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Introduction

In his paper [121 von Neumann showed that unitary equivalence
of flows implies their metrical equivalence in the case of ergodic

flows with discrete spectra. M o r e  precisely, i f  two one-parameter
groups o f  unitary operators induced by tw o ergodic flows have
discrete spectra and are unitarily equivalent, then these flows are
metrically equivalent. Moreover they can be realized "canonically"
as rotations on compact abelian groups.

Up to the present time many results are obtained with regard
to the set of eigenvalues, which forms an additive subgroup of real
numbers, and eigenfunctions. H ow ever th is does not finish the
investigation of the eigenvalues, eigenfunctions, discrete spectrum,
and etc., if we consider the flows ( c o i )  on the manifolds M  generated
by the differential equations on them . For instance, we do not know
even whether the ranks of the additive groups o f eigenvalues of

((P,) are finite or not. [1] , [2] .
In this paper we consider the case when flow  (Qt )  i s  ergodic

and the manifold M  i s  compact, then we can consider M  as the
total space of a locally trivial smooth fibre space, whose base space
is  a  torus and fibres are submanifolds of M , and moreover (P, is
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fibre-preserving ( § 2 ) .  Especially, if ( c o i )  has discrete spectrum, then
M  is  diffeomorphic to a torus and (co,) can be regarded as the well
known quasi-periodic motion on i t  (§3). These results show the
relationship between the spectral types of flows and the structures
of manifolds on which the flows are defined. In § 4  we discuss some
generalizations o f  §  3  and some characterizations o f quasi-periodic
motion. In § 5 we generalize the notion o f eigenfunctions by intro-
ducing the concept of oscillatory functions.

I  wish to thank to Professors H. Yoshizawa, Y. Sh ikata and H.
Totoki for their valuable suggestions.

§ 1 .  Preliminaries from ergodic theory

In th is § we briefly enumerate necessary definitions and theorems
from  the ergcd ic th eo ry . For deta ils refer to  [ 5 ] , [8 ]  , [9 ]  and
[11] .

Definition A .  A flow is  the triple (M, p, ggt )  o f a  probability
space M  with measure p  and a one-parameter group o f transforma-
tions y9, o f  M  which preserve the measure p. W e assume the
measurability of with respect to  "time" t.

A flow (ç9,) induces naturally a one-parameter group o f unitary
operators {U,}  on the Hilbert space H = p )  of complex valued
square summable functions defined on M :

(U  f  ) (x )  f (ç 0 ,x ) , fo r  f  e H .

B y  the decompcsition theorem of Stone, th ese  Ut have the
following spectral resolution :

U,=Se 2 — "clE (2),

where {EGO} is a resolution of identity o f H.

Definition B .  Let IF"— (E (2)— E (2 — 0)) H .  W e  c a ll A  an
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eigenvalue of the flow (c2f )  when dim H >  0  and an element of
H " )  a n  eigenfunction of the flow  ( ç g ,) .  The fac t th a t A  i s  an
eigenvalue is equivalent w ith  the existence of such f A G H , f A #0
that

U tf,■ = e 2 itY ) , for a ll t.

Definition C . A  flow  (çP t )  is called ergodic, when the condition

fq , ,A e  AI =0 1 ) for a ll t

implies ,u(A) = 0  or / / ( A ) = 1 .

Theorem A .  A  f lo w  (ç o ,)  is  e rg o d ic  if  '1= 0  i s  a simple
eigenvalue.

Theorem B .  L e t (q'f ) be  an ergodic f low  o n  a  probability
space (M , , u ) ,  A  be the set of eigenvalues of the f low  (g9,) and H("
b e  the set of eigenfunctions w hich belong to the eigenvalue A.

Then
( i )  A  is  an additive subgroup of the real num ber group R.
(ii) . I f  f ■E  11(A) then If A l =constant a.e..
(iii) For all AEA there ex ist q) A E H ( A)  s u c h  th a t  g9,\/,‘=g9-„.,

Iço,I =1 , and E% , k,A , 0 (k, Z )  im plies II;`,Ço = 1 .

