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In 1963, W. Barthel [1] developed an elegant theory of holonomy
groups of homogeneous non-linear connections. He defined a homo-
geneous non-linear connection on a differentiable manifold M as a
special distribution on the tangent bundle T(M).

As is well-known (for example, see [9]), a [linear connection
on M, however, can be defined as a connection in the bundle of
linear frames L(M) over M, and then its holonomy group is a
subgroup of GL(n, R) acting on L(M).

The purpose of the present paper is to give a concept of an F-
connection, a collection of special distributions on L(M ), and to
show that any homogeneous non-linear connection in T(M) is as-
sociated with an F-connection. For this purpose, a concept of
Finsier connections will be quite useful. The first section is devoted
to summarize basic concepts of Finsler connections, which have been
described in a series of our papers [2],---, [8]. In the second sec-
tion, some properties of homogeneous Finsler connections will be
derived. Then, the main result will be given in Theorem 6 of the
third section.
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§1. Introduction

This section is an introductory summary of basic concepts of
Finsler connections, needed for the later treatment. Throughout the
present paper, we denote by P, the tangent space to a differentiable
manifold P at a point p, and by B’ the vertical distribution b= B
—B; on the total space B of a fibre bundle, where B} is the ver-
tical subspace of the tangent space B,, the kernel of the differential
of the projection of B. It is further noted that the differential of a
differentiable mapping x will be denoted by g itself.

[1] We shall consider a differentiable #-manifold M and the follow-
ing fibre bundles.

The bundle of non-zero tangent vectors T(M)(M, ¢, F, G):

M- base space, T oeeeees projection T(M )— M,
F.... standard fibre (real vector #-space),
G=GLn, R) ------ structural group.

The principal bundle of linear frames L(M)(M, =, G):

M- base space, Teeeeee projection L(M)—M,
G=GL#n, R) ----- structural group.

The induced bundle < *L(M)=F(M)(T(M), n,G):
FM)={(y,2)eT(M)XxL(M)|ty=mnz}---- total space,
T(M)------ base space,

Ty eeee projection F(M)—T(M), [(y,z2)—y],
G=GL(n, R)------ structural group.

The bundle F(M) is called the Finsler bundle of M. The opera-
tion » of G on F is determined by

r: GXF—F, [(g=(g%), f=fe.)—gf=gif'e.],

with respect to a fixed base (e.), a=1, ---, n, of F. Next, the opera-
tion ¢ of G on the total space L(M) is given by

t: LIM)XG—L(M), [(z=(z.), g=(g4))—2g=(2:81,

and then, the operation T of G on the total space F(M) is induced
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from ¢ as follows.
T: FIM)XG—F(M), [((y,2),8)—(y,22)].

Let us denote by R* the differentiable manifold composed of all
the positive numbers, and let % be a mapping

h: R*x T(M)—T(M), [(ay)—>ay].

Then, the mapping
H: R*XF(M)—>F(M), [(a,u=(y,2))—>au=(ay, 2)]

is induced from k. A transformation .2 of T(M) is obtained from
the above % by becoming a= R* fixed. Then, a distribution D: y
eT(M)-»D,cT(M), on T(M) is called h-invariant, if JD,= D,,
holds good at any y and for any «. The notion of the H-invariance
will be similarly defined for distributions on F(M).

The Finsler subbundle F(x) at a point x€M is by definition
a subbundle of F(M) over a fibre r'xC T(M). It will be obvious
that the tangent space F(x), is the subspace of F(M), given by
FM),;={XeF(M),|r-n:X=0}, which is called the quasi vertical
subspace of F(M).,.

[2] We shall present here concepts of some connections in T(M),
L(M) and F(M).

Definition 1. A distribution N: yeT(M)—- N,cT(M), on
T(M) is called a non-linear connection in T(M), if N is a com-
plement of the vertical distribution T, that is,

T(M),=N,pT:, (direct sum),
at any point y& T(M). Further, N is called homogeneous, if N

is h-invariant.

Definition 2. An F-connection I'- in L(M) is a collection
{Tsyy of distributions I'y: z&€ L(M )—T'¢»,,C L(M),, corresponding
to any fe F, which satisfies
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1) L(M).=r,.PL:, at any point z& L(M),
(2) tI'pH. =T 5.4, at any point z and for any ge<G.

The above mapping £, is a right translation of L(M) by g=G,
which is obtained from ¢ by becoming g fixed. It is remarked that
each I', is not a connection in L(M ) in the ordinary sense, because
(2) differs a little from the {-invariance of an ordinary connection.

