Some results on PL-cobordism

By

Franklin P. PETERSON¹⁾

Dedicated to Prof. Atuo Komatu on his sixtieth birthday

(Communicated by Professor H. Toda, November 9, 1968)

1. Introduction

In this paper we will use the results of Sullivan [10], Stasheff [9], and Peterson and Toda [8] concerning the classifying spaces BSPL and BSF to obtain some further results concerning $H^*(BSPL)^{2}$ and the *p*-torsion in \mathcal{Q}_*^{PL} , the oriented *PL*-cobordism ring. Since some of these results are computational in nature, we will often only give an outline of the proof.

Let $J_{PL}:BSPL \rightarrow BSF$ be the natural map. Let $q_i \in H^{ir}(BSF)$ be the Wu class (r=2p-2 throughout). Our first main result is that $J_{PL}^*(\beta q_i) \neq 0$ if $i \geq p+1$. (It is easy to show that $J_{PL}^*(\beta q_i) = 0$ if $i \leq p$). Our other main result is a computation of the *p*-torsion of \mathscr{Q}_*^{PL} in dimensions $\leq p^2 r$. In particular, we show that there is a *PL*-manifold *M* of dimension (2p+1)r-1 of order p^2 in \mathscr{Q}_*^{PL} such that pM is not detected by any ordinary characteristic numbers. Finally, we make a few conjectures concerning $H^*(MSPL)$.

2. $H^*(BSPL)$

Sullivan [10] has proved that BSPL is of the same mod p homotopy type as $BSO \times BCoker J$, where B Coker J is a space

¹⁾ Partially supported by a Fulbright Fellowship.

²⁾ All cohomology groups in this paper have coefficients Z_p , p an odd prime, unless otherwise stated.

F. P. Peterson

such that $\pi_*(BCoker \ J) = p$ -torsion of

 $\operatorname{Coker}(J:\pi_*(BSO) \rightarrow \pi_*(BSF)).$

The proof of this has not appeared so we make a few remarks on the proof. Sullivan shows that there exists a map $BSPL \rightarrow BSO$ which is onto mod p. BCoker J is defined to be the fibre of this map. It is known (e.g. by Adams, Anderson, Peterson and Sullivan) that BSO is of the same mod p homotopy type as $Y \times Y'$, where $\pi_i(Y) = \begin{cases} Z \ i \equiv 0(r) \\ 0 \ otherwise \end{cases}$ and $Y' = \prod_{i=1}^{p-1-1} \mathcal{Q}^{i_i}(Y)$. Also, Sullivan [11] proves that $F/PL_p BSO$. Map $BSO \times B$ Coker $J \rightarrow BSPL$ as follows: $BSO \times B$ Coker $J \rightarrow Y \times Y' \times B$ Coker $J \rightarrow BSPL \times F/PL \times B$ Coker $J \rightarrow BSPL \times BSPL \times BSPL \times BSPL \rightarrow BSPL$ and the composition is a homotopy equivalence. Note that $BSO \times pt \rightarrow BSPL$ is not the usual map of $BSO \rightarrow BSPL$. Also, $H^*(B$ Coker J) has a Z_p -basis, in dimensions $\leq 2pr-2$ consisting of \overline{e}_1 , $\beta \overline{e}_1$, $\mathcal{P}^1 \beta \overline{e}_1$ and $\beta \mathcal{P}^1 \beta \overline{e}_1$, by direct computation, where \overline{e}_1 is the image under B Coker $J \xrightarrow{J} BSPL \xrightarrow{J_{PL}} BSF$ of $e_1 \in H^{pr-1}(BSF)$.

Theorem 2.1. $j^* J_{PL}^*(q_p) = \mu \beta \overline{e}_1$, where $\mu \neq 0(p)$.

Proof. Let $f: S^{pr-1} \to B$ Coker J be a map corresponding to β_1 in $\pi_{pr-2}(S)$. Let $g: S^{pr-1} \cup_p e^{pr} \to B$ Coker J be an extension of f. Let $\varphi: \operatorname{Ker}(2\mathcal{P}^2\beta - \beta\mathcal{P}^1) \to \operatorname{Coker} \mathcal{P}^{p-2}$ be an unstable secondary operation defined on classes of dimension r by the relation

$$\mathcal{P}^{p-2}(2\mathcal{P}^{1}\beta-\beta\mathcal{P}^{1})=-2\mathcal{P}^{p-1}\beta-\beta\mathcal{P}^{p-1}-\binom{p-2}{p-3}\mathcal{P}^{p-1}\beta=-\beta\mathcal{P}^{p-1}\beta$$