(iv) Let HA e l/ ( "  and g a=3 ( 1 -1a) be the sm allest Borel
AEA

algebra which m akes the elements o f H , measurable, then
H A  1•2 (-OA) •

§ 2 .  Fibre structure

We introduce a fibre structure on manifold from the given flow.
First we shall give definitions of some fundamental notions.

Definition 1. Classical flow o r  classical dy nam ical sy stem

1 )  We denote the symmetric difference o f two sets A and B  w ith  AC)B:

AeB=AUB— Ar1B
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means the triple ( M, p, yp,) formed by a  Ce-manifold M ,  a  finite
measure p  on M  defined by a positive continuous density (we assume
,u( M )  = 1 )  and a one-parameter group (çoi )  o f diffeomorphisms of M
which preserve the measure p.

Definition 2. Let (ill, p, çoi) and ( N ,  0 , )  be classical flows.

( M , p, 9 i) is  0 - isom orphic t o  ( N ,1 ),O r) as classical flows, when
there exists 0-diffeomorphism : M  AT such that lkogy, = 0 ,0 *  for
all t ,  and * ( a) =v. We denote it by :

CM, P, ( N  OD
cp

Now let us give the definition o f quasi-periodic motion which

will be necessary for our theorems.

Definition 3. Let T"=R"/ Z" {(x1, • • • , xn ); x,ER  mod 1  i= 1 ,

2, • • •, n }  be the n-dimensional torus with the usual Lebesgue measure,

d m =d x,•••d x„. Jacobi flow with frequencies w1, • • •, w„ is a classical

flow ( T", m, 1/1,) where (1/fi )  is the one-parameter group of transfor-

mations defined by,

1/Pi x, = x i +w i t , mod 1 , i= 1 , ••• , n.

L em m a. A n orbit o f  Jacobi flow with frequencies oh, •••,(0„

is everywhere dense on T " ,  if and  only i f  w1,•-•,(.0 are linearly
independent over Z ,  i.e. koh+ ••• +kw,— 0  f o r  k E Z  implies k  =

• • • =  k =  O.

In this case we call this Jacobi flow a quasi - periodic motion.
We can prove easily this lemma with the help o f theorem A.

It is also easy to prove it directly.

Let ( M, p, y9t )  be a classical flow and AP*)  b e  the set of eigen-

values o f (g2,) whose eigenfunctions are 0-differentiable.

* )  A P  forms an additive subgroup o f A .  c f theorem B, in  1
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Theorem 1. Let (M , p, Q i )  be a classical ergodic flow and M
be compact. If 21, •••, A P ( P  1 ) are linearly independent over
Z , then we can consider M  as the total space o f a  locally trivial
CP- 1  smooth fibre space, whose base space is an r-dim ensioaal torus
Tr and whose fibres are CP-submanifolds o f  M  o f  codim ension r
and numbers o f  their connected components are fin ite . The flow
(Ç2,) is fibre-preserving and the flow which is naturally induced on
the base space T ' is quasi-periodic motion with frequencies 21, • , 2. .

In addition, the fibres can be assumed to be connected, in this case,
however, the frequencies of the induced flow on the base T ' are
different from 21 , • • • A,.

R e m a rk . In theorem 1, the assumption o f the ergodicity of
the flow (49,) can be weakened. In fact the existence of only one
orbit which is everywhere dense in M  is sufficient. We note that
i f  (ço i )  is ergodic, then almost all orbits are everywhere dense in M.

In  proving theorem 1, it is essential to prove the following
fundamental lemma.

Fundam ental lem m a. Under the assumptions o f  theorem 1,
let f1, • • • , f, be differentiable eigenfunctions o f  class CP ( p  > 1 )

which belong to the eigenv alues 2 1 , • • • , 2 ,E  AP respectively. T h e n
df ,, •••,df  ;' ) E T * ( M )  are linearly independent everywhere.

