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Throughout the present paper, we mean by a ring a commutative
ring with identity and by a module a unitary one. Let R be a ring
and let A be a homomorphic image of the polynomial ring R[X] of
a set of variables X with kernel I. The main purpose of the present
paper is to discuss some topics related to the following

Theorem 1. Assume that I is the principal ideal generated
by f(X)=a,X"+a, X+ +a. X" (eR; X monomials, X
+ XD if i#7). Let J be the ideal >\a;R generated by the coeffi-
cients a; of f(X). Then A is R-flat if and only if J is a direct
summand of R (i.e., J=eR with an element e R such that e*=e).

1. Preliminary results.

Besides very well known elementary facts on flatness, we use
the following two results:

Lemma 1.1. Assume that R and R* are noetherian vings such
that R* is an R-module. Let ¢ be the homomorphism from R into
R* such that ¢a=a-1 (in R*). Let M* be the set of maximal
ideals of R* and let I be the set of prime ideals m of R such
that m=¢*(m*) with m*eWM*. Then R* is a flat R-module if
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and only if the following is true: If q is a primary ideal with
prime divisor meW and if b is an element of R such that q : bR
=m, then qR*: bR* =mR*.

Lemma 1.2. Let R be a ring and let M be an R-module.
Let & be a set of multiplicatively closed subsets S of R such that
06 S. Assume that for every maximal ideal m of R, there is an
Se& such that mNS is empty. Then M is R-flat if and only if
MQR; is Reflat for every S€&.9

As for Lemma 1.1, see [L],» (18.7). Though Lemma 1.2 is
also well known, we give an explicit proof: The only if part is
obvious and we prove the if part. Assume that ¢ : A—B is an in-
jection with respect to R-modules A, B. Let K be the kernel of
Qid. : AQM—BXM. By our assumption, KQKRs=0 for every
Se®. Assume for a moment that K+#0 and let £ be a non-zero
element of K. We consider the natural injection 7 : A R—K. By our
assumption on &, there is an S€& such that AR.#0. Since R; is
R-Aflat, we see that 0#kAR,CK®R.=0, which is a contradiction.
Thus K=0 and M is R-flat.

2. The only if part of Theorem 1.
We prove first the following

Proposition 2.1. Lel (R, m) be a quasi-local ring and let I
be an ideal of the polynomial ving R[X] of a set of variables X.
If B=R[X]/I is R-flat and if ICm[X], then I=0.

Proof. Assume that I#0. Let f(X)=>c,X®? (X% being
monimials in X, X®#XY if {#j) be a non-zero element of I.
There is an ideal J* of R such that >lc¢,, S J*C 3¢, R and such
that ¢y, R/J*=R/m. Then B/J*B is R/J*-flat. Therefore observ-
ing B/J*B and R/J* instead of B and R, we may assume that

1) M is a faithfully flat R-module if and only if MXRs is a faithfully flat
Rs-module for every S.
2) By [L], we refer to M. Nagata, Local rings, John Wiley, 1962.
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f(X)=cg(X) with a polynomial g(X) one of whose coefficients is
1. Denoting the residue classes of X by x, we have cg(x)=0,
whence g(x)€0: c¢B=(0:cR)B=mB. This shows that there is
an element #(X) of m[X] such that g(x)=h(x), that is, g(X)
—h(X)el Since 1 appears as a coefficient in g(X) and since
h(X)em[X], we see that I2g(X)—h(X)em[X], which is a
contradiction, and Proposition 2.1 is proved.

Now, in view of Lemma 1.2, we have the following result which
include the only if part of Theorem 1:

Theorem 2. Let R be a ring and let I be an ideal of the
polynomial ving R|(X) of a set of variables X. Let ] be the ideal
generated by coefficients of elements of I. If R[X])/I is R-flat,
then J is a direct summand of R.

3. The if part of Theorem 1.

A proof of the part was given by D. Mumford,” and we are to
give a generalization of it. For the purpose, we introduce a symbol
¢ and a modified notion of a regular sequence as follows:

1) When a is an ideal of R, we denote by ¢, the natural homo-
morphisms R[X]—=(R/a)[X].

2) A regular sequence® in a ring S is a sequence fi, -, f, of
elements of S such that (%fis) 1 fuS=31:S for every a=1,2,

i<a

sy n.

Now our generalization of the if part of Theorem 1 can be stated
as follows:

Theorem 3. Let N be the set of maximal ideals W' of R|[X]
such that w21, and let WM be the set of prime ideals b for which
there is an WeW such that p=w'NR. A=R[X)])/I is R-flat if
there is a basis f1, -+, f, for I such that a permutation of ¢pf1,

3) D. Mumford, Introduction to algebraic geometry, Harvard Univ. Lect. Notes,
1967.
4) Under usual definition, one requires one more condition that X i<sfiS#S.
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éy f. from a regular sequence in (Rp/pRp) [X] for each peI.