As for a connection I' in L(M), the associated connection I*
will be obtained in T(M). In fact, the total space T(M) is
identified with the quotient space (L(M) X F)/G by the operation
(2, freL(M)x F—(zg,87"f), g=G, and hence the canonical pro-
jection LIM)X F—(L(M)XF)/G gives

a: LLM)XF-T(M), [(z,f)—=zf],

where we denote by zf the equivalence class containing (z, f). The
mapping a,: L(M)— T (M) obtained from a by becoming f< F fixed
is called the associated mapping. Then, the associated connection
I'* is defined by I'f=a,I',, y=2zf. In the same way, a non-linear
connection N will be obtained from an F-connection I'r as follows.

Proposition 1. Let I'r=({I'(»s} be an F-connection in L(M),
and then by the equation

NJ:a/r(f)zr y:ny

a distribution N: ye T(M)—N, is well defined. Then N is a
non-linear connection in T(M).

The proof is omitted, because it will be easily obtained. The
non-linear connection N as above introduced is called the associated
non-linear connection with I's.

From now on, we shall treat the Finsler bundle F(M) of M,

and first give the following definition.

Definition 3. A vertical connection I’ in F(M) is a distribu
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tion ue F(M)—Tr.C F(M)., such that the restriction I"| F(x) of
I'" to each Finsler subbundle F(x) is a connection in F(x).
Therefore, I'" is a vertical connection, if the following condi-

tions be satisfied:
1) F(M);=r.@F;, at any point u=F(M),

(2) T-nvariant: 7T,r.=r;,, for any g&G and at any u
eF(M).

The above mapping 7T, is a right translation of F(M) by g,
which is obtained from 7 by becoming g=G fixed. We shall give
a differentiable base (B°(e,)), a=1, -+, n, of the vertical connection
I*. For this purpose, we shall first introduce a parallel vector field
P(f) on F, corresponding to f€F. P(f) is induced from a 1-
parameter () group of transformations {s,;} of F, where the mapp-
ing s;, f€F, is the summation fi€ F—f,+ f. Then, a v-basic
vector field B(f) on F(M), corresponding to f< F, is defined by

B'(f)u=10-2(P(f)ww),

at a point #= (Y, z), where [. is the lift to # with respect to I, z
the differential of the admissible mapping .a: F—T(M) obtained
from the mapping @ by becoming a frame 2z fixed, and y is the
characteristic field u=(y,z)e F(M)—z""y=(.a)™'y (2, p. 3]. It will
be obvious that # v-basic vector fields B*(e.), a=1, ---, n, give a base
of I at every point of F(M).

Next, we shall introduce a special vertical connection F'. Since
F(M) is the induced bundle «*L(M ), there is the induced mapp-
ing n.: FIM)—L(M), [(y,z)—2z]. The characteristic field 7, to-
gether with the induced mapping #., gives the diffeomorphism

i=(m, 1) FIM)—L(M)XF, [(y 2)—(zz2"y)],
and its inverse ™' is
™ LIMYXF—-F(M), [(zf)—(zf, 2)].

By means of this identification ¢, a parallel vector field P(f) on F,
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corresponding to fe F, gives a vector field Y(f)=:7(0, P(f)) on
F(M), which is called the induced fundamental vector field, cor-
responding to f. It is obvious that any Y(f) is contained in the
induced vertical subspace Fi={Xe F(M),|n.X=0} of F(M)..

Proposition 2. The induced vertical distribution F': ue F(M)
—F., on F(M) is a vertical connection, and the v-basic vector
field B'( f) with respect to F' is nothing but the above Y(f).

The proof is omitted, tecause it will be easily obtained. It is
remarked that Y (f) is induced from the 1-parameter () group of
transformations {S,;} of F(M), where S,=¢"'-(1,s,)-i. Since the
equation [ Y(f1), Y(f:)]=0, fi, f.€F, will be derived in virtue of
the identification 7, the vertical connection F’ as above obtained
should be called flat.

[3] We are now in a pcsition to intrcduce a concept of Finsler

connections.

Definition 4. A Finsler connection (', N) of M is a pair of
a connection I' in FF(M) and a non-linear connection N in T(M).

Given a Finsler connection (I, N), we obtain the distribution
r*, defined by the equation

r.=1T;, at a point u,

where y=mue T(M), and [/, is the lift to # with respect to the
connection I. It will be easy to show that the above I'" is a ver-
tical connection, which is called the subordinate vertical connection
to(I", N).

