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§ O. Introduction

In  1951, Feller [ 3 ]  showed that a  class o f  one-dimensional
.cliffusion processes on [0, 00) can be obtained as a lim it o f Galton-

Watson branching processes if one changes the scale o f  time and
mass ( = size) in  an appropriate w a y . Lam perti [12] determined
-the class o f Markov processes on [0, 00) which can be obtained as
a limit of Galton-Watson branching processes. A main objective of
the present paper is to consider a  similar problem in more com-
plicated situations. We shall show in § 4  below an example of
branching processes with particles moving in an n-dimensional space
R" which converge, when we change the scale o f  time and mass in
an appropriate way, to a continuous random motion of mass distribu-
tions on R". To formulate such a  limit process, we shall develop
•the theory of continuous state branching processes (C. B -processes)
in earlier sections.

The concept of C. B -processes was introduced by Jiiina [7] and
they were studied i n  some special cases, b y  Lamperti [11] ,

Silverstein [1 6 ] and Watanabe [17] . T h e  general theory was
developed by J iiin a  [8 ] and M otoo  [1 3 ] . In particular, Motoo

*  Research supported in part under contract N0014-67-A-0112-0115 at Stanford
University, Stanford, California.
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determined the infinitely divisible laws on the space of measures on
a com pact space an d  g av e  som e interesting exam ples o f C . B
-processes. In §1 and §2, we shall obtain and extend Motoo's results
concerning the formulation and existence of C. B-processes. The
method we adopt here is a  natural extension of that used in  [17]

T h e  theory of infinitesimal generators is added for the purpose of
applying it to the limit theorem of § 4 .  The theory is quite parallel
to  that g iven  in  Ikeda-Nagasawa-Watanabe [6] in  th e  case  o f or-
dinary branching processes. In  §3 , w e shall consider the case
when C. B-processes are diffusion processes. In §4, a  typical limit
theorem will be given.

§ 1 .  Infinitely divisible distribution on the space
o f  measures

Let S be a compact metrizable space, be th e  se t o f all non-
negative Radon measures' )  on  S  and eo b e  the subset of formed
of all probability Radon measures on S .  Let {J } ,  where tf
is  an extra-point and let [0, 00] x is  a compact metrizable

space by the product topology. 2 ) D efin e  a  mapping p ; : i = AO
— *A= p(2, 20 ) -g  by

f •
09 (Z  20 ) =  I

,

if ,i<00 ,

if 00

and  define th e  topology of a s  th e  strongest o f  a l l  topologies

rendering p  continuous. i s  a com pact metrizable space? )  L e t

C"- ( S )  be the set of a ll strictly positive continuous functions on S.')
It is easy to see that, for each f  ( S ) ,  the function v í (A) defined
by

1) i.e., bounded Borel measures.
2) The topology o f So is that o f w eak  convergence: S o is  compact metrizable

by this topology.
3) Cf. Bourbaki [1] Chap. 9, p. 44.
4) This notation, which is slightly different from th e  usual one, is more con-

venient in future discussions.
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(1. 2)
e - ( A ,f) ,

ÇOI(A ) = 0  ,

where

(A, f  ) = s f  (x ) 2(dx )

is  a continuous function on

Let 931=0  () be the set of all substochastic Radon measures' )

on Clearly 9)1( )  can be regarded as the set of all probability
Radon measures on by the relation

P ({ 4}  ) =1—  P(), P 9 ) 1 ( ) .

Define the Laplace transform o f P E a T t () by

(1.3)g O f  P (dÀ )=L e - ( A.PP(d2).

Hence the Laplace transform L ( f )  is  a function defined on C+(S)
and i t  is  c le a r  th a t ,  i f  f „-->f  point w ise  ( f „,  f E C +( S ) ) ,  then

L p(f .) - - J•p ( f ) ."

Proposition 1 .1 .  L e t  P,E 9:11(), i=1 , 2, and L p1(f )=L p2(f )
fo r  all f E C + ( S ) .  Then, P1=P2.

This proposition follows at once from the following

Lemma 1. 1. The linear hull o f  {ço.,(À ); f E C +(S )}  i s  dense
i n  Co ( ) w here  Co ( ) =- { F(12); continuous on such that
F (4 )=0 ) .

P ro o f . The linear hull is algebra under multiplication and it
separates the point of Hence the assertion follows from the
Stone-Weierstrass theorem.

Now the infinitely divisible measures are defined in the usual
way:

5) i.e., non-negative Radon measures with total mass
6) Clearly Lp( f  ) can be extended as  a  function o n  B ' (S ) (th e  set of all

strictly positive bounded Borel measurable functions) and has the same continuity
property.
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Definition 1. 1. P  9:11 is called infinitely divisible if for every
natural number m , there exists P,,E9,71 such that

(1. 4)L p ( f ) —  [ L F . ( f ) ]

Our next task  is  to  p rove M o to o 's  result which characterizes
completely infinitely divisible m easures. For each n=1, 2 , • • • ,  take
finite number of non-empty Borel subsets of S, { .1 }, i = 1, 2 ,  - « ,  y ,

such that
(  i )  I f " ) n K (

. ; ") = 0 ,  if i * j ,
(ii) UIC" ) =S ,

,-1
(iii) diameter (K " ) ) < 1 / n  fo r  a l l  i ==1, 2 ,  •  y„.
Since S  i s  a compact m etric space, we can always define such
{K ")}  . Choose X7 E K 7, then clearly U {x 7 } 1 is  dense in S .  Define
a mapping 72„; by

(1. 5) = C ;A ';') .

