f) \in C(S)$ for each fixed $f \in C^+(S)$. We assume that h(x; f) is locally Lipschitz continuous in f, i.e., for every $f \in C^+(S)$, there exist a neighborhood¹⁹⁾ D = D(f) and a constant K > 0 such that

(2.7)
$$||h(\cdot; f) - h(\cdot; g)|| \le K ||f - g||$$

for every $f, g \in D$. We assume further that there exist a non-empty open set $D_0 \subset C^+(S)$, a sequence $\{\varphi_n(x; f)\}$ of Ψ -functions, and a sequence $\{\sigma_n(x)\}$ of non-negative functions in C(S) such that

(2.8)
$$\sup_{f\in D_0} \|\sigma_n\{\varphi_n(\cdot;f)-f\}-h(\cdot;f)\|\to 0$$

when $n \to \infty$. Let T_i be, as before, a non-negative strongly continuous semi-group on C(S) and A be the infinitesimal generator with the domain D(A). Now, consider the following evolution equation for $\psi_i(x) \in C(S)$:

(2.9)
$$\frac{\partial \psi_t}{\partial t} = A \psi_t + h(\cdot; \psi_t),$$
$$\psi_0 = f.$$

In practice, we consider the equivalent integral equation:

¹⁹⁾ With respect to the uniform topology.

Continuous state branching processes

$$(2.9)' \qquad \psi_t(x) = T_t f(x) + \int_0^t ds \int_s T_s(x, dy) h(y; \psi_{t-s}).$$

Theorem 2.3. There exists a unique solution $\psi_i(x)$ in $C^+(S)$ of the equation (2.9)'. If we write this solution as $\psi_i = \psi_i(x; f)$, then ψ_i defines a Ψ -semi-group.

Proof. We first remark that, if there exists a solution $\psi_t(x)$ of (2, 9)' in $C^+(S)$, then it is a unique solution. This can be proved by the usual argument using the local Lipschitz continuity of h. We shall show, therefore, the existence of the solution $\psi_t = \psi_t(x; f) \in \mathbf{T}$. By the local Lipschitz continuity, the solution $\psi_t(x; f)$ of (2.10) exists in $C^+(S)$ for each $f \in C^+(S)$ in sufficiently small time interval $[0, t_0]$. For each $n=1, 2, \cdots$, let $\psi_t^{(n)} = \psi_t^{(n)}(x; f)$ be the solution of

$$\psi_{i}^{(n)}(x) = T_{i}f(x) + \int_{0}^{t} ds \int_{s} T_{s}(x, dy) \sigma_{n}(y) \left[\varphi_{n}(y; \psi_{i-s}^{(n)}) - \psi_{i-s}^{(n)}(y)\right].$$

Then $\psi_i^{(n)}$ is the solution of

$$\psi_{i}^{(n)}(x) = T_{i}^{\sigma_{n}}f(x) + \int_{0}^{t} ds \int_{S} T_{s}^{\sigma_{n}}(x, dy) \sigma_{n}(y) \varphi_{n}(y; \psi_{i-s}^{(n)}),$$

and hence, by Proposition 2.2 $\psi_t^{(n)}$ is a Ψ -semi-group. Now, using (2.8), we can show, by the same proof as in Lemma 2, §2 of [17], that there exists a non-empty open set $D_1 \subset C^+(S)$ and $t_0 > 0$ such that

$$\sup_{0 \ge t \le t_0} \sup_{f \in D_1} \|\psi_t^{(n)}(\cdot;f) - \psi_t(\cdot;f)\| \to 0$$

when $n \to \infty$. By Proposition 1.3, $\psi_t = \psi_t(x; f) \in \mathbf{V}$ for $t \in [0, t_0]$. Then ψ_t can be extended as a solution in $t \in [0, \infty)$ just as in the proof of Proposition 2.2 and it clearly defines a Ψ -semi-group.

Corollary. Let $F(\xi)$ be a function defined on $\xi \in (0, \infty)$ given by

(2.10)
$$F(\xi) = C_0 + C_1 \xi - C_2 \xi^2 - \int_0^\infty \left(e^{-\xi u} - 1 + \frac{\xi u}{1+u} \right) n(du),$$

where C_i , i=0, 1, 2, are constants such that $C_0 \ge 0$, $C_2 \ge 0$ and n(du) is a non-negative measure on $(0, \infty)$ such that

$$\int_0^\infty \frac{u^2}{1+u^2} n(du) < \infty.$$

Let $\sigma(x)$ be a non-negative continuous function on S and define $h(x; f), x \in S, f \in C^+(S)$ by

(2.11)
$$h(x; f) = \sigma(x)F(f(x)).$$

Then the solution ψ_i of (2.9) or (2.9)' defines a Ψ -semi-group.