Definition 5. A Finsler pair (I'',r*) in F(M) is a pair of
two distributions I': ue F(IM)—ric F(M), and I*: uc F(M)—T},
c F(M)., both on F(M), which satisfies

(1) F(M),=Tipr:apF;, for any ue F(M),
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(2) both of I'* and I'* are T-invariant,

B3) mri=T; y=mu, for any us F(M).

It is clear that the second distribution " of a Finsler pair
(r*, rv) is a vertical connection in F(M).

The following theorem mears that a Finsler connection can be
also defined as a Finsler pair.

Theorem 1. There is a natural one-to-one corrvespondence
between the set of Finsler comnections of M and the set of Finsler
pairs in F(M).

As will be easily verified, the correspondence (I', N)— (I, T")
is given by
r=I,N,, y=mu,
) AURETREY subordinate vertical connection,
while the inverse correspondence (I'*,")—(I',N) is
r.=r.@r.,

N,,:TEJ'Z, uEnfly.

In the following, we shall often express (I'y N)=(I*,1r"), when
(r, N) and (I'*, ") correspond each other by the above rule.

We shall give a differentiable base (B*(e.)), a=1, ---,n, of the
distribution I'*. In order to do this, we first introduce an #h-basic
vector field B"( f), corresponding to f& F, by the equation

B*(f)u=1-1,(zf),

at a point u= (¥, z), where [, and /, are the respective lifts with
respect to I and N. It then follows that » h-basic vector fields
B*(e.), a=1, -, n, give a base of I'*. As a consequence, 2# vector
fields B*(e.), B*(e.,), a=1, -+, n, give a base of the connection I
Let us project a Finsler pair (I'*, ") on the bundle of linear
frames L(M) by means of the induced mapping n.: F(M)— L(M).
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Then, corresponding to any f< F, we obtain two distributions I'¢s
and I'{;, on L(M), such that

r(/)z:ﬂ-’zr;‘, I'ip.=mn.I"y, u=1"z, f)

We are not interested in the latter I'{;,, because it is vertical, that
is, contained in the vertical distribution L°. On the other hand, the
former I'¢, is very important, because it constitutes an F-connection
I'r={I'}, as will be easily shown. This I's is called the subor-
dinate F-connection to the Finsler connection (I, N)=(I"*1").

Definition 6. A Finsler triad (I'r, N, ") of M 1is a triad of
an F-connection I'> in L(M), a non-linear connection N in T (M),

and a vertical connection I'" in F(M).

Then, the following theorem means that a Finsler connection

can be thought of as a Finsler triad.

Theorem 2. There is a natural one-to-one corrvespondence
between the set of Finsler connections of M and the set of Finsler
triads on M.

The correspondence (I N)=(I"*,1r*)—(I'r, N, I'") is given by
J APRETIER subordinate F-connection,
while the inverse correspondence (I'r, N, I)—(I', N)=(I'",T") is
rN={XeFWM).,|lmXeN,, n,XEI'y,, y=mu, f=r(u)}.

[4] We shall give a modern definition of tensor field appearing in
the classical theory of Finsler spaces, whose components are func-
tions not only of point, but also of element of support. Let V be
a vector space and p: G—GL(V) be a representation of G
=GL(n,R) on V. Then, a Finsler tensor field K of p-type is by
definition a V-valued function on F (M), satisfying the equation
K-T,=p(g)K for any gG. If V is the tensorial product
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Fi=FR - QFRQF*X---QF* (space of linear mappings F*X-.- X F*
r N r
X Fx-.+xF—-R) and p is the usual representation, then K is called

of (7, ;)-type.

For a typical example, the characteristic field y is a Finsler
tensor field of (1,0)-type. In order to show another example, we
shall consider the difference between a general vertical connection
" and the vertical flat connection F‘. Then, a Finsler tensor field
C of the adjoint-type is introduced by the equation

1.1 Y(f)=B'(fH)+Z(C(f),

where Z(A), corresponding to A€ L(n, R) (the Lie algebra of
GL(n, R)), is a well-known fundamental vector field, defined by
Z(A),=.TA, .T being the ditferential of the mapping obtained
from T by becoming u€ F(M) fixed. C as thus defined is called
Cartan tensor field of (', N)=(I",1") under consideration. In the
case of famous Finsler connection due to E. Cartan, C is nothing
but the well-known tensor, components of which are Cj.
While the equation

1.2) B'(fHr=f+C 1), CGH=C\or,
will be easily verified in virtue of (1.1), the equation
(1.3) B*"(f)r=D(f)

introduces a new Finsler tensor field D of (1, 1)-type, which is called
the deflection tensor field of (', N). It will be observed that the
deflection tensor D vanishes identically in the case of almost all of
classical Finsler connections.

