J. Math. Kyoto Univ. (JMKYAZ) 11-2 (1971) 373-375

On Neggers' numbers of discrete valuation rings

By

Satoshi Suzuki

(Received December 7, 1970)

The purpose of this note is to show the converse of Theorem 3 in [3], that is,

Theorem. Let R be a complete discrete valuation ring of unequal characteristic with a prime element u and with a coefficient ring P. Let K and K* be quotient fields of R and P, respectively. If the Neggers' number $\Delta_{K_1K}(u) < 1$, there exists a coefficient ring P of R such that $\Omega_{R|P}$ is not isomorphic to $\Omega_{R|P}$.

In this paper we use the same notations and terminology as in [3]. Then, together with results in [1] and [3], we obtain various characterizations of the property that $\Delta_{K/K^*}(u) \ge 1$:

Corollary. The following conditions are equivalent.

(1) $\Delta_{K/K}(u) \ge 1$ for a choice of P and u.

(2) $\Delta_{K/K}(u) \ge 1$ for every choice of P and u.

(3) Every derivation in Der(R, R) induces a derivation in Der(R/m, R/m).

(4) Every derivation in Der (R/m, R/m) is induced by a derivation in Der (R, R).

(5) $\Omega_{R|P}$ is determined independently of the choice of P, up to

Satoshi Suzuki

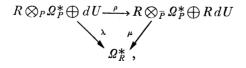
isomorphisms.

(6) v(f'(u)) is determined independently of the choice of P and u.

Lemma. Let v be a complete discrete valuation. Let S be its ring and let \mathfrak{N} be its ideal. Let M be a free module with a free base $\{m_i\}_{i \in I}$. Let M^* be the \mathfrak{N} -adic completion of M. Let s and t be elements in M^* . We express as $s = \sum_{i=1}^{\infty} \alpha_i m_{i(i)}$ and $t = \sum_{i=1}^{\infty} \beta_i m_{i(i)}$ with $t(i) \in I$, $\alpha_i, \beta_i \in S$ such that both sequences (α_i) and (β_i) converge to zero in \mathfrak{N} -adic topology (see, Part I of [2]). Assume that we have a canonical isomorphism between the \mathfrak{N} -adic completions $(M^*/S_i)^*$ of M^*/S_i and $(M^*/S_i)^*$ of M^*/S_i . Then we have $v(\alpha_i) = v(\beta_i)$ for all i = 1, 2, ...

Proof. We put $N = (M^*/Ss)^* \simeq (M^*/St)^*$. Then we have $N/\mathfrak{N}^n N \simeq M^*/Ss + \mathfrak{N}^n M^* \simeq M^*/St + \mathfrak{N}^n M^*$ for n = 1, 2, ... Therefore $Ss + \mathfrak{N}^n M^* = St + \mathfrak{N}^n M^*$. Our assertion follows from it easily.

Proof of Theorem. Since $\mathcal{Q}_{R|P} \simeq R/(f'(u))$, we have $\mathcal{Q}_{R|P} \simeq R/(u^l)$, where l = v(f'(u)). In our case, $\{a_i\}_{i \in I} \neq \phi$ by Lemma in [4]. Case (1): Assume that $\mathcal{Q}_{K/K^*}(u) < 0$. Let $v(\beta_{\bar{i}}) = \min v(\beta_i)$. There exists uniquely a coefficient ring \bar{P} of R, containing $\{a_i\}_{i \neq i(\bar{i})}$ and $a_{i(\bar{i})} + u$. Let $\bar{f}(U)$ be a minimal monic polynomial of u over \bar{P} . Let ρ be an R-isomorphism: $R \otimes_P \mathcal{Q}_P^* \bigoplus R dU \to R \otimes_{\bar{P}} \mathcal{Q}_P^* \bigoplus R dU$ such that $\rho(1 \otimes d_P a_i) = 1 \otimes d_{\bar{P}} a_i$ for $i \neq i(\bar{i})$, $\rho(dU) = dU$ and $\rho(1 \otimes d_P a_{i(\bar{i})}) = 1 \otimes d_P(a_{i(\bar{i})} + u) - dU$. ρ induces a commutative diagram:



where λ and μ are canonical homomorphisms, that is, homomorphisms satisfying: $\lambda(1 \otimes d_P a_i) = d_R a_i (\iota \in I), \ \lambda(dU) = d_R u, \ \mu(1 \otimes d_{\bar{P}} a_i) = d_R a_i (\iota \in I, \ \iota \neq \iota(\bar{i})), \ \mu(1 \otimes d_{\bar{P}}(a_{\iota(\bar{i})} + u)) = d_R(a_{\iota(\bar{i})} + u) \text{ and } \ \mu(dU) = d_R u.$ The image of the expression $\sum_{i=1}^{\infty} \beta_i(1 \otimes d_P a_{\iota(i)}) + f'(u) \ dU$ of $(d_P f)(u) + f'(u) \ dU$ in $R \otimes_P \mathcal{Q}_P^* \bigoplus R \ dU$ under ρ is $s = \sum_{i \neq \bar{i}} \beta_i(1 \otimes d_{\bar{P}} a_{\iota(i)}) + \beta_{\bar{i}}(1)$