Proof. It is clear that $h(\cdot; f) \in C(S)$ for each $f \in C^+(S)$ and it is locally Lipschitz continuous. Also it is not difficult to show that there exists a sequence of functions $F_n(\xi)$ of the form

$$F_n(\xi) = C_n(\varphi_n(\xi) - \xi),$$

where $C_n > 0$ and $\varphi_n(\xi) = \int_{[0,\infty]} (1 - e^{-u\xi}) \frac{1+u}{u} N_n(du)$ with a nonnegative bounded measure $N_n(du)$ on $[0,\infty]$, such that $F_n(\xi) \to F(\xi)$ uniformly on each compact interval in $(0,\infty)$ when $n\to\infty$. Now, $\psi(x; f) \equiv \varphi_n(f(x)) \in \mathbf{T}$ for $n=1, 2, \cdots$, since

$$\varphi_n(f(\mathbf{x})) = \int_{\widetilde{\mathfrak{S}}} \xi(\widetilde{\lambda}; f) \overline{N}_n^x(d\widetilde{\lambda}),$$

where $\overline{N}_{n}^{x}(d\lambda)$ is the image measure of N_{n} under the mapping $u \in [0, \infty] \rightarrow (u, \delta_{x}) \in \widetilde{\mathfrak{S}}$. Thus, h(x; f) satisfies the condition (2.8).

Example. For a non-negative continuous function $\sigma(x)$ on S, the solutions of the following equations define Ψ -semi-groups:

$$\frac{\partial \psi_t}{\partial t} = A \psi_t - \sigma \cdot \{\psi_t\}^{\alpha}, \qquad 1 < \alpha \leq 2,$$

or,

$$\frac{\partial \psi_i}{\partial t} = A \psi_i + \sigma \cdot \{\psi_i\}^{\alpha}, \qquad 0 < \alpha \leq 1.$$

Given T_t and h, we have constructed a Ψ -semi-group in

155

Theorem 2.3 and by Theorem 2.1, there is the unique C. B-process corresponding to it. Let T_t be the semi-group of this C. B-process. Since

$$\boldsymbol{T}_{\boldsymbol{i}}\varphi_{f}(\mu) = \varphi_{\Psi_{i}(\cdot;f)}(\mu) = \exp\left[-\int \psi_{i}(x; f)\mu(dx)\right]^{20},$$

it is easy to see that $T_t(C_0(\mathfrak{S})) \subset C_0(\mathfrak{S})$, where $C_0(\mathfrak{S}) = \{F(\mu);$ continuous on $\overline{\mathfrak{S}}$ and $F(\varDelta) = 0\}$. Since $\|\psi_t(\cdot; f) - f\| \to 0$, we see easily that T_t is strongly continuous on $C_0(\mathfrak{S})$. Hence the C. Bprocess is a Hunt process; in particular, we may assume that it is a strong Markov process with right continuous and d_1 -discontinuous sample functions (cf. Dynkin [2]). The case of diffusion processes will be discussed in the next section. We shall now study the infinitesimal generator of the semi-group T_t on $C_0(\mathfrak{S})$. Let A be the infinitesimal generator in Hille-Yosida sense of T_t with the domain D(A). A linear manifold $D \subset D(A)$ is called a *core*²¹ of Aif A is the smallest closed extension of $A|_D$.²²

Theorem 2.4. Let T_t and h be as in Theorem 2.3 and let D be the linear hull of $\{\varphi_f(\mu); f \in C^+(S) \cap D(A)\}$. Then $D \subset D(A)$ and $A\varphi_f$, $f \in C^+(S) \cap D(A)$, is given by

(2.12)
$$A\varphi_f(\mu) = e^{-(\mu,f)} \int_{S} \{h(x;f) - Af(x)\} \mu(dx).$$

Furthermore, D is a core of A.

Conversely, if $f \in C^+(S)$ is such that $\varphi_f \in D(A)$ then $f \in D(A)$ and hence, $A\varphi_f$ is given by (2.12).

Remark. If $D \subset D(A)$ is a core of A, then the linear hull D'of $\{\varphi_f(\mu); f \in C^+(S) \cap D\}$ is a core of A. In fact, as is easily seen, the smallest closed extension $\overline{A|_{D'}}$ of $A|_{D'}$ satisfies $\overline{A|_{D'}} \supset A|_{D}$.

Proof. We first show that $D \subset D(A)$ and $A|_D$ is given by

20)
$$\varphi_f(\mu) = e^{-(\mu,f)} \equiv \exp(-\int f(x)\mu(dx)), f \in C^*(S).$$

- 21) Cf. Kato [9], p. 166.
- 22) $A|_D$ is the restriction of A on D.

(2.12) and also that, if $f \in C^+(S)$ is such that $\varphi_f \in D(A)$, then $f \in D(A)$ and hence, $\varphi_f \in D$. First, if $\psi_t(x; f)$ is the solution of (2.9) for $f \in C^+(S) \cap D(A)$, then

$$\left|\frac{\psi_t(\cdot; f) - f}{t} - (Af - h(\cdot; f))\right| \to 0 \quad \text{when } t \to 0.$$

This can be proved by the same way as in the proof of Theorem 4.10 of Ikeda-Nagasawa-Watanabe [6]. Then, as is easily seen,

$$\frac{1}{t} \{ e^{-(\mu,\psi_l)} - e^{-(\mu,f)} \} - e^{-(\mu,f)} \int \mu(dx) \{ h(x;f) - Af(x) \} \Big|_{\mathfrak{S}} \to 0$$

when $t \to 0$. Thus, $\varphi_f \in D(A)$ and $A\varphi_f$ is given by (2.12). The second assertion can be proved by exactly the same way as in the proof of Theorem 4.10 of [6].

