Some results on PL-cobordism

By
Franklin P. Peterson ${ }^{1)}$
Dedicated to Prof. Atuo Komatu on his sixtieth birthday
(Communicated by Professor H. Toda, November 9, 1968)

1. Introduction

In this paper we will use the results of Sullivan [10], Stasheff [9], and Peterson and Toda [8] concerning the classifying spaces $B S P L$ and $B S F$ to obtain some further results concerning $H^{*}(B S P L)^{2)}$ and the p-torsion in $\Omega_{*}^{P L}$, the oriented $P L$-cobordism ring. Since some of these results are computational in nature, we will often only give an outline of the proof.

Let $J_{P L}: B S P L \rightarrow B S F$ be the natural map. Let $q_{i} \in H^{i r}(B S F)$ be the Wu class ($r=2 p-2$ throughout). Our first main result is that $J_{P L}^{*}\left(\beta q_{i}\right) \neq 0$ if $i \geq p+1$. (It is easy to show that $J_{P L}^{*}\left(\beta q_{i}\right)=0$ if $i \leq p$). Our other main result is a computation of the p-torsion of $\Omega_{*}^{P L}$ in dimensions $\leq p^{2} r$. In particular, we show that there is a $P L$-manifold M of dimension $(2 p+1) r-1$ of order p^{2} in $\Omega_{*}^{P L}$ such that $p M$ is not detected by any ordinary characteristic numbers. Finally, we make a few conjectures concerning $H^{*}(M S P L)$.

2. $H^{*}(B S P L)$

Sullivan [10] has proved that $B S P L$ is of the same $\bmod p$ homotopy type as $B S O \times B$ Coker J, where B Coker J is a space

[^0]such that $\pi_{*}(B$ Coker $J)=p$-torsion of
$$
\operatorname{Coker}\left(J: \pi_{*}(B S O) \rightarrow \pi_{*}(B S F)\right)
$$

The proof of this has not appeared so we make a few remarks on the proof. Sullivan shows that there exists a map $B S P L \rightarrow B S O$ which is onto $\bmod p . \quad B$ Coker J is defined to be the fibre of this map. It is known (e.g. by Adams, Anderson, Peterson and Sullivan) that $B S O$ is of the same mod p homotopy type as $Y \times Y^{\prime}$, where $\pi_{i}(Y)=\left\{\begin{array}{ll}Z & i \equiv 0(r) \\ 0 & \text { otherwise }\end{array}\right.$ and $Y^{\prime}=\prod_{i-1}^{\frac{p-1}{2}-1} \Omega^{1 i}(Y)$. Also, Sullivan [11] proves that $F / P L_{\tilde{p}} B S O$. Map $B S O \times B$ Coker $J \rightarrow B S P L$ as follows: $B S O \times B$ Coker $J \rightarrow Y \times Y^{\prime} \times B$ Coker $\quad J \rightarrow B S P L \times F / P L \times B$ Coker $\quad J$ $\rightarrow B S P L \times B S P L \times B S P L \rightarrow B S P L$ and the composition is a homotopy equivalence. Note that $B S O \times \mathrm{pt} . \rightarrow B S P L$ is not the usual map of $B S O \rightarrow B S P L$. Also, $H^{*}(B$ Coker $J)$ has a Z_{p}-basis, in dimensions $\leq 2 p r-2$ consisting of $\bar{e}_{1}, \beta \bar{e}_{1}, \mathscr{P}^{1} \beta \bar{e}_{1}$ and $\beta \mathscr{P}^{1} \beta \bar{e}_{1}$, by direct computation, where \bar{e}_{1} is the image under B Coker $J \xrightarrow{j} B S P L \xrightarrow{J_{P L}} B S F$ of $e_{1} \in H^{p r-1}(B S F)$.