In order to prove Theorem 3, we need the following preliminary
results:

Lemma 3.1. Let a be an ideal of R and let fy, -+, f, be
elements of R[X]. Assume that hea[XINZfiR[X]. If ¢.f1,
o, ¢ fu from a vegular sequence in ¢, R[X], then h is expressed
as 0 f:g with g.€alX], ie., a[XINSfiR[(X]=a(Zf;R[X]).

Lemma 3.2. Assume that R is noetherian and that fi, -, f.
eR[X]. If ¢pf1, --~,¢pf,, from a regular sequence in ¢DR[X]
Sfor every prime ideal v of R, then ¢, f1, -+, ¢, f. form a regular
sequence in ¢, R[X] for an arbitrary ideal a of R.

Lemma 3.3. Assume that R is a (noetherian) local ving with
maximal ideal m. If I is generated by elements fi, -+, f., such
that ¢, f1,+, ¢, fn form a rvegular sequence in ¢,R[X], then for
every m-primary ideal q, we have q[X]NI=ql.

Proof of Lemma 3.1. Since he> f,R|X], h=3f.g; with
g€R[X]. Then >¢,/:g:=0 and therefore ¢,g.€ <.¢,f: R[X]:¢,f.
=>Nc.¢,[iR[X]. Thus there are keR[X]| such that g.=g.
—Svenfiki€alX]. Then h=>..f:(gi+f.k:)+f.g.. Since h—f,g,
calX] N2, f: R X ], we have the required result by induction on
n.

Proof of Lemma 3.2. Using induction argument on 7, we as-
sume that the assertion is true for such sequence consisting of #n—1
elements. Consider the set B of ideals b of R such that ¢ fi, -, ¢ /s
do not form a regular sequence. We want to show that B is empty.
Assume the contrary. Then, taking a maximal member b, of ¥ and
considering R/b, instead of R, we may assume that B consists only
of the zero ideal. By our assumption, the zero ideal is not prime
and there is a non-unit @ of R such that 0 : aR is a prime ideal, say
p. hf,=Nc. f:g with g €R[X]. Since ¢.xfi, -, ¢urf, form a
regular sequence (by our assumption that 8 consists only of the zero
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ideal), we have that ¢xh€E> ) .def; R[X], ie., there is an h,
=>vafigi (gi€R[X]) such that h—h,=ak’ with WER[X]. We
apply Lemma 3.1 to @h’f, and we see that ah'f,=>\..af:g! with
g’€eR[X]. Then qsp(h’f,,—ZK,,figﬁ’):O because p=0: aR, and,
since ¢, f1, o, Py f. form a regular sequence, we see that qﬁph/
=Z:<n¢pffg.’-" with g¥€ R[X]. Then ah’/=a>f:g¥ and we see that
h=h+ah'e>,..f:R[X]. This completes the proof of Lemma 3. 2.

Proof of Lemma 3.3. By virtue of Lemma 3.2, we see that
?, f1, 00, 9, f. form a regular sequence, hence the assertion follow from
Lemma 3.1.

Now we go back to the proof of Theorem 3. At the first step,
we consider the case where R is noetherian and then we shall observe

the general case:

(1) Noetherian case.

We assume that R is noetherian. We use symbols I, M, ¢
and 9 as in Lemma 1.1 (for the case A=R*) and in Theorem 3
(note that 9t is common). A is R-flat if and only if A . is R-flat
for every m*€IR*, as is obvious by the definition of flatness. Thus,
in view of Lemma 1.2, we have only to show that if m*&9®* and
if m=g¢"'(m*), then A« is R, flat. Considering R, instead of R,
we may assume that R is a local ring with maximal ideal n. Let
m’ be the maximal ideal of R[X] such that m*=m’/I, and we
observe the triple R, A ., R[X],. .
and let b€ R be such that q:b=m. By Lemma 1.1, we have only
to show that qu* :b=mA,x. Then considering things modulo q,
:b#mA, . Then
there is an element y of A which is not in mA4 . such that byeqgA.
Let 2 be a representative of y in R[X]. Then dhsI, whence
bhebR[X]|NI=bI by virtue of Lemma 3.3. Thus bh=0bh,, h.& L
Then b(h—h,)=0, hence h—h,em[X]| and on the other hand A— 7,
represents y. This means that yemA, which is a contradiction. Thus
qA

Let q be an Mm-primary ideal
we may assume that q=0. Assume now that g4

nek

k- 0=mA ., and we settle the case.



444 Masayoshi Nagata

(2) General case.