Following properties of 72„ are clear:

(1.6)v . ( 2 + ) =  v . ( 2 )  +  v. (,12),

(1 . 7 ) 77„(A)--)-A weakly when f l — co,

(1 . 8 ) v,, [ ,(A )]  — 72.( 2 ).

Let B + ( S )  b e  the set o f a ll s tr ic tly  positive bounded Borel
measurable functions. Th e dual operator o f  72„ i s  a  mapping

:  B ( S ) — B ( S )  define by

(1.9) f  ( x ) f (x7) I  (x) .8)

Clearly we have

(1 . 10) (72U  )  ( 7 i n A )  f (77,A) ( i : f ) ,
where

2( f ) = s f  (X )2 (dx ).

7) S. is the unit measure a t  xES .
8) /A-(x) is the indicator function o f K cS .
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Define a  function E ; f )  defined on "4 x C+ (S) by

1±110  < -2 < 00r (1— e " ) )
(1.11) EC/1.; f)—

'X
À o ( f ) , 7z=o

where -2- = (2, 2,) [0 , 0 0 ] X c. "70 and 4 (  f ) = (x) Ao (dx). It is
e a sy  to  se e  th a t , fo r each fixed f e C + (S ) ,  there ex ist constants
O<C,<C, such that

(1.12)C i < e ( t ;  f ) <C 2 for all

a n d  (;i-;  f )  is continuous in  A E e .

Theorem 1. 2.9 ) ( M .  M otoo [13] ). P E9,ii is infinitely divisible
if  and  only if

(1.13) —log L . , , ( f ) = -i  ( 1 ; f ) n ( d ï)

by some bounded non-negative measure n (d 2 )  on

P ro o f .  Let P  be infinitely divisible and define, fo r each n=1,
2 ,  •  ,  P ) =72„0P." )  F o r  each m =1 , 2, • • • , there exists PmE an such
that

L p ( f ) = [ L ( f ) ] '•

Set P ) =72„0P  then,

(1.14) f )— s e k)( f)P(cl2)

=L p(72:(f ))  = [1,„,62:(f  ))1 ' = f

P(" )  an d  P ;' )  c an  b e  id en tif ied  w ith  substochastic measures on
v " ( ) --- ----R",7 where R.4. is  the positive part of p„-dimensional Euclidean

9) C f., also Jiiina [8].
10) i.e., P ( '1 ) (B )=P(7C, 1 ( B ) )  fo r  every BEAi(6 ).
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space ./?'".") (1. 14) im plies that P ( ") , considered a s  a  measure on
Rv:, is infinitely divisible. Hence by the classical result,

) = e x p ( j i (i; f )n ( ") (c 6 )) )

where n ( d i )  is  a  non-negative bounded measure concentrated on
[0, 00] x 7),(2.0. F o r e ach  f E C + ( S ) ,  L ( f ) - + L ( f )  an d  by
(1.12) it is easy to see that sup n( ^) (- ) < 0 0 .  Then, clearly,

L ( f )  — e x p ( j e ( i ;  f )n (d , i ) ) ,

where n(d,T) is  a  weak limiting point of n( ") (di).
—

Conversely, given a  bounded non-negative measure n(cr,() on
we shall show that

exp( — f )n (d i ) )

is  the Laplace transform o f  a n  infinitely divisible measure P a T t.
For th is, it is su ffic ien t to  show th a t th e  above function is the
Laplace transform o f  some P E  9N, since then, 1 , ( f )= [1 , , , . ( f ) ] ' ,

-where P„, E  an corresponds to  n,„(c/2 ) —  1   n (d A ). A g a in , b y  the

well-known result for finite dimensional case,

e x p  ( j e ( i ;  72,1' ( f ) )n (c L i ) )

= exp( — ( ; f )n (c 1 ) ) 1 2 )

—exp(— f ) e ) ( d I ) )[0, . ]  X  nn(So)

= e-(A.f)P„(dA),
n n ( e )

where P„(d,l) is  a  substochastic measure concentrated on 72„( ). P „

considered a s  a  probability measure on has a weak limiting point

11) i.e ., {(xi, • • • , x ) ; x >0 , i  =1 ,  2, • • •,

12) 71,7,7. = n n A .0 ) for -A= (A., A.0).
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P  and then, it is clear that

e x p ( j e ( i ;  f)n(d,T))=1„im e x p ( l e ( -2- ; 7 2 :( f ) )n (c / -2- ) )

= c ( A. '") P(c/2),

which completes the proof.

Definition 1. 2.

(1. 15) ( f ) f ) n ( d 2 ) ;  n ( d -,i), non-negative bounded

measure on

Thus the above theorem states that P E T Z  is in fin itely divisible if
—log L (  f )  E .  B y  (1 .1 2 ), it  is  e a s y  to  s e e  th a t  w e  have the
following

Proposition 1. 3. I f  *„Ew, n=1, 2, • •- , a n d  * „ ( f ) - -, * ( f )
fo r  every fE D  where D  is a non-empty open subset" )  o f  C+(S),
then there exists a unique extension of *  such that *Ew.

Definition 1. 3. A  function *=-- - * (x ;  f )  defined on SxC+(S)
is called a  W-function if

( i ) for fixed x E S , i t  i s  an element o f  ,
( i i )  for fixed fEC+(S), it  is  an element of C ( S ) .

The set of all 1P-functions is denoted by 7 .  Given two !F-functions
11, 1 and 1 / P 2 , the composition V P 3 = 4 P 1 (1 / P 2 )  is defined by

(1.16) * 3 ( x ;  f ) = * i ( x ;  * 2 ( • ;  f ) ) .

Lemma 1. 2. I f  qpi lv, i=1, 2, then *1 (Vr2) E r .