It remains only to show that **D** is a core of D(A). First of all, we remark that if $f \in C^+(S) \cap D(A)$ then $\psi_t = \psi_t(x; f) \in C^+(S)$ $\cap D(A)$ for each $t \ge 0$; in fact, $f \in C^+(S) \cap D(A)$ implies $\varphi_f \in D(A)$, then $T_t\varphi_f(\mu) = \varphi_{\psi_t}(\mu) \in D(A)$. This implies, again by the above result, that $\psi_t \in D(A)$. From this, it is clear that $T_t(D) \subset D$. Also, by Lemma 1.1 **D** is dense in $C_0(\mathfrak{S})$. Now the assertion is a consequence of the following general

Lemma 2.2. Let U_t be a strongly continuous semi-group of bounded operators on a Banach space **B** such that $||U_t|| \le M \cdot e^{\beta t}$ for some M > 0 and $\beta > 0$. Let G be the infinitesimal generator of U_t with the domain D(G). Let D be a linear manifold of **B** such that

- (i) $D \subset D(G)$,
- (ii) D is dense, i.e., $\overline{D} = B$,
- (iii) D is U_t-invariant, i.e., $U_t(D) \subset D$.

Then D is a core of G.

Proof. It is sufficient to show that for some $\alpha > \beta$, $(\alpha I - G)(D)^{23}$

²³⁾ I is the identity.

is dense in **B**. In fact, if this is true, then for every $u \in D(G)$ there exists $h_n \in D$ such that $\alpha h_n - Gh_n \rightarrow \alpha u - Gu$. Let $R_\alpha = \int_0^\infty e^{-\alpha t} U_t dt$, then R_α is a bounded operator and hence,

$$h_n = R_\alpha(\alpha h_n - Gh_n) \rightarrow R_\alpha(\alpha u - Gu) = u$$

and also

$$Gh_n = \alpha \cdot h_n - (\alpha h_n - Gh_n) \rightarrow \alpha u - (\alpha u - Gu) = Gu,$$

proving that G is the smallest closed extension of $G|_{D}$.

In order to prove $(\alpha I - G)(D)$ is dense, it is sufficient to show that, for every continuous linear functional L on B such that $L(\alpha u - Gu) = 0$ for every $u \in D$, L is identically 0. Assume, therefore

 $L(\alpha u - Gu) = \alpha \cdot L(u) - L(Gu) = 0$, for every $u \in D$. Since $U_t(D) \subset D$, we have

$$\alpha L(U_{i}u) - L(GU_{i}u) = \alpha L(U_{i}u) - L\left(s - \frac{d}{dt}U_{i}u\right)^{24}$$
$$= \alpha L(U_{i}u) - \frac{d}{dt}L(U_{i}u) = 0.$$

Hence $L(U_i u) = C \cdot e^{\alpha t}$ for some constant C. But $|L(U_i u)| \le ||L|| ||U_i u|| \le K' e^{\beta t}$ and, since $\beta < \alpha$, we must have C = 0. Therefore $L(U_i u) = 0$ for every t and, in particular, L(u) = 0 for every $u \in D$. Since D is dense in **B**, this implies L = 0. q.e.d.

§3. The case of diffusion processes

In §2, we have shown that, for a given non-negative strongly continuous semi-group T_t on C(S) and a given non-negative continuous function $\sigma(x)$ on S, the solution of the equation:

(3.1)
$$\frac{\partial \psi_{t}}{\partial t} = A \psi_{t} - \sigma \{\psi_{t}\}^{2}$$
$$\psi_{0} = f, \qquad f \in C^{+}(S),$$

defines a Ψ -semi-group. We shall show that the corresponding

²⁴⁾ s-d/dt stands for strong derivative.

C. B-process is a diffusion process, i.e., almost all sample functions are continuous in the topology of $\overline{\mathfrak{S}}$. Unfortunately, we can not prove this fact without certain restrictions on T_t and σ ; the conclusion seems to be true in general, however.

Theorem 3.1. We assume that there exists a dense subset D of C(S) such that $D \subset D(A)$ and for every $f \in D$, there exist constants K > 0 and $\alpha > 0$ such that

(3.2)
$$\left\|\frac{T_{t}f-f}{t}-Af\right\|+\left\|T_{t}(\sigma f^{2})-\sigma f^{2}\right\|\leq K\cdot t^{\alpha}$$

for all sufficiently small t. Then, the C. B-process corresponding to the equation (3.1) is a diffusion process.