Let R, be a finitely generated subring of R containing all coeffi-
cients of fi, ---,f,. Then the condition in Theorem 3 holds good for
R[X] and ,=3>1f;R,[X].» Then by the noetherian case proved
above, A,=R,[X]/I, is R,flat. Obviously A is identified with
AiQr, R and therefore A is R-flat.

Thus the proof of Theorem 3 is completed.

4. Some remarks on generators of I.

We maintain the meanings of R, X, I, ¢ as before. But we are
to treat the case where R is noetherian and X is a finite set.

Main remark we are to give here is the following

Theorem 4. Let a be an ideal of R and set S={g€R|X]|¢,g
=1}. Assume that (1) R is noetherian, (2) X is a finite set (3)
S, [ ave elements of I such that ¢ f1, -+, ¢, f. generates ¢, I and
(4) A=R|X1/I is R-flat. Then

Z‘,f;R[X]s=IR[XJS.
In other words, there is an element s of S such that sIC> fi R[X].

Proof. Let B be the set of ideals b of R such that bCa and
ds(fiR[X |s) #¢y(IR[ X s) (here ¢ is naturally entended to R[X ]
—>¢R[X]4,s). We want to show that B is empty. Assume the
contrary, and let ¢ be a maximal member of 8. Then considering ¢,
we may assume that B consists only of {0}. Since a&®, a#0. Let
d be a non-zero element of a. Since ¢ue(IR[X]s) =dux(fiR[X]5),
we see that for an arbitrary element % of I, there is an element s
of S such that she> f;R[X]|+dR[X], ie., sh=f'+dg with
f'ex2fiRTX] and geR[X]. Then dgel, and d(g modulo I)=0.
Therefore (g modulo 1) (0: dR)A (by the flatness). This means

5) Note the following obvious fact: Let gi,:-, gn be elements of a polynomial
is K[X] over a field K and let K’ be an extension field of K. Then gi.--, gn form
a regular sequence in K[X] if and only if they do in K'[X].



Flatness of an extension of a commutative ring 445

that there is an element g’ of (0:dR)[X] which represents (g
modulo 7). That is, g—g’el and g’€(0:dR)[X]. Then dg
=d(g—g’)=dl. Thus we have IR[X], S f;R[X]s+dIR[X]s.
Since d is in the Jacobson radical of R[X]s, we have the required
equality. Thus ¥ must be empty, and our proof is completed.

Corollary 4.1. Under the assumptions (1)~ (4) in Theorem
4, if a is nilpotent, then >\ f;R[X]=1I.

Corollary 4.2. Under the assumptions (1)~ (4) in Theorem
4, if R is a local ring with maximal ideal m and if the radical
of )i R[X] contains m, then S f;R[X]=1I.

At the rest of the present article, we consider the case where X
consists only of one element x. In the case, if A=R[x] /] is R-flat,

then I is “nearly” principal as we can state as follows:

Corollary 4.3. Assume that (1) R is a (noetherian) local ving
with maximal ideal m, (2) X={x} and (3) A=R[x]/I is R-Aat.
Then:

(i) There is an element f of I such that, for a suitable
element s€ R|x] such that ¢,s=1, sSICfR[x].

(ii) If M is a maximal ideal of R[x] containing I, then
IR [x]y is principal.

(ii) If I contains a monic polynomial f, such that ¢,f gene-
rates ¢, I, then I=fR[X].

(iv)® Consider the radical V0. If R/vV0 is normal, then I
is principal.

Proof. Except for (iv), the assertions follows from Theorem 4
and Corollary 4.2. As for (iv), by virtue of Corollary 4.1, we may
assume that R is normal. In this case, if s€E R[X] and if ¢,s=1,
then s is a product of prime elements (for, if s=ax"+ - +a,..x+1,
then factorization of s corresponds to factorization of the monic poly-

6) The writer owes the main part of this result to Professor Paul Monsky.
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nomial x"+a,.,x"*+--+a,). Therefore we see that I is principal
by (i). This completes the proof.

We add two examples. Example 1 shows that in (iv) it is
important that R is local.” Example 2 shows that normality is

important in (iv).

Example 1. Let D be a Dedekind domain with ideals a and b
such that i) there are non-zero elements ¢ and d such that ca=db and

ii) a+b=D. Then the ideal I of D[x] generated by {ax+%|ae a}

is not principal while A=D[x]/I is R-flat.
Proof. That I is not pincipal is obvious. Flatness of A follows
from Theorem 1 applied to D, for an arbitrary maximal ideal .

Example 2. Let K be a field and let 2 be a transcendental
element over K. Set R=K|z? z°|, with maximal ideal P generated
by 2z* and z®. Let « be the homomorphism R[x]—R[1/2z] such that
Jof(x)=f(1/z). Then the kernel I of +r is not principal, while
R([1/z] is R-flat.

Proof is easy observing that R|1/z] is the field of quotients of R.