which is zero on classes of dimension $\leq r$. In the first lemma of §6 of [9], Stasheff shows the following relation in $H^{rr}(BSF)$: one can choose ϑ such that $q_p = \lambda \vartheta(q_1) + \mu \beta e_1$, where $\lambda \not\equiv 0(p)$. Clearly, $g^*j^*J_{PL}^*(\vartheta(q_1)) = 0$ with zero indeterminacy. To show $\mu \not\equiv 0(p)$, it is enough to show $g^*j^*J_{PL}^*(q_p) \neq 0$. Let X be the Thom space of $J_{PL}jg: S^{\rho r-1} \bigcup_{\rho} e^{\rho r} \rightarrow BSF(N)$. Then $X = S^N \bigcup_{h} e^{N+\rho r-1} \bigcup e^{N+\rho r}$, and $[h] = \beta_1$ (see proposition 4.5 of [13]). By the main result of [3],

190

on $H^{\mathbb{N}}(Y)$, $\mathcal{P}^{\mathbb{P}} = \Sigma a_i \mathcal{O}_i + \mu \beta \Psi$, where \mathcal{O}_i and Ψ are secondary operations, $\mu \not\equiv 0(p)$, dim $a_i > 1$, and Ψ detects β_1 . Thus, in $H^*(X)$, we have $\mathcal{P}^{\mathbb{P}}(U) = g^* j^* J_{\mathbb{P}^L}^*(q_p) \cdot U = \mu \beta \Psi(U) = \mu g^*(\beta \overline{e}_1) \cdot U$ which proves the theorem.

Corollary 2.2. $J_{PL}^*(\beta q_{p+1}) \neq 0.$

Proof. By theorem 2.1, $j^*J_{PL}(q_p) = \bar{e}_1$. But $\beta \mathcal{P}^1 q_p = \beta q_{p+1} - \beta q_1 \cdot q_p - q_1 \cdot \beta q_p$, hence $j^*J_{PL}(\beta q_{p+1}) = \mu\beta \mathcal{P}^1\beta \bar{e}_1 + 0 = \mu\beta \mathcal{P}^1\beta \bar{e}_1 \neq 0$ as $J_{PL}^*(\beta q_i) = 0$ and so $J_{PL}^*(\beta q_i) = 0$, $i \leq p$ by the relation $\mathcal{P}^1\beta q_i = i\beta q_{i+1} - q_1\beta q_i$ (see [9]).

Corollary 2.3. $J_{PL}^*(\beta q_i) \neq 0$ if $i \geq p+1$.

Proof. Let $\psi: H^*(BSPL) \to H^*(BSPL) \otimes H^*(BSPL)$ be the diagonal map. Since $\psi(q_i) = \Sigma q_j \otimes q_{i \to j}$, the corollary follows by induction using corollary 2.2.

In preparation for the next section, we note the following corollary of 2.2. Let $\theta: \mathcal{A} \rightarrow H^*(MSPL)$ be defined by $\theta(a) = a(U)$. One might conjecture that $\theta(Q_i) = 0$, where Q_i are the Milnor elements [6]. $\theta(Q_0) = Q_0(U) = 0$ and $\theta(Q_1) = J_{PL}^*(\beta q_1) \cdot U = 0$.

Corollary 2.4. $\theta(Q_2) \neq 0$.

Proof. By proposition 3.1 of [8], $\theta(Q_2) = J_{PL}^*(\lambda \beta q_{p+1}) \cdot U$ with $\lambda \neq 0$. Now apply corollary 2.2.

3. **Q**^{PL}*

In this section we state our results on \mathcal{Q}_{*}^{PL} . We first note that corollary 2. 2 shows that the first lemma on p. 32 of [12] is incorrect, so the calculations of the 3-torsion of \mathcal{Q}_{*}^{PL} in [12] are incorrect. However, the answers in [12] are correct.