Proof. For $f \in C(S)$, define $\psi_i^{(n)}$ successively by

(3.3)
$$\psi_{t}^{(1)}(x) = T_{t}f(x)$$
$$\psi_{t}^{(e)}(x) = T_{t}f(x) - \int_{0}^{t} T_{s} \{\sigma(\psi_{t-s}^{(n-1)})^{2}\}(x) ds.$$

If we choose t_0 such that

 $4t_0C^2(t_0)\|\sigma\|\|f\|\leq 1$,

where we set $(\sup_{0_{-}t \leq t_0} ||T_t||) \bigvee 1 = C(t_0)$, then, since

$$\|\psi_{t}^{(n)}\| \leq C(t) [\|f\| + t\|\sigma\| \sup_{0 \leq s \leq t} \|\psi_{t-s}^{(n-1)}\|^{2}],$$

we have, by induction, that

$$\sup_{0_{\perp}t \leq t_0} \|\psi_t^{(n)}\| \leq C(t_0) \left[\|f\| + t_0 \|\sigma\| \cdot 4C^2(t_0) \|f\|^2 \right] \\ \leq C(t_0) \left[\|f\| + \|f\| \right] = 2 \|f\| C(t_0)$$

for every $n=1, 2, \cdots$. Since (for $t \leq t_0$)

$$\begin{aligned} \|\psi_{t}^{(n+1)} - \psi_{t}^{(n)}\| \leq & C(t_{0}) \|\sigma\| \int_{0}^{t} \|\psi_{s}^{(n)2} - \psi_{s}^{(n-1)2}\| ds \\ \leq & 4C^{2}(t_{0}) \cdot \|\sigma\| \|f\| \int_{0}^{t} \|\psi_{s}^{(n)} - \psi_{s}^{(n-1)}\| ds \end{aligned}$$

we have

(3.4)
$$\sup_{0 \le t \le t_0} \|\psi_t^{(n)} - \psi_t^{(n-1)}\| \le \frac{K^n t_0^n}{n!},$$

where

$$K = 4C^2(t_0) \|\sigma\| \|f\|.$$

From now on, we fix $g \in D \cap C_1^+(S)$.²⁵⁾ For $f = \lambda \cdot g$, we define $\psi_t^{(n)}(x) = \psi_t^{(n)}(x; \lambda)$ by (3.3). Then clearly, $\psi_t^{(n)}(x; \lambda)$ is a polynomial in λ and by (3.4), we have, for some $t_0 > 0^{26}$ and $\epsilon > 0$, that

$$\sup_{\substack{0 \leq t \leq t_0\\ |\lambda| \leq 1+\epsilon}} \|\psi_t^{(n)}(\cdot; \lambda) - \psi_t(\cdot; \lambda)\| \to 0.$$

Hence $\psi_t(x; \lambda) \equiv \psi_t(x; \lambda g)$ is analytic in $|\lambda| \leq 1 + \epsilon$. Set

$$\psi_t(x; \lambda) - \lambda \cdot g(x) = t [\lambda A g(x) - \lambda^2 \sigma(x) g^2(x)] + t \cdot H(t, x; \lambda),$$

then for fixed $t \in [0, t_0]$ and $x \in S$, $H(t, x; \lambda)$ is analytic in λ and

$$(3.5) ||H(t,\cdot;\lambda)|| \leq \left\| \frac{\psi_{t}(\cdot;\lambda) - \lambda \cdot g}{t} - \lambda A g + \lambda^{2} \sigma \cdot g^{2} \right\|$$

$$\leq \left\| \frac{T_{t}(\lambda \cdot g) - \lambda \cdot g}{t} - \lambda \cdot A g \right\| + \left\| \frac{1}{t} \int_{0}^{t} T_{s} \{ \sigma \cdot \psi_{t-s}^{2} \} ds - \lambda^{2} \sigma \cdot g^{2} \right\|$$

$$\leq \lambda \left\| \frac{T_{t}g - g}{t} - A g \right\| + \left\| \frac{1}{t} \int_{0}^{t} [T_{s} \{ \sigma \psi_{t-s}^{2} - \lambda^{2} \sigma \cdot g^{2} \}] ds \right\|$$

$$+ \left\| \frac{1}{t} \int_{0}^{t} [T_{s}(\lambda^{2} \sigma \cdot g^{2}) - \lambda^{2} \sigma \cdot g^{2}] ds \right\|$$

$$\leq \lambda K \cdot t^{\alpha} + C(t_{0}) \sup_{0 \leq s \leq t} \left\| \sigma \cdot \psi_{t-s}^{2} - \lambda^{2} \sigma g^{2} \right\| + \lambda^{2} K \frac{1}{t} \int_{0}^{t} s^{\alpha} ds$$

$$\leq K' \cdot t^{\alpha},$$

since $\|\sigma \cdot \psi_{t-s}^2 - \lambda^2 \cdot \sigma \cdot g^2\| \leq C \cdot \|\psi_{t-s} - \lambda \cdot g\| \leq C' \cdot t$. Clearly, $K' = K'(\lambda)$ is bounded in $|\lambda| \leq 1 + \epsilon$. Now,

$$H(t, x; \lambda) = \sum_{n=1}^{\infty} \lambda^n \cdot a_n(t, x),$$

where

$$a_n(t, x) = \frac{1}{2\pi} \int_0^{2\pi} H(t, x; e^{i\theta}) e^{-in\theta} d\theta.$$

25) $C_1(S) = \{f: \text{ continuous on } S \text{ and } 0 \le f \le 1\}$

26) Clearly, this t_0 can be taken common to all $g \in D \cap C_1^+(S)$.

