The influence of small values of a holomorphic function on its maximum modulus

By

D. C. Rung*

(Communicated by Professor Kusunoki, November 11, 1968)

1. Introduction

In a recent paper [5] we investigated the possible growth of the maximum modulus of a holomorphic function f defined in the unit disk D if the function tended to zero on certain sequences of Jordan arcs $\{r_n\}$ in D. These sequences were distinguished by having

(1.0)
i)
$$\frac{1}{2} \leq r_n = \min_{z \in \gamma_n} |z| \to 1, n \to \infty;$$

ii) $0 < \lim_{n \to \infty} HD(\gamma_n) \leq \overline{\lim_{n \to \infty}} HD(\gamma_n) < \infty;$

where $HD(\gamma_n) = \sup \rho(a, b)$, $a, b \in \gamma_n$, $\rho(a, b)$ denoting the hyperbolic distance between a and b. Such a sequence satisfying (1, 0) is labeled a *PHD* sequence. If

$$R_n = \max |z|, z \in \gamma_n, n = 1, 2, \cdots,$$

then the closed circular sector of $|z| \leq R_n$ of minimum angle α_n containing γ_n is denoted by E_n . So E_n is of the form

$$0 \leq |z| \leq R_n, \ \theta_n \leq \arg z \leq \theta_n + \alpha_n.$$

For convenience we suppose $0 \le \alpha_n \le \pi$, all *n*. For a *PHD* sequence

^{*} This research was conducted while the author was on sabbatical leave from the Pennsylvania State University, U. S. A. as a Fulbright-Hays lecturer in mathematics at The National Tsing Hua University, Hsinchu, Taiwan, China.

D. C. Rung

this is no restriction since necessarily $\alpha_n \rightarrow 0$, $n \rightarrow \infty$. For any α , $\alpha_n \leq \alpha < 2\pi$, $n=1, 2, \cdots$, put

(1.1)
$$F_n^{(\alpha)}: 0 \le |z| \le R_n, \ \theta_n - \left(\frac{\alpha - \alpha_n}{2}\right) \le \arg z \le \theta_n + \left(\frac{\alpha + \alpha_n}{2}\right),$$

 $n = 1, 2, \cdots.$

Now $F_n^{(\alpha)}$ is a circular sector of fixed angle opening α containing E_n in a symmetric fashion. For any $S \subseteq D$ and holomorphic f let

$$\mathcal{M}(f,S) = \max(\sup_{z \in S} \log |f(z)|, 1).$$

For completeness we repeat Theorem 1 of [5] on which the present paper depends.

Theorem A. Let f be holomorphic in D and satisfy for some PHD sequence $\{\gamma_n\}$, some finite value w_0 , and some sequence $\{A_n\}$, $A_n > 0$,

(1.2)
$$|f(z)-w_0| \leq \exp\left(\frac{-A_n}{1-|z|}\right), \quad z \in \gamma_n, \ all \ n.$$

If there is a value α , $0 < \alpha < 2\pi$, for which

(1.3)
$$\lim_{n\to\infty}\frac{\mathcal{M}(f, F_n^{(\alpha)})}{A_n} = 0,$$

(where $F_n^{(\alpha)}$ is defined as in (1.1) relative to $\{\gamma_n\}$) then $f = w_0$.

2. Behavior of f away from its zeroes

In this note we exhibit a condition under which we can replace the *PHD* sequence of arcs by a sequence of points. If then (1.2) and (1.3) both hold for this sequence we still are able to conclude Theorem A. That is, we suppose there is sequence $\{z_n\}$ in *D*, with $\lim_{n\to\infty} |z_n| = 1$, such that for some positive sequence $\{A_n\}$, and some $|w_0| < \infty$,

(2.0)
$$|f(z_n) - w_0| \leq \exp \frac{-A_n}{(1 - |z_n|)}, \quad n = 1, 2, \cdots$$