Peterson and Toda [8] have proved $H^*(BSF) \approx Z_p[q_i] \otimes E(\beta q_i)$ $\otimes C$, where C is (pr-2)-connected. In the range we will work in it is not difficult to show that $H^*(B\operatorname{Coker} J) \approx C$ as an algebra over \mathcal{A} . In fact, one conjectures that this is true in all dimensions. F. P. Peterson

(Note however that theorem 2.1 shows that the map $J_{PL}^*: Z_p[q_i] \otimes E(\beta q_i) \otimes C \rightarrow H^*(BSO) \times H^*(BCoker J)$ is not as simple as one might expect.) Furthermore, Stasheff [9] has computed C explicitly in dimensions $\langle (p^2+1)r-1$ and has shown the following result.³⁾

Theorem. 3.1. In dim. $<(p^2+1)r-1$, C is a free commutative algebra with truncation of height p on generators $\{a(e_1)\}$, where $\{a\}$ runs through an additive base of $\mathcal{A}/\mathcal{A}(\mathcal{P}^1, 2\mathcal{P}^p\mathcal{P}^1\beta - \mathcal{P}^{p+1}\beta)$, and e_2 , βe_2 , and $\beta_2(e_1 \cdot (\beta e_1)^2)$, where $e_2 \in C^{p^2r-1}$ and $e^r \in C^{pr-1}$.

Sullivan [10] shows that the spliting $BSPL_{\rho}BSO \times B$ Coker Jrespects the universal bundle and hence $MSPL_{\rho}MSO \wedge M$ Coker J. (This is not hard when p=3, but more difficult if p>3.) Hence, $H^*(MSPL) \approx H^*(MSO) \otimes H^*(M$ Coker J). To compute $\pi_*(MSPL)$ $\approx \mathcal{Q}_*^{p_L}$ (by Williamson [12]), we wish to compute $H^*(MSPL)$ as a module over \mathcal{A} and apply the Adams spectral sequence. Now $H^*(MSO) = \Sigma' \mathcal{A}$ (see [1]), where $\mathcal{A} = \mathcal{A}/\mathcal{A}\overline{E}$, and $E = E(Q_0, Q_1, Q_2, \dots)$ is the exterior algebra on the Milnor elements $Q_1 \in \mathcal{A}^{(p^{i-1}+\dots+p+1)r+1}$. The results of [1] show that the \mathcal{A} -module structure of $\mathcal{A} \otimes N$ depends only on the E-module structure of N and further that $\operatorname{Ext} \mathcal{A}(\mathcal{A} \otimes N, Z_{\rho}) \approx \operatorname{Ext}_{E}(N, Z_{\rho})$. Hence we must compute $H^*(M$ Coker J) as an E-module. Corollary 2.4 shows that $Q_2(U) = \mu \beta \mathcal{P}^1 \beta \overline{e_1} \cdot U$, with $\mu \not\equiv 0(p)$. Using this result, theorem 3. 1, and direct computation, we obtain the following theorem.

Theorem 3.2. In dimensions $\langle (p^2+1)r-1 \rangle$, as module over \mathcal{A} , $H^*(MSPL)$ is isomorphic to a direct sum of copies of a module M plus copies of $\mathcal{A}/\mathcal{A}Q_0$ plus a free module, where M has four generators, dim $X_0=0$, dim $X_1=pr-1$, dim $X_2=2pr-1$ dim X_3 =(2p+1)r-1, with relations $Q_0(X_0)=0$, $Q_1(X_0)=0$, $Q_2(X_0)$ $=Q_0Q_1(X_1)$, and $Q_0(X_3)+Q_1(X_2)+Q_2(X_1)=0$. Let p=3 for convenience in stating specific results. Let $\{y_{\alpha} \cdot U\}$ be an ' \mathcal{A} -basis for $H^*(MSO)$. Then the generators for the modules M are

192

³⁾ Recently, May [4] and Milgram [5] have made great progress towards determining $H^*(BSF)$ and one hopes that the results in this section can be generalized.

quadruples $(X_0 = y_{\alpha} \cdot U, X_1 = y_{\alpha} \cdot e_1 \cdot U, X_2 = y_{\alpha} \cdot (e_1 \cdot \beta e^{\tau} - \mathcal{P}^3 e_1) \cdot U, X_3 = y_{\alpha} \cdot (\mathcal{P}^4 e_1 - e_1 \cdot \mathcal{P}^1 \beta e_1) \cdot U)$, the generators for copies of $\mathcal{A}/\mathcal{A}Q_0$ are $e_1(\beta e_1)^2 \cdot U$ and $\beta_2(e_1 \cdot (\beta e_1)^2 \cdot U)$, and generators for copies of \mathcal{A} are $\mathcal{P}^3 e_1 \cdot U, \mathcal{P}^4 e_1 \cdot U, e_1 \cdot \mathcal{P}^3 e_1 \cdot U, e_2 \cdot U, e_1 \cdot \beta \mathcal{P}^3 e_1 \cdot U, and e_1 \cdot \mathcal{P}^4 e_1 \cdot U.$

It is not difficult to construct $\text{Ext}_{\mathcal{A}}(H^*(MSPL), Z_{\mathfrak{p}})$ and to note that all differentials must be zero for dimensional reasons in the range of dimensions under discussion except a differential from t-s=36 to t-s=35. From this we obtain the following theorem.