Hence, by (3.5),

(3.6)
$$\sup_{x\in S} |a_n(t, x)| \leq K'' \cdot t^{\alpha}, \quad n=1, 2, \cdots.$$

Now, if $t \leq t_0$,

$$E_{\nu}\left\{e^{-\lambda(\mu_{t},\boldsymbol{s})}\right\} = \exp\left(-\int \psi_{t}(\boldsymbol{x};\,\lambda)\nu(d\boldsymbol{x})\right)$$

and this is analytic in $|\lambda| \le 1 + \epsilon$. Hence all moments of (μ_i, g) exist. In particular, this implies that,

(3.7)
$$\sup_{0 \le t \le t_0} E_{\nu} \{ \mu_t(S)^m \} < \infty, \qquad m = 1, 2, \cdots.$$

We have, finally,

$$E_{\nu}(\exp\left[-\lambda\left\{(\mu_{t+s}, g\right) - (\mu_{s}, g)\right\}\right])$$

$$= E_{\nu}(\exp\left\{-\int_{s}\mu_{s}(dx)\left[\psi_{t}(x; \lambda) - \lambda g\right]\right\})$$

$$= \sum_{n=0}^{\infty} E_{n}\left[\frac{(-1)^{n}}{n!}\left\{\int_{s}(\psi_{t}(x; \lambda) - \lambda g)\mu_{s}(dx)\right\}^{n}\right]$$

$$= \sum_{n=0}^{\infty} E_{n}\left[\frac{(-1)^{n}}{n!}\left\{\int_{s}\left\{t\left[\lambda A g(x) - \lambda^{2} \cdot \sigma g^{2}(x)\right] + \sum_{k=1}^{\infty}\lambda^{k}ta_{k}(t, x)\right\}\mu_{s}(dx)\right\}^{n}\right]$$

$$= \sum_{n=0}^{\infty} b_{n}\lambda^{n},$$

then, as is easily seen by (3.6) and (3.7), we have

$$b_{4} = -t \cdot E_{\nu} \left[\int a_{4}(t, x) \mu_{s}(dx) \right] + O(t^{2}) = O(t^{1+\alpha}).$$

Thus,

$$E_{\nu}\{[(\mu_{t+s}, g) - (\mu_{s}, g)]^4\} = 4! b_4 = O(t^{1+\alpha})$$

if $0 \le t + s \le t_0$, where $O(t^{1+\alpha})$ is independent of s. By Kolmogorov's theorem (cf. Neveu [15]), this implies that

 $P_{\nu}\{(\mu_t, g) \text{ is continuous in } t \in [0, t_0]\} = 1.$

Since $C_1^+(S) \cap D$ is dense in $C_1^+(S)$, this implies that

$$P_{\nu}{\mu_t \text{ is continuous in } t \in [0, t_0]} = 1$$

and hence, by the Markov property,

 $P_{\nu}\{\mu_t \text{ is continuous in } t \in [0, \infty)\} = 1,$

i.e., μ_t is a diffusion process.

Example. Let $S = \widehat{R}^n$, one point compactification of R^n and T_t be the strongly continuous semi-group on $C(\widehat{R}^n)$ defined by

(3.8)
$$T_{t}f(x) = \frac{1}{(2\pi t)^{n}} \int_{\mathbb{R}^{n}} \exp\left(-\frac{|x-y|^{2}}{2t}\right) f(y) dy.$$

Let σ be a positive constant, then the condition of Theorem 3.1 is satisfied: if we take $D = C^{\infty}(\widehat{R}^n) = \{f \in C(\widehat{R}^n); \text{ all of its derivatives} \in C(\widehat{R}^n)\}$, (3.2) is clearly satisfied. Note also that A is the smallest closed extension of $\frac{1}{2}\Delta$ on $C^{\infty}(\widehat{R}^n)$. Hence, there is a unique diffusion C. B-process $X = (\mu_r, P_{\mu})$ on $\overline{\mathfrak{S}}$ such that

$$E_{\mu}(\exp[-(\mu_i,f)]) = \exp(-\int \psi_i(x;f)\mu(dx))$$

where $\psi_i(x; f)$ is the solution of

(3.9)
$$\frac{\partial \psi_i}{\partial t} = A \psi_i - \sigma \cdot \psi_i^2,$$
$$\psi_0 = f.$$