Theorem 2.1. $j^{*} J_{P L}^{*}\left(q_{p}\right)=\mu \beta \bar{e}_{1}$, where $\mu \not \equiv 0(p)$.
Proof. Let $f: S^{p r-1} \rightarrow B$ Coker J be a map corresponding to β_{1} in $\pi_{p r-2}(S)$. Let $g: S^{p r-1} \cup_{p} e^{p r} \rightarrow B$ Coker J be an extension of f. Let $\Phi: \operatorname{Ker}\left(2 \mathscr{P}^{2} \beta-\beta \mathcal{P}^{1}\right) \rightarrow$ Coker \mathscr{P}^{p-2} be an unstable secondary operation defined on classes of dimenion r by the relation

$$
\mathscr{P}^{p-2}\left(2 \mathcal{P}^{1} \beta-\beta \mathscr{P}^{1}\right)=-2 \mathscr{P}^{p-1} \beta-\beta \mathcal{P}^{p-1}-\binom{p-2}{p-3} \mathscr{P}^{p-1} \beta=-\beta \mathcal{P}^{p-1}
$$

which is zero on classes of dimension $\leq r$. In the first lemma of §6 of 19], Stasheff shows the following relation in $H^{\text {pr }}(B S F)$: one can choose \varnothing such that $q_{p}=\lambda D\left(q_{1}\right)+\mu \beta e_{1}$, where $\lambda \equiv 0(p)$. Clearly, $g^{*} j^{*} J_{P L}^{*}\left(\Phi\left(q_{1}\right)\right)=0$ with zero indeterminacy. To show $\mu \not \equiv 0(p)$, it is enough to show $g^{*} j^{*} J_{P L L}^{*}\left(q_{p}\right) \neq 0$. Let X be the Thom space of $J_{P L} j g: S^{p r-1} \bigcup_{p} e^{p r} \rightarrow B S F(N)$. Then $\quad X=S^{N} \bigcup_{h} e^{N+p r-1} \cup e^{N+p r}, \quad$ and $[h]=\beta_{1}$ (see proposition 4.5 of [13]). By the main result of [3],
on $H^{N}(Y), \mathscr{P}^{\rho}=\Sigma a_{i} \Phi_{i}+\mu \beta \Psi$, where Φ_{i} and Ψ are secondary operations, $\mu \not \equiv 0(p), \operatorname{dim} a_{i}>1$, and Ψ detects β_{1}. Thus, in $H^{*}(X)$, we have $\mathscr{P}^{p}(U)=g^{*} j^{*} J_{P L}^{*}\left(q_{p}\right) \cdot U=\mu \beta \Psi(U)=\mu g^{*}\left(\beta \bar{e}_{1}\right) \cdot U$ which proves the theorem.

Corollary 2.2. $J_{P L}^{*}\left(\beta q_{p+1}\right) \neq 0$.
Proof. By theorem 2.1, $j^{*} J_{P L}^{*}\left(q_{p}\right)=\bar{e}_{1}$. But $\beta \mathcal{P}^{1} q_{p}=\beta q_{p+1}-\beta q_{1}$. $q_{p}-q_{1} \cdot \beta q_{p}$, hence $j^{*} J_{P L}^{*}\left(\beta q_{p+1}\right)=\mu \beta \mathcal{\mathcal { P } ^ { 1 }}{ }^{1} \bar{e}_{1}+0=\mu \beta \mathcal{P}^{1} \beta \bar{e}_{1} \neq 0$ as $J_{P L}^{*}\left(\beta q_{1}\right)=0$ and so $J_{P L}^{*}\left(\beta q_{i}\right)=0, i \leq p$ by the relation $\mathcal{P}^{1} \beta q_{i}=i \beta q_{i+1}-q_{1} \beta q_{i}$ (see [9]).

Corollary 2.3. $J_{P L}^{*}\left(\beta q_{i}\right) \neq 0$ if $i \geq p+1$.
Proof. Let $\psi: H^{*}(B S P L) \rightarrow H^{*}(B S P L) \otimes H^{*}(B S P L)$ be the diagonal map. Since $\psi\left(q_{i}\right)=\Sigma q_{j} \otimes q_{i-j}$, the corollary follows by induction using corollary 2.2.