P ro o f. For any ,u and lip E r, Ss*(x; f),u(dx) E T . Therefore
given Ili-, i=1 , 2 , and ,u, there exists a unique P E f f t  such that

e x p ( - - , * 1 ( x ;  f )/..1(dx))= s e p(da).

1 3 )  W ith  respect to  the uniform topology.
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Define, for each X  S , (dA) E 937.( )  by

(clA) =P ,  (dp).13 2 (dR),

L e - ( 4 - P.,(clA )=exp(—  4r2  (X  ; f),u (d x ))P (d i1 )
5

=exp [ — *1(x; *2(• ; . f ) ) ] ,

which proves 1/.., ON) E F.

Definition 1. 4. A  one-parameter family { 4-rt }  t E [ 0, )  o f T-func-

tions is called a !t'-semi-group if

(1. 17) kki+ =lk t( Ik ) ,

kk0(• =f .

§ 2 .  Continuous state branching processes

Definition 2.1. L e t  X = (mt (dx, co), 2 , g„ Pm ) " )  b e  a  Markov

process on { 4 }  with J a s  a  t r a p . X  is called a  continuous
state branching process (C. B-process) i f  it satisfies, fo r every

t > 0 , f E C + ( S )  and P i ,  1.12 E c  ,

(2. 1) E,,,-Fg2(e-(" E„,(e-(" m)E,„(e - ( "..")." )

The property (2.1) is called the branching property.

Definition 2 .  2 .  A  C. B-process is called regular if  E g (e m )

is continuous in for each t> 0  and f E C +( S ) .

Theorem 2. 1. (J iiina) T here is a  one-to-one correspondence
between a  re g u lar C. B-process X= {2„ .13 „}  and ?P'-semi-group
{kkil

 
the correspondence is given by

(2. 2) =exp (— S 4r,(x ; f  ),u(dx )).

14) D is an abstract space, g c  is an  increasing family o f  Borel fields on 12,

g t(d x , co ) is  a  mapping [0, 00) x ,f23(t, co) — pc(dx , u ) B a d a p te d  to  Et a n d  (P,,
ih E a }  is a  family o f probability measures on {D ,V gt} such that P,{ co: go(dx , (0)=

t?_o
p(dx )}  =1.

15) E , ( - ) = S-13 „(c1(0). W e set always e - (° , n  = 0 for every f  EC + (S  ) .

then
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P ro o f . Let X = 02„ PO  be a  regular C. B-process and set

E ( e - ( go . ) ) =exp( —  ik ,(x ; f )).

Then, for each x E S  and t>0, qp, (x; f )  E T  since

e x p (  Vp,(x ; f ) ) = E s , ( e - ( gi'f)) = [ E X e - cg-f ) )]"`.

By the regularity of X , it  is  e a sy  to  se e  th a t , fo r each t > 0
and f EC + ( S ) Jr (  • ; f ) E C + ( .3 ) .  Now we claim that

(2. 3) f )P(d x ))•

When ,u is  of the form it= ± 8„, (m „ n, natural numbers, x, E S)n,
th is fo llow s from  th e  branching property. T hen , by regularity,
(2. 3) holds for every ,t/E .  Now,

Es . (e—( ", - - 1 ) ) = E8, (E,, i (e—( ", m ))

ljp,(x; f ) p i (dx ))1

=expl, — *,(x ; lk s(' ; .f ))].

Hence, -4,, ,,, = * , ( * , ) .  Thus, =  ( X  ;  f )  is  a ?P'-semi-group.
Conversely, suppose we a re  given a  3P-semi-group {4p,}. Then,

just as in  the proof o f  Lemma 1. 2, there ex ists a unique PETZ
such that

(2.4)e x p (  — ,(x ; f ) ,e2 (dx ))= s e P (d ,1 ) ,

for each t > 0  and p E e , . Now

5s e '') 1/3 „̀(d,i)P;:(dv )1

--- a /="u (dA) s e- ('-') P (d v )

--- 13 (dA )Lexp( j ( x ;  f ) 2 ( d x ) ) 1

= exr[ ± ( x ;  * . ( •  ;  f ))/1(dx)1
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- exp( — .k1r,s (x ; f ) ,u (d x ))

- ( "  f  )13  tu+s (dv),

and hence

./);, (d2)P1(dp) =P"(dp),

i.e ., {P i,(c/2)} is a transition function on Thus {P (c/A)} defines

a unique Markov process on U { A } w ith  A  as a trap, (cf.
Dynkin [2] ). The branching property is clear from (2. 4). q.e.d.

When S  is  a single point or finite number of points, can be
identified as the positive part of the finite dimensional Euclidean
sp ace  a n d  in  th e s e  cases the structure of C. B-processes are
completely determined under a  slight regularity condition in time
t ,  cf. Lamperti [11] , Silverstein [16] and Watanabe [17 ]. Following
the method of [17] , we shall now describe a large class of C. B-
processes. Some examples were obtained already by Motoo [13].

L e t  Ti b e  a  non-negative strongly continuous semi-group of
bounded operators on C ( S )  and let A  be the infinitesimal generator
in Hille-Yosida sense of T .  Let D (A )  b e  the domain o f A .  Let
g 9 (x ;  f )  b e  a r-function and c(x) be a  non-negative function in
C ( S ) .  Now, consider the following non-linear evolution equation for

lirt(x)EC(S):

aqPi —  A ,+ a [ ( ; ; l i r t )  * t ]at
iko=f.

In practice, we consider the equivalent integral equation:

(2. 5)' qp,(x) T7f ( x ) +  d.s s  Tf(x, dy)a(y)Ç9(y;

where T  is  the semi-group with infinitesimal generator A—c."