It is obvious that such a inequality (2,0) is ineffective in influencing

the growth of |f| if either $f(z_n) = w_0$, or else z_n lies "near" a zero of $f - w_0$. In such circumstances (2.0) can be satisfied by a nonconstant f for any sequence $\{A_n\}$ by suitably choosing $\{z_n\}$. So we must stay away from the zeroes of $f - w_0$ in the following sense. First set

$$Z(f) = \{z \in D | f(z) = 0\};$$

and for any subset $S \subseteq D$, and any $a \in D$, let

$$\rho(a, S) = \inf \rho(a, s), \quad s \in S.$$

Then we may define for any $0 < \delta < \infty$,

$$K_{\delta}(f) = \{z \in D | \rho(z, Z(f)) \geq \delta\}.$$

To determine the sets over which we calculate the maximum modulus we proceed as follows. Let $\{z_n = |z_n|e^{i\theta_n}\}$ be a sequence with $z_n \in K_{\delta}(f - w_0), n = 1, 2, \dots, |w_0| < \infty, 0 < \delta < \infty$, and $\lim_{n \to \infty} |z_n| = 1$. Define a sequence of positive numbers $\{R_n\}, 0 < |z_n| < R_n < 1$, by $\rho(|z_n|, R_n) = \delta, n = 1, 2, \dots$. For any $0 < \alpha < 2\pi$, set

$$G_n^{(\alpha)}: 0 \leq |z| \leq R_n, \ \theta_n - \frac{\alpha}{2} \leq \arg z \leq \theta_n + \frac{\alpha}{2}, \ n = 1, 2, \cdots$$

Note that the sequence of sets $\{G_n^{(\alpha)}\}$ depends on the sequence $\{z_n\}$, and the values δ and α . We will always view these sets in this context.

Theorem 1. Let f be holomorphic and non-constant in D. For some finite value w_0 , and some $0 < \delta < \infty$, let $\{z_n\}$ be a sequence with $z_n \in K_{\delta}(f - w_0)$, all n. If

(2.1)
$$|f(z_n) - w_0| \leq \exp\left(\frac{-A_n}{1 - |z_n|}\right), A_n > 0, n = 1, 2, \cdots,$$

then for any choice of $0 < \alpha < 2\pi$,

(2.2)
$$\lim_{n\to\infty}\frac{\mathcal{M}(f,G_n^{(\alpha)})}{A_n}>0.$$

Proof: We suppose (2.2) does not hold and so for some subsequence $\{n_k=j\}$, and some value $0 < \alpha_0 < 2\pi$, we have

(2.3)
$$\lim_{j\to\infty}\frac{\mathcal{M}(f,G_j^{(\alpha_0)})}{A_j}=0.$$

Now each of the non-Euclidean disks $N(z_i, \delta) = \{z \mid \rho(z_i, z) < \delta\}$ contains no zero of $f - w_0$. As a result there exists a *PHD* sequence $\{\gamma_i\}$, with $\gamma_i \subseteq N(z_i, \delta)$, all *j*, and on which

$$(2.4) |f(z) - w_0| \leq 2|f(z_j) - w_0|, \quad z \in \gamma_j, \quad all \quad j \cdots .$$

The existence of such a sequence can be verified by considering the image $N_i^* = f(N(z_i, \delta))$ on the Riemann surface R of f. Choose $0 < \eta_j < \delta/2$ such that

$$|f(z) - w_0| \leq 2|f(z_j) - w_0|, z \in N(z_j, \eta_j).$$

Then select a $z_i^* \in N(z_i, \eta_i)$ for which $f'(z_i^*) \neq 0$. Let $f(z_i^*) = t_i e^{i\varphi_i}$, and define L_i to be the line segment $w = te^{i\varphi_i}$, $0 \le t \le t_i$. If there are no points $w \in L_j$ for which f(z) = w, $z \in N(z_j, \delta)$, and f'(z) = 0, then consider the maximal segment of L_i which can be lifted into N_i^* with one endpoint at $f(z_i^*) \in N_i^*$. Call this lifted piece L_i^* . If there are (a finite number of) points on L_j for which f has a zero derivative at the corresponding $z \in N(z_j, \delta)$ we can alter L_j slightly to avoid these points and still maintain that the altered $L_j \subseteq \{|w| \le t_j\}$. Consequently the curve γ_i in $N(z_i, \delta)$ corresponding to L_i^* is always a simple continuous curve starting at z_i^* and extending to the boundary of $N(z_i, \delta)$ for which (2.4) holds. It must extend to the boundary otherwise f would have a zero in $N(z_i, \delta)$. Consequently $\frac{\delta}{2} \leq HD(\gamma_i) \leq 2\delta$, and so $\{\gamma_i\}$ is the required *PHD* sequence.