Theorem 3.3. In dimensions $\langle p^2+1 \rangle r-1$, we have that $(\Omega_*^{PL}/torsion) \otimes Z_*$ is a polynomial ring. Let p=3 as above. In dimensions $\langle 39 \rangle$, the 3-torsion of Ω_*^{PL} is given by the following table:

Generators	Dimension	Order	Detected by
$M_{lpha} imes M^{11}$	$11 + \dim M_{lpha}$	3	$y_{\alpha} \cdot e_1$
$M_{lpha}\! imes\!M_{\scriptscriptstyle 1}^{\scriptscriptstyle 23}$	$23 + \dim M_{lpha}$	3	$y_{lpha} \cdot \mathscr{D}^{3} e_{1}$
$M_{lpha}\! imes\!M_2^{23}$	$23 + \dim M_{lpha}$	3	$y_{\alpha} \cdot e_1 \cdot \beta e_1$
$M_{lpha} imes M_1^{27}$	$27 + \dim M_{lpha}$	9	$y_{lpha} \cdot (\mathscr{P}^{4}e_{1} - e_{1} \cdot \mathscr{P}^{1}eta e_{1})$
$M_{lpha}\! imes\!M_2^{ m 27}$	$27 + \dim M_{lpha}$	3	$y_{lpha} \cdot \mathscr{D}^4 e_1$
$M^{{\scriptscriptstyle {f m E}}{4}}$	34	3	$e_1 \cdot \mathcal{P}^3 e_1$
$M_{ m 1}^{ m 35}$	35	3	<i>e</i> ₂
M_{2}^{35}	35	3	$e_1 \cdot \beta \mathscr{D}^3 e_1$
$M_{ m 3}^{ m 35}$	35	9	$e_1 \cdot (\beta e_1)^2$
$M^{ m _{38}}$	38	3	$e_1 \cdot \mathcal{P}^4 e_1$

Here M_{α} are elements in Ω_*^{so} detected by y_{α} . The dimensions such M_{α} appear in are 0, 8, 12, 16, 20, 24, 24, 24 in the range under discussion.

Easy computation shows that $e_1 \cdot (\beta e_1)^2$ gives an element of order 9 in $H^{35}(MSPL; \mathbb{Z}_q)$ which detects all multiples of M_3^{35} . However $\mathcal{P}^4 e_1 - e_1 \cdot \mathcal{P}^1 \beta e_1$ is only of order 3 and we have the following corollary.

Corollary 3.4. In dimensions ≤ 26 , all elements in Ω_*^{PL} are detected by ordinary characteristic classes. There is an M_1^{27} of

F. P. Peterson

order 9 such that $3M_1^{27}$ is not detected by an ordinary characteristic class.

Proof. Since all elements of 2-torsion are detected by ordinary characteristic classes [2], just look at the above table.

Bibliography

- [1] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, "Pin Cobordism and Related Topics", to appear.
- [2] W. Browder, A. Liulevicius and F. P. Peterson, "Cobordism Theories", Ann. of Math., 84 (1966), 91-101.
- [3] A. Liulevicius, "The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations", Memoirs of the A.M.S., No. 42, 1962.
- [4] J. P. May, to appear.
- [5] R. J. Milgram, to appear.
- [6] J. W. Milnor, "The Steenrod Algebra and Its Dual", Ann. of Math., 67 (1958), 150-171.
- [7] J. W. Milnor, "On the Cobordism Ring 24 and a Complex Analogue", Amer. J. Math., 82 (1960), 505-521.
- [8] F. P. Peterson and H. Toda, "On the Structure of H*(BSF; Z_p)", J. of Math. of Kyoto Univ., 7 (1967), 113-121.
- [9] J. Stasheff, "More Characteristic Classes for Spherical Fibre Spaces", Comm. Math. Helv., 43 (1968), 78-86.
- [10] D. Sullivan, to appear.
- [11] D. Sullivan, to appear.
- [12] R. E. Williamson "Cobordism of Combinatorial Manifolds" Ann. of Math., 83 (1966), 1-33.
- [13] S. Gitler and J. Stasheff, "The First Exotic Class of BF", Topology, 4 (1965), 257-266.

M.I.T. AND KYOTO UNIVERSITY

194