Proof o f fundam ental lem m a: the proof will be devided into
three parts:

Step  1. As f  ,(x )( j =1, • ••, r) are continuous and eigenfunctions
of the ergodic flow (y9,),

I f  i (x )I =constant (say, =1),

(*) f i (x )=e 2 7'"Ai f f (x ) for all x E M  and t.

* )  Though f i  are complex valued, however, as w ill be seen in  step 1 of the
proof, we can put f  J( x ) =e 2 •deJ(' ) ,  O i ( x ) e R / Z ,  so we write d f i  in the place of 6101.
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Now let us define the mappings P k  and the sets Mk(a), 1<k
as following:

P k : M---.Tk='Tk. .X .- - - - ) . ( f l ( X ) , • •  • , f1 r (X ))

where T=--- {ZEC; Iz1=1}

Mk (a) =  Pk- 1 ( a )  M , a = (ai , • • •, (4) Tk

We define the flow (44) on Tk as follows:

v.pkt; T ' : , (e2„ttAleri, e 2 „ ,tA ka k ) .

That is, flow (Iir ki )  is  a  quasi-periodic motion with frequencies
21, •••, Ah on  T k . The following d ia g ra m m  is obviously commutative:

As M  i s  compact and the orbit of Jr, k, is everywhere dense in
7 " from lemma, Ph is onto mapping.

Step 2. Let us assume that dfi, •-•,dfk are linearly independent
everywhere, i.e. the mapping Pk is  full rank everywhere on M .

Then as is well known, the sets Mk(a) become C -subm an ifo lds

o f  c o d im e n s io n  k. Moreover, fo r a n y  a ,  T " ,  there exists some
neighbourhood Uo c Tk of a ,  and we can define a structure of direct
product in Mk(U0 ) =P17 1 ( U0)c M , i.e. there exists a diffeom orphism

Co:

Co : Uo X Mk(a0) - - > Mk(U0)

such that
CO( {CO X M k (ao) ) M k (  a )  for any a E Uo

This shows the local triv ia lity . It is know n , but for the com-
pleteness we will show it.

For instance, th is can  be show n as follows: W e  d e f in e  a
Riemannian metric in  M .  Let N (M k )  b e  normal bundle o f  Mk
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Mk(a o ). This bund le is a trivial bundle because o f th e linear
independence of d f i , • • • , c l f k .  As is known in the theory of Rieman-
nian geometry, there exists some open neighbourhood V  of M k  in
N (M k )  and C'-embedding,

Expmk : M ,

such that, for any vector LE V, Expm h ( L )  i s  the terminal point of
the geodesic arc 1 of M , whose initial vecto r is  L  and I / —114
(Expm , is called exponential mapping at M,, and Expmk ( V ) tubular
neighbourhood of M,,.)

Let N ,= Expm, ( N (M k)k  n V ) , x  M k  ,  where N(111,).k i s  fibre of
N ( M k )  on x .  I f  w e take  the neighborhood U,, o f ce , in  Tk suffi-
ciently small, then the following mapping Co is  one to one :

e 0 : Uox Mk(a0) - - - >Mk(Uo): (ce,

ej- '  is obviously C 1 -differentiable, and rank of co- '  is equal to dim M
on M ,, (,,). T herefore, by tak ing Uo le ss  i f  necessary, co is a  0 - 1 -
diffeomorphism. That is to show.

w e  have now verified that ( M, Pk, T ,  i s  a local trivial
CP- 1 -smooth fibre space over I ',  whose fibres are 0-submanifolds of
M . See for details R. L. Bishop &  R. J. Crittenden [3] , S. T. Hu
[6 ] and N . Steenrod [10] , Par I.