374

 $\otimes d_{\bar{P}}(a_{\iota(i)}+u)) + (f'(u) - \beta_{\bar{i}}) dU$. Let $\iota =$ the expression of $(d_{\bar{P}}\tilde{f})(u)$ $+\tilde{f}'(u) dU$ in $R \bigotimes_{\bar{P}} \mathcal{Q}_{\bar{P}}^* \bigoplus R dU$. Then, through μ we have a canonical isomorphism between the completion of $(R \bigotimes_{\overline{P}} \Omega_{P}^{*}) \bigoplus R dU/Rs$ and the completion of $(R \bigotimes_{\overline{P}} \Omega_{P}^{*}) \bigoplus R dU/Rt$. Then we can apply our lemma and comparing coefficients of dU in s and t, we get: $v(\bar{f}'(u))$ $= v(f'(u) - \beta_{\overline{i}})$. We have $v(f'(u) - \beta_{\overline{i}}) = v(\beta_{\overline{i}}) < v(f'(u))$, because $v(\beta_{\bar{i}}) = v(f'(u)) + \Delta_{K_{l}K^{*}}(u)$. Hence $v(\tilde{f}'(u)) < v(f'(u))$ and $\Omega_{R_{l}P} \neq 0$ $\mathcal{Q}_{R|\overline{P}}$. Case (2): We assume that $\mathcal{I}_{K|K^*}(u) = 0$. With \overline{i} as above, we put $l = v(\beta_{\bar{i}}) = v(f'(u))$. We can write as $\beta_{\bar{i}} = (\beta + \bar{\beta}u)u^l$ and $f'(u) = (\alpha + \bar{\alpha}u) u^l$, where β and α are units in P. Let \bar{P} be a uniquely determined coefficient ring of R, containing $\{a_i\}_{i\in I, i\neq i(\tilde{i})}$ and $a_{\iota(\bar{i})} + \frac{\alpha}{\beta} u$. Let h(U) be a polynomial in $\bar{P}[U]$ such that $\frac{\alpha}{\beta} = h(u)$. Let $\tilde{f}(U)$ be a minimal monic polynomial of u over \bar{P} . Let ρ be an *R*-isomorphism as in case (1), except that $\rho(1 \otimes d_{\bar{P}} a_{\iota(\bar{i})}) = 1 \otimes d_{\bar{P}}(a_{\iota(\bar{i})})$ $+\frac{\alpha}{\beta}u)-u((d_{\bar{P}}h)(u)+h'(u)\,dU)-\frac{\alpha}{\beta}\,dU$. By the same reasoning as in case (1), we have:

$$v(\bar{f}'(u)) = v\left(f'(u) - \frac{\alpha}{\beta} \beta_{\bar{i}} - \beta_{\bar{i}} u h'(u)\right)$$
$$= v\left((\alpha + \bar{\alpha}u)u^{l} - \frac{\alpha}{\beta} (\beta + \bar{\beta}u)u^{l} - (\beta + \bar{\beta}u)h'(u)u^{l+1}\right)$$
$$= v\left((\bar{\alpha} - \beta \cdot \frac{\alpha}{\beta} - (\beta + \bar{\beta}u)h'(u))u^{l+1}\right) \ge l+1.$$

Hence we have $\Omega_{R/P} \neq \Omega_{R/\overline{P}}$.

KYOTO UNIVERSITY

375

References

- J. Neggers, Derivations on p-adic fields, Trans. Amer. Math. Soc. 115 (1965), 496-504
- [2] S. Suzuki, Some results on Hausdorff m-adic modules and m-adic differentials, Jour. Math. Kyoto Univ., vol. 2, no. 2 (1963).
- [3] S. Suzuki, Differential modules and derivations of complete discrete valuation rings, Jour. Math. Kyoto Univ., vol. 9, no. 3 (1969).
- [4] S. Suzuki, Corrections and supplements to my paper "Differential modules and derivations of complete discrete valuation rings", Jour. Math. Kyoto Univ., vol. 11, no. 2 (1971).