One interesting property of these diffusion processes is the following: We have shown, in the proof of Theorem 3.1, that, for every $f \in C(S)$, the solution of (3.9) exists uniquely for sufficiently small time-interval $[0, t_0]$. If $f = \lambda g$, the solution $\psi(t; \lambda) = \psi(t; \lambda g)$ is analytic in $|\lambda| \le 1 + \epsilon$ for sufficiently small $[0, t_0]$. It is easy to see that

$$E_{\mu}(\exp[(\mu_{t}, g)]) = \exp(\int_{R^{n}} \varphi_{t}(x; g) \mu(dx)), \quad t \in [0, t_{0}],$$

where

$$\varphi_i(x; g) = -\psi_i(x; -g).$$

 φ_t is the solution of

(3.10)
$$\frac{\partial \varphi_t}{\partial t} = A \varphi_t + \sigma \cdot \varphi_t^{\dagger}$$
$$\varphi_0 = g.$$

Hence, by Fujita's result [4] (cf. also Nagasawa-Sirao [14]), (i) if n=1, for every non-negative $g \in C(\mathbb{R}^n)$ such that $\{g>0\}$ has an interior point,

$$(3.11) E_{\delta_t} \{ \exp(\mu_t, g) \}$$

blows up in a finite time, i.e., (3.11) cannot be finite for all $t \in [0, \infty)$,

(ii) if $n \ge 3$, for every $\gamma > 0$ there exists $\delta > 0$ such that, for all $g \in C(\mathbb{R}^n)$ satisfying $0 \le g(x) \le \delta \cdot (2\pi\gamma)^{-N/2} \exp(-|\mathbf{x}|^2/2\gamma)$, (3.11) is finite for all $t \in [0, \infty)$. Furthermore,

$$\log[E_{\delta_{\star}}\{\exp[(\mu_{t},g)]\}] \leq M[2\pi(\gamma+t)]^{-N/2}\exp\left[-\frac{|x|^{2}}{2(t+\gamma)}\right], \forall t \in [0,\infty)$$

for some positive constant M.

The behavior of (3.11) for the critical case n=2 is not known.

§4. A limit theorem

Consider the following branching process (cf. Harris [5], Chap. III, §1.6): an object at $x \in \mathbb{R}^n$ has the probability p_k of having k children $(k=0, 1, 2, \cdots)$; assume that each child, independently of others, has a probability distribution $\sigma(dy)$ for being in x+dy. Let $Z_n(dx)$ be the number of objects in dx in the *n*-th generation. $Z_n(dx)$ defines a discrete-time Markov process whose state space is the set of all non-negative, integer-valued measures. We shall call this process the (F, σ) -process, where $F(s) = \sum_{k=0}^{\infty} p_k s^k$, since it is uniquely determined by F and σ .

Now, consider a sequence of (F, σ) -processes; $\{Z_n^{(m)}(dx), \widetilde{P}_{\mu}^{(m)}, \mu \in \mathcal{N}\}$: (F_m, σ_m) -process, $m = 1, 2, \cdots$, where \mathcal{N} is the set of all non-negative, integer-valued measures:

Continuons state branching processes

(4.1)
$$\mathcal{N} = \{ \mu = \sum_{i=1}^{l} \delta_{x_i}; x_i \in \mathbb{R}^n \}.$$

For each $m=1, 2, \cdots$, let $\mathfrak{S}^{(m)}$ be

(4.2)
$$\mathfrak{S}^{(m)} = \frac{1}{m} \mathfrak{N} = \left\{ \mu = \frac{1}{m} \sum_{i=1}^{l} \delta_{x_i}; \ x_i \in \mathbb{R}^n \right\}$$

and define a continuous-time stochastic process $\{\mu_{l}^{(m)}(dx), P_{\mu}^{(m)}\}$ on $\mathfrak{S}^{(m)}$ by

(4.3)
$$\mu_{i}^{(m)}(dx) = \frac{1}{m} Z_{[mi]}^{(m)}(dx),$$
$$P_{\mu}^{(m)} = \widetilde{P}_{m\mu}^{(m)}, \quad \mu \in \mathfrak{S}^{(m)}.$$

Now, let $\{\mu_t, P_\mu\}$ be the diffusion C. B-process discussed in Example of §3, i.e., $S = \hat{R^n}$ and μ_t is a C. B-process defined by

$$E_{\mu}(\exp[-(\mu_{t},f)])=\exp(-\int\psi_{t}(x;f)\mu(dx)),$$

where $\psi_i(x; f)$ is the solution of

(4.4)
$$\frac{\partial \psi_t}{\partial t} = A \psi_t - \rho \cdot \psi_t^{2} \psi_$$

We shall assume that F_m and σ_m satisfy the following conditions:

(4.5)
$$m \cdot \int_{\mathbb{R}^n} [f(x+y) - f(x)] \sigma_m(dy) \rightarrow \frac{1}{2} \Delta f(x)$$

uniformly when $m \rightarrow \infty$, for every $f \in C^{\infty}(\widehat{R}^n)$,

(4.6)
$$-\log(F_m(e^{-u/m})) = \frac{u}{m} - \rho \cdot \frac{u^2}{m^2} + o\left(\frac{1}{m^2}\right),$$

where $\rho > 0$ is a constant and $o(1/m^2)$ is uniform in $u \in [u_1, u_2]$ for

²⁷⁾ A is the smallest closed extension of $\frac{1}{2}d$ on $C^{\infty}(\widehat{R^n})$. ρ is a positive constant.

every $0 < u_1 < u_2$.²⁸⁾

Theorem 4.1. Under the assumptions (4.5) and (4.6), finite dimensional distributions of $\{\mu_{i}^{(m)}, P_{\delta_{x}}^{(m)}\}$ converge to those of $\{\mu_{i}, P_{\delta_{x}}\}$ for every $x \in \mathbb{R}^{n}$ when $m \to \infty$.