N ext w e show th a t the number o f connected components of
fibre M ,, is  f in ite . Let M  b e  the space which is obtained by regard-
ing each connected component of fibres to  b e  one point. Naturally
M becomes a manifold. (fi, • • •, f k  are the local coordinates o f it ! )
Moreover this space is obviously a covering space of the torus Tk.
So  there ex ist certain integers zi, •-, z,,,, zi *0, • • z„, * , m k ,  and

x • • • x R / „z x R " .

As the flow (gai )  preserves the connected components of fibres, it
induces naturally a flow Cot )  on la:

(7, t : ( x 1 ,  ••., x k )--------).(x 1 + 2 1 t , . . • ,  X k Ad) .
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I f  m < K ,  then this will contradict to the ergodicity of the flow (co.).
Therefore m = k .  This shows th a t the number o f  connected com-
ponents o f M , is finite:

# (Mk) =  •  •  • ><Z .

Step 3. N ow by induction w e w ill prove that df,,•••,df, are

linearly independent everyw here. It is clear that d f i  is linearly
independent everywhere, so it is sufficient to prove the linear indepen-
dence of under the assumption o f  linear independence
of df,,•••,df,.

Let us assume that dfk + ,  is linearly dependent to df,,•••,df, at
point x o E M .  Then as g9, are diffeomorphisms o f M  and the eigen-

functions satisfy the property ( * )  in  step  1 , so  dfk + , is linearly
deper dent to d f i ,  • ••, d f, at every point yo, x o E M .  Namely dfk + ,  is
linearly dependent to df,,•••,df, on the closure o f orbit which pass
through the point x o , C„:

C ,=  U §9,xo c M.
--<t

This shows that when we consider the function f 1+ 1 as a func-
tion on 1111(a), every point of C „n  M k ( t t )  is  a critical point of f1+1.
Therefore by the well-known theorem o f Sard, the measure of the

set f , + ,(C, o n M k ( a ) )  in  T 1 i s  zero . By the lemma and compactness
o f C „ , Pk+ i ( C ,) =  Tk+ 1 ,  so fk , i (C „ n V .  But it is obviously
a contradiction. This was to be proven. q.e.d.

The proof o f theorem 1  is contained in  th e  proof of the fun-
damental lemma.

Corollary. Under the assumptions o f theorem 1, AP is f initely

generated and rank  o f  AP <,dimension of M .

§ 3  The case of discrete spectrum

In th is §  ,  we consider the special case when the flow  has a
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discrete spectrum (pure point spectrum).

Theorem 2. Let ( M, 12,Ç9,) be classical e rg o d ic  f low  and M
be compact. If the f low  (ço,) has discrete spectrum  and all the
eigenf unctions are Ca-differentiable (p 1 )  i.e. E @WA) - L 2 (M, /2),

X E A '

then (M„ a,ço,) is Co-isomorphic to a quasi-periodic motion (T ', m ,
V ri) as classical flows;

CM, be, (pt)-=(T'', m,i1P,),c,
where n= dim M.

P ro o f : As is seen  in the proof o f fundamental lemma, it is
sufficient to prove that, rank of AP= dim M.

Let r  be the rank of A P , and 21 , • ••, Ar E  A P linearly independent
over Z . Let f i (x ), ••- , f ,(x ) be Ca-differentiable eigenfunctions belong-
ing to 21 , • • • ,  Ar  respectively. Now let A be any eigenvalue G A  and
f A b e  a differentiable eigenfunction which belongs to A.

As r  i s  the ran k  o f  A P , so  2, 21, •••, 2 ,  are linearly dependent
over Z , i.e.

3k*0, k i , — ,k ,G Z ,
such that

k =k 1 21 +•••+k,./1,..

By theorem B , (iii ) in §1, we can assume

f  i ( x )=  f  ( x )  • • I ,r (x) .

From the continuity of f A ( x ) ,  i t  must b e  constant on every
connected component of fibre M r (a ) .  By the assumption, { f A ; A E A }

forms a C. O. N. S. of L 2 (M , t i ) .  Therefore, if dim M r (a) =dim M — r
> 0, it obviously contradicts to the theorem B, ( i v ) .  It is also easy
to prove it directly. q.e.d.