One of the convenient inequalities in non-Euclidean geometry (which is known under various guises, see [4, Lemma 1] for a statement) says that for $z \in N(z_i, \Delta)$, $0 < \Delta < 1$

$$(2.5) \qquad (1-|z_{j}|)t_{d} \leq 1-|z| \leq (1-|z_{j}|)t_{d}^{-1}, \quad 0 < t_{d} < \infty, \quad all \quad j \cdots.$$

By considering (2.1), (2.4) and (2.5) we have, for $z \in \gamma_i$,

(2.6)
$$|f(z) - w_0| < \exp\left(-\frac{t_{\delta}A_j}{2(1-|z|)}\right).$$

We will be ready to apply Theorem A as soon as we notice that for j sufficiently large the set $F^{(\alpha_0/2)}$, defined by (1.1) relative to our just discovered *PHD* sequence $\{r_j\}$, is contained in $G_j^{(\alpha_0)}$. Thus (2.3) implies (1.3) while (1.2) holds because of (2.6). Hence $f = w_0$ contrary to hypothesis and so the theorem is proved.

Remark: If $\mathcal{M}(f, |z| < r)$ satisfies, for 0 < r < 1, an inequality of the form

(2.7)
$$\mathcal{M}(f, |z| < r) \leq \frac{A}{(1-r)^s}, A \geq 0, s \geq 0,$$

we can replace $\mathcal{M}(f, G_n^{(\alpha)})$ in (2.2) by $\mathcal{M}(f, H_n^{(\alpha)})$ where

$$H_n^{(\alpha)}: 0 \leq |z| \leq |z_n|, \ \theta_n - \frac{\alpha}{2} \leq \arg z \leq \theta_n + \frac{\alpha}{2}, \quad n = 1, 2, \cdots.$$

Simply observe that (2.5) and the fact that $\rho(|z_n|, R_n) = \delta$, $n=1, 2, \dots$, guarantees that the maximum modulus on $G_n^{(\alpha)}$ has essentially the same order estimate as on $H_n^{(\alpha)}$.

By way of application we have

Corollary 1. If f is a non-constant, normal, holomorphic function in D then for any finite value w_0 , and any $0 < \delta < \infty$,

(2.8)
$$(1-|z|)^2 \log |f(z)-w_0| \ge C_{\delta} > -\infty, z \in K_{\delta}(f-w_0);$$

while if f is bounded (2.8) can be improved to

$$(1-|z|)\log|f(z)-w_0|\geq C_{\delta}^*>-\infty, \quad z\in K_{\delta}(f-w_0).$$

Here C_{s} and C_{s}^{*} also depend on f and w_{0} .

Proof: If f is a normal holomorphic function in D, Hayman showed [2, p. 204] that

(2.9)
$$\mathcal{M}(f, |z| < r) \leq \frac{Q_f}{1-r}.$$

For some $0 < \delta < \infty$, if there was a sequence $\{z_n\}, z_n \in K_{\delta}(f - w_0)$, such that

$$(2.10) \qquad (1-|z_n|)^2 \log |f(z_n)-w_0| = T_n \to -\infty, \quad n \to \infty,$$

then

D. C. Rung

(2.11)
$$|f(z_n) - w_0| = \exp\left[\left(\frac{-1}{1-|z_n|}\right)\left(\frac{-T_n}{1-|z_n|}\right)\right].$$

So that, with $A_n = \frac{-T_n}{(1 - |z_n|)}$, (2.9), (2.10) and (2.11) imply for any choice of $0 < \alpha < 2\pi$

$$\lim_{n\to\infty}\frac{\mathcal{M}(f,H_n^{(\alpha)})}{A_n}=0,$$

which, according to Theorem 1 and the remarks following, is impossible.