1 6 )  It is well known that there exists a unique semi-group T ° with infinitesimal
generator A ' =A —a- w ith  D ( A ) =D ( A ) .  T °  is non-negative and strongly continuous.
T °,(x , dy ) is the kernel of T .

(2. 5)
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Proposition 2. 2. Fo r f  EC+ ( S ) ,  the solution f )
o f  (2. 5)' exists and unique. Further J r t defines a  1P-semi-group.

For the proof we need the following

Lemma 2. 1. Let C r (S )  = { f C  ( S ) ;  min f  (x )> E }  .") For
every E >0 , there exists K =K (E )>0  such that

IV • ; f )--0 (• ; g )II< K 1 1 f-g 1 1

f o r every f ,  g E C t( S ) .

P ro o f. By the mean value theorem,

; f )  — E ( ; g )  <I e--A--Ao(g) 

<1 1 4 ( f )  —À0 ( g )  e •  1 ± 2  • 18)

Hence, by taking K (E) =  sup (1 + )e - ' ,  the lemma is proved.

Proof of  the proposition. Let f  EC+ ( S )  then for some e> 0,
f E  ( S ) .  Then, there exists to > 0  such that T °  f  C t  ( S )  for all
t E  [0 , to ]. Define %/4") (x ) ,  t E  [0 , t 0], x  E S , successively by

kfr,P) (x )  = T  (x )
(2.6)

•4/4")(x) = 7 f (x ) (x,dy)d(y)ço(y ;x1,41; 1 ) ).0 s

Then 11/4") E C t  ( S )  fo r  a l l  t E  [0 , to] and n =1 , 2, • •• , and  also, by
Lemma 1. 2, 44" )  E F .  Using Lemma 2. 1, w e  c a n  show b y  the
standard argument that

sup jkki") —Vp,IHO

for some qr, ( S ) .  Then 4,,E ir b y  Proposition 1. 3. Also, by
Lemma 2. 1, we can show that is  the unique solution in C+(S)

17) Thus C (S )=  U
(>0

18) x= (N, xo)e [0, c>0] x So .
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of (2 .5 )  in  [0, to]. We denote this solution as Ifrt —11ri(x; f )  then,
by the uniqueness of the solution, =Iki(lirs) for t+ s <  to .  I f  we
define Ik t=qp,(x ; f) in the interval [t0 , 2t0 ] b y

, I ft (x ; f )  — 4 P i— ,o (x ; * , ,( •  ;  f ) ) ,

then, 4r, ET by Lemma 1.2  and {lki} , t E [0, 2t 0] defines a solution
o f  (2 . 5) in  the interval [0, 2t0 ] . This i s  the unique solution in
C + (S ) by virtue of Lemma 2. 1. Continuing this process, we get
the unique solution t E 10, 09) o f (2 . 5 )' in  C + (S ) and clearly

kirt is  a ' -semi-group. q .  e .  d.

More interesting class of W-semi-groups can be obtained by the
following limiting procedure. Let h (x ;  f )  be a function defined on
S x C + (S ) such that h ( . ;  f )E C (S )  for each fixed fE C + (S ) .  We
assume that h (x ;  f )  is  lo ca lly  Lipschitz continuous in  f ,  i.e., for
every fE C + (S ) ,  th ere  ex is t a  neighborhood" )  D = D ( f )  and a
constant K >  0 such that

(2.7) f )  —  h ( •  ;  g ) I j S K I I  f —  g

for every f ,  g E D .  We assume further that there exist a non-empty
open set D o c C + (S ),  a  sequence {ça„ ( x ;  f ) }  o f  T .functions, and a
sequence {d„(x)} of non-negative functions in C (S )  such that

(2.8) s u p  {  4 9 , ( ;  f ) — f}  — 11(•; 0

when n--.00. Let T t b e , as before, a nen-negative strcngly continuous
semi-group on C (S )  and A  be the infinitesimal generator with tl- e

domain D (A ).  N ow , consider the following evolution equation for

k lr,(x )E C (S ):

(2. 9)
64rf  — Akkt+h(•; kki),at

4Po=f.

In practice, we consider the equivalent integral equation:

1 9 )  W ith  respect to  the uniform topology.
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(2. 9)' ifri(x) =  T t f ( x ) + D s s T,(x, dy)h(y;

Theorem 2 .  3 .  There exists a unique solution vr,(x) in  C+(S)
of  the  equation ( 2 .  9 ) ' .  I f  we write this solution as 4 ,,= *0 (x ; f),
then gr t defines a ?I'-semi-group.

P ro o f . We first remark that, i f  there exists a solution 4pi (x )

o f  ( 2 .  9 ) '  in  C + (S ), th e n  it  is  a  unique solution. T h i s  can be
proved by the usual argument using the local Lipschitz continuity
o f  h. W e shall show , therefore, the existence of the solution

1kt ---xitt(x; f ) E F .  B y  the local Lipschitz continuity, the solution

Ilrt(x ; f) of (2 . 10) exists in C+ (S) for each f EC+ ( S )  in sufficiently
small time interval [0, to ] .  For each n=1, 2 , •  « , let •kjr") =1/4" ) (x ; f )
be the solution of

1P4' ) ( x )  =  f ( x ) Ts(x, dY)a„( [40 ,. (  y ; — r (  y ) ] .
o s

Then I p • ')  is  the solution of

,\U, ") (x ) = ds T f.(x, dy)6,( y)ço, ( y ;
0 s

and hence, by Proposition 2. 2 •kj4' ) i s  a  ?F-semi-group. Now, using
(2 . 8 ) , we can show, by the same proof as in Lemma 2 , § 2  o f [17] ,

that there exists a  non-empty open set D i cC + (S ) a n d  t 0 > 0  such
that

su p  su p  11\0," )  ( • ; f )  V rt( •  ; f )1 ! - ->0
0 ,4 s 1, f e D i

when o.0• B y  Proposition 1. 3, 1kt= Vrt(x; f )  E r  for t E  [0 , to] -
Then can be extended as a solution in t E  [0 , 0 0 )  ju s t  as in the
proof of Proposition 2 . 2  and it clearly defines a W-semi-group.