§ 4 .  Some remarks and conjecture

Can we replace the assumption of differentiability o f eigenfunc-
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tions by the one of continuity ? The author has not succeeded in
verifiing it, but it  is  v e ry  lik e ly  th a t it  is  correct. W e w ill show
the partial solution for it, th o u g h  it  is  fa r  from  the complete
solution.

In this connection, we remark that i f  this conjecture is verified,
then we will have the following interesting result as a corollary of
i t  and a theorem of von Neumann and Halmos. (von Neumann and
Halmos [13] p. 349 Theorem 6.) As a matter of fact, this result
can be easily proven, if we use a theorem of Lie groups: "a compact
group is a Lie group" and the above mentioned theorem. But we
w ill give the proof for the completeness.

Theorem 3. (von N eum ann-Halm os) Let (M, p , § 9 , )  be a clas-
sical ergodic f lo w . I f  w e can def ine the m etric  d(x, y), compa-
tible w ith the original topology of M , such that, fo r  which M  is
complete and the flow is  equi-continuous with respect to t, i.e.

ve>O, i > 0 , d (x ,y )< 8  implies

d(ço,x,ço,y)<e fo r  all t,

then ( M, , u , § )  is 0-isom orphic to a quasi-periodic motion (T ", m ,
*,) as  classical flows;

( M, p, V ) - (T " ,  m,11P,),co
where n= dim M.

Proof: F irst we prove that we can define a multiplication on
M  so that it becomes (with the original topology of M ) a compact
abelian group and (soi )  is  a rotaion, i .e . R {x,} : one-paremeter group
of M  such that

sogx =  x  for Vx E M.

Now we show that we can assume th at (g2f )  is isometric with
respect to d .  For, if we define the new metric d'(x, y )  by

d' (x, y )  sup {min(1, d(yo, x, q,,y))) ,
e n < t < o e
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then (Ç2,) is isometric with respect of d' :

d'(x, y )  d'(ço,x,ço,y) for all t.

(It is clear d  and d ' define the same topology on M.)
As the flow (gat ) is isometric, ergodic and preserving the measure

p ,  it is easy to prove that M  is totally bounded. By th e  w ay , M
is complete so M  is compact.

Next we show M  is abelian gro up . L et take a  p o in t x e such
that N= Uso i x o i s  d en se  in  M. F r  x = x t =(Pt x o ,  y= x,E N, we

define p(x, y )= x t+sG N  and r (x)=x_, G N .  Then,

d(P(x, Y ), P(x', y'))= d(xt+.,,

x +d(xt+t , ,
— d(x„ x,f)+d(xi, x)

=d(y, y , ) +d(x, x , ),

d (r(x ), r(Y ))=d (x ,, x— )

x—+t+s)
=d(y, x),

where x '=x ,,, y'—x, , E N.

This shows p (x , y ) and r ( x )  a re  uniformly continuous on N x N
and N  respectively. B u t N x  N  and  N  a re  everywhere dense in
Mx M  and M  respectively, therefore P(x, y )  a n d  r ( x )  each has a
unique continuous extension, to  M x M  and M  respectively. W e
define for every x, y e M ,  x •y =p(x , y )  a n d  x - l= r ( x ) ;  it is clear
that with these definitions M  becomes an  abelian topological group.
If we define p '(x , y ) = q , t y  for any x=x t E N  and arbitrary y ,  then
p / (x, y )  is a  continuous extension of the original p(x , y )  and there-
fore (P, y= xt • y.

We have now proven that M  is a com pact abelian group and
(0 ,) is a ro tation . A s is known in  the theoty of Lie groups, there
exists an isomorphism h: If we define (1/Pt )  by Vri =hogat oh- 1

and m ' by m '=h (p ), then from the ergodicity of (Jî,) which follows
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from the ergodicity o f (c o ,) i t  is easy to prove that (T", m ' is
a quasi-periodic motion. q.e.d.