Finally, let us consider two Finsler connections (I", N) and
(r', N”), and let B*(f), B*(f) and B*(f), B’°(f) be respective
h- and v-basic vector fields. Then, the equations

1.4 B*"(f)=B"(f)+B'(D"(f))+Z(A(f)),
1-5) B"(f)= B'(f)  +Z(A(),
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will be easily derived, and thus we obtain three Finsler tensor fields
D" A" and A"; D" being of (1,1)-type, A", A" being of the adjoint
type.

§2. Homogeneous Finsler connections

Given a Finsler connection (I, N), its torsions T, C, R, P, S*
and its curvatures R? P? S? are introduced by the equations
(2.1) [B*(f1), B*(f2)] =B"(T(f1, f2)) +B*(R'(f1, f2))
+Z(R*( f1, f2)),

(2.2)  [B"f), B (f)]=B"(C(fi, f))+B*(P(f1, f))
+Z(P*(f1, f2)),

(2.3)  [B'(f0), B'(f)]=B"(S'(f1, f2)) + Z(S*(f, f)).

C as appearing in (2.2) is nothing but the Cartan tensor. S! and
S? are the torsion and curvature of the subordinate vertical connec-
tion I'" respectively, and expressed by C as follows.

Sl(fh f2)=C<fl’ fz)_c<f2’ .fl))
S (S, f)=2C(f1, f) —LC(fo, f1) = [C(f), C(f2)],

where the covariant differential operator 4° is the differentiation by

Y(f), that is, £C(fy, f) =Y (f)C(f2).
Next, it follows from (1.1) and (2.2) that

(2.49) [B"(f0), Y(f2l=Y(P'(fi, [2))

+Z(P*(fr, f2) + 4C(S2, f1) —C(P'(S1, f2))),
where the /Z-covariant differential operator 4" is the differentiation
by B'(f), that is, 4'C(fs f1)=B"( f1)C(f:). Further, it follows
from (2.4) and (1.3) that
(2.5) [B"(f), Y()1=B"(P'(f,v)+D(f))

+Z(P*(f, 1) +(LCE) ).

Now, we shall be concerned with the homogeneous property of
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some geometrical objects. A function x on F(M) is called homo-
geneous of degrvee v, if the equation u-.H=a -u holds good for
any «=R*. Next, a tangent vector field- X on F(M) is called
homogeneous of degree 7, if the equation HX=a"-X holds good.
Finally, a distribution D on F(M) is called homogeneous, if D is
H-invariant.

Definition 7. A Finsler connection (I, N) is called homogene-

ous, if ' and N be homogeneous in the respective sense of F(M)
and T (M).

Proposition 3. A necessary and sufficient condition for a
Finsler connection (', N) to be homogeneous is that B*(f) and
B(f) be homogeneous of degree 0 and 1 respectively.

The proof will be easily obtained.

Proposition 4. If a function p on F(M) is homogeneous of
degree v, then B*(f)u is homogeneous of the same degree, pro-
vided that the Finsler connection under consideration be homogene-
ous.

The proof will be easily obtained from Proposition 3. The
following is the well-known Euler’s theorem on homogeneous func-

tions.

Proposition 5. If a function n on F(M) is homogeneous of
degree v, then the equation Y (y)p=r-p holds good.

Proof. Since the induced fundamental vector field Y (f) is
induced from the 1-parameter group of transformations {S,;}, it is
seen that, at a point #=(y, 2),

Y(P)u=lim —-{a(y 19, 2) (3, 2}

—lim - { (148 H() — ()}
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= lim {1+ 8 (0) — ()} =7 (a0,

The following theorem gives the interesting properties of a
homogeneous Finsler connection, although (2) will not need in future.

Theorem 3. The torsion P' and the curvature P* of a
homogeneous Finsler conmnection satisfy

1 P(fir=—D(),

2 P(fir)=—4CGfH)—CDUN.

Proof. We first obtain from (2.4) one of the Ricci’s identities

L(LE)(fo, [)—ACLE) (S, 1)
=LK(P'(f1,f2)) = P*(f1, fHK— (LC(fo [ K+C(P (fu, f)) K

If we put fi=f and f,=7 in the above, it follows that

LEP(S, ) —P(finK—(4CG, fOK+CP(f,r))K
=4(LK) G, fH— L LK) S, 1)
=4 (LKG) () —LKLr(f)—L LK) ().

