The influence of small values
 of a holomorphic function on its maximum modulus

By
D. C. Rung*
(Communicated by Professor Kusunoki. November 11, 1968)

1. Introduction

In a recent paper [5] we investigated the possible growth of the maximum modulus of a holomorphic function f defined in the unit disk D if the function tended to zero on certain sequences of Jordan $\operatorname{arcs}\left\{r_{n}\right\}$ in D. These sequences were distinguished by having

$$
\begin{align*}
& \text { i) } \frac{1}{2} \leq r_{n}=\min _{z \in \gamma_{n}}|z| \rightarrow 1, n \rightarrow \infty \text {; } \tag{1.0}\\
& \text { ii) } 0<\varlimsup_{n \rightarrow \infty} H D\left(r_{n}\right) \leq \varlimsup_{n \rightarrow \infty} H D\left(r_{n}\right)<\infty \text {; }
\end{align*}
$$

where $H D\left(\gamma_{n}\right)=\sup \rho(a, b), a, b \in \gamma_{n}, \rho(a, b)$ denoting the hyperbolic distance between a and b. Such a sequence satisfying (1.0) is labeled a $P H D$ sequence. If

$$
R_{n}=\max |z|, z \in_{\gamma_{n}}, n=1,2, \cdots,
$$

then the closed circular sector of $|z| \leq R_{n}$ of minimum angle α_{n} containing r_{n} is denoted by E_{n}. So E_{n} is of the form

$$
0 \leq|z| \leq R_{n}, \theta_{n} \leq \arg z \leq \theta_{n}+\alpha_{n} .
$$

For convenience we suppose $0 \leq \alpha_{n} \leq \pi$, all n. For a $P H D$ sequence

[^0]this is no restriction since necessarily $\alpha_{n} \rightarrow 0, n \rightarrow \infty$. For any α, $\alpha_{n} \leq \alpha<2 \pi, n=1,2, \cdots$, put
\[

$$
\begin{gather*}
F_{n}^{(\alpha)}: 0 \leq|z| \leq R_{n}, \theta_{n}-\left(\frac{\alpha-\alpha_{n}}{2}\right) \leq \arg z \leq \theta_{n}+\left(\frac{\alpha+\alpha_{n}}{2}\right) \tag{1.1}\\
n=1,2, \cdots
\end{gather*}
$$
\]

Now $F_{n}^{(\alpha)}$ is a circular sector of fixed angle opening α containing E_{n} in a symmetric fashion. For any $S \subseteq D$ and holomorphic f let

$$
\mathscr{M}(f, S)=\max \left(\sup _{z \in S} \log |f(z)|, 1\right) .
$$

For completeness we repeat Theorem 1 of [5] on which the present paper depends.

Theorem A. Let f be holomorphic in D and satisfy for some PHD sequence $\left\{r_{n}\right\}$, some finite value w_{0}, and some sequence $\left\{A_{n}\right\}$, $A_{n}>0$,

$$
\begin{equation*}
\left|f(z)-w_{0}\right| \leq \exp \left(\frac{-A_{n}}{1-|z|}\right), \quad z \in_{\gamma_{n}}, \text { all } n . \tag{1.2}
\end{equation*}
$$

If there is a value $\alpha, 0<\alpha<2 \pi$, for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathcal{M}\left(f, F_{n}^{(\alpha)}\right)}{A_{n}}=0 \tag{1.3}
\end{equation*}
$$

(where $F_{n}^{(\alpha)}$ is defined as in (1.1) relative to $\left\{r_{n}\right\}$) then $f=w_{0}$.

2. Behavior of \boldsymbol{f} away from its zeroes

In this note we exhibit a condition under which we can replace the $P H D$ sequence of arcs by a sequence of points. If then (1.2) and (1.3) both hold for this sequence we still are able to conclude Theorem A. That is, we suppose there is sequence $\left\{z_{n}\right\}$ in D, with $\lim _{n \rightarrow \infty}\left|z_{n}\right|=1$, such that for some positive sequence $\left\{A_{n}\right\}$, and some $\left|w_{0}\right|<\infty$,

$$
\begin{equation*}
\left|f\left(z_{n}\right)-w_{0}\right| \leq \exp \frac{-A_{n}}{\left(1-\left|z_{n}\right|\right)}, \quad n=1,2, \cdots \tag{2.0}
\end{equation*}
$$