Corollary. L e t  F ( f )  be a  function defined o n  eE(0,
given by

(2. 10) F($) = C 0+ (e-E" —1 + 
 ç u

)n (du),1 + u
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where C,, i=0,1, 2 , are constants such that CO O, C2 >-0 and
n(du) is a  non-negative measure on  (0, 00) such that

Co. u2

la 1 ± u 2u 2
n ( d u ) < 0 0  .

Let 6 (x ) be a non-negative continuous function on S  and define
h (x; f), xES, fEC +(S ) by

(2.11) h(x; f) = 6(x) F( f (x)).

Then the solution * ,  o f  (2 . 9) o r (2. 9)' defines a  7-semi-group.

P ro o f. It is clear that h (- ;  f )E C (S )  for each fE C + (S ) and
it is locally Lipschitz continuous. A lso it is not d ifficult to show
that there exists a sequence of functions F, (E) o f th e  form

F„(6) =C,(,(E) —6),

where C. > 0  and c. (E ) = (1 —e 1+u
— E) N, (du) w i t h  a non-

[0,-]
negative bounded measure  N (d u ) on [0, 00], such that F„(E)--, F(E)
uniformly on each compact interval in  (0, 00) when n - 0 . 0 .  Now,
kk(x; f ) =---cp„( f (x)) E r  for n=1, 2, • • • , since

ç9„(f(x)) ji-e(■i;J')NTL(d:).) ,

where N (d,T ) i s  the image measure o f  N „ under the mapping

U E  [0 ,  0 0] (u ,  a . , )E .  T h u s , h ( x ;  f )  satisfies the condition

(2. 8).

E x a m p le . For a non-negative continuous function 6(x) on S,
the solutions of the following equations define ?1'-semi-groups:

 A*,--6 ' {tir t ) 1 < a < 2 ,at
Or,

= A * , +  a • 4,1" 0 < a < 1 .at

G iven  T ,  and  h ,  w e  have constructed a  1P-semi-group in
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Theorem 2. 3 and by Theorem 2. 1, there is the unique C. B-process
corresponding to it. L e t  T , be the semi-group of this C. B-process.

Since
20)

TAO/. (p )  = ,,o (p ) ex p  j • k k i (x  ; f )p (d X )1

it is  easy to  see that T , ( C o ( ) )  c Co where C0 ( ) =  {F(,a) ;
continuous on and  F(4) = 0 ] . Since ( • ; f )— f j! - -  0, we see
easily that T , is strongly continuous on  Co H e n c e  the C. B-
process is a Hunt process ;  in particular, we may assume that it is
a  strong Markov process with right continuous and cif-discontinuous
sample functions (cf. Dynkin [2 ] ). The case of diffusion processes
will be discussed in  th e  next section. We shall now study the
infinitesimal generator o f th e  semi-group T , on  C 0 ( ) .  L e t A  be
The infinitesimal generator in  Hille-Yosida sense o f  T ,  with the
domain D ( A ) .  A  linear manifold D c D ( A )  is called a core") of A
if  A  is the smallest closed extension of A I D• 2 2 )

Theorem 2. 4. L e t T , an d  h  be a s  in  Theorem 2. 3 and let
D  be the linear hull o f {cp f  (p )  ; f  E C + (s) n D ( A ) ) .  Then D cD (A )
and A9f ,  f E C (S )  n D (A ), is given by

<2.12)A y 2 1 ( p )  = {h (x; f)—  Af (x )}  p (dx ).

Furtherm ore, D  is  a core of A .
Conversely, if  fE C E (S ) is such that çpf E D (A ) then fE D (A )

and hence, Awf  is giv en by  (2. 12).

Remark. If D c D (A )  is a  core of A , then the linear hull D'
of {ço.f(P) ; f  c+ (s) nD) is a  core of A .  In fact, as is easily seen,

D •

P ro o f .  We first show that D c D (A )  and  A I D  is given by

20) ço f  (1 )=  e - (.>1. e x p (— S  f  (x )p (d x )),  f  E C + (S ).

21) C f. Kato [9 ], p. 166.
2 2 )  AID is the restriction of A on  D.
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(2 . 12 ) and also  that, i f  fe C + (S ) is  su ch  th a t v f E D ( A ) ,  then
f e D (A )  and hence, çof  E D . F irs t , i f  Tp,, ( x ;  f )  i s  the solution of
(2 . 9) for f EC+ (S) n D (A ), then

'11't( • ;  f )  f   — (A f ;  f ) ) ' when t---> 0.

  

This can be proved by the sam e w ay as in the proof o f Theorem
4. 10 of Ikeda-Nagasawa-Watanabe [6]. Then, as is easily seen,

t
l   fe - ( Y—P,) — —e p(dx){h (x; f)—  A f(x)}

when t - -> 0 . Thus, Ç91 E D ( A )  and Aço j  is  g iv en  b y  (2. 12). The
second assertion can be proved by exactly the sam e w ay as in the
proof of Theorem 4. 10 o f [6].

