# On Neggers' numbers of discrete valuation rings 

By<br>Satoshi Suzuki<br>(Received December 7, 1970)

The purpose of this note is to show the converse of Theorem 3 in [3], that is,

Theorem. Let $R$ be a complete discrete valuation ring of unequal characteristic with a prime element $u$ and with a coefficient ring $P$. Let $K$ and $K^{*}$ be quotient fields of $R$ and $P$, respectively. If the Neggers' number $\Delta_{K / K^{*}}(u)<1$, there exists a coefficient ring $P$ of $R$ such that $\Omega_{R_{/ \bar{P}}}$ is not isomorphic to $\Omega_{R / P}$.

In this paper we use the same notations and terminology as in [3]. Then, together with results in [1] and [3], we obtain various characterizations of the property that $\Delta_{K / K^{*}}(u) \geqq 1$ :

Corollary. The following conditions are equivalent.
(1) $\Delta_{K_{/ K}}(u) \geqq 1 \quad$ for a choice of $P$ and $u$.
(2) $\Delta_{K_{/ K}}(u) \geqq 1 \quad$ for every choice of $P$ and $u$.
(3) Every derivation in $\operatorname{Der}(R, R)$ induces a derivation in $\operatorname{Der}(R / m, R / m)$.
(4) Every derivation in $\operatorname{Der}(R / m, R / m)$ is induced by a derivation in $\operatorname{Der}(R, R)$.
(5) $\Omega_{R / P}$ is determined independently of the choice of $P$, up to
isomorphisms.
(6) $v\left(f^{\prime}(u)\right)$ is determined independently of the choice of $P$ and $u$.

Lemma. Let $v$ be a complcte discrete valuation. Let $S$ be its ring and let $Y i$ be its ideal. Let $M$ be a free module with a free base $\left\{m_{i}\right\}, \in I$. Let $M^{*}$ be the Yi-adic completion of $M$. Let $s$ and $\iota$ be elements in $M^{*}$. We express as $s=\sum_{i=1}^{\infty} \alpha_{i} m_{t(i)}$ and $t=\sum_{i=1}^{\infty} \beta_{i} m_{t(i)}$ with $\quad \iota(i) \in I, \alpha_{i}, \beta_{i} \in S$ such that both sequences $\left(\alpha_{i}\right)$ and $\left(\beta_{i}\right)$ converge to zero in Yi-adic topology (see, Part I of [2]). Assume that we have a canonical isomorphism between the Mi-adic completions $\left(M^{*} / S s\right)^{*}$ of $M^{*} / S$ s and $\left(M^{*} / S t\right)^{*}$ of $M^{*} /$ St. Then we have $v\left(\alpha_{i}\right)=v\left(\beta_{i}\right)$ for all $i=1,2, \ldots$.

Proof. We put $N=\left(M^{*} / S s\right)^{*} \simeq\left(M^{*} / S t\right)^{*}$. Then we have $N / \mathfrak{R}^{n} N \simeq M^{*} / S s+\mathfrak{Y}^{n} M^{*} \simeq M^{*} / S t+\mathfrak{\Re}^{n} M^{*}$ for $n=1,2, \ldots$. Therefore $S s+\mathfrak{R}^{n} M^{*}=S t+\mathfrak{I}^{n} M^{*}$. Our assertion follows from it easily.

Proof of Theorem. Since $\Omega_{R_{l} P} \simeq R /\left(f^{\prime}(u)\right)$, we have $\Omega_{R_{/ P}}$ $\simeq R /\left(u^{l}\right)$, where $l=v\left(f^{\prime}(u)\right)$. In our case, $\left\{a_{\iota}\right\}_{, \in I} \neq \phi$ by Lemma in [4]. Case (1): Assume that $\Delta_{K / K^{*}}(u)<0$. Let $v\left(\beta_{\bar{i}}\right)=\min v\left(\beta_{i}\right)$. There exists uniquely a coefficient ring $\bar{P}$ of $R$, containing $\left\{a_{t}\right\}_{\iota \neq t(\bar{i})}$ and $a_{t(\bar{i})}+u$. Let $\bar{f}(U)$ be a minimal monic polynomial of $u$ over $\bar{P}$. Let $\rho$ be an $R$-isomorphism: $R \bigotimes_{P} \Omega_{P}^{*} \oplus R d U \rightarrow R \otimes_{\bar{P}} \Omega_{P}^{*} \oplus R d U$ such that $\rho\left(1 \otimes d_{P} a_{t}\right)=1 \otimes d_{\bar{P}} a_{\iota}$ for $\iota \neq \iota(\bar{i}), \rho(d U)=d U$ and $\rho\left(1 \otimes d_{P} a_{\iota(\bar{i})}\right)$ $=1 \otimes d_{P}\left(a_{t}(\bar{i})+u\right)-d U . \quad \rho$ induces a commutative diagram:

where $\lambda$ and $/ t$ are canonical homomorphisms, that is, homomorphisms satisfying: $\lambda\left(1 \otimes d_{P} a_{\iota}\right)=d_{R} a_{\iota}(\iota \in I), \lambda(d U)=d_{R} u, \mu\left(1 \otimes d_{\bar{P}} a_{\iota}\right)=d_{R} a_{\iota}$ $(\iota \in I, \iota \neq c(\bar{i})), \mu\left(1 \otimes d_{\bar{P}}\left(a_{\iota(\bar{i})}+u\right)\right)=d_{R}\left(a_{t(\bar{i})}+u\right)$ and $\mu(d U)=d_{R} u$. The image of the expression $\sum_{i=1}^{\infty} \beta_{i}\left(1 \otimes d_{P} a_{\iota(i)}\right)+f^{\prime}(u) d U$ of $\left(d_{P} f\right)(u)$ $+f^{\prime}(u) d U$ in $R \otimes_{P} \Omega_{P}^{*} \oplus R d U$ under $\rho$ is $s=\sum_{i \neq \bar{i}} \beta_{i}\left(1 \otimes d_{\bar{P}} a_{l(i)}\right)+\beta_{\bar{i}}(1$
$\left.\otimes d_{\bar{P}}\left(a_{\iota(i)}+u\right)\right)+\left(f^{\prime}(u)-\beta_{\bar{i}}\right) d U$. Let $t=$ the expression of $\left(d_{\bar{P}} \bar{f}\right)(u)$ $+\bar{f}^{\prime}(u) d U$ in $R \otimes_{\bar{P}} \Omega_{P}^{*} \oplus R d U$. Then, through $\mu$ we have a canonical isomorphism between the completion of $\left(R \otimes_{\bar{P}} \Omega_{P}^{*}\right) \oplus R d U / R s$ and the completion of $\left(R \otimes_{\bar{P}} \Omega_{P}^{*}\right) \oplus R d U / R t$. Then we can apply our lemma and comparing coefficients of $d U$ in $s$ and $t$, we get: $v\left(\bar{f}^{\prime}(u)\right)$ $=v\left(f^{\prime}(u)-\beta_{\bar{i}}\right)$. We have $v\left(f^{\prime}(u)-\beta_{\bar{i}}\right)=v\left(\beta_{\bar{i}}\right)<v\left(f^{\prime}(u)\right)$, because $v\left(\beta_{\bar{i}}\right)=v\left(f^{\prime}(u)\right)+\Delta_{K \mid K^{*}}(u)$. Hence $v\left(\bar{f}^{\prime}(u)\right)<v\left(f^{\prime}(u)\right)$ and $\Omega_{R / P} \neq$ $\Omega_{R / \bar{P}}$. Case (2): We assume that $\Delta_{K_{\mid K^{*}}}(u)=0$. With $\bar{i}$ as above, we put $l=v\left(\beta_{\bar{i}}\right)=v\left(f^{\prime}(u)\right)$. We can write as $\beta_{\bar{i}}=(\beta+\bar{\beta} u) u^{l}$ and $f^{\prime}(u)=(\alpha+\bar{\alpha} u) u^{l}$, where $\beta$ and $\alpha$ are units in $P$. Let $\bar{P}$ be a uniquely determined coefficient ring of $R$, containing $\left\{a_{i}\right\}_{l \in I, l} \neq \iota(\bar{i})$ and $a_{c(\bar{i})}+\frac{\alpha}{\beta} u$. Let $h(U)$ be a polynomial in $\bar{\Gamma}[U]$ such that $\frac{\alpha}{\beta}=h(u)$. Let $\bar{f}(U)$ be a minimal monic polynomial of $u$ over $\bar{P}$. Let $\rho$ be an $R$-isomorphism as in case (1), except that $\rho\left(1 \otimes d_{\bar{P}} a_{t(\bar{i})}\right)=1 \otimes d_{\bar{P}}\left(a_{t(\bar{i})}\right.$ $\left.+\frac{\alpha}{\beta} u\right)-u\left(\left(d_{\bar{P}} h\right)(u)+h^{\prime}(u) d U\right)-\frac{\alpha}{\beta} d U . \quad$ By the same reasoning as in case (1), we have:

$$
\begin{aligned}
v\left(\bar{f}^{\prime}(u)\right) & =v\left(f^{\prime}(u)-\frac{\alpha}{\beta} \beta_{\bar{i}}-\beta_{\bar{i}} u h^{\prime}(u)\right) \\
& =v\left((\alpha+\bar{\alpha} u) u^{l}-\frac{\alpha}{\beta}(\beta+\bar{\beta} u) u^{l}-(\beta+\bar{\beta} u) h^{\prime}(u) u^{l+1}\right) \\
& =v\left(\left(\bar{\alpha}-\beta \cdot \frac{\alpha}{\beta}-(\beta+\bar{\beta} u) h^{\prime}(u)\right) u^{l+1}\right) \geq l+1 .
\end{aligned}
$$

Hence we have $\Omega_{R / P} \neq \Omega_{R / \bar{P}}$.

## Kyoto University

## References

[1] J. Neggers, Derivations on p-adic fields, Trans. Amer. Math. Soc. 115 (1965), 496-504
[2] S. Suzuki, Some results on Hausdorff m-adic modules and m-adic differentials, Jour. Math. Kyoto Univ., vol. 2, no. 2 (1963).
[3] S. Suzuki, Differential modules and derivations of complete discrete valuation rings, Jour. Math. Kyoto Univ., vol. 9, no. 3 (1969).
[4] S. Suzuki, Corrections and supplements to my paper "Differential modules and derivations of complete discrete valuation rings", Jour. Math. Kyoto Univ., vol. 11, no. 2 (1971).