It is obvious that such a inequality (2.0) is ineffective in influencing
the growth of $|f|$ if either $f\left(z_{n}\right)=w_{0}$, or else z_{n} lies "near" a zero of $f-w_{0}$. In such circumstances (2.0) can be satisfied by a nonconstant f for any sequence $\left\{A_{n}\right\}$ by suitably choosing $\left\{z_{n}\right\}$. So we must stay away from the zeroes of $f-w_{0}$ in the following sense. First set

$$
Z(f)=\{z \in D \mid f(z)=0\} ;
$$

and for any subset $S \subseteq D$, and any $a \in D$, let

$$
\rho(a, S)=\inf \rho(a, s), \quad s \in S .
$$

Then we may define for any $0<\delta<\infty$,

$$
K_{\delta}(f)=\{z \in D \mid \rho(z, Z(f)) \geq \delta\} .
$$

To determine the sets over which we calculate the maximum modulus we proceed as follows. Let $\left\{z_{n}=\left|z_{n}\right| e^{i \theta_{n}}\right\}$ be a sequence with $z_{n} \in K_{\delta}\left(f-w_{0}\right), n=1,2, \cdots,\left|w_{0}\right|<\infty, 0<\delta<\infty$, and $\lim _{n \rightarrow \infty}\left|z_{n}\right|=1$. Define a sequence of positive numbers $\left\{R_{n}\right\}, 0<\left|z_{n}\right|<R_{n}<1$, by $\rho\left(\left|z_{n}\right|, R_{n}\right)=\delta, n=1,2, \cdots$. For any $0<\alpha<2 \pi$, set

$$
G_{n}^{(\alpha)}: 0 \leq|z| \leq R_{n}, \theta_{n}-\frac{\alpha}{2} \leq \arg z \leq \theta_{n}+\frac{\alpha}{2}, \quad n=1,2, \cdots
$$

Note that the sequence of sets $\left\{G_{n}^{(\alpha)}\right\}$ depends on the sequence $\left\{z_{n}\right\}$, and the values δ and α. We will always view these sets in this context.

Theorem 1. Let f be holomorphic and non-constant in D. For some finite value w_{0}, and some $0<\delta<\infty$, let $\left\{z_{n}\right\}$ be a sequence with $z_{n} \in K_{\delta}\left(f-w_{0}\right)$, all n. If

$$
\begin{equation*}
\left|f\left(z_{n}\right)-w_{0}\right| \leqq \exp \left(\frac{-A_{n}}{1-\left|z_{n}\right|}\right), \quad A_{n}>0, \quad n=1,2, \cdots, \tag{2.1}
\end{equation*}
$$

then for any choice of $0<\alpha<2 \pi$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathscr{M}\left(f, G_{n}^{(\alpha)}\right)}{A_{n}}>0 . \tag{2.2}
\end{equation*}
$$

Proof: We suppose (2.2) does not hold and so for some subsequence $\left\{n_{k}=j\right\}$, and some value $0<\alpha_{0}<2 \pi$, we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{\mathscr{M}\left(f, G_{j}^{\left(\alpha_{0}\right)}\right)}{A_{j}}=0 \tag{2.3}
\end{equation*}
$$

Now each of the non-Euclidean disks $N\left(z_{j}, \delta\right)=\left\{z \mid \rho\left(z_{j}, z\right)<\delta\right\}$ contains no zero of $f-w_{0}$. As a result there exists a $P H D$ sequence $\left\{r_{j}\right\}$, with $\gamma_{j} \subseteq N\left(z_{j}, \delta\right)$, all j, and on which

$$
\begin{equation*}
\left|f(z)-w_{0}\right| \leq 2\left|f\left(z_{j}\right)-w_{0}\right|, \quad z \in \gamma_{j}, \quad \text { all } \quad j \cdots \tag{2.4}
\end{equation*}
$$

The existence of such a sequence can be verified by considering the image $N_{j}^{*}=f\left(N\left(z_{j}, \delta\right)\right)$ on the Riemann surface R of f. Choose $0<\eta_{j}<\delta / 2$ such that

$$
\left|f(z)-w_{0}\right| \leq 2\left|f\left(z_{j}\right)-w_{0}\right|, z \in N\left(z_{j}, \eta_{j}\right)
$$

Then select a $z_{j}^{*} \in N\left(z_{j}, \eta_{j}\right)$ for which $f^{\prime}\left(z_{j}^{*}\right) \neq 0$. Let $f\left(z_{j}^{*}\right)=t_{j} e^{i \varphi_{j}}$, and define L_{j} to be the line segment $w=t e^{i \varphi_{j}}, 0 \leq t \leq t_{j}$. If there are no points $w \in L_{j}$ for which $f(z)=w, z \in N\left(z_{j}, \delta\right)$, and $f^{\prime}(z)=0$, then consider the maximal segment of L_{j} which can be lifted into N_{j}^{*} with one endpoint at $f\left(z_{j}^{*}\right) \in N_{j}^{*}$. Call this lifted piece L_{j}^{*}. If there are (a finite number of) points on L_{j} for which f has a zero derivative at the corresponding $z \in N\left(z_{j}, \delta\right)$ we can alter L_{i} slightly to avoid these points and still maintain that the altered $L_{j} \subseteq\left\{|w| \leq t_{j}\right\}$. Consequently the curve γ_{j} in $N\left(z_{j}, \delta\right)$ corresponding to L_{j}^{*} is always a simple continuous curve starting at z_{j}^{*} and extending to the boundary of $N\left(z_{j}, \boldsymbol{\delta}\right)$ for which (2.4) holds. It must extend to the boundary otherwise f would have a zero in $N\left(z_{j}, \delta\right)$. Consequently $\frac{\delta}{2} \leq H D\left(r_{j}\right) \leq 2 \delta$, and so $\left\{r_{j}\right\}$ is the required $P H D$ sequence.