If K is supposed to be homogeneous of degree 1, it follows from
Propositions 4 and 5 that

L(LK)H)=UEKIS), LULKS))G@)=4K(Sf),
and hence the above equation leads us to

LEP(f, )+ D)~ LC, fOK+CP(f,r))K
=P*(f,nK.

Therefore, the equation (1), together with the above equation, gives
(2). In order to prove (1), it is sufficient to show that [B"(f),
Y ()] is vertical, because of (2.5). Let 2 be any homogeneous
function of degree 1 on T (M), and then g-m, is obviously homo-
geneous of degree 1 on F(M). It then follows from Propositions 4
and 5 that
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(m[B*(f), Y()]n
=B*( )Y@ (wm)) =Y (@) (B (f)(pm:))=0,
from which the equation =, [B*(f), Y(y)]1=0 is derived.

Definition 8. The D-simple Finsler connection (I'', N’) of a
Finsler connection (I", N) is defined by (1.4) and (1.5), where D*
=A"=0 and A*"(f)=—P'(f, ).

The following proposition will be immediately shown from
(1.3), (1.4) and (1.5).

Proposition 6. The D-simple Finsler connection (I, N') of a
Finsler connection (', N) is such that

. (1) N’'=N, (2 D'(H=DHH+P(f, ).

Theorem 4. The deflection tensor D’ of the D-simple Finsler
connection (I', N) of any homogeneous Finsler connection (I', N)
vanishes identically.

This important theorem is a direct result of Theorem 3-(1) and
Proposition 6-(2).

§3. Homogeneous non-linear connections
First of all, we shall consider the differential of the chara-

cteristic field y, the mapping F(M)—F, [(y,2)—z"y].

Proposition 7. The differential of the characteristic field
is given by
za'TX:TﬁX_af'ﬂzX,

where Xe F(M)., and u=1:"(z, f).
Proof. 1t follows from the identification i: F(M)—L(M)X F
and the mapping a: L(M) X F—-T(M) that
mX=ai1X=a(mX, 1 X)=a;,mX+.a rX,
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which proves the proposition.
Let us remember the definition of a Finsler triad (I's, N, I),
where there is not any interrelationship among I'r, N and I'". Now,

a special Finsler triad is required for our purpose.

Definition 9. A Finsler connection (I', N) is called N-simple,
if IV is the associated non-linear connection with the subordinate

F-connection I'r.

A geometrical meaning of the deflection tensor D will be given

by the following.

Theorem 5. A necessary and sufficient condition for a Finsler
connection to be N-simple is that the deflection tensor D vanishes
identically.

Proof. It follows from (1.3) that ¢B"(f)=P(D(f)), and
hence Proposition 7 leads us to

aP(D(f1))=mB"(f1) —a; mB*(f1),

for any f,eF. The proof follows then immediately from the defini-
tion of the subordinate F-connection.

The main result of the present paper is now stated as the
following theorem on a homogeneous non-linear connection.

Theorem 6. Any homogeneous non-linear connection in the
tangent bundle T(M) is the associated ome with an F-connection
in the bundle of linear frames L(M).

Proof. Let N be a given homogeneous non-linear connection
in T(M), and construct a homogeneous Finsler connection (I", N),
combining with NN an arbitrary homogeneous connection I in F(M).
In order to do so, it is enough to observe that the induced connec-
tion I' from a linear connection I" in L(M) by the induced mapp-

ing m: is surely homogeneous, where I' is given by
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r={XeFM).|n.XEl., z2=nu}.

Next, let us construct the D-simple Finsler connection (I, N’) of
the above (I'y N). It then follows from Proposition 6 that N’=N,
and from Theorem 4 that D’=0. Therefore, Theorem 5 leads us
to the conclusion that the connection (I, N’) is N-simple, that is,
the original non-linear connection N is the associated one with the
subordinate F-connection I'r of (I, N').

It should be remarked that a homogeneous non-linear connection
N may be associated with two different F-connections. It is, how-
ever, observed that the above F-connection I': satisfies I'ta,,=1"(s for

any «=R*. In general, we have

Proposition 8. The subordinate F-connection TI'e={'»} 0f a
homogeneous Finsler connection (I', N) satisfies T'wp=Ts for any
feF and any a=R".

Proof. The distribution I, is defined by I, =m.I"tr, where
uw'=i"(z,af )= (2af, 2) =H(2f, 2) =au, u=1"(z, f).
Therefore we see

k h h
r(a/)z:n2rarl:n2'aHI—'u:n2rt:=r(f)z-
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