Corrections and supplements to my paper "Differential modules and derivations of complete discrete valuation rings* ${ }^{*)}$

By

Satoshi Suzuki

(Received December 7, 1970)

Some errors are found in the above paper. We shall correct them and make some improvements at the same time.

1. Read $\sum_{i=0}^{\infty}$ in $p .429, l .1$ as $\sum_{i=1}^{\infty}$.
2. In the statement of Theorem 2 in $p .429$ we should make an assumtion that R is of unequal characteristic.
3. Read $\min _{0 \leq i \leq e-1}\left(\left(\Delta\left(f_{i}\right)+1\right) e+1\right)-v\left(f^{\prime}(u)\right)$ in the foot note in p. 429 as $\left.\min _{0 \leq i \leq e-1}\left(\Delta\left(f_{i}\right)+1\right) e+i\right)-v\left(f^{\prime}(u)\right)$.
4. As for the definition of $\Delta_{K / K^{*}}(u)$ in $p .429$, we should state that this number does not depend on the choice of the set of elements $\left\{a_{\iota}\right\}_{\iota \in I}$ contained in P. This can be proved in various ways. For instance, the proof is reached easily if we use Theorem 2 and Proposition 2 and prove that in case $\Delta_{K / K^{*}}(u) \geq 0$ we have $\Delta_{K / K^{*}}(u)$ $=\min _{\partial} v(\partial u)$, where ∂ runs over $\operatorname{Der}(R, R)$. An alternative and more direct proof is obtained if we restate Neggers' original definition of $\Delta_{K / K^{*}}(u)$ without assuming $f(u)$ to be an Eisenstein polynomial, that is, if $f(U)=U^{e}+b_{e-1} U^{e-1}+\cdots+b_{0}, \Delta_{K / K^{*}}(u)$ is defined to be $\min _{0 \leq i \leq e-1}\left(\Delta\left(b_{i}\right) e+i\right)-v\left(f^{\prime}(u)\right)$. This definition depends only on P and u and it is easy to see that this is equivalent to the previous definition.
5. As for Proposition 9 in $p .431$, we should have stated the fol-
lowing lemma.

Lemma. The following four conditions are equivalent.
(α) R is residually perfect.
(β) $\Omega_{R \mid m}=0$.
(r) $\operatorname{Der}(R, R)=0$
(ס) $\Delta_{K / K^{*}}(u)=\infty \quad$ for every prime element u in R.

Proof of Lemma. $(\alpha) \Leftrightarrow(\beta)$ is well-known. We shall prove $(\beta) \Leftrightarrow(\gamma)$. Assume that $\Omega_{R / m}=0$. Then I is an empty set and the relation (8) is $f^{\prime}(u) \partial u=0$. Therefore $\operatorname{Der}(R, R)=0$, because $f^{\prime}(u)$ $\neq 0$. Assume that $\Omega_{R \mid m} \neq 0$. Then $\left\{a_{\imath}\right\}_{\iota \in I}$ is not an empty set. Hence the equation (7) is solvable, putting a set of nontrivial values in $\left\{c_{\imath}\right\}_{l \in I .}$ Hence $\operatorname{Der}(R, R) \neq 0$. Next, we shall prove $(\beta) \Leftrightarrow(\delta)$. Assume that $\Omega_{R \mid m} \neq 0$. Then, $\Omega_{P}^{*}=0$ and $\Delta_{K / K^{*}}(u)=\infty$. Conversely, assume that $\Delta_{K / K^{*}}(u)=\infty$ and assume that $\Omega_{R / m} \neq 0$. Then $\left\{a_{i}\right\}_{\iota \in I}$ is not an empty set. Since a_{ι} is a unit in $R, u^{\prime}=u a_{\iota}$ is a prime element in R. Since the relation (8) is $f^{\prime}(u) \partial t=0$ in our case, there exists a derivation ∂ in $\operatorname{Der}(R, R)$ such that $\partial a_{t}=1$. Then, $v\left(\partial u^{\prime}\right)$ $=v\left(a_{\imath} \partial u+u \partial a_{t}\right)=v(u)=1$. Hence $\Delta_{K / K^{*}}\left(u^{\prime}\right)=\min _{\partial} v(\partial u) \leqq 1<\infty$, which proves our assertion.
6. In Proposition 1 in p.431, we should make an additional assumption that R is not residually perfect.
7. The following statement in p.433,l. 19-20 is not generally correct. "Exactness of the sequence:

$$
\left(R \otimes_{P} \Omega_{P}\right)^{*} \rightarrow \Omega_{R}^{*} \rightarrow \Omega_{R \mid P} \rightarrow 0
$$

is always true." Only thing we can assert is, "In the sequence $\left(R \otimes_{P} \Omega_{P}\right)^{*} \xrightarrow{\rho^{*}} \Omega_{R}^{*} \longrightarrow \Omega_{R / P}$ the second homomorphism is surjective and its kernel is the closure of $\rho^{*}\left(\left(R \otimes_{P} \Omega_{P}\right)^{*}\right)^{\prime \prime}$. This follows from the fact that $\Omega_{R / P}$ is finitely generated. This change does not affect the proof of Proposition 4.
8. Read "Example 3 " in $p .434, l .13$, as "Example 1 ".
9. Omit, "Let M and N are R-modules." in $p .434, l .19$.

Кyoto University
*) Appeared in this journal, vol. 9, no. 3 (1969).