It remains only to show that D  i s  a  core o f  D ( A ) .  First of
all, we remark that if f E  (S )  n D (A ) then l i p ,  Afist(x ; f )  E C +  (S )
f iD (A ) for each t - ( ) ;  in fact, fe C + (S )n D (A ) implies çofE D ( A ) ,

th e n  TA0f (p ) = çoq„ (p ) E  D ( A ) .  This im p lies, again  by the above
result, that ,klpt e D ( A ) .  From this, it is clear that Tt (D) CD. Also,
by Lem m a 1 . 1  D  i s  dense in Co (C). Now the assertion i s  a
consequence of the following general

Lemma 2. 2. Let U, be a strongly continuous semi-group o f
bounded operators on a Banach space B  such that 11U,II<M-eSt
fo r  som e M >0 and (3 > 0. L e t  G  be the infinitesimal generator
of U , with the dom ain D (G ). Let D be a linear manifold of B
such that

(i) D cD (G ),
(ii) D  i s  dense, i.e.,
(iii) D  is Ur invariant, i.e., Ut (D )cD .

Then D  is a core o f G.

P roo f. It is sufficient to show that for some a > , (a I — G) (D)">

2 3 ) /  is the identity.

-->
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is  dense in B .  In  fa c t , if  this is true , then fo r every u E D (G )

There exists h„ E D such that ah „ — G h au — G u . Let Ra =5 -  e't Ui dt,
then Ra  is  a  bounded operator and hence,

h„= Ra (ah„—Gh„)---. Ra (au—Gu)=u
and also

Gh„= a • h„— (ah „— Gh„)—. au — (au — G u) = Gu,

•proving that G  is the smallest closed extension of G  D .

In order to prove ( I —  G) (D) is dense, it is sufficient to show
that, fo r  every continuous linear functional L  o n  B  such that
L(au — Gu) = 0  fo r  every  u e D ,  L  is id en tica lly  O . Assume,
therefore

L (au — Gu) - a • L (u) — L (Gu) = 0, for every  u  E D. Since
•U,(D) cD, we have

L (U,u) — L (G U,u) = aL (U,u) — L(.3 d t—  d   Ut u r )

=aL(U t u)—  dd  t  L (U,u) =O.

Hence L(U,u) = C • eOEt for some constant C . B u t L (U,u) I <II LIIII Uu II
<K'esi and, since fi G a, we must have C = 0 .  Therefore L (U,u) = 0
for every t and, in particular, L(u) = 0  fo r every u E D . S ince D
is  dense in B, this implies L=0. q . e . d .

§ 3 .  The case of diffusion processes

In §2, we have shown that, fo r a  given non-negative strongly
continuous semi-group T, on  C ( S )  and a given non-negative con-
tinuous function a (x )  on S, the solution of the equation:

8*, 

<3. 1)—

44p,-6{11P1 }
 2

at
* 0 = f , f EC+ (S),

,defines a  T-semi-group. W e shall show  that th e  corresponding

2 4 )  s — d / d t  stands for strong derivative.
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C. B-process is  a diffusion process, i.e., almcst all sample functions

are continuous in  the topology of Unfortunately, we can not
p ro ve th is  fac t w ith o u t certain restrictions on T ,  and a ;  the
conclusion seems to be true in general, however.

Theorem 3. 1. W e assum e that there ex ists a dense subset D
o f  C (S ) s u c h  th at  D c D (A ) and for ev ery  fE D , there ex ist
constants K > 0  and a >O such that

(3. 2) T ,f  — f  A f +1!Ti(6 f 2 ) - 6 f'll <K. t a

   

fo r  all suf f iciently  sm all t .  Then, the C. B-process corresponding
to  the equation (3. 1) is  a diffusion process.

P ro o f .  For fE C (S ), define 44") successively by

lk?-> (x) = T, f (x)
(3.3)

(x) = T f (x) T {6(441-,1 ) ) 2 } (x) d s

I f  we choose to such that

4t0C2 (t0) ildIl 11f  i[<1,

where we set ( sup ) V 1 = C(to ), then, since

114f.") II< C(t) [II fil + tIIdiJ sup

we have, by induction, that

sup 11*̀=") 11 < C(t 0 ) [11f  II+ toll 011 • 40 (t0)11I f 112 10 ,t,i0

<C(to) [IV II + II f  Ill f 11C (to)

for every n=1, 2, • • • .
Since (for t< t 0)

144' 1 ) — \W") 1I<C(to)llollK114, " — 1k1- 1 ) 2 1ids

<4C(t0) • Ilall11 f  Il 0 11, P» — *!"'Ilds
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we have

(3. 4)

where

sup "  < t
0,tst on !

K= 4C2 (to) lid iii fi!.

From now o n , w e  fix  gEDF1Ci(S). 2 5 ) F o r  f  ,1  •  g , we define

1/4") (x) =1/4" ) (x ; A) by (3. 3). Then clearly, Ijr' ) (x ; A) is a polynomial
in  A and by (3. 4), we have, for some t o > 02 6 ) and €>0, that

sup II*4' ) ( ; A) (• ;
0 ,1  to

i+E

Hence ÷, (x ; A) g )  is analytic in  I A I <1+ E. Set

qpi (x ; A) — A • g(x )=t[A A g(x )—  A2 a ( x ) g 2 ( x ) ]  + t • H (t, x ; A),

then for fixed t e  [0, to ]  and x E S , H (t, x ; A) is analytic in A  and

<A

(3 . 5 ) II H(t, • ; A) <

 

1 1 ,•,(•; 2)—A• g  A ilg+2 2 d• g 2

           