Using this theorem 3, we prove the next.

Theorem 4. Let (M, p, ço t )  be classical ergodic flow and M  be
com p a ct. If th e  f lo w  (co ,) has d iscre te  spec trum  and a l l  the
eigenfunctions are continuous, in addition, if they  separate M
i.e. fo r  any x , yE M , x* y , there exists some continuous eigenfunc-
tion f  A (x ) such  that f A ( x ) * f A (y ); then (M , p ,  f )  is 0-isom orphic
to a quasi-periodic motion (T " ,m ,* ,)  as classical flows:

(III, ie, Sor)=( T " ,  m, Vrt),co
where n = dim M.

Proof: F r o m  the assumptions there exist continuous eigenfunc-

tion s  f, f2, • • • , f„, • • • which belong to eigenvalues A1,  A 2  •  •  •  A., • • -
respectively and form C. O. N. S. of 1,2 (M, p).

Let define a metric d by

-   1d (x , y )=E  
 . '  

I f „(x )— f „(y )I, x ,y E M .
21 = 1  G

Now the topology defined by this metric d is  Hausdorff by the

assumption. As M  is compact, so this topology is equivalent with

the original one. Therefore, i f  w e  show that th e flow  (§9,) is

isometric with respect to this m etric d, then we get theorem 4

from theorem 3.

-   1  d(v,x, co0y )  E I f „(ç o ix )—  f 0 (§ 9 0 , )  I—1 2'

— "E  ,  
( f „ ( x ) — f „ ( Y ) )2

= d(x,

This is to be proven. q.e.d.
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§ 5 .  Generalization of the concept of eigenfunctions

I n  th is  § ,  w e  w ill g iv e  a  generalization of the concept of
(differentiable) eigenf unctions.

It is c lear that if  f ( x )  i s  a n  eigenfunction, then f ( x ) =f ( y )
implies f (çot x) =f  ( c  y )  for a ll t.

Definition 4 .  L e t ( M, 12 , Sot )  be a  classical flow, and f : M -->C
be a  complex valued function. W e call f ( x )  oscillatory function
of the flow (ca,), if f (x) =f  ( y )  implies f (çof x )=f (ço,y ) for a ll t. In
this case the flow (ça,) is said to be oscillated with respect to f (x ) .

Definition 5 .  Let (M, i t ,  ço,) be a  classical flow and f: M--->C be
a  complex valued function. We call f ( x )  an  essentially eigen-func-
tion, if  there exists a  homeomorphism h  o f C  such that h o f  is  an
eigen-function of the flow (ço,). Then we can show

Theorem 5. A  non-constant differentiable oscillatory function
o f  a  classical ergodic flow (so t )  i s  a n  essentially  eigen-function,
hence the flow (sot )  h as  a non-constant eigen-function.

I t  i s  a n  alm ost direct corollary o f  th e  well-known Poincaré-
Bendixson theorem, (see for details, Coddington and  Levinson [4] )
i f  w e  re fe r  to  th e  following well-known theorem o f  th e  ergodic
theory. So w e omit the proof.

Theorem C .  (H o P f [7 ]  p. 2 9 )  L et  (M,P,so t )  be a  classical
ergodic f low, then almost all orbits o f  th e  flow (sot )  are everywhere
dense on M .

Concluding this paper, we want to emphasize the importance of
the concept of the flow homorphism.

Definition 6 .  L et ( M, çoi )  and (N , f i )  be c lassical flow s. W e
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call the differentiable mapping f  of M  into N flow homeomorphism,
if  Vp,of =fog', for all t.

In theorem 1 and 2, the quasi-periodic motion on a torus plays
the role of (N , If r,), and in theorem 5, N  is

We note that theorem 1, 2, 3 and 4 for the case when the (çoi )
is a  discrete flow, i.e. (ço") generated by one diffeomorphism y9 which
preserves the measure g  can be verified analogously.
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