In preparation for the next section, we note the following corollary of 2.2. Let $\theta: \mathcal{A} \rightarrow H^{*}(M S P L)$ be defined by $\theta(a)=a(U)$. One might conjecture that $\theta\left(Q_{i}\right)=0$, where Q_{i} are the Milnor elements [6]. $\theta\left(Q_{0}\right)=Q_{0}(U)=0$ and $\theta\left(Q_{1}\right)=J_{P L}^{*}\left(\beta q_{1}\right) \cdot U=0$.

Corollary 2.4. $\quad \theta\left(Q_{2}\right) \neq 0$.
Proof. By proposition 3.1 of $[8], \theta\left(Q_{2}\right)=J_{P L}^{*}\left(\lambda \beta q_{p+1}\right) \cdot U$ with $\lambda \not \equiv 0$. Now apply corollary 2.2.

3. $\boldsymbol{\Omega}_{*}^{P L}$

In this section we state our results on $\Omega_{*}^{P L}$. We first note that corollary 2.2 shows that the first lemma on p. 32 of [12] is incorrect, so the calculations of the 3 -torsion of $\Omega_{*}^{P L}$ in [12] are incorrect. However, the answers in [12] are correct.

Peterson and Toda [8] have proved $H^{*}(B S F) \approx Z_{p}\left[q_{i}\right] \otimes E\left(\beta q_{i}\right)$ $\otimes C$, where C is ($p r-2$)-connected. In the range we will work in it is not difficult to show that $H^{*}(B$ Coker $J) \approx C$ as an algebra over \mathcal{A}. In fact, one conjectures that this is true in all dimensions.
(Note however that theorem 2.1 shows that the map $J_{P L}^{*}: Z_{p}\left[q_{i}\right]$ $\otimes E\left(\beta q_{i}\right) \otimes C \rightarrow H^{*}(B S O) \times H^{*}(B$ Coker $J)$ is not as simple as one might expect.) Furthermore, Stasheff [9] has computed C explicitly in dimensions $<\left(p^{2}+1\right) r-1$ and has shown the following result. ${ }^{3)}$

Theorem. 3. 1. In dim. $<\left(p^{2}+1\right) r-1, C$ is a free commutative algebra with truncation of height p on generators $\left\{a\left(e_{1}\right)\right\}$, where
 and $e_{2}, \beta e_{2}$, and $\beta_{2}\left(e_{1} \cdot\left(\beta e_{1}\right)^{2}\right)$, where $e_{2} \in C^{p 2 r-1}$ and $e^{r} \in C^{p r-1}$.

Sullivan [10] shows that the spliting $B S P L_{\tilde{p}} B S O \times B$ Coker J respects the universal bundle and hence $M S P L_{p} M S O \wedge M$ Coker J. (This is not hard when $p=3$, but more difficult if $p>3$.) Hence, $H^{*}(M S P L) \approx H^{*}(M S O) \otimes H^{*}(M$ Coker $J)$. To compute $\pi_{*}(M S P L)$ $\approx \Omega_{*}^{P L}$ (by Williamson [12]), we wish to compute $H^{*}(M S P L)$ as a module over \mathcal{A} and apply the Adams spectral sequence. Now $H^{*}(M S O)=\Sigma^{\prime} \mathcal{A}($ see $[1])$, where ${ }^{\prime} \mathcal{A}=\mathcal{A} / \mathcal{A} \bar{E}$, and $E=E\left(Q_{0}, Q_{1}, Q_{2}\right.$, \cdots) is the exterior algebra on the Milnor elements $Q_{1} \in \mathcal{A}^{(p i-1+\cdots+p+1) r+1}$. The results of [1] show that the \mathcal{A}-module structure of ' $\mathcal{A} \otimes N$ depends only on the E-module structure of N and further that $\operatorname{Ext} \mathcal{A}\left({ }^{\prime} \mathcal{A} \otimes N, Z_{p}\right) \approx \operatorname{Ext}_{E}\left(N, Z_{p}\right)$. Hence we must compute $H^{*}(M$ Coker J) as an E-module. Corollary 2.4 shows that $Q_{2}(U)=\mu \beta \mathcal{P}^{1} \beta \bar{e}_{1}$ $\cdot U$, with $\mu \not \equiv 0(p)$. Using this result, theorem 3.1, and direct computation, we obtain the following theorem.