One of the convenient inequalities in non-Euclidean geometry (which is known under various guises, see [4, Lemma 1] for a statement) says that for $z \in N\left(z_{j}, \Delta\right), 0<\Delta<1$
(2.5) $\quad\left(1-\left|z_{j}\right|\right) t_{\Delta} \leq 1-|z| \leq\left(1-\left|z_{j}\right|\right) t_{\Delta}^{-1}, \quad 0<t_{\Delta}<\infty$, all $j \cdots$.

By considering (2.1), (2.4) and (2.5) we have, for $z \in_{\gamma_{j}}$,

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\exp \left(-\frac{t_{5} A_{j}}{2(1-|z|)}\right) \tag{2.6}
\end{equation*}
$$

The influence of small values of a holomorphic function
 217

We will be ready to apply Theorem A as soon as we notice that for j sufficiently large the set $F^{\left(\alpha_{0} / 2\right)}$, defined by (1.1) relative to our just discovered $P H D$ sequence $\left\{\gamma_{j}\right\}$, is contained in $G_{j}^{\left(\alpha_{0}\right)}$. Thus (2.3) implies (1.3) while (1.2) holds because of (2.6). Hence $f=w_{0}$ contrary to hypothesis and so the theorem is proved.

Remark: If $\mathscr{M}(f,|z|<r)$ satisfies, for $0<r<1$, an inequality of the form

$$
\begin{equation*}
\mathscr{M}(f,|z|<r) \leq \frac{A}{(1-r)^{s}}, \quad A \geq 0, s \geq 0, \tag{2.7}
\end{equation*}
$$

we can replace $\mathscr{M}\left(f, G_{n}^{(\alpha)}\right)$ in (2.2) by $\mathscr{M}\left(f, H_{n}^{(\alpha)}\right)$ where

$$
H_{n}^{(\alpha)}: 0 \leq|z| \leq\left|z_{n}\right|, \theta_{n}-\frac{\alpha}{2} \leq \arg z \leq \theta_{n}+\frac{\alpha}{2}, \quad n=1,2, \cdots .
$$

Simply observe that (2.5) and the fact that $\rho\left(\left|z_{n}\right|, R_{n}\right)=\delta, n=1,2$, \cdots, guarantees that the maximum modulus on $G_{n}^{(\alpha)}$ has essentially the same order estimate as on $H_{n}^{(\alpha)}$.

By way of application we have
Corollary 1. If f is a non-constant, normal, holomorphic function in D then for any finite value w_{0}, and any $0<\delta<\infty$,

$$
\begin{equation*}
(1-|z|)^{2} \log \left|f(z)-w_{0}\right| \geq C_{\delta}>-\infty, \quad z \in K_{\delta}\left(f-w_{0}\right) ; \tag{2.8}
\end{equation*}
$$

while if f is bounded (2.8) can be improved to

$$
(1-|z|) \log \left|f(z)-w_{0}\right| \geq C_{\delta}^{*}>-\infty, \quad z \in K_{\delta}\left(f-w_{0}\right) .
$$

Here C_{s} and C_{δ}^{*} also depend on f and w_{0}.
Proof: If f is a normal holomorphic function in D, Hayman showed [2, p. 204] that

$$
\begin{equation*}
\mathscr{M}(f,|z|<r) \leq \frac{Q_{f}}{1-r} . \tag{2.9}
\end{equation*}
$$

For some $0<\delta<\infty$, if there was a sequence $\left\{z_{n}\right\}, z_{n} \in K_{\delta}\left(f-w_{0}\right)$, such that

$$
\begin{equation*}
\left(1-\left|z_{n}\right|\right)^{2} \log \left|f\left(z_{n}\right)-w_{0}\right|=T_{n} \rightarrow-\infty, \quad n \rightarrow \infty, \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|f\left(z_{n}\right)-w_{0}\right|=\exp \left[\left(\frac{-1}{1-\left|z_{n}\right|}\right)\left(\frac{-T_{n}}{1-\left|z_{n}\right|}\right)\right] . \tag{2.11}
\end{equation*}
$$

So that, with $A_{n}=\frac{-T_{n}}{\left(1-\left|z_{n}\right|\right)},(2.9),(2.10)$ and (2.11) imply for any choice of $0<\alpha<2 \pi$

$$
\lim _{n \rightarrow \infty} \frac{\mathscr{M}\left(f, H_{n}^{(\alpha)}\right)}{A_{n}}=0,
$$

which, according to Theorem 1 and the remarks following, is impossible.