Tf(A• g)— A •g  _A . A g f d  •  4 , 4 _ 1  d s  —  22 6•It 0
T ,g—  g  _ A g    [T,{6r10_,— A2a• g 2 } ]dst  0

s (22 6  g  2 ) 2 g 2 ]ds

<AK. ta+ C(t o ) s u p  • ,pq_, — Ar g 2i! _L A- 2 1A sads

< • tOE ,

since Ild • 114-s 2 2 • a' g 2 II<C • —A• g  <C ' t. Clearly, IC = If' (A)
is bounded in A I <1+ E. Now,

where

-
H (t, x ; A) =E  A" • a„(t, x ),

ao (t, x)—   1   Çl r H (t, x ; e ie )e ' 9 do.
2 i r  o

25) C (S ) -- - { f :  continuous on S and 0< f  <1}
26) Clearly, this to can be taken common to all gEDFIC}(S).
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Hence, by (3. 5),

(3. 6) sup la (t x)f < K" • tOE, n =1 , 2, • •

Now, if t <  to ,

E,{e - " , .g) } = exp( — ,kfp,(x; A)v(dx))

and th is is analytic  i n  IA I < 1 +  € .  H ence all moments of ( p t ,  g)
exist. In particular, this implies that,

(3 .7) sup .E„ {p,(S)'}  <00, m =1, 2, • • •.
0  :1 , t ,

W e have, finally,

Ev(exP [ g )  ( 1 4 ,  g ) } ])

=E„(ex p { — s tis (dx ) [ r,(x; 2)—  A g]',)

E ,[ (
 1 )

" (qp,(x  ;2) —  A g)ps(dx )} "1
n=0 n!

E [ j s {t [AA g(x)—  A° • a g 2 (x )] + Eietak (t, x)} 12,(dx)} 1—0 n! 1 k - 1

=E b„A',
=

then, as is easily seen by (3. 6) and (3. 7), we have

b4 = —  t • E,3a,(t, x )p„(dx )1+ 0 (t 2 ) = 0 (t 1 ).

Thus,
[ (p , + „  g) — ( p „  g)] 4 } = 4 !b4 = 0 ( t ' )

if  0 < t+ s < to, where 0 ( t ' )  is independent of s .  By Kolmogorov's
theorem (cf. Neveu [15] ), this implies that

P, { (p„ g )  is continuous in  t e [0, to ]  = 1 .

Since cii-(s)nD is  dense in ( S ) ,  this implies that

Pv { P r  is continuous in  t E  [0, to]} =1

and hence, by the Markov property,
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{p, is continuous in t E [0, c o )}  = 1,

i.e., p i  is  a diffusion process.

E xam ple. Let s=k, one point compactification of R " and Tt

be the strongly continuous semi-group on C( )  defined by

(3. 8) T if (x )— 1 
(27rt)" 3R- e x P ( I x  2—ty 12) f  ( Y ) d Y .

Let a be a positive constant, then the condition of Theorem 3. 1 is

satisfied: if  we take D =C - (.12\") = { f E C ( k )  ;  a ll of its derivatives

E C (i?")}  , (3 . 2 ) is clearly satisfied. Note also that A  is  the
1smallest closed extension of —
2

tl on  C-  (i"). Hence, there is a

unique diffusion C. B-process X = (p„ 1) )  on such that

E(exp [ — (p„ f  )]) =exp(—  ,tf r,(x ; f )p(dx ))

where lk i ( x ;  f )  is the solution of

(3. 9)
a lkt —A* — 6 • *2at "

* 0 — f .

One interesting property of these diffusion processes is the following:

W e have shown, in  th e  proof o f  Theorem 3 . 1 , that, fo r every

f C ( S ) ,  the solution of (3.9) exists uniquely for sufficiently small

time-interval [0, to ]. I f  f = 2 g ,  the solution *(t ;  2) =A lt(t; 2g) is
analytic in  A I <1+ e for sufficiently small [0, to ]. It is easy to see

that

E m (e x p [(p t, g )])=e x P R . ,(x; g ) p ( d x ) ) ,  t  a [0, to ],

where

y 9,(x ; g)=— *,(x ; — g).

cp, is the solution of



at
ço0-=- g •

(3.10)
açoi = Ayot+ a • e ,
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Hence, by Fujita's result [4 ]  (cf. also Nagasawa-Sirao [14] ),

( j )  i f  n=1, for every non-negative g E C (R " )  such that {g > 0 }
has an interior point,

(3. 11) E 8 , {exp(g„ g)}

blows up in  a  finite time, e., (3 . 1 1 ) cannot be finite for all

t {0, 00),
( i i )  i f  n> 3, for every r >O there exists ô>0 such that, for all
g E C ( k )  satisfying 0 < g (x )< a • (27tr) - 2exP( - - - I x  2/2r), (3. 11) Oi s

finite for all t E [0 , 00 ). Furthermore,

Ix i ' log [.E 5 {exp [ (n„ g)]} ] <M  [2n (r+  t)] - 1 .8 2 expL— , vt E  [ 0 , 0 0 )
2(t+ r)

for some positive constant M.
The behavior o f (3. 11) for the critical case n = 2 is not known.

§ 4 .  A  limit theorem

Consider the following branching process (cf. Harris [5] , Chap.
§1. 6) : an object at x E R " has the probability p h o f  having k

children (k =0, 1, 2, • • • ) ; assume that each child, independently of

others, has a probability distribution a(d y )  for being in x + d y . Let
Z „(d x )  be the number of objects in  d x  in  the n-th generation.
Z„(d x ) defines a discrete-time Markov process whose state space is

the set of all non-negative, integer-valued measures. We shall call
-

this process th e  (F, a)-process, where F(s) =  Pksk, since it is

uniquely determined by F  and a.
Now, consider a  sequence o f  (F, a)-processes ; {Z ;,'") (d x), 25 „(-),

pE T } : (F,„, 0,,,)-process, m = 1 ,  2, • • , where 77 i s  th e set o f all
non-negative, integer-valued measures :
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(4. 1) g2= E a

For each m =1, 2, •••, let e(-) be

( 4 . 2 )  
gi  6 X . E R " }

M  ,-1

and define a  continuous-time stochastic process { /e ) (dx), P(:)} on

e ( m)  by

(4. 3) le )  (d x) —  1 
m  

Z t,23(d x) ,

P ,̀:") = 1-3t PE e w

Now, let {Pt) P ml  be the diffusion C. B-process discussed in  Example

o f §3, i.e., S= i€  and p i is  a C. B-process defined by

E (Po f )])=ex P(-1 1P,(x ; f  ) tt(dx))

where Jr (x; f )  is the solution of

a÷1 — Ir1027)
(4. 4) at

*0 = f .