The proof in the case f is bounded is equally obvious.

The result for bounded f is reasonably sharp. Form the product f of the Blaschke product $B(z, \{a_n\}), a_n = 1 - \frac{1}{2^n}, n = 1, 2, \cdots$, and $h(z) = \exp \frac{z+1}{z-1}$. If $\{x_n\}$ is a sequence in $K_{\delta}(f)$ with $0 < x_n < x_{n+1} < 1, x_n \rightarrow 1, n \rightarrow \infty$, we have

$$(1-x_n)\log|f(x_n)|\leq -1$$
, all n .

3. Interpolating sequences

If it happens that the set of zeroes of a Blaschke product $B(z, \{a_n\})$ in D form an interpolating sequence then Corollary 1 is not sharp. Cargo [1, Theorem 3.1] in a limited result, and Hoffman [3, Lemma 4.2] in more precise form showed that in such circumstances

$$(3.0) \qquad |B(z, \{a_n\})| \geq C_{\delta} > 0, \quad z \in K_{\delta}(B).$$

We recall that $\{z_n\}$ is an interpolating sequence in D if for any bounded sequence of complex numbers $w = \{w_n\}$, there exists a bounded holomorphic function f_w in D with $f_w(z_n) = w_n$, all n. For a most penetrating analysis of the behavior of a Blaschke product away from its zeroes again see [3, p. 80ff.]. If we take $w_1 \neq 0$, $w_n = 0$, n = 2, 3, \cdots , then an interpolating sequence must satisfy

$$(3.1) \qquad \qquad \sum_{n=1}^{\infty} (1-|z_n|) < \infty.$$

218

Corollary 1 can be rephrased with an interpolating sequence orientation to show that (3.1) is still true for a sequence satisfying an (apparently) weaker interpolation problem.

Corollary 2. Let $\{z_n\}$ be a sequence in D such that for any sequence of non-zero complex numbers $w = \{w_n\}$, with $w_n \rightarrow 0$, $n \rightarrow \infty$, there is a bounded holomorphic function f_w in D such that

$$(3.2) f_w(z_n) = w_n, \quad n = 1, 2, \cdots.$$

If $w = \{w_n\}$ is chosen so that

$$(3.3) \qquad \qquad \lim_{n \to \infty} (1 - |z_n|) \log |w_n| = -\infty,$$

then the corresponding f_{w} has a sequence of zeroes $\{\zeta_{v}\}$ satisfying

$$(3.4) \qquad \qquad \lim \rho(\zeta_n, z_n) = 0$$

Consequently

$$(3.5) \qquad \qquad \sum_{n=1}^{\infty} (1-|z_n|) < \infty.$$

Proof: According to Corollary 1 if $z_n \in K_{\delta}(f_w)$, some $\delta > 0$, all n, it cannot happen that both (3.2) and (3.3) hold. Nor, in fact, can (3.2) and (3.3) hold for any subsequence $\{z_{n_k}\}$, satisfying $z_{n_k} \in K_{\delta}(f_w)$ so (3.4) is verified. Since $\sum_{n=1}^{\infty} (1 - |\zeta_n|) < \infty$, a glance at (2.5) justifies our claim in (3.5).

References

- G. T. Cargo: Normal functions, the Montel property, and interpolation in H[∞], Michigan Math. J. 10 (1963), 141-146.
- [2] W. K. Hayman: Uniformly normal families, Lectures on functions of a complex variable, Univ. of Michigan Press, Ann Arbor, Michigan, (1955), 199-212.
- [3] K. Hoffman: Bounded analytic functions and Gleason parts, Annals of Mathematics (1967), 74-111.
- [4] D. C. Rung: The order of certain classes of functions defined in the unit disk, Nagoya Math. J. 26 (1966), 39-52.
- [5] D. C. Rung: Behavior of holomorphic functions in the unit disk on arcs of positive hyperbolic diameter, J. Math. Kyoto Univ. 8 (1968), 417-464.

THE PENNSYLVANIA STATE UNIVERSITY, U.S.A.