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Some errors are found in the above paper. We shall correct them

and make some improvements at the same time.

1. Read E  in p .  429, / .1 as E.
1=0 1=1

2. In the statement o f Theorem 2  in p .  429 we should make an

assumtion that R  is o f unequal characteristic.

3. Read min ((4(f1)+  1)e +  1) v ( f  i ( u ) )  in  the foot note in
0 5 i 5 e - 1

p . 429 as min ( (4 ( f 1)-1-1) e i) —  v ( f (u )).
0 5 i 5 e - 1

4. As for the definition o f d i f i K . ( u )  in p .  4 2 9 , we should state

that this number does not depend on the choice of the set of elements

l a , I , E /  contained in  P .  This can be proved in  various ways. For

instance, the proof is reached easily i f  w e use Theorem 2  and Pro-

position 2  and prove that in case dif /K•(u) > 0 w e  have 4 K /K .(u )

-= min v(0 u ) ,  where 0  runs over Der (R , R ) .  An alternative and morea
direct proof is obtained i f  we restate N eggers' original definition of

4 K / K * (u ) without assuming f ( u )  t o  b e  an Eisenstein polynomial,
that is ,  i f  f (U )=  U €  + b e _i U e - 1  + • • • +b 0 , i x - (u) is defined to be

min (4(b i ) e + i ) — v ( P u ) ) .  This definition depends only on P  and u
05i5 e-1

and it is easy to see that this is equivalent to the previous definition.

5. As for Proposition 9  in P. 4 3 1 , we should have stated the fol-



378 Satoshi Suzuki

lowing lemma.

L e m m a. The following four conditions are equivalent.

(a)  R  is  re s id u ally  perfect.

(3)

(r) Der (R , R) = 0

(6) 4x  IK *(u )=- -- f o r  every  prim e elem ent u in  R.

P r o o f  o f  L em m a . (a) •(=> (,3) is well-known. W e shall prove

(g)<=›(T). Assume that Sh i m =  0 . T h e n  I  is  an empty set and the

relation (8 ) is  f '(u )O u  =O . Therefore Der(R , R )=0, because f '( u )

/  O. Assume th a t Sh i m * 0 .  T h e n  {a , } „ /  i s  n o t  a n  em pty set.

Hence the equation (7) is solvable, putting a  se t o f nontrivial values

in  { c , } „/ .  Hence Der (R, R) -/- 0. Next, we shall prove (6 ) <=> (a).
Assume that f l R i m *  O. Then, S21.>=0 and 4K /K*(u)= co. Conversely,

assume that 4K /K*(u)=. 00 and assume that S2R i „, 7L--0 . T h e n  {a , },/

is  n o t an  empty set. S ince a , is  a  u n it in  R , u' -= ua, is  a prime

element in  R .  Since the relation (8) is f '( u ) 0 t = 0  in our case, there

exists a  derivation 0  in  Der (R , R )  su ch  th a t 0a ,=1 . Then, v (0 /0

=v (a d6 u + u 6 a3 = v (u )= 1 . Hence zIK /K.(u')=min v ( 0 u ) _ 1 < 00, which
a

proves our assertion.

6. In Proposition 1 in  p .  431, we should make an additional as-

sumption that R  is not residually perfect.

7. The following statement in  p .  433, 1. 19-20 is not generally

correct. "Exactness of the sequence:

(R ®p S2 p)* —› Sn---> S2 R I p—> 0

is  a lw ays tru e." O n ly  th ing  w e can  assert is, " I n  th e  sequence

(R OpS4)*»=*-421?'- 4 2 R i p  the second homomorphism is surjective and

its kernel is the closure o f  p* ((R  p S2 p)*)" . Th is follows from the

fact that 2R ip is finitely generated. This change does not affect the

proof of Proposition 4,
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8. Read "Example 3" in  p . 434, 1. 13, a s  "Example 1".

9. O m it , " L e t  M  a n d  N a r e  R-modules." in  p .  434, 1. 19.
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*) Appeared in  this journal, vo l. 9, no . 3 (1969).