Proof. Let $\overline{\mathfrak{S}}^{(m)} = \mathfrak{S}^{(m)} \cup \{\Delta\} \subset \overline{\mathfrak{S}}$ and $C^m \equiv C_0(\mathfrak{S}^{(m)}) = \{F(\mu); \text{ continuous on } \overline{\mathfrak{S}}^{(m)} \text{ and } F(\Delta) = 0\}$. Let $P_m: C \equiv C_0(\mathfrak{S}) \to C^m$, be the restriction operator;

$$(P_{m}F)(\mu) = F|_{\overline{\mathfrak{S}}^{(m)}}(\mu).$$

Let $T^{(m)}(\mu, d\lambda)$ be the probability kernel on $\overline{\mathfrak{S}}^{(m)} \times \overline{\mathfrak{S}}^{(m)}$ defined by

(4.7)
$$\int_{\mathfrak{S}^{(m)}} T^{(m)}(\mu, d\lambda) (P_m \varphi_f)(\lambda) = \exp(-m \int_{\mathbb{R}^n} \psi^{(m)}(x; f) \mu(dx)), \ \mu \neq \Delta$$
$$T^{(m)}(\Delta, d\lambda) = \delta_{\{\Delta\}}(d\lambda),$$

where

(4.8)
$$\psi^{(m)}(x;f) = -\log F_m\left(\int_{\mathbb{R}^n} \exp\left[-\frac{1}{m}f(x+y)\right]\sigma_m(dy)\right).$$

It is easy to verify that, for $k=1, 2, \cdots$,

$$P_{\mu}^{(m)} \left[\mu_{(k+1)/m}^{(m)} \in d\lambda \,|\, \mu_{i}; \, t \leq \frac{k}{m} \right] = T^{(m)}(\mu_{k/m}^{(m)}, \, d\lambda), \quad \text{a.s.}.$$

Now, we shall apply Trotter's result (cf. Kato [9], IX, §3, Kurtz [10]); if there exists a core **D** of A^{29} such that

(4.9)
$$||A^{(m)}P_mF - P_mAF||_{C^m} \rightarrow 0 \quad (m \rightarrow \infty)$$
, for all $F \in D$,

where

^{28) (4.5)} and (4.6) are satisfied, e.g., if $\sigma_m(dy) = \sigma(\sqrt{m} \cdot dy)$, $m=1, 2, \cdots$, where $\sigma(dy)$ is a probability measure on \mathbb{R}^n such that $\int_{\mathbb{R}^n} x^i x^j \sigma(dx) = \delta_{ij}$ and $\int_{\mathbb{R}^n} x^i \sigma(dx) = 0$, and $F_m(s) \equiv F(s)$, $m=1, 2, \cdots$, where F'(1) = 1 and $0 < F''(1)/2 = \rho < \infty$.

²⁹⁾ A is the infinitesimal generator of the semi-group of (μ_t, P_μ) acting on $C \equiv C_0(\mathfrak{S})$.

Continuous state branching processes

(4.10)
$$A^{(m)} = m(T^{(m)} - I)^{30}$$

then,

(4.11)
$$\lim_{m\to\infty} \sup_{0\leq s\leq t} |\boldsymbol{T}_s^{(m)}\boldsymbol{P}_m\boldsymbol{F}-\boldsymbol{P}_m\boldsymbol{T}_s\boldsymbol{F}|_{\boldsymbol{C}^m}=0$$

for every $F \in C$, where

(4.12)
$$T_{s}^{(m)} = (T^{(m)})^{[sm]}$$

and T_s is the semi-group of (μ_t, P_μ) acting on $C_0(\mathfrak{S})$. We shall verify (4.9). Let D be the linear hull of $\{\varphi_f(\mu); f \in C^+(\widehat{R}^n) \cap C^{\infty}(\widehat{R}^n)\}$, then, by Theorem 2.4 and Remark, D is a core of A. Also,

$$\boldsymbol{A}\varphi_{f}(\boldsymbol{\mu}) = e^{-(f,\boldsymbol{\mu})} \int_{\widehat{\boldsymbol{x}}^{\star}} \left[\left[\rho \cdot f^{2}(\boldsymbol{x}) - \frac{1}{2} \Delta f(\boldsymbol{x}) \right] \boldsymbol{\mu}(d\boldsymbol{x}) \right]$$