5. Supplementary remarks on regular sequences.

We give at first a remark that what we really proved at Lemma

3.1 is the following fact:®

Proposition 5.1. Let a be an ideal of R and let fy, -, f, be
elements of R. If ¢ f1, - 6, f. form a regular sequence in ¢,R,
then aNXf:R=a(Xf R).

The following fact is obvious because of our definition of regu-
larity:

Proposition 5.2. If fi, -+, f. form a regular sequence in R,
then they do the same in any over-ring which is a flat R-module.

7) A generalization to semi-local case is easy..
8) This and Lemma 3.1 are equivalent to each other.
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Now we observe relationship between regularity of fi, -+, f, and

that of ¢, fi, =+, ¢, f» in some sense.

Remark 5.3. Any one of regularity of fy, -+, f» in R and regu-
larity of ¢, f1, ***, ¢,f+» in ¢, R does not imply the other.

This is shown easily by examples.

Observe Lemma 3.2 as a result of contrary direction to this
remark. We are to add some more remarks of similar direction.

Proposition 5.4. Assume that R is the direct sum of subrings
R, -+, R, with identities ei,---,e, respectively. Then a sequence
f1, o, [ is a regular sequence in R if and only if eufs, -, eaf.
form a rvegular sequence in R.=e« R for every a=1, --,s.

Proof. Assume that fi, -, f, form a regular sequence. If hes
is an element of (i« f:eaRs) : fi6x, then he. is in (3o, fiR) . f,
=X fiR. Thus heo€ (i, fi R) N Ro=\i<. f:ea R« and we see that
fiea, +++, f.e« from a regular sequence in R« for every a=1,:,s.
Conversely, assume that fieq, -+, f.e« form a regular sequence in R
for every a. Consider an arbitrary element % of >\, f:R:f,.
h=he. and obviously he. isin (X, fi:e« Ra) : fie« which is equal
to Sl fieaRa. Therefore heXa(Slici fiea Ra) =30« f: R, This
completes our proof.

Proposition 5.5. Assume that R is noetherian and that a(#R)
is an ideal whose radical is the intersection of a finite number of
maximal ideal, say my, ---,m,. Let fy, -, f, be elements of R[X].
Then the following three conditions are equivalent to each other.

) ¢y fr, s @S0 form a regular requence in ¢, R[X].

(2) by S1 o by o form aregular requence in ¢, R X] for
every a=1, -, s.

(3) For any ideal bY(#R) which contans a power of (NaM«,
dpf1, o, bp S form a regular requence in ¢, R[X].

Proof. By virtue of Lemma 3. 2, we have only to show that (1)
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implies (2). For the purpose, considering R/a instead of R, we may
assume that a=0. Then R is an Artin ring, whence by virtue of
of Proposition 5.4, we may assume that R is an Artin local ring
with maximal ideal mi=m1,. Reduction to the case where X is a
finite set can be done easily. Set T.=>«f R[X]. ¢,T,=¢,R[X]
if and only if 7,=R[X], and therefore we have only to observe the
case where 7,#R[X]. Thus, that fi, -+, f, form a regular requence
implies that height T,={¢ for every ¢=1,2,---,n. Therefore height
¢, T,=t for every ¢. Since ¢,R[X] is a polynomial ring over a field
in a finite number of variables, ¢, R[X] is a Macaulay ring, and
therefore we have that 7 is unmixed for every £. Thus ¢, /1, -, ¢, f»
form a regular requence. This completes the proof of Proposition 5. 5.

Proposition 5.6. Let m be a maximal ideal of R and let
Sf1, o, fo be elements of R[X]. Set S={feR[X]|¢,f=D}. If
b f1, 0 by Sn form a regular sequence in ¢, R[X] and if p is a
prime ideal contained in m, then Py f1,~-,¢p f. form a regular
sequence in %RP[X ]s.

Proof. We can reduce easily to the case where R is a ring of
quotients of a finitely generated ring. Thus we may assume that R
is a (noetherian) local ring. We may assume also that p=0, and
that X is a finite set. Set 7,=3)..f: R[X]. Therefore we consider
the case where T, R[X]s#R[x]s. That ¢, /i, -, ¢, f» form a regular
sequence implies that height ¢, 7,=? for every f. This implies that
height 7, Rp[X ]<=>t.” Since T, is generated by ¢ elements and since
Rp[X s is (locally) Macaulay ring, we see that 7, RP[X ]e is unmixed
and therefore fy, -:-, f, from a regular sequence in Rp[X ls. Thus
the proof of Proposition 5.6 is completed.
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9) See Theorem 1 in Nagata, Finitely generated rings over a valuation ring,
J. Math. Kyoto Univ. vol. 5 no. 2 (1966), pp. 163-169.