Theorem 3.2. In dimensions $<\left(p^{2}+1\right) r-1$, as module over $\mathcal{A}, H^{*}(M S P L)$ is isomorphic to a direct sum of copies of a module M plus copies of $\mathcal{A} / \mathcal{A} Q_{0}$ plus a free module, where M has four generators, $\quad \operatorname{dim} X_{0}=0, \quad \operatorname{dim} X_{1}=p r-1, \quad \operatorname{dim} X_{2}=2 p r-1 \quad \operatorname{dim} X_{3}$ $=(2 p+1) r-1, \quad$ with relations $\quad Q_{0}\left(X_{0}\right)=0, \quad Q_{1}\left(X_{0}\right)=0, \quad Q_{2}\left(X_{0}\right)$ $=Q_{0} Q_{1}\left(X_{1}\right)$, and $Q_{0}\left(X_{3}\right)+Q_{1}\left(X_{2}\right)+Q_{2}\left(X_{1}\right)=0$. Let $p=3$ for convenience in stating specific results. Let $\left\{y_{\alpha} \cdot U\right\}$ be an 'A-basis for $H^{*}(M S O)$. Then the generators for the modules M are

[^1]quadruples $\left(X_{0}=y_{\alpha} \cdot U, X_{1}=y_{\alpha} \cdot e_{1} \cdot U, X_{2}=y_{\alpha} \cdot\left(e_{1} \cdot \beta e^{\mathrm{I}}-\mathscr{P}^{3} e_{1}\right) \cdot U, X_{3}\right.$ $\left.=y_{\alpha} \cdot\left(\mathscr{P}^{4} e_{1}-e_{1} \cdot \mathscr{P}^{1} \beta e_{1}\right) \cdot U\right)$, the generators for copies of $\mathcal{A} / \mathcal{A} Q_{0}$ are $e_{1}\left(\beta e_{1}\right)^{2} \cdot U$ and $\beta_{2}\left(e_{1} \cdot\left(\beta e_{1}\right)^{2} \cdot U\right)$, and generators for copies of \mathcal{A} are $\mathscr{P}^{3} e_{1} \cdot U, \mathscr{P}^{4} e_{1} \cdot U, e_{1} \cdot \mathscr{P}^{3} e_{1} \cdot U, e_{2} \cdot U, e_{1} \cdot \beta \mathcal{P}^{3} e_{1} \cdot U$, and $e_{1} \cdot \mathscr{P}^{4} e_{1} \cdot U$.

It is not difficult to construct Ext $\mathcal{A}\left(H^{*}(M S P L), Z_{p}\right)$ and to note that all differentials must be zero for dimensional reasons in the range of dimensions under discussion except a differential from $t-s=36$ to $t-s=35$. From this we obtain the following theorem.

Theorem 3.3. In dimensions $<\left(p^{2}+1\right) r-1$, we have that ($\Omega_{*}^{P L} /$ torsion) $\otimes Z_{p}$ is a polynomial ring. Let $p=3$ as above. In dimensions <39, the 3 -torsion of $\Omega_{*}^{P L}$ is given by the following table:

Generators	Dimension	Order	Detected by
$M_{\alpha} \times M^{11}$	$11+\operatorname{dim} M_{\alpha}$	3	$y_{\alpha} \cdot e_{1}$
$M_{\alpha} \times M_{1}^{23}$	$23+\operatorname{dim} M_{\alpha}$	3	$y_{\alpha} \cdot \mathscr{P}^{3} e_{1}$
$M_{\alpha} \times M_{2}^{28}$	$23+\operatorname{dim} M_{\alpha}$	3	$y_{\alpha} \cdot e_{1} \cdot \beta e_{1}$
$M_{\alpha} \times M_{1}^{27}$	$27+\operatorname{dim} M_{\alpha}$	9	$y_{\alpha} \cdot\left(\mathscr{P}^{4} e_{1}-e_{1} \cdot \mathscr{P}^{1} \beta e_{1}\right)$
$M_{\alpha} \times M_{2}^{27}$	$27+\operatorname{dim} M_{\alpha}$	3	$y_{\alpha} \cdot \mathscr{P}^{4} e_{1}$
$M^{8^{4}}$	34	3	$e_{1} \cdot \mathscr{P}^{3} e_{1}$
M_{1}^{35}	35	3	e_{2}
M_{2}^{35}	35	3	$e_{1} \cdot \beta \mathscr{P}^{3} e_{1}$
M_{3}^{35}	35	9	$e_{1} \cdot\left(\beta e_{1}\right)^{2}$
M^{38}	38	3	$e_{1} \cdot \mathscr{P}^{4} e_{1}$

Here M_{α} are elements in $\Omega_{*}^{s o}$ detected by y_{x}. The dimensions such M_{α} appear in are $0,8,12,16,20,24,24,24$ in the range under discussion.

Easy computation shows that $e_{1} \cdot\left(\beta e_{1}\right)^{2}$ gives an element of order 9 in $H^{35}\left(M S P L ; Z_{q}\right)$ which detects all multiples of M_{3}^{35}. However $\mathscr{P}^{4} e_{1}-e_{1} \cdot \mathscr{P}^{1} \beta e_{1}$ is only of order 3 and we have the following corollary.

Corollary 3.4. In dimensions ≤ 26, all elements in $\Omega_{*}^{P L}$ are detected by ordinary characteristic classes. There is an M_{1}^{27} of
order 9 such that $3 M_{1}^{27}$ is not detected by an ordinary characteristic class.

Proof. Since all elements of 2 -torsion are detected by ordinary characteristic classes [2], just look at the above table.

Bibliography

[1] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, "Pin Cobordism and Related Topics", to appear.
[2] W. Browder, A. Liulevicius and F. P. Peterson, "Cobordism Theories", Ann. of Math., 84 (1966), 91-101.
[3] A. Liulevicius, "The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations", Memoirs of the A.M.S., No. 42, 1962.
[4] J. P. May, to appear.
[5] R. J. Milgram, to appear.
[6] J. W. Milnor, "The Steenrod Algebra and Its Dual", Ann. of Math., 67 (1958), 150-171.
[7] J, W. Milnor, "On the Cobordism Ring Ω_{4} and a Complex Analogue", Amer. J. Math., 82 (1960), 505-521.
[8] F. P. Peterson and H. Toda, "On the Structure of $H^{*}\left(B S F ; Z_{p}\right)$ ", J. of Math. of Kyoto Univ., 7 (1967), 113-121.
[9] J. Stasheff, "More Characteristic Classes for Spherical Fibre Spaces", Comm. Math. Helv., 43 (1968), 78-86.
[10] D. Sullivan, to appear.
[11] D. Sullivan, to appear.
[12] R. E. Williamson "Cobordism of Combinatorial Manifolds"" Ann. of Math., 83 (1966), 1-33.
[13] S. Gitler and J. Stasheff, "The First Exotic Class of BF", Topology, 4 (1965), 257-266.
M.I.T. and Kyoto University

[^0]: 1) Partially supported by a Fulbright Fellowship.
 2) All cohomology groups in this paper have coefficients Z_{p}, p an odd prime, unless otherwise stated.
[^1]: 3) Recently, May [4] and Milgram [5] have made great progress towards determining $H^{*}(B S F)$ and one hopes that the results in this section can be generalized.