We shall assume that F„, and a,, satisfy the following conditions:

(4.5)m . 1  f  ( x +  y )  — f  (x )] (d  y )-4  4 f  (x )

uniformly when m—.00, for every f  e C-

pu 2 (   1 (4.6)— l o g ( F „ , ( e — i - ) )  —  •  m 2  o  m 2 ) ,

where p> 0 is a constant and o(1/m 2)  is uniform in u E [u 1 , u2 ] for

2 7 )  A  is the smallest closed extension of 
1

4 on C
-

(/2
.

) .  p  is  a positive con-
2

stant.
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every 0 < u 1 <u ,." )

Theorem 4. 1. Under the assum ptions (4 . 5 ) and (4. 6), f inite
dim ensional distributions of {,te ),  P (Z)} converge to  th o s e  of
{p„ P sj  fo r  every  x ER n when

P ro o f .  Let e(-)= {J} c  and C"--=-- C,( ( '") ) =  {F(//) ;  con-

tinuous on ("') and F(d) =0} . Let P,,,: C  C  ( )  C  b e  the

restriction operator;

(P„,F)(p )= F _  (1-2 )
( ,n)

  

Let T ( '") (p, d2) be the probability kernel o n  (") X ("') defined by

a (n ,) T ( '") (p, d2)(P„,y91 )(2)

(4. 7) = e x p ( — m  4 r ('") (x ;  f ) p ( d x ) ) ,  p * J
R"

1 " )  (4 , (12 ) —a[41(dA),

where

(4.8)I p s - ) (x ; f ) =  —logF L exp [—   )
1
11
- f ( x + y ) ]( d y ) ) .

It is easy to verify that, for k=1, 2 ,  « ,

E  d21 Pt; t < - -
k

P(1_47„, dA ), a.s..

Now, we shall apply Trotter's result (c f. K ato  [9] , IX, § 3 , Kurtz

[10] ) ; i f  there exists a core D  of A" )  such that

(4. 9) !!A(')P„,F— for a l l  FED,

where

28) ( 4 .5 )  and ( 4 . 6 )  are satisfied, e.g., i f  ern,(dy )=o-(1/m •dy ), m =1, 2 , ••• , where

o-(dy ) is a  probability measure on R " such that Se xix dx )=B ii and Sz xicr(dx)
= 0 , and Fv ,(s )=F(s) , 711- 1 ,  2 , • •• , where F'(1) = 1  and 0 < F " (1 )/ 2 = p < c > 0 .

29) A  is th e  infinitesimal generator o f th e  semi-group o f  (p c ,P ,,)  acting on
C-=- co (a).
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(4.10) A ( '") =m (T ( '") — 1) 30)

then,

(4.11) lim sup I r " ) P,„F—  P„,T,F c r,,,=0

for every F  E  C, where

(4. 12) r") =  ( T ( m) ) ( - 3

and T , is  th e  semi-group of ( p i ,  P O  acting on  C o ( ) .  We shall
v e r ify  (4. 9). L e t D  b e  th e  linear hu ll o f  fvf(m) ;  fE C + (RN") n

C- (k ) } ,  then, by Theorem 2.4 a n d  Remark, D  i s  a  core o f A.
Also,

A 1(p) = L[p. f  (x) — f  (x )lp(d x ).

1

Let p — Eft ; E ( '") ,  then if fEC+(k )C1C - (k ) ,m i=i

A( - ) P(01 (p) = m  exp ( — ,k('") (xi ; f ) )  — exp( 1f  ( x i ))}

Where

Ips'") (x ; f  ) = —logF„,(1 exp [—  1   f (x  + y )]0.(dy ))n't

B y (4. 5) and (4. 6),

R . exp — (x+ y)1(1(dy)

=1—  1
1
12
- f (x )—   2 m

1  4 f ( x ) + 2 m
1

 2  f 2 ( x ) + o ( 1 )

and hence

x ; f ) 1  r(x ) 1  [ 1  A f( .10  p ..f2 (x )1 4 _ 0 (L ),* ( ') ( m ) m2 L2 "-I \.

where 0(1/m 2 )  is uniform in  xER ( ' ) . Therefore,

1A ( m ) P.Ço1(1i) — A(9/(P)1=

3 0 )  T ( "  is the operator given by the kernel T ( 7 n) (p, dA).
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exp ( —  1  ±  f (x i ))[m  lexp( — [ 1 [  1 J.f  ( x i)  — p . f 2 ( x 0 1m  i= i ,=i m z  2

+ ( 
 1
m 2

 )1) _ I t +±  1 1  4f(x) _p.f2(x)11
i = 1  M  L 2

2
e ( i ,„,2) .,)e

(o
(1)  1   +  1 /  

m  m  m
)

where K  and c are positive constants and E inf f ( x ) > 0 .  Hence,

sup I A"Twpf (P) — Aor (P) I 0 when m—. co, proving (4. 9). Now the
convergence of finite-dimensional distributions follow s from  (4. 11)
b y  a standard argument.  q. e. d.

By changing the conditions on F . and 6,,,, various different limit
theorems may be obtained.
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