The proof in the case f is bounded is equally obvious.
The result for bounded f is reasonably sharp. Form the product f of the Blaschke product $B\left(z,\left\{a_{n}\right\}\right), a_{n}=1-\frac{1}{2^{n}}, n=1,2, \cdots$, and $h(z)=\exp \frac{z+1}{z-1}$. If $\left\{x_{n}\right\}$ is a sequence in $K_{\delta}(f)$ with $0<x_{n}<x_{n+1}<1$, $x_{n} \rightarrow 1, n \rightarrow \infty$, we have

$$
\left(1-x_{n}\right) \log \left|f\left(x_{n}\right)\right| \leq-1, \text { all } n
$$

3. Interpolating sequences

If it happens that the set of zeroes of a Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$ in D form an interpolating sequence then Corollary 1 is not sharp. Cargo [1, Theorem 3.1] in a limited result, and Hoffman [3, Lemma 4.2] in more precise form showed that in such circumstances

$$
\begin{equation*}
\left|B\left(z,\left\{a_{n}\right\}\right)\right| \geq C_{\delta}>0, \quad z \in K_{\delta}(B) . \tag{3.0}
\end{equation*}
$$

We recall that $\left\{z_{n}\right\}$ is an interpolating sequence in D if for any bounded sequence of complex numbers $w=\left\{w_{n}\right\}$, there exists a bounded holomorphic function f_{w} in D with $f_{w}\left(z_{n}\right)=w_{n}$, all n. For a most penetrating analysis of the behavior of a Blaschke product away from its zeroes again see [3, p. 80ff.]. If we take $w_{1} \neq 0, w_{n}=0, n=2,3$, \cdots, then an interpolating sequence must satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty . \tag{3.1}
\end{equation*}
$$

Corollary 1 can be rephrased with an interpolating sequence orientation to show that (3.1) is still true for a sequence satisfying an (apparently) weaker interpolation problem.

Corollary 2. Let $\left\{z_{n}\right\}$ be a sequence in D such that for any sequence of non-zero complex numbers $w=\left\{w_{n}\right\}$, with $w_{n} \rightarrow 0, n \rightarrow \infty$, there is a bounded holomorphic function f_{w} in D such that

$$
\begin{equation*}
f_{w}\left(z_{n}\right)=w_{n}, \quad n=1,2, \cdots \tag{3.2}
\end{equation*}
$$

If $w=\left\{w_{n}\right\}$ is chosen so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-\left|z_{n}\right|\right) \log \left|w_{n}\right|=-\infty, \tag{3.3}
\end{equation*}
$$

then the corresponding f_{w} has a sequence of zeroes $\left\{\zeta_{n}\right\}$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho\left(\zeta_{n}, z_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty \tag{3.5}
\end{equation*}
$$

Proof: According to Corollary 1 if $z_{n} \in K_{\delta}\left(f_{w}\right)$, some $\delta>0$, all n, it cannot happen that both (3.2) and (3.3) hold. Nor, in fact, can (3.2) and (3.3) hold for any subsequence $\left\{z_{n_{k}}\right\}$, satisfying $z_{n_{k}} \in K_{\delta}\left(f_{w}\right)$ so (3.4) is verified. Since $\sum_{n=1}^{\infty}\left(1-\left|\zeta_{n}\right|\right)<\infty$, a glance at (2.5) justifies our claim in (3.5).

References

[1] G. T. Cargo: Normal functions, the Montel property, and interpolation in H^{∞}, Michigan Math. J. 10 (1963), 141-146.
[2] W. K. Hayman: Uniformly normal families, Lectures on functions of a complex variable, Univ. of Michigan Press, Ann Arbor, Michigan, (1955), 199-212.
[3] K. Hoffman: Bounded analytic functions and Gleason parts, Annals of Mathematics (1967), 74-111.
[4] D. C. Rung: The order of certain classes of functions defined in the unit disk, Nagoya Math. J. 26 (1966), 39-52.
[5] D. C. Rung: Behavior of holomorphic functions in the unit disk on arcs of positive hyperbolic diameter, J. Math. Kyoto Univ. 8 (1968), 417-464.

The Pennsylvania State University, U. S. A.

[^0]: * This research was conducted while the author was on sabbatical leave from the Pennsylvania State University, U. S. A. as a Fulbright-Hays lecturer in mathematics at The National Tsing Hua University, Hsinchu, Taiwan, China.