Let $\mu = \frac{1}{m} \sum_{i=1}^{l} \delta_{x_i} \in \mathfrak{S}^{(m)}$, then if $f \in C^+(\widehat{R}^n) \cap C^{\infty}(\widehat{R}^n)$,

$$A^{(m)}P_{m}\varphi_{f}(\mu) = m\left\{\exp(-\sum_{i=1}^{l}\psi^{(m)}(x_{i};f)) - \exp\left(-\frac{1}{m}\sum_{i=1}^{l}f(x_{i})\right)\right\},\$$

where

$$\psi^{(m)}(x; f) = -\log F_m\left(\int_{R^*} \exp\left[-\frac{1}{m}f(x+y)\right]\sigma_m(dy)\right).$$

By (4.5) and (4.6),

$$\int_{\mathbb{R}^{*}} \exp\left[-\frac{1}{m}f(x+y)\right]\sigma_{m}(dy)$$

= $1 - \frac{1}{m}f(x) - \frac{1}{2m^{2}}\Delta f(x) + \frac{1}{2m^{2}}f^{2}(x) + o\left(\frac{1}{m^{2}}\right)$

and hence

$$\psi^{(m)}(x; f) = \frac{1}{m} f(x) + \frac{1}{m^2} \left[\frac{1}{2} \Delta f(x) - \rho \cdot f^2(x) \right] + o\left(\frac{1}{m^2}\right),$$

where $o(1/m^2)$ is uniform in $x \in \widehat{R^{(r)}}$. Therefore,

$$|A^{(m)}P_{m}\varphi_{f}(\mu)-A\varphi_{f}(\mu)|=$$

30) $T^{(m)}$ is the operator given by the kernel $T^{(m)}(\mu, d\lambda)$.

$$= \left| \exp\left(-\frac{1}{m} \sum_{i=1}^{l} f(\boldsymbol{x}_{i})\right) \left[m \left\{ \exp\left(-\sum_{i=1}^{l} \left[\frac{1}{m^{2}} \left[\frac{1}{2} \Delta f(\boldsymbol{x}_{i}) - \rho \cdot f^{2}(\boldsymbol{x}_{i})\right] \right] + o\left(\frac{1}{m^{2}}\right) \right] \right) - 1 \right\} + \sum_{i=1}^{l} \frac{1}{m} \left[\frac{1}{2} \Delta f(\boldsymbol{x}_{i}) - \rho \cdot f^{2}(\boldsymbol{x}_{i})\right] \right]$$
$$\leq K \cdot e^{-(l/m)\epsilon} \left(o(1) \frac{l}{m} + \frac{1}{m} \left(\frac{l}{m}\right)^{2} e^{(l/m^{2}) \cdot \epsilon} \right),$$

where K and c are positive constants and $\epsilon = \inf_{x \in \mathbb{R}^n} f(x) > 0$. Hence, $\sup_{l} |A^m P_m \varphi_{f}(\mu) - A \varphi_{f}(\mu)| \to 0$ when $m \to \infty$, proving (4.9). Now the convergence of finite-dimensional distributions follows from (4.11) by a standard argument. q. e. d.

By changing the conditions on F_m and σ_m , various different limit theorems may be obtained.

References

- [1] Bourbaki, N.; Topologie générale, Chaptre 9, Hermann, 1958.
- [2] Dynkin, F. B.; Markov processes, Springer, 1965.
- [3] Feller, W.; Diffusion processes in genetics, 2nd Berkeley Symp. (1951), 227-246.
- [4] Fujita, H.; On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. Jour. Fac. Sci. Univ. Tokyo, Vol. XIII (1966), 109-124.
- [5] Harris, T. E.; The theory of branching processes, Springer, 1963.
- [6] Ikeda, N., M. Nagasawa and S. Watanabe; Branching Markov processes (to appear).
- [7] Jiřina, M.; Stochastic branching processes with continous state space. Czech. Jour. Math. Vol. 8 (1958), 292-313.
- [8] Jiřina, M; Branching processes with measure-valued states, 3rd Prague Conference, (1964), 333-357.
- [9] Kato, T.; Perturbation theory for linear operators, Springer, 1966.
- [10] Kurtz, T. G.; Convergence of operator semigroups with applications to Markov processes, Doctorial Thesis at Stanford University, (1967).
- [11] Lamperti, J.; Continuous state branching processes, Bull. Amer. Math. Soc., vol. 73 (3) (1967), 382-386.
- [12] Lamperti; J.; The limit of a sequence of branching processes, Z. Wahrsch. vol. 7(1967), 271-288.
- [13] Motoo, M.; Branching processes with continuous mass, informal seminar report privately circulated (1967).
- [14] Nagasawa, M. and T. Sirao; Probabilistic treatment of blowing up of solutions for a non-linear equation (to appear).
- [15] Neveu, J.; Base mathématiques du calcul des probabilités. Masson et Cie, 1964.
- [16] Silverstein, M. L.; A new approach to local times (to appear in Journ. of

Math. and Mech.).

[17] Watanabe, S.; On two dimensional Markov processes with branching property (to appear in Trans. Amer. Math. Soc.)

KYOTO UNIVERSITY AND STANFORD UNIVERSITY

NOTE: Just after I finished my present manuscript, I received from Dr. M. L. Silverstein of Princeton University a preprint of his new paper "Continuous state branching semigroups", where a nice existence theorem for C. B-processes was obtained.

*.